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Abstract

We unveil that internal representations in large001
language models (LLMs) serve as reliable prox-002
ies of learned knowledge, and propose RE-003
CALL, a novel representation-aware model004
merging framework for continual learning with-005
out access to historical data. RECALL com-006
putes inter-model similarity from layer-wise007
hidden representations over clustered typical008
samples, and performs adaptive, hierarchical009
parameter fusion to align knowledge across010
models. This design enables the preserva-011
tion of domain-general features in shallow lay-012
ers while allowing task-specific adaptation in013
deeper layers. Unlike prior methods that re-014
quire task labels or incur performance trade-015
offs, RECALL achieves seamless multi-domain016
integration and strong resistance to catastrophic017
forgetting. Extensive experiments across five018
NLP tasks and multiple continual learning sce-019
narios show that RECALL outperforms base-020
lines in both knowledge retention and gener-021
alization, providing a scalable and data-free022
solution for evolving LLMs.023

1 Introduction024

Large language models (LLMs) have achieved im-025

pressive advances across tasks like question answer-026

ing, text generation, and mathematical reasoning,027

powering applications such as chatbots, AI busi-028

ness agents, and recommendation systems (Devlin,029

2018; Brown et al., 2020; Touvron et al., 2023;030

Raffel et al., 2020). They are typically trained031

through unsupervised pre-training on large cor-032

pora, followed by supervised fine-tuning (SFT)033

on task-specific or domain-specific data (Brown034

et al., 2020; Touvron et al., 2023; Wei et al., 2021;035

Ouyang et al., 2022). However, LLMs remain sus-036

ceptible to catastrophic forgetting (CF), where dis-037

tribution shifts during training lead to parameter038

updates that overwrite prior knowledge (Mccloskey039

and Cohen, 1989; Kirkpatrick et al., 2016; Li and040

Hoiem, 2018). As LLMs are increasingly applied041

in continual and multi-domain settings, mitigating 042

CF is essential to maintain both specialization and 043

generalization (Brown et al., 2020; Wei et al., 2021; 044

Achiam et al., 2023; Doimo et al., 2024). 045

As illustrated in Figure 1, previous approaches 046

addressing CF generally fall into two categories, 047

each with distinct strengths and limitations: 048

1) Data-based methods preserve past knowledge 049

by revisiting stored samples from previous tasks 050

during training on new tasks (Lopez-Paz and Ran- 051

zato, 2017; Rebuffi et al., 2016; Romanov et al., 052

2019; Isele and Cosgun, 2018). These methods are 053

effective in retaining task-specific information by 054

directly exposing the model to prior data. However, 055

they require access to historical samples, which 056

may be impractical due to storage constraints or 057

privacy concerns in real-world scenarios. 058

2) Model-based methods constrain model updates 059

or isolate task-specific knowledge via regulariza- 060

tion (Huang et al., 2021; Kirkpatrick et al., 2016; 061

Li and Hoiem, 2018; Wang et al., 2023) or archi- 062

tecture adaptation (Rusu et al., 2016; Fernando 063

et al., 2017; Tian et al., 2024). These approaches 064

enable continual learning without relying on past 065

data, offering better scalability in privacy-sensitive 066

settings. Nonetheless, they often operate within 067

limited optimization spaces and struggle to pre- 068

serve performance across diverse tasks. Addition- 069

ally, they may depend on explicit task identifiers 070

and increase model complexity over time. 071

To overcome the limitations of existing contin- 072

ual learning approaches, we aim to combine the 073

strengths of both data-based and model-based meth- 074

ods: retaining prior knowledge without relying on 075

stored data, while enabling flexible model adapta- 076

tion across tasks. 077

However, without access to historical data, it be- 078

comes difficult to assess what knowledge should 079

be preserved; and without explicit task boundaries, 080

it is unclear how to guide model updates in a struc- 081

tured and generalizable manner. This raises a core 082
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Figure 1: A taxonomy of previous approaches to catastrophic forgetting. Data-based methods (a) rely on stored
samples from previous tasks, which are replayed alongside new data during fine-tuning. Model-based methods (b)
mitigate forgetting by either constraining parameter updates or isolating task-specific knowledge. In (b), the left side
illustrates regularization-based methods that optimize model parameters within the intersection of low-loss regions
for both old and new tasks (e.g., Task A and Task B), instead of strictly minimizing the loss on the new task. This
encourages a more stable update trajectory that retains previously learned knowledge while adapting to new tasks.

challenge: how can we identify and preserve use-083

ful task knowledge across models in a data-free084

and task-agnostic way?085

In addressing this question, we observe that in-086

ternal representations, which reflect how models087

encode and process inputs, can serve as reliable088

proxies for their learned knowledge. These rep-089

resentations are inherently shaped by both model090

architecture and training objectives, making them091

well-suited for comparing and aligning knowledge092

across models without requiring access to raw data093

or task labels.094

Motivated by this insight and recent advances095

in model merging (Xiao et al., 2023; Wortsman096

et al., 2022; Jiang et al., 2023), we propose a novel097

representation-aware model merging strategy that098

addresses both data availability and optimization099

flexibility. Our method computes inter-model simi-100

larities based on intermediate representations and101

uses them to guide adaptive, layer-wise parameter102

merging. By avoiding raw data, we circumvent103

privacy and accessibility concerns, while our fine-104

grained integration expands the optimization space105

beyond traditional methods and enables more ef-106

fective knowledge fusion.107

Our main contributions are summarized as fol-108

lows:109

• We propose a novel representation-aware110

model merging framework to address catas-111

trophic forgetting, by leveraging intermediate112

representations to guide parameter integration113

without relying on raw data or explicit task114

boundaries.115
• Our method generalizes to the integration of116

multiple expert models fine-tuned on differ-117

ent domains, enabling effective multi-domain118

capability fusion through weighted represen- 119

tation alignment. 120

• We further demonstrate that the proposed 121

framework can be applied to traditional contin- 122

ual learning benchmarks, including sequential 123

fine-tuning scenarios, achieving strong per- 124

formance without task-specific modifications. 125

126• Extensive experiments across multiple 127

datasets and benchmarks validate the 128

effectiveness and generality of our ap- 129

proach, showing consistent improvements in 130

knowledge retention and transferability. 131

2 Empirical Observations of 132

Representation Dynamics in LLMs 133

Prior studies have shown that different layers of 134

large language models encode distinct types of lin- 135

guistic and semantic information (Tenney et al., 136

2019; Starace et al., 2023). Building on this, we 137

analyze hidden representations from transformer 138

layers to examine how they evolve within a model 139

and diverge across models fine-tuned on different 140

tasks. 141

2.1 Layer-wise Representation 142

Transformation 143

We first investigate how internal representations 144

evolve across layers within a single model for a 145

fixed input batch. Specifically, we compute the 146

average RBF kernel similarity between adjacent 147

layers’ hidden states. The similarity scores exhibit 148

a non-monotonic pattern, with noticeable drops 149

in both early and late layers. This indicates that 150

the transformation of representations varies signif- 151

icantly across the network (see Appendix D for 152
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Figure 2: Illustration of representation transformation
across layers within a single LLM. The input progresses
through a sequence of transformations, and the corre-
sponding hidden states (shown for layers 0, 15, and 32)
exhibit distinct structural patterns in the representation
space, highlighting the non-uniform nature of internal
dynamics.

details). In addition, as shown in Figure 2, vi-153

sualization through clustering and dimensionality154

reduction techniques shows that hidden states at155

different layers form distinct structural patterns in156

the representation space.157

This layer-wise variation suggests that each layer158

contributes differently to the model’s behavior. As159

a result, treating all layers uniformly during model160

merging—such as through naive parameter averag-161

ing—may overlook the unique functional roles of162

different layers and lead to suboptimal integration.163

2.2 Specialization-induced Model Divergence164

We next examine how internal representations di-165

verge across models that share the same architec-166

ture and initialization but have been fine-tuned on167

different tasks. Using the same input batch, we168

extract hidden states from each model and com-169

pute the average layer-wise RBF kernel similarity170

between them.171

We observe that lower-layer representations re-172

main relatively consistent, while deeper layers173

diverge significantly across tasks—a trend high-174

lighted by the model-wise similarity curves in Ap-175

pendix D.176

To further illustrate this phenomenon, Figure 3177

visualizes the hidden states from two task-specific178

models. Despite processing the same inputs, their179

hidden states evolve along different trajectories and180

form distinct clustering structures, reinforcing the181
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Figure 3: Visualization of representation drift between
two models fine-tuned on different tasks (SST2 vs.
RACE). Despite sharing the same input, their hidden
states evolve along different trajectories and form dis-
tinct clustering patterns, especially in deeper layers.

view that fine-tuning induces semantic specializa- 182

tion in deeper layers. 183

These results suggest that naive parameter merg- 184

ing, especially in upper layers, may introduce se- 185

mantic inconsistency or destructive interference if 186

such representational misalignment is ignored. 187

3 RECALL: REpresentation-aligned 188

Catastrophic-forgetting ALLeviation 189

In Section 2, we analyze the characteristics of 190

the data representation across models and layers 191

through experimental observations, and illustrate 192

that the knowledge of a model is closely related to 193

its data representation. And previous works (Worts- 194

man et al., 2022; Xiao et al., 2023) have nicely illus- 195

trated that knowledge fusion and continual learning 196

do not necessarily require a fine-tuning stage such 197

as knowledge distillation. Model merging can also 198

directly and effectively achieve the goal. 199

Therefore, inspired by those observations, we 200

propose RECALL in this section, which performs 201

layer-wise model merging by comparing the sim- 202

ilarities of data representations between different 203

models, so as to achieve representation alignment. 204

As illustrated in Figure 4, RECALL effectively en- 205

hances LLM’s abilities in multiple domains and 206

tasks, and mitigates catastrophic forgetting. 207

As a prerequisite condition, we have the source 208

model M0 and multiple homologous expert models 209

M1,M2, · · · ,MN−1, which have the same archi- 210

tecture but different parameters with M0. On the 211
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Figure 4: Illustration of RECALL, our proposed representation-aware model merging framework. The pipeline
consists of four stages: (1) extract hidden states from typical samples using the newly fine-tuned model MN ,
(2) compute the pairwise representational similarities across all models (including MN ), (3) derive layer-wise
adaptive weights based on similarity scores via softmax, and (4) perform hierarchical parameter merging guided
by the computed weights. This process enables effective knowledge integration across models while preserving
task-specific features.

new task TN , we obtain the new model MN by fine-212

tuning M0 from the dataset DN . Then, we select m213

typical samples Dtype = {d1, d2, · · · , dm} ⊂ DN214

through a clustering algorithm. For each dk ∈215

Dtype, we extract its representations on models216

M0 ∼ MN , analyze the differences between MN217

and other models in semantic and syntactic knowl-218

edge through the similarities between data repre-219

sentations. Finally, we perform hierarchical model220

merging for knowledge fusion.221

3.1 Data Representation222

Representation Extraction. We extract the hid-223

den states of layer n of Mp, which is formulated224

as: Rn = (r1, r2, · · · , rL) ∈ RL×E , where L is225

the number of input tokens, E is the dimension226

of embedding vectors, and ri indicates the embed-227

ding of the ith token. Referring to the practice of228

most embedding models (Reimers and Gurevych,229

2019; Xiao et al., 2023), we average the hidden230

states by token to obtain representation vector:231

r = 1
L

∑L
i=1 ri ∈ RE .232

Typical Dataset Selection. Our approach233

does not place restrictions on the composition of234

datasets, which means that samples from multiple235

domains and tasks may be included in DN . There- 236

fore, we cluster all data representations of DN , and 237

select m samples which are nearest to the m clus- 238

ter centers C = {c1, c2, · · · , cm} to form the typ- 239

ical dataset Dtype = {dt1 , dt2 , · · · , dtm} ⊂ DN . 240

For k ∈ [1,m]: dtk = argmindi∈DN
||di − ck||2, 241

in which ck is the kth cluster center clustered by 242

Kmeans. In order to reduce the number of samples 243

needed to perform forward inference for data rep- 244

resentation analysis, we use Dtype as the represen- 245

tative of DN to analyze the knowledge difference 246

of models. 247

3.2 Similarity Calculation 248

For each sample dk in the typical dataset Dtype and 249

each model Mp, its data representation at layer i 250

is rp,ki ∈ RE . As mentioned above, we measure 251

the difference in knowledge between models by 252

data representations. Specifically, as we select typi- 253

cal samples by Kmeans which is closely related to 254

the norm distance, RBF kernel function(Schölkopf 255

et al., 2004) is adopted to measure similarity be- 256

tween representation vectors, and we calculate the 257

algebraic average of similarities of all m samples 258

in Dtype as the overall similarity. we also carefully 259
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discuss the differences using different similarity260

measures and do experiments to compare them,261

results and discussions are detailed in Appendix F.262
The similarity between Mp and Mq on layer i is263

formulated as:264

Sp,q
i =

1

m

m∑
k=1

exp (−||rp,k
i − rq,k

i ||22
2σ2

), (1)265

in which σ is a scaling factor.266

3.3 Hierarchical Merging267

For later narration, we summarize here the268
paradigm approach to model merging. Current269
model merging is essentially a linear interpolation270
of the model parameters, which means for each271
parameter θ in the model and merging weight w,272
we have:273

θ∗ =

N∑
i=1

wiθi = wTθ, (2)274

in which θ is the vector concatenated by param-275

eter θ of different models, and w is the vector of276

corresponding weights.277
Furthermore, Eq 2 can be easily extended to the278

case that group of parameters correspond the same279
weights, We can compute linear interpolations of280
multiple parameters at once via the inner product281
operation like the following equation,282

θ =

[
θ1
θ2

]
=

[
wTθ1

wTθ2

]
=

[
θT
1

θT
2

]
w. (3)283

In Section 3.2, we present the similarity metric284
to measure the similarities of data representation285
between models. To align their representations, we286
use Softmax to normalize representation similari-287
ties as merging weights. Then the weight of Mq in288
layer i is as follows:289

wq
i =

expSn,q
i

N∑
p=0

expSn,p
i

. (4)290

Therefore, we provide representation-aligned291
merging method for one layer:292

θ∗
i =

N∑
q=0

wq
i θ

q
i =

[
θ1
i , θ

2
i , · · · , θN

i

]
wi = ΘT

i wi, (5)293

where θi denote the model’s parameters of layer i.294
According to Eq 3, 5, we perform hierarchical295

model merging layer by layer:296

θ∗ =


θ∗
1

θ∗
2

...
θ∗
L

 =


ΘT

1 w1

ΘT
2 w2

...
ΘT

LwL

 = diag(ΘTw), (6)297

in which θ∗ is the parameter vector of the fi-298

nal merging model. Θ = [Θ1,Θ2, · · · ,ΘL]299

is the parameter matrix of M0∼N , and wT =300

[wT
1 ,w

T
2 , · · · ,wT

N ] is the corresponding weight 301

matrix. 302

As mentioned above, our method enhances the 303

abilities of LLM in multi-domains and resists 304

catastrophic forgetting by performing independent 305

weight calculation and hierarchical merging op- 306

erations. The detailed procedure of RECALL is 307

presented in Algorithm 1 in the Appendix. 308

4 Experiments 309

In this section, we will provide a detailed intro- 310

duction to our implementation and the results of 311

experiments, which are mainly composed of three 312

main parts: Experimental Setup, Different Merg- 313

ing Scenarios, and Sequential Fine-tuning Scenario. 314

Furthermore, we summarize and analyze the results 315

of these experiments, which strongly prove the su- 316

periority of our method. 317

4.1 Experimental Setup 318

Datasets. Considering a challenging experimen- 319

tal setup in knowledge fusion and continual learn- 320

ing, we selected 5 datasets as targets from mul- 321

tiple domains and tasks, including text classi- 322

fication, single-choice questions, and text gen- 323

eration, which are SST-2(Socher et al., 2013), 324

SQuAD2.0(Rajpurkar et al., 2016, 2018), MedM- 325

CQA(Pal et al., 2022), RACE(Lai et al., 2017) 326

and IWSLT2017(Cettolo et al., 2017). Since these 327

datasets come from different tasks and have differ- 328

ent formats, in order to adapt our method, we unify 329

them into QA format by constructing prompts. 330

Examples of the prompts are accessible in Ap- 331

pendix C. 332

Baseline.(1) SFT only: directly fine-tunes the 333

base model on a single downstream task without 334

considering any cross-task interactions or param- 335

eter sharing. (2) Avg.(Wortsman et al., 2022): av- 336

eraging their parameters without any alignment or 337

adjustment. (3) DARE(Yu et al., 2023): flexible 338

strategy to combine with other baselines(Average 339

or Task Vector method) and random dropout param- 340

eters. (4) LM-Cocktail(Xiao et al., 2023): merges 341

models by comparing loss on validation set. (5) 342

Task Vector(Ilharco et al., 2022): computes the 343

difference between the base model and each fine- 344

tuned model to perform add, subtraction, or in- 345

terpolation to construct new task behaviors. (6) 346

EWC(Kirkpatrick et al., 2016): introduces a reg- 347

ularization term based on the Fisher Information 348

Matrix to prevent forgetting. 349
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We selected the Llama-2-7B-chat(Touvron et al.,350

2023) as the base model for fine-tuning and weight351

merging on 8 NVIDIA V100 GPUs, and LoRA(Hu352

et al., 2022) is deployed for the fine-tuning pipeline.353

The implementation details of fine-tuning and eval-354

uation pipeline are provided in Appendix B. All355

implementation details are supplied in Appendix A.356

In experiments of comparing with other base-357

lines, our method always uses the same setting:358

we select 20 typical samples for each layer by the359

clustering algorithm, and those samples are con-360

catenated to form the typical dataset. Same as Eq 1,361

we adopt the RBF kernel function as the similar-362

ity, of which the scale factor σ is set to 1.0. Then363

we segment and calculate weights for each layer364

of the model to merge them independently(taking365

Llama2-7b-chat as an example, the model will have366

33 different groups of merging weights).367

4.2 Performance of RECALL in Different368

Merging Scenarios369

Firstly, we fine-tune the base model on the above 5370

datasets to obtain five corresponding expert mod-371

els. We then set up two different scenarios depend-372

ing on the number of models used in the merging,373

which will be illustrated in next two subsections.374

4.2.1 Single Fine-tuned Model Merging375

In this study, we consider the case of merging using376

a single fine-tuned model and its base model. With377

access to the training datasets for both models, we378

conduct comprehensive experiments to evaluate379

proposed approach across different datasets. Our380

experiments compare the performance of several381

baselines using different datasets and the results382

are presented in Table 1.383

We draw the following observations from Ta-384

ble 1: Our method RECALL consistently outper-385

forms all baselines across diverse settings, achiev-386

ing the highest average performance (45.00) and387

the best generalization to unseen tasks (38.92,388

+7.86% over the best baseline). It maintains top-389

tier results across all fine-tuning sources and excels390

in challenging domains such as MEDMCQA and391

IWSLT2017-EN-FR, demonstrating both robust-392

ness and transferability. These results underscore393

the effectiveness of leveraging representational sim-394

ilarity for model merging and motivate the exten-395

sion to more complex multi-source integration sce-396

narios.397

4.2.2 Multiple Fine-tuned Models Merging 398

To simulate a more complex knowledge integration 399

setting, we simultaneously merge five task-specific 400

expert models. As shown in Table 2, we consider 401

two configurations: merging with and without the 402

inclusion of the base model. 403

From Table 2, we observe: RECALL achieves 404

the best overall performance in both settings, with 405

or without the base model, reaching averages of 406

56.93 and 62.83, respectively. Notably, it outper- 407

forms all other methods even without relying on 408

the base model, demonstrating strong capability 409

in integrating knowledge from multiple fine-tuned 410

experts. These results highlight the advantage of 411

representation-aware merging over both parame- 412

ter averaging and task-vector-based baselines, and 413

demonstrate that RECALL is not only effective for 414

single-expert scenarios but also scalable to multi- 415

expert merging, showing robust performance in 416

both knowledge preservation and generalization 417

without requiring access to training data. 418

4.3 Sequential Fine-tuning Scenario 419

To further assess the effectiveness of RECALL in 420

realistic continual learning settings, we conduct se- 421

quential fine-tuning experiments across five tasks 422

introduced in a fixed order. After training on each 423

new task, the current model is merged with the 424

previously accumulated one using different strate- 425

gies. We compare RECALL against two baselines: 426

standard LoRA-based fine-tuning (LoRA SFT) and 427

Elastic Weight Consolidation (EWC) (Kirkpatrick 428

et al., 2016). 429

Figure 5 illustrates the forward forgetting curves 430

over the task sequence, where the y-axis indicates 431

model performance on the current task immediately 432

after learning it, and the x-axis denotes the task 433

index. 434

We highlight the following observations: 435

As illustrated in Figure 5, LoRA SFT suffers 436

from a dramatic performance decline on the origi- 437

nal SST-2 task as training progresses on new tasks, 438

indicating a severe forward forgetting phenomenon. 439

EWC alleviates this to some extent, but still shows 440

a noticeable downward trend. In contrast, our pro- 441

posed RECALL method maintains relatively stable 442

performance throughout the sequential fine-tuning 443

process, with only a moderate decline toward the 444

final tasks. This suggests that RECALL is more 445

effective at preserving prior task knowledge com- 446

pared to the other two baselines. 447
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Centering Fine-tuned on Method
Datasets

Average Other tasks
SST-2 SQuAD2.0 IWSLT2017-en-fr RACE MedMCQA

SST-2

SFT only 95.76 31.68 13.28 44.71 32.32 43.55 30.50
Avg 94.95 5.21 12.32 32.75 34.28 35.90 21.14

DARE+Avg 95.07 8.75 11.68 50.44 35.14 40.22 26.50
LM-Cocktail 95.76 25.54 11.88 32.55 34.26 40.00 26.06

RECALL(Our) 94.50 30.72 12.08 47.44 34.90 43.93 31.29

SQuAD2.0

SFT only 86.81 85.46 21.28 48.78 32.61 55.00 47.37
Avg 89.11 80.92 18.28 31.58 34.23 50.82 43.3

DARE+Avg 89.11 78.67 19.59 50.52 34.69 54.52 48.48
LM-Cocktail 79.36 84.46 18.38 42.24 32.66 51.42 43.16

RECALL(Our) 86.19 84.87 18.20 49.50 34.34 54.62 47.06

IWSLT2017-en-fr

SFT only 82.68 10.72 45.33 29.39 33.21 40.27 39.00
Avg 89.91 4.35 42.01 32.85 35.45 40.91 40.64

DARE+Avg 89.33 10.45 41.63 44.6 35.84 44.37 45.06
LM-Cocktail 89.91 5.23 43.13 30.08 35.07 40.68 40.07

RECALL(Our) 89.56 10.55 43.09 48.73 34.43 45.27 45.82

RACE

SFT only 18.23 50.64 19.06 85.71 39.68 42.66 31.90
Avg 47.36 14.80 22.58 73.47 34.66 38.57 29.85

DARE+Avg 29.13 50.05 19.55 78.68 34.97 42.48 33.42
LM-Cocktail 30.39 51.24 23.02 82.31 37.29 44.85 35.49

RECALL(Our) 34.93 40.27 23.12 79.31 36.96 42.92 33.82

MedMCQA

SFT only 9.91 6.58 18.22 31.76 45.54 22.40 16.62
Avg 0.11 5.97 15.34 23.17 43.25 17.57 11.15

DARE+Avg 24.36 11.99 14.04 57.46 42.86 30.14 26.96
LM-Cocktail 17.58 12.61 14.07 24.89 44.18 22.67 17.29

RECALL(Our) 70.32 18.58 13.86 43.77 44.82 38.27 36.63

All Average

SFT only 58.68 37.02 23.43 48.07 36.67 40.77 33.08
Avg 64.29 22.25 22.11 38.76 36.37 36.76 29.22

DARE+Avg 65.40 31.98 21.30 56.34 36.7 42.34 36.08
LM-Cocktail 62.60 35.82 22.10 42.40 36.69 39.92 32.41

RECALL(Our) 75.10 37.00 22.07 53.75 37.09 45.00(+6.28%) 38.92(+7.86%)

Table 1: Performance of merging the base model(Llama-2-7B-chat) and the model fine-tuned on one specific dataset.
We compared our method with 4 baselines and marked the best two results in bold and underlined fonts. The
average performance on 5 datasets and 4 datasets(except the fine-tuning dataset) is also labeled in the last two
columns.

Figure 5: Performance curves on SST-2 during sequen-
tial fine-tuning with other two baselines.

These results confirm that RECALL is well-448

suited for deployment in dynamic learning envi-449

ronments, offering resilience to forgetting while450

ensuring consistent learning progress. Detailed per-451

task results are available in Appendix E.452

5 Related works 453

Catastrophic forgetting (CF) is particularly severe 454

in realistic deployment settings, where training data 455

from previous tasks may be inaccessible due to 456

privacy concerns, and task boundaries or identi- 457

fiers are typically unavailable. To address CF, ex- 458

isting continual learning (CL) approaches can be 459

broadly categorized into two classes: data-based 460

methods and model-based methods. Data-based 461

methods leverage stored or generated samples from 462

earlier tasks (Lopez-Paz and Ranzato, 2017; Re- 463

buffi et al., 2016), while model-based methods im- 464

pose constraints on parameter updates or isolate 465

task-specific modules (Kirkpatrick et al., 2016; Fer- 466

nando et al., 2017). Some recent work adapts these 467

paradigms to LLMs using parameter-efficient tun- 468

ing modules (Wei et al., 2025; Tian et al., 2024). 469

5.1 Model Merging 470

Model merging has emerged as an alternative to 471

traditional CL methods, enabling knowledge inte- 472

gration without access to historical training data. 473

Most methods perform parameter-level fusion, typ- 474

ically via uniform averaging, without accounting 475
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Method
Datasets

Average
SST-2 SQuAD2.0 IWSLT2017-en-fr RACE MedMCQA

With base model

Avg. 86.47 54.85 27.25 58.65 35.84 52.612
DARE+Avg. 86.35 63.9 34.24 61.63 36.82 56.588
LM-Cocktail 51.38 66.74 29.31 68.89 36.07 50.478

RECALL(Our) 85.44 78.4 28.26 57.9 34.66 56.932

Without base model

Avg. 91.28 67.85 35.87 66.94 37.2 59.828
DARE+Avg. 89.6 68.01 36.85 69.08 40.96 60.9
Task Vector 11.82 29 9.98 49.64 7.36 21.56

DARE+Task Vector 16.86 29.34 11.11 50.34 9.25 23.38
RECALL(Our) 89.11 77.66 33.12 74.39 39.86 62.828

Table 2: Performance of merging multiple models. With base model: Merging the five fine-tuned models and
the base model(Llama-2-7B-chat). Without base model: Merging the five fine-tuned models. We compared our
method with several baselines and marked the best two results in bold and underlined fonts.

for layer-wise functional differences.476

Task Arithmetic (Ilharco et al., 2022) and Mod-477

elSoup (Wortsman et al., 2022) showed that sim-478

ple weight averaging can yield multi-task models.479

Fisher Merging (Matena and Raffel, 2022) incor-480

porates importance weights based on Fisher infor-481

mation to preserve task-relevant parameters. Reg-482

Mean (Jin et al., 2023) formulates merging as a483

regression problem over model outputs, aligning484

them via low-rank projection.485

Other works attempt to mitigate interfer-486

ence through more selective merging. TIES-487

Merging (Yadav et al., 2023) trims parameter deltas488

and aligns signs, while DARE (Yu et al., 2023)489

sparsifies task-specific shifts to preserve key differ-490

ences. LM-Cocktail (Xiao et al., 2023) and LLM-491

Blender (Jiang et al., 2023) perform weighted merg-492

ing or output blending using learned domain signals493

or generation-based rankers.494

5.2 Probing Representations495

Probing techniques analyze how LLMs internally496

organize linguistic and task knowledge. Prior work497

has shown that lower layers tend to encode syn-498

tactic information, while upper layers capture se-499

mantics and abstract features (Tenney et al., 2019;500

Starace et al., 2023).501

Starace et al. (2023) demonstrate that linguistic502

features are unevenly distributed across layers and503

can shift during adaptation. Tighidet et al. (2024)504

find that past knowledge may remain latent but505

inaccessible, while Kotha et al. (2023) show that506

representation-level forgetting is limited, with per-507

formance loss arising from usage changes rather508

than loss of internal content.509

These findings highlight the importance of an-510

alyzing internal representations when studying511

model behavior under adaptation and support512

representation-driven approaches to knowledge re- 513

tention and integration. 514

6 Conclusions 515

In this work, we first conduct exploratory exper- 516

iments to explore the phenomenon that data rep- 517

resentations drift between layers and models, and 518

relate this phenomenon to knowledge differences 519

and catastrophic forgetting of models. Based on 520

these findings, we propose a method to achieve 521

knowledge fusion and resist catastrophic forgetting 522

by aligning the representations of different layers of 523

the model, called RECALL. RECALL does not re- 524

quire past data and only requires hierarchical model 525

aggregation by exploiting the similarity of model 526

representations to achieve the goal effectively. We 527

verify the effectiveness of the method in multiple 528

scenarios, and analyze the details of the method in 529

more depth through ablation experiments and other 530

tests. Our discussion of the limitation is available 531

in section 7. 532

7 Limitations 533

While RECALL provides an effective and data- 534

free solution to continual learning in large lan- 535

guage models, several limitations remain. First, 536

our method assumes access to multiple fine-tuned 537

models on related tasks, which may not always 538

be available in real-world deployment scenarios. 539

Second, the current implementation relies on clus- 540

tering and similarity computations over a small set 541

of representative samples; while efficient, the selec- 542

tion quality of these typical samples can influence 543

the final merging outcome. Moreover, RECALL is 544

tailored to models with identical architectures and 545

aligned tokenizers—extending to heterogeneous 546

model families or multilingual settings poses addi- 547

8



tional challenges. Finally, although we empirically548

validate RECALL across diverse NLP tasks, fur-549

ther investigation is needed on scaling to dozens of550

tasks or integrating with training-time regulariza-551

tion techniques for tighter lifelong learning integra-552

tion.553
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A Datasets and Fine-Tuning Settings 818

We fine-tune the LLaMA-2-7B model on 5 differ- 819

ent datasets from diverse domains and tasks, includ- 820

ing sentiment classification, question answering, 821

medical QA, reading comprehension, and machine 822

translation. Detailed statistics and supervised fine- 823

tuning (SFT) hyperparameters are presented below. 824

A.1 Dataset Statistics and Prompt Format 825

Dataset # train # test Metric

SST-2 60,000 872 Accuracy
SQuAD2.0 130,000 11,873 Exact Match
MedMCQA 100,000 4,183 Accuracy
RACE 80,000 4,934 Accuracy
IWSLT2017-en-fr 100,000 8,597 Exact Match

Table 3: Statistics for the datasets used to fine-tune
LLaMA-2-7B.

Dataset Descriptions. 826

• SST-2 (Socher et al., 2013): Binary sentiment 827

classification dataset with movie reviews la- 828

beled as positive or negative. 829

• SQuAD2.0 (Rajpurkar et al., 2016, 2018): 830

Reading comprehension dataset with both an- 831

swerable and unanswerable questions. 832

• MedMCQA (Pal et al., 2022): Multiple- 833

choice QA dataset from Indian medical en- 834

trance exams. 835

• RACE (Lai et al., 2017): Reading comprehen- 836

sion dataset from English exams for Chinese 837

middle and high school students. 838

• IWSLT2017-en-fr (Cettolo et al., 2017): 839

English-to-French translation dataset from 840

TED talks. 841

A.2 Fine-Tuning Hyperparameters 842

We fine-tune five task-specific models based on 843

LLaMA-2-7B using LoRA (Hu et al., 2022) on 844

8 NVIDIA V100 GPUs. Each model is trained 845

with distinct hyperparameters tailored to its dataset. 846

The LoRA config is reported as r/α/dropout ((see 847

Table 4 for details)). 848

The LLaMA-2-7B-chat (Touvron et al., 2023) is 849

used as the base model. We intentionally chose 850

diverse datasets to simulate a challenging setup for 851

continual learning and knowledge fusion. 852
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Dataset LoRA (r/α/dropout) Max Len LR Batch Epochs Deepspeed

SST-2 8 / 32 / 0.1 2048 5e-5 64 3 ZeRO-3
SQuAD2.0 16 / 64 / 0.05 2048 3e-5 32 4 ZeRO-3
MedMCQA 8 / 32 / 0.1 2048 5e-5 64 3 ZeRO-3
RACE 4 / 16 / 0.0 2048 2e-5 128 2 ZeRO-3
IWSLT2017-en-fr 8 / 32 / 0.1 1024 1e-4 64 5 ZeRO-3

Table 4: SFT hyperparameters for each dataset.

B Experimental Framework853

We adopt llama-factory (Zheng et al., 2024) for854

instruction tuning. It supports various parameter-855

efficient fine-tuning methods such as LoRA (Hu856

et al., 2022) and QLoRA (Dettmers et al., 2023),857

enabling flexible configuration and easy adaptation858

to various data formats.859

Model performance is evaluated using860

OpenCompass (Contributors, 2023), which inte-861

grates a broad range of standardized benchmarks862

to ensure consistency and reproducibility. For863

efficient inference, we deploy models with864

vLLM (Kwon et al., 2023), providing high865

throughput and low latency.866

C Instruction and Clustering Sample867

Details868

To illustrate the data used in our experiments, we869

present two sets of representative samples. Table 5870

shows instruction samples used during supervised871

fine-tuning (SFT).872

D Supplementary Similarity Curves873

Figure 6: Cosine similarity between adjacent hidden
layers within a single LLM. The similarity drops in both
early and late layers, suggesting non-uniform transfor-
mation of representations across the network.

As shown in Figure 6, 7, representational simi-874

larity varies across layers and tasks. Models trained875

on similar tasks (e.g., SST-2 and RACE) show876

Figure 7: Cosine similarity between representations at
the same layer across two LLMs fine-tuned on differ-
ent tasks. Similarity remains high in early layers but
decreases in deeper layers, indicating increasing task-
specific divergence.

higher alignment in middle and upper layers, while 877

those from different domains (e.g., MedMCQA 878

vs. IWSLT) diverge significantly, especially in 879

deeper layers. These patterns are consistent with 880

our main findings and further support the use of 881

representation-aware merging strategies. 882

E Sequential Fine-Tuning Results 883

To provide a strong baseline for comparison, we 884

conduct sequential fine-tuning (SeqFT) experi- 885

ments, where a single model is trained on multiple 886

datasets in a fixed order without revisiting previous 887

ones. This setting simulates a continual learning 888

scenario and serves to quantify the extent of catas- 889

trophic forgetting. 890

We sequentially fine-tune the LLaMA-2-7B 891

model across five diverse tasks, including senti- 892

ment classification, question answering, medical 893

QA, reading comprehension, and machine transla- 894

tion. All models are trained under the same LoRA 895

configuration for consistency. After completing 896

each step in the sequence, we evaluate the model 897

on all previously seen datasets to track performance 898

drop. 899

As shown in Table 6, performance on earlier 900

tasks gradually deteriorates as the model is up- 901

dated on subsequent ones. The trend clearly reflects 902
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Task Example

SST-2 Instruction: Statement: the characters in swimfan seem motivated by nothing short
of dull, brain-deadening hangover. What’s sentiment should the above sentence be?
OPTIONS:- negative.- positive. Answer:
Output: negative

SQuAD2.0 Instruction: Unpopulated boards are usually bare-board tested for ... the appropriate
contact points and only on these. According to the above passage, answer the
following question. If it is impossible to answer according to the passage, answer
‘impossible to answer‘: Question:Whatś an absent connection that needs to be linked
up on an unpopulated board called?
Output: An open

MedMCQA Instruction: Question: Which of the following metabolic reactions require vitamin
B12 but not folate? Options: A: Conversion of malonic acid to succinic acid B:
Conversion of homocysteine to methionine C: Conversion of serine to glycine D:
Thymidylate synthesis Choose an correct answer from A/B/C/D.Answer:
Output: A

RACE Instruction: Read the article, and answer the question by replying A, B, C or D.
Article: Tired of all the pushing in supermarkets? Angry at wasting ... claim it to be.
Q:The author agrees with the fact that ...
Output: D

Table 5: Instruction samples used for supervised fine-tuning.

Method Task Sequence
Datasets

Average
SST-2 SQuAD2.0 MedMCQA IWSLT2017 RACE

LoRA SFT

Task 1 SST-2 95.76 31.68 32.32 13.28 44.71 43.55
Task 2 SQuAD2.0 94.38 87.42 16.88 25.06 58.15 56.378
Task 3 MedMCQA 88.3 74.89 42.62 19.29 68.38 58.696
Task 4 IWSLT2017 76.38 75.71 42.39 45.29 58.73 59.7
Task 5 RACE 14.79 68.05 39.8 34.85 86.24 48.746

EWC

Task 1 SST-2 95.76 31.68 32.32 13.28 44.71 43.55
Task 2 SQuAD2.0 94.27 88.32 25.77 20.94 51.64 56.188
Task 3 MedMCQA 90.47 72.12 42.53 12.44 57.75 55.062
Task 4 IWSLT2017 81.59 65.31 41.05 47.86 55.6 58.282
Task 5 RACE 67.42 64.81 39.68 33.54 87.34 58.558

RECALL(Our)

Task 1 SST-2 94.5 30.72 34.9 12.08 47.44 43.928
Task 2 SQuAD2.0 96.61 86.34 30.79 19.83 57.52 58.218
Task 3 MedMCQA 92.89 71.66 40.65 18.48 69.06 58.548
Task 4 IWSLT2017 86.31 67.09 38.16 45.73 67.55 60.968
Task 5 RACE 80.59 62.38 36.22 43.14 88.97 62.26

Table 6: Detailed performance of sequence training scenario.

catastrophic forgetting and reinforces the need for903

continual learning strategies such as our proposed904

representation-aware model merging, which avoids905

overwriting previous knowledge by aligning and906

preserving internal representations.907

F Comparison of Similarity Metrics908

To determine the most effective similarity metric909

for guiding our representation-aware model merg-910

ing, we conduct a comparative study across five911

widely-used similarity measures. These metrics912

are used to compute the alignment between hidden913

representations of models, which in turn inform the914

layer-wise merging weights. 915

The five similarity metrics evaluated are: 916

• Cosine similarity: x, y are vectors. 917

Sim =
xT y

||x||2 × ||y||2
(7) 918

• Euclidean distance (converted to similar- 919
ity): x, y are vectors. 920

Sim =
||x− y||2

max
X ,Y

||X − Y||2
(8) 921

• Centered Kernel Alignment (CKA) (Korn- 922
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blith et al., 2019): X,Y are two distributions.923

CKA(X,Y ) =
∥X⊤Y ∥2F

∥X⊤X∥F · ∥Y ⊤Y ∥F
(9)924

• Maximum Mean Discrepancy (MMD):925
X,Y are two distributions.926

MMD2(X,Y ) =
1

n2

n∑
i=1

n∑
j=1

k(xi, xj)

+
1

m2

m∑
i=1

m∑
j=1

k(yi, yj)

− 2

nm

n∑
i=1

m∑
j=1

k(xi, yj)

(10)927

• RBF kernel: See Eq 1.928

For each metric, we compute layer-wise align-929

ment scores between expert models, normalize the930

weights, and perform hierarchical model merging931

using the same fusion strategy. The final merged932

models are evaluated on multiple tasks to assess933

performance consistency.934

As shown in Table 7, cosine similarity yields the935

highest performance across all evaluation datasets.936

While CKA and dot product also perform competi-937

tively, metrics like Euclidean distance and MMD938

are less stable. These results support our choice of939

cosine similarity as the default alignment metric in940

our model merging framework.941

G RECALL Algorithm Details942

Algorithm 1 Layer-wise Model Merging

Require: Task dataset DN , source model M0,
fine-tuned models M1,M2, . . . ,MN−1 with
parameters θq (q ∈ [0, N − 1])

Ensure: Merged model parameters θ∗

1: MN ← Fine-tune M0 on DN

2: RN ← Extract representations from DN using
MN

3: for each layer i ∈ [1, L] do
4: Compute similarity Sp,q

i between models
Mp and Mq for layer i

5: Normalize similarities to obtain merging
weights:

wq
i =

exp(Sp,q
i )∑N

p=0 exp(S
p,q
i )

6: Merge model parameters at layer i:

θ∗
i =

N∑
q=0

wq
i θ

q
i

7: end for
8: return θ∗
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Metric SST-2 SQuAD2.0 IWSLT2017-en-fr RACE MedMCQA Avg.

Cosine 83.83 67.99 33.24 65.2 37.03 57.458
Euclidean 88.65 26.72 43.64 38.93 34.71 46.53
CKA 83.94 68.04 33.25 65.16 36.91 57.46
MMD 65.83 28.93 41.26 50.87 36.58 44.694
RBF 89.11 77.66 33.12 74.39 39.86 62.828

Table 7: Performance of merged multiple models(without base model) using different similarity metrics. RBF
Kernel similarity consistently achieves the best average performance across tasks.
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