
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050

Under review as a conference paper at ICLR 2025

LEARNING TO (LEARN AT TEST TIME):
RNNS WITH EXPRESSIVE HIDDEN STATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-attention performs well in long context but has quadratic complexity. Existing RNN
layers have linear complexity, but their performance in long context is limited by the
expressive power of their hidden state. Inspired by prior work (Schlag et al., 2021), we
present a practical framework to instantiate sequence modeling layers with linear complexity
and expressive hidden states. The key idea is to make the hidden state a machine learning
model itself, and the update rule a step of self-supervised learning. Since the hidden state is
updated by training even on test sequences, our layers are called Test-Time Training (TTT)
layers. We consider two instantiations: TTT-Linear and TTT-MLP, whose hidden state is a
linear model and a two-layer MLP respectively. We evaluate our instantiations at the scale of
125M to 1.3B parameters, comparing with a strong Transformer and Mamba, a modern RNN.
Both TTT-Linear and TTT-MLP match or exceed the baselines. Similar to Transformer,
they can keep reducing perplexity by conditioning on more tokens, while Mamba cannot
after 16k context. With preliminary systems optimization, TTT-Linear is already faster
than Transformer at 8k context and matches Mamba in wall-clock time. TTT-MLP still
faces challenges in memory I/O, but shows larger potential in long context, pointing to a
promising direction for future research.

 update...

 output

Hidden state

Input tokens

Output tokens Output rule

Update rule

Initial state Update rule Output rule Cost

Naive RNN s0 = vector() st = σ (θssst−1 + θsxxt) zt = θzsst + θzxxt O(1)

Self-attention s0 = list() st = st−1.append(kt, vt) zt = Vtsoftmax
(
KT

t qt
)

O(t)

Naive TTT W0 = f.params() Wt = Wt−1 − η∇ℓ(Wt−1;xt) zt = f(xt;Wt) O(1)

Figure 1. Top: A generic sequence modeling layer expressed as a hidden state that transitions according to an update
rule. All sequence modeling layers can be viewed as different instantiations of three components in this figure: the initial
state, update rule and output rule. Bottom: Examples of sequence modeling layers and their instantiations of the three
components. Self-attention has a hidden state growing with context, therefore growing cost per token. Both the naive RNN
and TTT layer compress the growing context into a hidden state of fixed size, therefore their cost per token stays constant.

1 INTRODUCTION

Transformers have become the most popular architecture for large language models, but their cost per token
grows linearly in context length. Recurrent Neural Networks (RNNs) have constant cost per token, but often
struggle to actually express relationships in long context (Kaplan et al., 2020). This difficulty with long context
is inherent to the very nature of RNN layers: Unlike self-attention, RNN layers have to compress context into a
hidden state of fixed size. The update rule needs to discover the underlying structures and relationships among
thousands or potentially millions of tokens. This is a very hard compression problem.

1

051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

Under review as a conference paper at ICLR 2025

TTT layers. We first observe that self-supervised learning can compress a massive training set into the weights
of a model. Motivated by this observation, we believe that sequence modeling layers can be designed with the
hidden state as a machine learning model, and the update rule as a step of self-supervised learning. Because
the process of updating the hidden state on a test sequence is equivalent to training a model at test time, we
call these sequence modeling layers Test-Time Training (TTT) layers.

Wall-clock time. While the TTT layer is already efficient in FLOPs, we propose two practical innovations
to make it efficient in wall-clock time. First, similar to the standard practice of taking gradient steps on
mini-batches of sequences during regular training for better parallelism, we use mini-batches of tokens during
TTT. Second, we develop a dual form for operations inside each TTT mini-batch, to better take advantage of
modern GPUs and TPUs. The dual form is equivalent in output to the naive implementation, but trains more
than 5× faster.

Contributions. For self-containment, we discuss three levels of ideas in a single narrative: 1) Learning at test
time and meta-learning at training time. 2) A practical framework to do the above with any neural network as
inner model. 3) TTT-Linear and TTT-MLP as instantiations. Our contribution is only at level 2. Specifically,
when the hidden state is a linear model, our design coincides with prior work (Schlag et al., 2021), which is
further improved by concurrent work (Yang et al., 2024), as detailed in Subsection 2.6 and Subsection 4.2.

2 METHOD

All sequence modeling layers can be viewed from the perspective of storing historic context into a hidden
state, as shown in Figure 1. For example, RNN layers – such as LSTM (Hochreiter & Schmidhuber, 1997),
RWKV (Peng et al., 2024) and Mamba (Gu & Dao, 2023) layers – compress context into a state of fixed size
across time. This compression has two consequences. On one hand, mapping an input token xt to output token
zt is efficient, because both the update rule and output rule take constant time per token. On the other hand,
the performance of RNN layers in long context is limited by the expressive power of its hidden state st.

Self-attention can also be viewed from the perspective above, except that its hidden state, commonly known as
the Key-Value (KV) cache, is a list that grows linearly with t. Its update rule simply appends the current KV
tuple to this list, and the output rule scans over all tuples up to t to form the attention matrix. The hidden state
explicitly stores all historic context, making self-attention more expressive than RNN layers for long context.
However, scanning this linearly growing hidden state also takes linearly growing time per token.

To remain both efficient and expressive in long context, we need a better compression heuristic. Specifically,
we need to compress thousands or potentially millions of tokens into a hidden state that can effectively capture
their underlying structures and relationships.

2.1 TTT AS UPDATING A HIDDEN STATE

The process of parametric learning can be viewed as compressing a massive training set into the weights of a
model. Specifically, we know that models trained with self-supervision can capture the underlying structures
and relationships behind their training data (Le, 2013) – exactly what we need from a compression heuristic.

LLMs themselves are great examples. Trained with the self-supervised task of next-token prediction, their
weights can be viewed as a compressed form of storage for existing knowledge on the internet. By query-
ing LLMs, we can extract knowledge from their weights. More importantly, LLMs often exhibit a deep
understanding of the semantic connections among existing knowledge to express new pieces of reasoning.

Our key idea is to use self-supervised learning to compress the historic context x1, . . . , xt into a hidden state
st, by making the context an unlabeled dataset and the state a model. Concretely, the hidden state st is now
equivalent to Wt, the weights of a model f , which can be a linear model, a small neural network, or anything
else. The output rule is simply: zt = f(xt;Wt). Intuitively, the output token is just the prediction on xt, made
by f with the updated weights Wt. The update rule is a step of gradient descent on some self-supervised loss
ℓ: Wt = Wt−1 − η∇ℓ(Wt−1;xt), with learning rate η. For now, consider W0 = 0.

One choice of ℓ is reconstructing xt itself. To make the learning problem nontrivial, we first process xt into
a corrupted input x̃t (details in Subsection 2.3), then optimize: ℓ(W ;xt) = ∥f(x̃t;W) − xt∥2. Similar to
denoising autoencoders (Vincent et al., 2008), f needs to discover the correlations between dimensions of xt in
order to reconstruct it from partial information x̃t. As shown in Figure 7 in Appendix, gradient descent is able

2

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

Under review as a conference paper at ICLR 2025

to reduce ℓ, but cannot reduce it to zero. We discuss more sophisticated formulations of the self-supervised
task in Subsection 2.3.

As with other RNN layers and self-attention, our algorithm that maps an input sequence x1, . . . , xT to output
sequence z1, . . . , zT can be programmed into the forward pass of a sequence modeling layer, using the hidden
state, update rule, and output rule above. Even at test time, our layer still trains a different sequence of weights
W1, . . . ,WT for every input sequence. Therefore, we call it the Test-Time Training (TTT) layer.

2.2 TRAINING A NETWORK WITH TTT LAYERS

The forward pass of a TTT layer also has a corresponding backward pass. Our forward pass only consists
of standard differentiable operators except the gradient operator ∇. However, ∇ just maps one function to
another, in this case ℓ to ∇ℓ, and ∇ℓ is also composed of differentiable operators. Conceptually, calling
backward on ∇ℓ means taking gradients of gradients – a well explored technique in meta-learning.

TTT layers have the same interface as RNN layers and self-attention, therefore can be replaced in any larger
network architecture, which usually contains many of these sequence modeling layers. Training a network
with TTT layers also works the same way as training any other language model, such as a Transformer. The
same data, recipe, and objective such as next-token prediction can be used to optimize parameters of the rest
of the network.

We refer to training the larger network as the outer loop, and training W within each TTT layer as the inner
loop. An important difference between the two nested learning problems is that the inner-loop gradient ∇ℓ is
taken w.r.t. W , the parameters of f , while the outer-loop gradient is taken w.r.t the parameters of the rest of
the network, which we will denote by θrest. So far, the TTT layer has no outer-loop parameters, in contrast to
other RNN layers and self-attention.

2.3 LEARNING A SELF-SUPERVISED TASK FOR TTT

Arguably the most important part of TTT is the self-supervised task, because it determines the kind of features
that W will learn from the test sequence. So how should we design this task? The final goal of TTT is for
zt = f(xt;Wt) to perform well on language modeling. Instead of handcrafting a self-supervised task from
human priors, we take a more end-to-end approach – directly optimizing the self-supervised task for the final
goal of next-token prediction.

Concretely, we learn the self-supervised task as part of the outer loop. Starting from the naive reconstruction
task in Equation 2.1, we add some outer-loop parameters to make this task learnable. In Subsection 2.1, we did
not specify the corruption that produces x̃t from xt. One design is to make it a low-rank projection x̃t = θKxt,
where θK is a learnable matrix. Following the terminology of multi-view reconstruction, θKxt is called a
training view (Chen et al., 2020).

Moreover, perhaps not all the information in xt is worth remembering, so the reconstruction label can be
another low-rank projection θV xt instead of xt. Here θV xt is called the label view, where θV is also learnable.
In summary, our new self-supervised loss is: ℓ(W ;xt) = ∥f (θKxt;W)− θV xt∥2. Lastly, the training view
θKxt has fewer dimensions than xt, so we can no longer use the output rule in Equation 2.1. The simplest
solution is to create a test view θQxt, and change our output rule to: zt = f (θQxt;Wt) .

2.4 PARALLELIZATION WITH MINI-BATCH TTT

The naive TTT layer developed so far is already efficient in the number of floating point operations (FLOPs).
However, its update rule Wt = Wt−1 − η∇l(Wt−1;xt) cannot be parallelized, because Wt depends on Wt−1

in two places: before the minus sign and inside ∇l. Since ∇l contains the bulk of the computation, we focus
on making this second part parallel.

We approach this systems challenge through concepts in the TTT framework. There are many variants of
gradient descent (GD). The general update rule of GD can be expressed as:

Wt = Wt−1 − η Gt = W0 − η

t∑
s=1

Gs, (1)

3

153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

Under review as a conference paper at ICLR 2025

...

Figure 2. High-level computation graph of the first TTT mini-
batch, where nodes are variables and edges are computations.
The blue nodes are input variables, and yellow are output.
Subsection 2.4: Since G1, . . . , Gb are not connected, they
have no sequential dependency on each other, therefore can
be computed in parallel. Subsection 2.5: We do not actually
materialize the white nodes – the intermediate Gs and W s – to
compute the output variables in the dual form.

where Gt is the descent direction. Note that once we have calculated Gt for t = 1, . . . , T , we can then obtain
all the Wts through a cumsum by the second half of Equation 1. Our naive update rule, known as online
gradient descent, uses Gt = ∇l(Wt−1;xt).

To parallelize Gt for t = 1, . . . , T , we can take all of them w.r.t. W0. This variant with Gt = ∇ℓ (W0;xt)

is known as batch gradient descent, since
∑t

s=1 ∇ℓ (W0;xs) is the same as the gradient w.r.t. W0 over
x1, . . . , xt as a batch. However, in batch GD, Wt is effectively only one gradient step away from W0, in
contrast to online GD, where Wt is t steps away from W0. Therefore, batch GD has a smaller effective search
space, which ends up hurting performance for language modeling.

Our proposed solution – mini-batch gradient descent – is shown in Figure 2. Denote the TTT batch size by b.
We use Gt = ∇ℓ (Wt′ ;xt), where t′ = t− mod(t, b) is the last timestep of the previous mini-batch (or 0 for
the first mini-batch), so we can parallelize b gradient computations at a time. Empirically, b controls a trade-off
between speed and quality, as shown in Figure 9. We chose b = 16 for all experiments in this paper.

2.5 DUAL FORM

The parallelization introduced above is necessary but not sufficient for efficiency in wall-clock time. Modern
accelerators specialize in matrix-matrix multiplications, known as matmuls. Unfortunately, the TTT layer
developed so far even with mini-batch still has very few matmuls.

Consider the simplest case of ℓ, where θK = θV = θQ = I , for only the first TTT mini-batch of size b. In
addition, consider f as a linear model. Copying Equation 2.1, our loss at time t is: ℓ (W0;xt) = ∥W0xt−xt∥2.
As discussed in Subsection 2.4, we can parallelize the computation of: Gt = ∇ℓ (W0;xt) = 2(W0xt−xt)x

T
t ,

for t = 1, . . . , b. However, we cannot compute all b of the Gts through a single matmul. Instead, we need b
outer products to compute them one by one. To make matters worse, for each xt ∈ Rd, Gt is d× d, which
incurs much heavier memory footprint and I/O cost than xt for large d.

To solve these two problems, we make a simple observation: We do not actually need to materialize G1, . . . , Gb

as long as we can compute Wb at the end of the mini-batch, and the output tokens z1, . . . , zb (see Figure 2).
Now we demonstrate these computations with the simplified TTT-Linear case above. Denote X = [x1, . . . , xb],

Wb = W0 − η

b∑
t=1

Gt = W0 − 2η

b∑
t=1

(W0xt − xt)x
T
t = W0 − 2η(W0X −X)XT .

So Wb can be conveniently computed with a matmul. To compute Z = [z1, . . . , zb], we know that:

zt = f(xt;Wt) = Wtxt =

(
W0 − η

t∑
s=1

Gt

)
xt = W0xt − 2η

t∑
s=1

(W0xs − xs)x
T
s xt. (2)

Denote δt =
∑t

s=1(W0xs−xs)x
T
s xt and the matrix ∆ = [δ1, . . . , δb], then ∆ = (W0X −X) mask

(
XTX

)
,

where mask is the upper triangular mask with zeros, and the term W0X−X can be reused from the computation
of Wb. Now ∆ is also computed with matmuls. Plugging ∆ back into Equation 2, we obtain Z = W0X−2η∆.
We call this procedure the dual form, in contrast to the primal form before this subsection, where the Gs and
W s are explicitly materialized. As discussed, the two forms are equivalent in output. In Appendix A, we show
that the dual form still works when f is a neural network with nonlinear layers.

Time complexity of the primal form within a TTT mini-batch is O(b× d2). Time complexity of the dual form
is O(b× d2) for computing Wb alone, then an additional O(b2 × d) for computing z1, . . . , zb. Compared to
the primal, the dual form sacrifices theoretical complexity for hardware utilization. In practice, d is typically a
few hundred and b is chosen to be only 16. As a consequence, wall-clock time for computing z1, . . . , zb is
relatively small, as observed in the right panel of Figure 9 in Appendix.

4

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

Under review as a conference paper at ICLR 2025

Configuration Ppl. Diff.
Linear attention 15.91 -
Linear attn. improved 15.23 −0.68
TTT equivalence 15.23 0
+ learnable W0 15.27 +0.04
+ LN and residual in f 14.05 −1.22
+ mini-batch TTT 12.35 −1.70
+ learnable η 11.99 −0.36
+ Mamba backbone 11.09 −0.90

Table 1. Ablations on improving from linear attention. All
models here have 125M parameters, and are trained according
to the recipe in Subsection 3.1. The last row, with perplexity
11.09, is the final result of TTT-Linear in Figure 3. Starting
from the equivalence discussed in Subsection 2.6, learnable
W0 hurts slightly, but the rows below cannot train stably
without it. The biggest improvement comes from mini-batch
TTT (changing from b = T = 2048 to b = 16). The second
comes from instantiating the inner model f with LN and
residual connection. Both of these designs would be difficult
to come across without the conceptual framework of TTT.

2.6 THEORETICAL EQUIVALENCES

In Subsection 2.1, we mentioned that f can be a linear model or a neural network. In Subsection 2.4, we
also discussed three variants of the update rule: online GD, batch GD, and mini-batch GD. Each of these
2× 3 combinations induces a different instantiation of the TTT layer. We now show that among these induced
instantiations, the TTT layer with a linear model and batch GD is equivalent to linear attention (Katharopoulos
et al., 2020), a widely known RNN layer.

Theorem 1. Consider the TTT layer with f(x) = Wx as the inner-loop model, batch gradient descent with
η = 1/2 as the update rule, and W0 = 0. Then, given the same input sequence x1, . . . , xT , the output rule
defined in Equation 2.3 produces the same output sequence z1, . . . , zT as linear attention.

Proof. ∇ℓ (W0;xt) = −2(θV xt)(θKxt)
T , so Wt = Wt−1− η∇ℓ (W0;xt) = W0− η

∑t
s=1 ∇ℓ (W0;xs) =∑t

s=1(θV xs)(θKxs)
T . Plugging Wt into the output rule in Equation 2.3, we obtain the output token:

zt = f (θQxt;Wt) =

t∑
s=1

(θV xs)(θKxs)
T (θQxt),

which is the definition of linear attention.

In Table 1, we first empirically verify the equivalence above with an improved implementation of linear
attention. Then, to illustrate the contribution of each of our components (including some that will be
introduced in the next subsection), we add them row by row to the TTT layer that is equivalent to linear
attention, and ultimately obtain our proposed instantiation called TTT-Linear. The change from batch GD to
mini-batch GD contributes the most improvement by a large margin.

While the space of models × optimizers is already large, machine learning is much richer than optimizing the
parameters Wt of a model f . There are also nonparametric learners, such as nearest neighbors, support vector
machines (SVMs), and kernel ridge regression. By definition, nonparametric learners do not have parameters
Wt, and instead directly uses training data x1, . . . , xt. Hence we use the notation f(x;x1, . . . , xt). We now
show that for a particular nonparametric learner, the induced TTT layer is equivalent to self-attention.

Theorem 2. Consider the TTT layer with the Nadaraya-Watson estimator (Bierens, 1988), defined as:

f(x;x1, . . . , xt) =
1∑t

s=1 κ(x, xs)

t∑
s=1

κ(x, xs) ys, (3)

where ys = θV xs is the label view discussed in Subsection 2.3, and κ (x, x′; θK , θQ) ∝ e(θKx)T θQx′
is a

kernel with bandwidth hyper-parameters θK and θQ. Then given the same input sequence x1, . . . , xT , the
output rule defined in Equation 2.3 produces the same output sequence z1, . . . , zT as self-attention.

Proof. Plugging ys and κ above into Equation 3 gives us the definition of self-attention. Appendix B contains
a detailed explanation of the Nadaraya-Watson estimator and kernel κ above.

5

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

Under review as a conference paper at ICLR 2025

1019 1020

FLOPs (log scale)

6

7

8

9

10

11
Pe

rp
le

xi
ty

 (l
og

 sc
al

e)

Scaling trends on Pile 2k
Transformer
Mamba
TTT-Linear (M)
TTT-MLP (M)
TTT-Linear (T)
TTT-MLP (T)

1019 1020

FLOPs (log scale)

6

7

8

9

10

11

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

Scaling trends on Pile 8k
Transformer
Mamba
TTT-Linear (M)
TTT-MLP (M)
TTT-Linear (T)
TTT-MLP (T)

Figure 3. Evaluations for context lengths 2k and 8k on the Pile. Details in Subsection 3.1. TTT-Linear has comparable
performance as Mamba at 2k context, and better performance at 8k.

2.7 IMPLEMENTATION DETAILS

Instantiations of f . We propose two variants of TTT layers – TTT-Linear and TTT-MLP, differing only in
their instantiations of f . For TTT-Linear, f lin(x) = Wx, where W is square. For TTT-MLP, f MLP has two
layers similar to the MLPs in Transformers. Specifically, the hidden dimension is 4× the input dimension,
followed by a GELU activation (Hendrycks & Gimpel, 2016). For better stability during TTT, f always
contains a Layer Normalization (LN) and residual connection. That is, f(x) = x+ LN(f res(x)), where f res

can be f lin or f MLP.

Learnable W0. The TTT initialization W0 is shared between all sequences, even though subsequent weights
W1, . . . ,WT are different for each input sequence. Instead of setting W0 = 0, we can learn it as part of the
outer loop. Since outer-loop parameters are always denoted by θs instead of W s, we assign an alias θinit = W0.
In practice, θinit adds a negligible amount of parameters comparing to the reconstruction views θK , θQ, θV ,
because both its input and output are low dimensional. Empirically, we observe that learning W0 significantly
improves training stability.

Learnable η. The learning rate is usually the most important hyper-parameter for gradient descent, so we
experiment with learning the inner-loop learning rate η in Equation 1 as part of the outer loop. We make η a
function of the input token (therefore different across time) for additional flexibility. Concretely, we design
η(x) = ηbase σ(θlr · x), where the learnable vector θlr is an outer-loop parameter, σ is the sigmoid function,
and the scalar ηbase is the base learning rate, set to 1 for TTT-Linear and 0.1 for TTT-MLP. Alternatively, η(x)
can also be interpreted as a gate for ∇ℓ.

Backbone architecture. The cleanest way to integrate any RNN layer into a larger architecture would be to
directly replace self-attention in a Transformer, known in this context as a backbone. However, existing RNNs
such as Mamba and Griffin all use a different backbone from Transformers. Most notably, their backbone
contains temporal convolutions before the RNN layers, which might help collect local information across time.
After experimenting with the Mamba backbone, we find that it also improves perplexity for TTT layers, so we
incorporate it into our proposed method. See Figure 10 (in Appendix) for details.

3 EXPERIMENTS

Our main codebase is based on EasyLM (Geng, 2023), an open-source project for training and serving LLMs
in JAX. We evaluate TTT-Linear and TTT-MLP by comparing with Transformer and Mamba. As discussed
in Subsection 2.7, Transformer and Mamba use different backbones, and TTT-Linear and TTT-MLP always
use the Mamba backbone unless noted otherwise. As an ablation study, Figure 3 and Figure 4 contain TTT
layers within the Transformer backbone. When a figure contains both the Transformer backbone and Mamba
backbone, we denote them by (T) and (M), respectively.

Datasets. Following the Mamba paper (Gu & Dao, 2023), we perform standard experiments with 2k and
8k context lengths on the Pile (Gao et al., 2020), a popular dataset of documents for training open-source

6

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

Under review as a conference paper at ICLR 2025

1019 1020

FLOPs (log scale)

10

12

14

16

18
Pe

rp
le

xi
ty

 (l
og

 sc
al

e)

Scaling trends on Books 2k
Transformer
Mamba
TTT-Linear (M)
TTT-MLP (M)
TTT-Linear (T)
TTT-MLP (T)

1018 1019 1020

FLOPs (log scale)

9

10

12

14

16

18

20

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

Scaling trends on Books 32k
Transformer
Mamba
TTT-Linear (M)
TTT-MLP (M)
TTT-Linear (T)
TTT-MLP (T)

Figure 4. Evaluations for context lengths 2k and 32k on Books. Details in Subsection 3.2. Our complete results for context
lengths 1k, 2k, 4k, 8k, 16k, 32k, including Transformer finetuning, are in Figure 11 (in Appendix). Most observations
from the Pile still hold.

LLMs (Black et al., 2022). However, the Pile contains few sequences of length greater than 8k (de Vries,
2023). To evaluate capabilities in long context, we also experiment with context lengths ranging from 1k to
32k in 2× increments, on a subset of the Pile called Books3, which has been widely used to train LLMs in
long context (Liu et al., 2024; Authors Guild, 2023).

Protocols. To ensure fairness to our baselines, we strictly follow the evaluation protocols in the Mamba
paper when possible. For each evaluation setting (e.g., dataset, context length, and method), we experiment
with four model sizes: 125M, 350M, 760M, and 1.3B parameters. For Mamba, the corresponding sizes are
130M, 370M, 790M, and 1.4B, as Mamba does not follow the Transformer configurations. All models are
trained with the Chinchilla recipe described in the Mamba paper. Our Transformer baseline, based on the
Llama architecture (Touvron et al., 2023), also follows the baseline in the Mamba paper.

3.1 SHORT CONTEXT: THE PILE

From Figure 3, we make a few observations:

• At 2k context, TTT-Linear (M), Mamba, and Transformer have comparable performance, as the lines mostly
overlap. TTT-MLP (M) performs slightly worse under large FLOP budgets. Even though TTT-MLP has
better perplexity than TTT-Linear at every model size, the extra cost in FLOPs offsets the advantage.

• At 8k context, both TTT-Linear (M) and TTT-MLP (M) perform significantly better than Mamba, in contrast
to the observation at 2k. Even TTT-MLP (T) with the Transformer backbone performs slightly better than
Mamba around 1.3B. A robust phenomenon we observe throughout this paper is that as context length grows
longer, the advantage of TTT layers over Mamba widens.

• At 8k context, Transformer still has good (if not the best) perplexity at every model size, but its line is not
competitive because of the cost in FLOPs.

Effect of backbone. Switching the TTT layers from Mamba backbone into Transformer backbone has two
effects. First, TTT layers with Mamba backbone perform better in our evaluations so far. Second, with Mamba
backbone, TTT-MLP at best is only comparable to TTT-Linear; but with Transformer backbone, TTT-MLP is
clearly better. We hypothesize that the temporal convolutions in the Mamba backbone help more when the
sequence modeling layer has a less expressive hidden state. The linear model is less expressive than the MLP,
therefore benefits more from the convolutions. We will revisit this hypothesis in the next subsection.

3.2 LONG CONTEXT: BOOKS

To evaluate capabilities in long context, we experiment with context lengths ranging from 1k to 32k in 2×
increments, using a popular subset of the Pile called Books3. The training recipe here is the same as for the
Pile, and all experiments for the TTT layers are performed in one training run. From the subset of results in
Figure 4, we make a few observations:

7

357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

Under review as a conference paper at ICLR 2025

128 256 512 1k 2k 4k 8k 16k 32k
Token index (log scale)

8.5

9.0

9.5

10.0

10.5

11.0
Pe

rp
le

xi
ty

 (l
og

 sc
al

e)
Transformer
Mamba
TTT-Linear
TTT-MLP

Figure 5. Evaluations following Kaplan et al. (2020).
Tokens later in a sequence should be easier to predict
on average, since they condition on longer context.
Transformer, TTT-Linear and TTT-MLP can keep re-
ducing perplexity as they condition on more tokens,
while Mamba cannot after 16k context. Comparing
to TTT-Linear, TTT-MLP performs slightly worse at
short context but better at long context. This observa-
tion matches our expectation that the MLP as hidden
state is more expressive than the linear model. All
methods have matched training FLOPs as Mamba.

• At 2k context on Books, all the observations from Pile 2k still hold, except that Mamba now performs
slightly better than TTT-Linear (whereas their lines roughly overlapped for Pile 2k).

• At 32k context, both TTT-Linear (M) and TTT-MLP (M) perform better than Mamba, similar to the
observation from Pile 8k. Even TTT-MLP (T) with the Transformer backbone performs slightly better than
Mamba at 32k context.

• TTT-MLP (T) is only slightly worse than TTT-MLP (M) at 1.3B scale. The strong trend for TTT-MLP (T)
suggests that the Transformer backbone might be more suitable for larger models and longer context beyond
our evaluations. We only ablate the backbones for 2k and 32k due to the cost of training LLMs. For future
work, we believe that given TTT layers with even more expressive hidden states, the Mamba backbone with
temporal convolutions will become unnecessary.

Transformer finetuning. While we have been training Transformers from scratch following the Mamba
paper, in practice this approach is rarely used for long context. The standard practice is to train a Transformer
in short context, then finetune in long context. To reflect this practice, we add another baseline, TF finetune,
for context lengths 4k and above. This baseline starts from the model trained (according to the Chinchilla
recipe) on Books 2k, then uses 20% more tokens to finetune at the designated context length, following the
Llama Long paper (Xiong et al., 2023). See details of the TF finetune recipe in Appendix C.

Our complete results for context lengths 1k to 32k, including TF finetune, are in Figure 11 (in Appendix).
TF finetune performs significantly better than TF pretrain, as it benefits from long context without incurring
extremely large cost in training FLOPs. Note that the inference FLOPs of TF finetune and pretrain are equally
poor, which is not reflected in this plot.

3.3 WALL-CLOCK TIME

2k 4k 8k 16k
Context length

2

3

4

5

Ti
m

e
(s

ec
 /

to
ke

n)

1e 5 Training latency

Transformer
Mamba
TTT-Linear
TTT-MLP

Figure 6. Benchmark on an NVIDIA H100 GPU. All
models are 1.3B. Time per token grows linearly for
Transformer as context length increases, but stays
roughly constant for the other methods. TTT-Linear
model is 2x faster than Mamba, and TTT-MLP is
20% slower than Mamba. Note that our Transformer
baseline is significantly faster then that in the Mamba
paper, because we use vLLM (Kwon et al., 2023), a
state-of-the-art system, instead of the HuggingFace
Transformer (Wolf et al., 2019).

LLM training and inference can be decomposed into forward, backward, and generate. Prompt processing
during inference, also known as prefill, is the same operation as forward during training, except that the
intermediate activations do not need to be stored for backward. Since both forward (during training and
inference) and backward can be parallelized, we use the dual form. Generating new tokens, also known as
decode, is inherently sequential, so we use the primal form.

8

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

Under review as a conference paper at ICLR 2025

We write a GPU kernel for forward and backward in ThunderKittens (Spector et al., 2023), and for generate in
Triton (Tillet et al., 2019). Figure 6 shows the latency for training. Figure 13 in Appendix shows the latency
for prefill and decode.

4 RELATED WORK

4.1 MODERN RNNS

Mamba is one of the many Structured State-Space Models (Gu et al., 2021; Fu et al., 2022; Poli et al., 2023;
De et al., 2024). The hidden state in these models is a vector, similar to in LSTMs. For TTT-Linear or
TTT-MLP, the hidden state is a matrix or two matrices, therefore larger. In Figure 5, we find that TTT layers
can take advantage of their larger hidden states to compress more information in long context, where TTT-MLP
outperforms TTT-Linear, which in turn outperforms Mamba.

Similar to TTT-Linear, RWKV (Peng et al., 2023; 2024), xLSTM (Beck et al., 2024), and Gated Linear
Attention (GLA) (Yang et al., 2023) also have matrix hidden states, which are inherited from linear at-
tention (Katharopoulos et al., 2020). Modern RNNs such as GLA use chunk-wise parallelism to improve
hardware efficiency, so tokens inside a chunk can be processed with matmuls instead of a cumsum. However,
chunk-wise parallelism does not change the expressiveness of the model, since all temporal dependencies are
still equivalent to a cumsum.

In contrast, mini-batch TTT allows more complex temporal dependencies across mini-batches. Each hidden
state Wt depends on previous W s within its mini-batch still through a cumsum, but depends on W s in previous
mini-batches also through the gradient operator. As illustrated Figure 9 in Appendix, mini-batch TTT enables a
trade-off between expressiveness and hardware efficiency, since a smaller batch size b leads to better perplexity
at the cost of higher latency. This trade-off is a unique and important feature of TTT. As shown in Table 1, the
intermediate batch size b = 16 significantly outperforms b = T which is fully cumsum.

Concurrent work Mamba 2 (Dao & Gu, 2024) is similar to linear attention and TTT-Linear in that it also uses
matrix hidden states. In fact, Mamba 2 is equivalent in output to linear attention with explicit forget gates
(the scalars at in their dynamical system) and a different backbone (which is also different from the original
Mamba backbone). Conceptually, the improvements from Mamba on linear attention are orthogonal to those
from TTT-Linear (e.g. mini-batch and LN, as shown in Table 1), and can potentially be combined to produce
even stronger results.

TTT-Linear is also similar to DeltaNet (Yang et al., 2024), another piece of concurrent work. In fact, if we
take away non-linearities such as LN and set inner-loop mini-batch size b = 1 instead of 16, a TTT-Linear
layer is exactly equivalent to the sequence modeling layer in DeltaNet, and the update rule is known as the
Delta rule (Schlag et al., 2020). Yang et al. (2024) takes advantage of this linearity and designs an alternative
parallelization that is highly efficient. Comparing to DeltaNet, our method can instantiate any neural network
as inner model and still maintain reasonable efficiency.

4.2 LEARNING AT TEST TIME

The idea of learning at test time has a long history in machine learning (Bottou & Vapnik, 1992; Gammerman
et al., 1998; Sun et al., 2020). More recently, the same idea has also been applied to natural language processing,
where it is called dynamic evaluation (Krause et al., 2018; 2019). The basic approach is to directly finetune a
language model on the test sequence, which often comes in the form of a prompt. Following the same spirit
as dynamic evaluation, Yoshida & Gimpel (2021) optimizes the next-token prediction loss of the test sequence
with respect to the entire KV cache of a Transformer.

Next we discuss an especially relevant line of work in detail: fast weights. The general idea is to update
the parameters of a “fast” model on only the most relevant data, as opposed to the conventional practice of
updating a “slow” model on all data (Tieleman & Hinton, 2009). This idea has existed since the 1980s (Hinton
& Plaut, 1987). TTT can be viewed as a special case of fast weights.

Prior work in fast weights usually avoids forming an explicit learning problem that optimizes some objective
on data. For example, the update rule of Hebbian learning and Hopfield networks (Hopfield, 1982) simply
adds xxT (or some variant thereof) (Ba et al., 2016) to the fast weights given each input x. In contrast,

9

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509

Under review as a conference paper at ICLR 2025

TTT embraces the idea of formulating an explicit learning problem, where the test instance is the target of
generalization. Our update rule is also an explicit step of optimization.

The idea of fast weight programmers (FWPs) is to update the fast weights with a “slow” model (Schmidhuber,
1992). Our inner-loop weights W can be viewed as “fast” and outer-loop weights θ as “slow”. Therefore,
networks containing TTT layers can be viewed as a special case of FWPs (Kirsch & Schmidhuber, 2021),
similar to how TTT can be viewed as a special case of fast weights. The FWP with the Hebbian update rule
above is equivalent to linear attention (Schlag et al., 2021), therefore also to naive TTT-Linear with batch
gradient descent.

The definition of FWPs is very broad. In fact, all networks with some gating mechanism, such as Transformers
with SwiGLU blocks (Shazeer, 2020), can also be viewed as a special case of FWPs. Recent work has been
experimenting with FWPs for language modeling: Irie et al. (Irie et al., 2021) design “fast” networks with
weights produced as output of a “slow” networks. Clark et al. (Clark et al., 2022) give a Transformer a final
layer of fast weights, whose initialization is trained as slow weights. Our contribution relative to existing work
on FWPs, again, is formulating an explicit learning problem for the update, which enables us to borrow tools
from learning such as mini-batch and LN.

4.3 LEARNING TO LEARN

For decades, researchers have been arguing that learning to learn, also known as meta-learning or bi-level
optimization, should be a critical component of intelligence Schmidhuber (1987); Bengio et al. (1990); Thrun
& Pratt (1998); Lake et al. (2017). In prior work such as Andrychowicz et al. (2016), Finn et al. (2017) and
Metz et al. (2018), the inner loop learns from an entire dataset at a time instead of a sequence, so the outer
loop needs a collection of datasets or tasks. In short, the outer loop is “one level above” regular training. Since
it is hard to collect millions of datasets, this outer loop is hard to scale.

In contrast, for TTT, each sequence itself is a dataset and defines its own generalization problem. The inner
loop is “one level below” regular training, so our outer loop is only another solution to the canonical problem
of supervised learning, instead of a new problem setting like generalization across datasets. Our outer loop is
“at the same level” as regular training. This makes our outer loop easier to scale.

5 CONCLUSION

We have reformulated the canonical problem of supervised learning as learning to (learn at test time). Our
formulation produces an alternative conceptual framework for building what is traditionally known as network
architectures. Our next goals are longer context, larger models, and more ambitious inner models. Next we
outline some especially promising directions for future work.

• Outer-loop parameterization. There are many other ways to parameterize a family of multi-view recon-
struction tasks, or perhaps a more general family of self-supervised tasks. It would be a big coincidence if
the first one we have tried turns out to be the best.

• Systems optimization. Our systems optimization in Subsection 3.3 has been preliminary at best, and there
are many ways to improve it. In addition, pipeline parallelism through time might allow us to process long
sequences of millions of tokens on multiple devices together.

• Longer context and larger models. Constrained by our academic resources, we have not trained with
millions or billions in context length, which would also require larger models according to Figure 12. The
advantage of TTT layers should become more pronounced in longer context.

• More ambitious instantiations of f . When context length becomes longer, f would also need to be larger.
For video tasks and embodied agents, whose context length can easily scale up to millions or billions, f
could be a convolutional neural network.

• Multi-level learning to learn. If f itself is a self-attention layer, then by Theorem 2 it can be interpreted as
yet another inner loop nested inside the existing one. In this fashion, we can potentially build many levels of
nested learning problems.

10

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient descent. Advances in
neural information processing systems, 29, 2016.

Authors Guild. You just found out your book was used to train ai. now what?, 2023. Accessed: 2024-06-24.

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu. Using fast weights to
attend to the recent past. Advances in neural information processing systems, 29, 2016.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael Kopp,
Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-term memory.
arXiv preprint arXiv:2405.04517, 2024.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. Citeseer, 1990.

Hermanus Josephus Bierens. The nadaraya-watson kernel regression function estimator. (Serie Research Mem-
oranda; No. 1988-58). Faculty of Economics and Business Administration, Vrije Universiteit Amsterdam.,
1988.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor
Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive language model.
arXiv preprint arXiv:2204.06745, 2022.

Léon Bottou and Vladimir Vapnik. Local learning algorithms. Neural computation, 4(6):888–900, 1992.

Leo Breiman, William Meisel, and Edward Purcell. Variable kernel estimates of multivariate densities.
Technometrics, 19(2):135–144, 1977.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost,
2016.

Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020.

Yen-Chi Chen. A tutorial on kernel density estimation and recent advances. Biostatistics & Epidemiology, 1
(1):161–187, 2017.

Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong Pasupat, Geoffrey Hinton, and Mohammad Norouzi.
Meta-learning fast weight language models. arXiv preprint arXiv:2212.02475, 2022.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through structured
state space duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert Gu, Ruba
Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing gated linear recurrences
with local attention for efficient language models. arXiv preprint arXiv:2402.19427, 2024.

Harm de Vries. In the long (context) run, 2023. URL https://www.harmdevries.com/post/
context-length/. Accessed: 2024-06-24.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Daniel Y Fu, Tri Dao, Khaled K Saab, Armin W Thomas, Atri Rudra, and Christopher Ré. Hungry hungry
hippos: Towards language modeling with state space models. arXiv preprint arXiv:2212.14052, 2022.

A. Gammerman, V. Vovk, and V. Vapnik. Learning by transduction. In In Uncertainty in Artificial Intelligence,
pp. 148–155. Morgan Kaufmann, 1998.

11

https://www.harmdevries.com/post/context-length/
https://www.harmdevries.com/post/context-length/

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

Under review as a conference paper at ICLR 2025

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of diverse
text for language modeling, 2020.

Xinyang Geng. EasyLM: A Simple And Scalable Training Framework for Large Language Models. https:
//github.com/young-geng/EasyLM, mar 2023. https://github.com/young-geng/EasyLM.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In Proceedings of the ninth
annual conference of the Cognitive Science Society, pp. 177–186, 1987.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

John J Hopfield. Neural networks and physical systems with emergent collective computational abilities.
Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going beyond linear transformers with
recurrent fast weight programmers. Advances in Neural Information Processing Systems, 34:7703–7717,
2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention. In International conference on machine learning, pp.
5156–5165. PMLR, 2020.

Louis Kirsch and Jürgen Schmidhuber. Meta learning backpropagation and improving it. Advances in Neural
Information Processing Systems, 34:14122–14134, 2021.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural sequence
models. In International Conference on Machine Learning, pp. 2766–2775. PMLR, 2018.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of transformer
language models. arXiv preprint arXiv:1904.08378, 2019.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611–626, 2023.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building machines that
learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

Quoc V Le. Building high-level features using large scale unsupervised learning. In 2013 IEEE international
conference on acoustics, speech and signal processing, pp. 8595–8598. IEEE, 2013.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and language
with blockwise ringattention. arXiv preprint arXiv:2402.08268, 2024.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-learning update rules for
unsupervised representation learning. arXiv preprint arXiv:1804.00222, 2018.

12

https://github.com/young-geng/EasyLM
https://github.com/young-geng/EasyLM
https://github.com/young-geng/EasyLM

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

Under review as a conference paper at ICLR 2025

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for the transformer era. arXiv
preprint arXiv:2305.13048, 2023.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene Cheah,
Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with matrix-valued
states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano
Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. arXiv
preprint arXiv:2302.10866, 2023.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference using fast
weight memory. arXiv preprint arXiv:2011.07831, 2020.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight programmers.
In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to learn: the
meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent networks.
Neural Computation, 4(1):131–139, 1992.

Noam Shazeer. Glu variants improve transformer, 2020.

Sam Shleifer, Jason Weston, and Myle Ott. Normformer: Improved transformer pretraining with extra
normalization. arXiv preprint arXiv:2110.09456, 2021.

Benjamin Spector, Aaryan Singhal, Simran Arora, and Chris Re. Thunderkittens. https://github.com/
HazyResearch/ThunderKittens, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In International Conference on Machine
Learning, pp. 9229–9248. PMLR, 2020.

Sebastian Thrun and Lorien Pratt. Learning to learn: Introduction and overview. In Learning to learn, pp.
3–17. Springer, 1998.

Tijmen Tieleman and Geoffrey Hinton. Using fast weights to improve persistent contrastive divergence. In
Proceedings of the 26th annual international conference on machine learning, pp. 1033–1040, 2009.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler for
tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

13

https://github.com/HazyResearch/ThunderKittens
https://github.com/HazyResearch/ThunderKittens

663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

Under review as a conference paper at ICLR 2025

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing
robust features with denoising autoencoders. In ICML, pp. 1096–1103, 2008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers: State-of-the-art
natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi
Rungta, Karthik Abinav Sankararaman, Barlas Oguz, Madian Khabsa, Han Fang, Yashar Mehdad, Sharan
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis, Sinong Wang, and Hao
Ma. Effective long-context scaling of foundation models, 2023.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention transformers
with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers with the
delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Davis Yoshida and Kevin Gimpel. Reconsidering the past: Optimizing hidden states in language models.
arXiv preprint arXiv:2112.08653, 2021.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019.

14

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764

Under review as a conference paper at ICLR 2025

APPENDIX

0 500 1000 1500 2000
Token index t

1.0

1.2

1.4

1.6

1.8

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

0.6

0.7

0.8

0.9

1.0

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

0.6

0.7

0.8

0.9

1.0

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

1.0

1.2

1.4

1.6

1.8

TT
T

lo
ss

(W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

0.6

0.7

0.8

0.9

1.0

1.1

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

0.5

0.6

0.7

0.8

0.9

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

0.7

0.8

0.9

1.0

1.1

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

1.0

1.2

1.4

1.6

TT
T

lo
ss

(W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

1.2

1.4

1.6
TT

T
lo

ss
 (W0; xt)

(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

1.4

1.6

1.8

2.0

TT
T

lo
ss

(W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

1.0

1.2

1.4

1.6

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

0 500 1000 1500 2000
Token index t

1.2

1.4

1.6

1.8

2.0

TT
T

lo
ss

 (W0; xt)
(Wt 1; xt)
(Wt; xt)

Figure 7. The self-supervised TTT loss ℓ averaged over all test sequences of the form x1, . . . , xT where T = 2048, for
all 12 TTT layers in a network with 125M parameters train on the Pile. The same network is also used for b = 1 (online
GD) in the left panel of Figure 9. For layers in the middle, we observe that ∥xt∥ rises steadily, causing all three losses to
rise with it. Even for these layers, the gap between ℓ(W0;xt) and ℓ(Wt;xt) still increases with t . For visual clarity, loss
values have been averaged over a sliding window of 10 timesteps.

15

765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

Under review as a conference paper at ICLR 2025

class TTT_Layer(nn.Module):
def __init__(self):
self.task = Task()

def forward(self, in_seq):
state = Learner(self.task)
out_seq = []
for tok in in_seq:
state.train(tok)
out_seq.append(state.predict(tok))

return out_seq

class Task(nn.Module):
def __init__(self):
self.theta_K = nn.Param((d1, d2))
self.theta_V = nn.Param((d1, d2))
self.theta_Q = nn.Param((d1, d2))

def loss(self, f, x):
train_view = self.theta_K @ x
label_view = self.theta_V @ x
return MSE(f(train_view), label_view)

class Learner():
def __init__(self, task):
self.task = task
Linear here, but can be any model
self.model = Linear()
online GD here for simplicity
self.optim = OGD()

def train(self, x):
grad function wrt first arg
of loss, which is self.model
grad_fn = grad(self.task.loss)
calculate inner-loop grad
grad_in = grad_fn(self.model, x)

starting from current params,
step in direction of grad_in,
self.optim.step(self.model, grad_in)

def predict(self, x):
test_view = self.task.theta_Q @ x
return self.model(test_view)

Figure 8. Naive implementation of a TTT layer with a linear model and online GD in the style of PyTorch. TTT_Layer can
be dropped into a larger network like other sequence modeling layers. Training the network will optimize the parameters
of Task in TTT_Layer, because both are subclasses of nn.Module. Since Learner is not a subclass of nn.Module,
state.model is updated manually in the inner loop for each call of state.train. For simplicity, we sometimes
overload model as model.parameters.

1 2 4 8 16 32 64 128 256 512 1024 2048

TTT mini-batch size b (log scale)

11

11.2
11.4
11.6

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

1 2 4 8 16 32 64 128 256 512 1024 2048

TTT mini-batch size b (log scale)

0

100

200

Ti
m

e
(m

s)

Ws at end of mini-batch
Total for Ws and z1, , zT

Figure 9. Ablations on TTT mini-batch size b, where b = 1 is online GD and b = T is batch GD. We choose b = 16 for
all experiments in this paper. Left: Smaller b improves perplexity since more GD steps are taken.1 The perplexity of 11.09
at b = 16 corresponds to the final result of TTT-Linear in Figure 3. Right: Forward time in dual form, with context length
T = 2048. Total time (orange) can be decomposed into time for computing the W s at the end of every mini-batch (blue)
and time for z1, . . . , zT (orange − blue).2 Time complexity for the W s is O(T × d2), constant in b, but the blue line
decreases as larger b allows more parallelization until hardware utilization saturates. Time complexity for z1, . . . , zT is
O(T × b× d), so the orange line first decreases with more parallelization, then increases as the extra computation for
z1, . . . , zT becomes dominant.

1 In theory, b can potentially be too small such that the variance between mini-batches is too high, hurting optimization.
However, we have not observed such an effect in practice.

2 For Figure 9, we use a single TTT layer in TTT-Linear 1.3B, implemented in pure PyTorch. Our fused kernel
significantly improves time efficiency, but makes it difficult to cleanly decompose the time for computing Wb vs. z1, . . . , zb.

16

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

Under review as a conference paper at ICLR 2025

A DUAL FORM

The goal of this section is to derive the dual form for general MLPs of arbitrary depth, with nonlinear
activations.

Without loss of generality, consider η = 1 for convenience, and consider only the first mini-batch, where
t = 1, . . . , b. Denote:

x̂t = θKxt, yt = θV xt, x̄t = θQxt.

Also denote X̂ = [x̂1, . . . , x̂b], and Y and X̄ analogously. In general, uppercase letters denote matrices whose
columns are vectors denoted by the corresponding lowercase letter.

For a network with K layers, denote the initial parameters in layer k by W k
0 . Our convention is to use

superscripts for the layer and subscripts for time.

A.1 FORWARD PASS

During the initial forward pass of TTT, we denote the input to layer k by X̂k = [x̂k
1 , . . . , x̂

k
b], with X̂1 = X̂ .

Now we write the forward pass of TTT using these notations.

For k = 1, . . . ,K:

• Zk = W k
0 X̂k

• X̂k+1 = σk(Z
k)

where σk for k = 1, . . . ,K can be any element-wise operation (R 7→ R) with derivative σ′.

Given X̂K+1, we compute the loss:

l =
1

2
ℓ
(
W 1

0 , . . . ,W
K
0 ; X̂

)
=

1

2

∥∥X̂K+1 − Y
∥∥2
F
=

b∑
t=1

lt,

where lt =
1
2∥x̂

K
t − yt∥2 is the same as defined in Equation 2.3, except scaled by 1/2 for convenience.

All the operations above (except σ) are matmuls and sums, therefore are hardware efficient. Both the primal
form and the dual form share these initial operations.

A.2 PRIMAL FORM

The primal form first computes Gk
t = ∇Wk

0
lt for t = 1, . . . , b, then updates W k

t = W k
0 −

∑t
s=1 G

k
s . Finally,

given X̄1 = [x̄1
1, . . . , x̄

1
b] = X̄ , the primal form repeats the forward pass with the updated W s.

For k = 1, . . . ,K:

• z̄kt = W k
t x̄k

t , for t = 1, . . . , T

• x̄k+1
t = σk(z̄

k
t), for t = 1, . . . , T

where X̄K+1 = [x̄k+1
1 , . . . , x̄k+1

b] contains the output tokens.

Note that a standard backward pass only computes the sum of the gradients:

∇Wk
0
l =

b∑
t=1

∇Wk
0
lt =

b∑
t=1

Gk
t ,

so the computation of the individual terms in the sum Gk
t for t = 1, . . . , b cannot be batched together into

matmuls. Similarly, the forward pass in primal form uses a different Wt for each x̄t, therefore also cannot be
batched in the same way as a standard forward pass. These non-standard passes have poor hardware efficiency.

17

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 DUAL FORM

As discussed in Subsection 2.5, the goal of the dual form is to compute X̄K+1 and W 1
b , . . . ,W

K
b with only

matmuls and light-weight operations such as sums, σ, and σ′. To achieve this goal, we avoid explicitly
computing the intermediate variables: Gk

t and W k
t for t = 1, . . . , b.

The dual form first computes ∇X̂K+1 l = X̂K+1 − Y , then takes a standard backward pass.

For k = K, . . . , 1:

• ∇Zk l = σ′
k

(
∇X̂k+1 l

)
• ∇X̂k l =

(
W k

0

)T ∇Zk l

• ∇Wk
0
l = ∇Zk l

(
X̂k
)T

Now we can already compute W k
b = W k

0 −∇Wk
0
l. To compute the output tokens, we do another forward

pass.

For k = 1, . . . ,K:

• Z̄k = W kX̄k −∇Zk l · mask
((

X̂k
)T

X̄k

)
• X̄k+1 = σ(Z̄k)

By the end of the forward pass, we have computed X̄K+1.

While this forward pass is non-standard, it only contains matmuls, sums, σ, and mask, therefore is efficient
like the standard forward pass.

A.4 DERIVATION

To derive the dual form, we show that:

Z̄k = W kX̄k −∇Zk l · mask
((

X̂k
)T

X̄k

)
is the same as what would be computed in the primal form. Specifically, we show that each column z̄kt of Z̄k

in the forward pass of the dual equals to W k
t x̄k

t in the forward pass of the primal. We invoke a simple fact.

Fact 1. Define matrices A = [a1, . . . , ab], Q = [q1, . . . , qb], and V = [v1, . . . , vb].3 Define v̂t =∑t
s=1 a

T
s qtvs, and V̂ = [v̂1, . . . , v̂b], then V̂ = V · mask(ATQ).

Now plug A = X̂k, Q = X̄k, V = ∇Zk l, and V̂ = W kX̄k − Z̄k into the fact above, we have shown the
desired equality.

Note that the σk and σ′
k used above can be extended to arbitrary functions that are not necessarily element-wise

operations, including normalization layers. This extension can be achieved through, for example, vjp (vector-
Jacobian product) in standard libraries for automatic differentiation such as JAX and PyTorch. However, the
dual form cannot accelerate operations inside σ or its vjp.

3Our matrix A would usually be denoted by K in another context. We use A to avoid confusion with the layer number
K.

18

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

Under review as a conference paper at ICLR 2025

B NADARAYA-WATSON ESTIMATOR

Derivation for the Nadaraya-Watson estimator. Throughout this section, we use x to denote the input
token x as a random variable. Our desired output is the corresponding output token, another random variable
z. This is formulated as estimating the conditional expectation of z:

E[z|x = x] =

∫
p(z|x) z dz =

∫
p(x, z)

p(x)
z dz.

Since the true probability distributions p(x) and p(x, z) are unknown, we replace them with their kernel
density estimations. Specifically, the kernel density estimation for p(x) is:

p̂(x) =
1

n

n∑
i=1

κ(x, xi),

where each xi is a piece of training data in general. (Recall that for our paper, xi is specifically training data
for the inner loop, i.e. a token, which matches our notation in the main text.)

For estimating p(x, y), we use the product kernel:

p̂(x, z) =
1

n

n∑
i=1

κ(x, xi) κ
′(z, zi).

At first sight, it seems absurd to factor the joint probability into two seemingly independent kernels. But in this
case, κ′ can actually be any κ′

i dependent on xi, since it will be integrated out. So the two kernels do not need
to be independent.

Plugging in those estimations, we obtain the Nadaraya-Watson estimator:

Ê[z|x = x] =

∫
p̂(x, z)

p̂(x)
z dz

=
1

p̂(x)

∫
p̂(x, z) z dz

=
1∑n

i=1 κ(x, xi)

∫ n∑
i=1

κ(x, xi) κ
′(z, zi) z dz

=
1∑n

i=1 κ(x, xi)

n∑
i=1

κ(x, xi)

∫
κ′(z, zi) z dz

=
1∑n

i=1 κ(x, xi)

n∑
i=1

κ(x, xi) zi.

Asymmetric kernels. In modern days, people think of kernels as positive semi-definite, which might not be
guaranteed for κ unless θK = θQ. However, people working on kernels decades ago, around the time when the
Nadaraya-Watson estimator was popular, have been very lenient with the choice of kernels, and asymmetric
kernels such as our κ have enjoyed a long tradition: When a kernel estimator uses θK ̸= θQ, it is known as a
balloon estimator (Chen, 2017). Papers such as Breiman et al. (Breiman et al., 1977) have even used θQ as a
function of x′, known as sample-adaptive smoothing.

19

969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

Under review as a conference paper at ICLR 2025

Sequence
modeling block

MLP block

LayerNorm

LayerNorm

TTT layer

LayerNorm

 /

Conv

TTT layer

Conv

LayerNorm

Gate

Residual block Transformer backbone Mamba backbone

Figure 10. Left: A residual block, the basic building block for Transformers. The sequence modeling block is instantiated
into two variants: the Transformer backbone and Mamba backbone. Middle: TTT layer in the Transformer backbone. The
LN before O comes from NormFormer (Shleifer et al., 2021). Right: TTT layer in the backbone inspired by Mamba (Gu
& Dao, 2023) and Griffin (De et al., 2024). Following these two architectures, σ here is GELU (Hendrycks & Gimpel,
2016). To accommodate the extra parameters of the gate without changing the embedding dimension, we simply combine
θK and θQ into a single projection.

Params. Blocks Embed. dim. Heads Train steps Peak LR Tokens

125M 12 768 12 4800 3e-3 2.5B

350M 24 1024 16 13500 1.5e-3 7B

760M 24 1536 16 29000 1.25e-3 15B

1.3B 24 2048 32 50000 1e-3 26B

Table 2. Training configurations for all experiments. This table reproduces Table 12 in the Mamba paper. The only
difference is that the learning rate they use for Mamba and Transformer is 5× the values in their Table 12, and we report
the actual values (5×). Note that this table only applies to TTT-Linear, TTT-MLP, and Transformers, as Mamba does not
follow the multi-head residual block structure inherited from Transformers.

C EXPERIMENT DETAILS

Architectures. Our Transformer strictly follows the construction in the Mamba paper, where Transformer
is called Transformer++. Specifically, the Transformer architecture is based on Llama (Touvron et al.,
2023), with rotary positional encodings (RoPE) (Su et al., 2023), SwiGLU MLP blocks (Shazeer, 2020), and
RMSNorm (Zhang & Sennrich, 2019) instead of LayerNorm. Our Mamba baseline uses the public code
provided by the authors. We have verified that our baselines can reproduce the numbers reported in (Gu &
Dao, 2023).

Training configurations. Our training configurations are in Table 2, which simply reproduces Table 12 in
the Mamba paper. Following the Mamba paper, we always use 0.5M tokens per training batch regardless of
context length. That means for context length T we have 0.5M / T sequences per batch (assume divisible).

20

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

Under review as a conference paper at ICLR 2025

All of our optimization hyper-parameters follow the “improved recipe" in Appendix E.2 of the Mamba paper,
reproduced below:

• AdamW optimizer: β = (0.9, 0.95)

• Cosine schedule: decay to end learning rate 1e− 5

• Linear learning rate warmup over 10% of the training steps

• Weight decay: 0.1

• Gradient clipping: 1.0

• No Dropout

• Mixed Precision

All models are trained using the Llama tokenizer. For experiments on the Pile, this is the only difference with
the recipe in the Mamba paper, which uses two other tokenizers. For experiments on Books, we find that the
original angle of the RoPE encoding (Su et al., 2023) θ = 10, 000 is sub-optimal for our Transformer baseline
in long context. Starting at context length 4k, we try θ = 500, 000 following the Llama Long paper (Xiong
et al., 2023), and use the better perplexity for Transformer (both pretrain and finetune).

Transformer finetuning. Finetuning starts a new cosine schedule with the same optimization hyper-
parameter as training from scratch, except the peak learning rate. We try three peak learning rates for
finetuning: 1e-5, 1e-4, and 1e-3, and select for the best perplexity. We observe that 1e-4 works the best for the
125M models, while 1e-5 works the best for 350M and larger. This observation is reasonable considering that
the end learning rate for the Chinchilla recipe is 1e-5.

Learning rate for TTT. As mentioned in Subsection 2.7, the inner-loop base learning rate ηbase is set to 1
for TTT-Linear and 0.1 for TTT-MLP. Our heuristic for setting ηbase is similar to how people set the outer-loop
learning rate for regular training: We tried ηbase ∈ {0.01, 0.1, 1, 10} and used the largest value that does not
cause instabilities. For TTT-MLP, we use linear warmup for ηbase over 10% of the training steps, similar to
regular training. The number of training steps in the inner loop is T/b (assume divisible). For TTT-Linear, we
tried linear warmup in the inner loop but did not observe a difference.

Experiments in Figure 5. To ensure fairness to Mamba, all methods in these experiments have matched
training FLOPs and are trained with the same recipe (last row of Table 2) as Mamba 1.4B. To match FLOPs
with Mamba, Transformer has 19 blocks instead of 24. For TTT-Linear and TTT-MLP, their FLOPs are
already close to those of Mamba, so we change the hidden dimension of the MLP blocks from 5504 to 5808
(TTT-Linear) and 5248 (TTT-MLP).

Gradient checkpointing through time. By default, libraries such as JAX and PyTorch save the intermediate
activations during a forward pass so they can be reused during the backward pass. However, for a TTT layer
with W as hidden state, this default saves W1, . . . ,WT , which uses too much memory. With TTT mini-batch
and the dual form, we still need to save (assume divisible) κ = T/b W s at the end of the mini-batches. A
standard technique to save memory in this scenario is gradient checkpointing (Chen et al., 2016), which is
usually applied through layers, but we apply it through time.

21

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

Under review as a conference paper at ICLR 2025

1019 1020

FLOPs (log scale)

101

11

12

13

14

15

16
17
18

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

1k
TF pretrain
Mamba
TTT-Linear
TTT-MLP

1019 1020

FLOPs (log scale)

101

9

11

12

13

14

15

16
17

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

2k
TF pretrain
Mamba
TTT-Linear
TTT-MLP

1019 1020

FLOPs (log scale)

101

9

11

12

13

14

15
16
17

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

4k
TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

1019 1020

FLOPs (log scale)

101

12

14

16

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

8k
TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

1018 1019 1020

FLOPs (log scale)

101

12

14

16

18

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

16k
TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

1018 1019 1020

FLOPs (log scale)

101

12

14

16

18

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

32k
TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

Figure 11. Complete results on Books, presented by context lengths. Figure 4 in Subsection 3.2 presents the subset of
results for context lengths 2k and 32k.

22

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

Under review as a conference paper at ICLR 2025

2k 4k 8k 16k 32k
context length (log scale)

16.0

16.5

17.0

17.5

18.0

18.5

pe
rp

le
xi

ty
 (l

og
 sc

al
e)

125M
TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

2k 4k 8k 16k 32k
context length (log scale)

11.4

11.6

11.8

12.0

12.2

12.4

12.6

12.8

pe
rp

le
xi

ty
 (l

og
 sc

al
e)

350M

TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

2k 4k 8k 16k 32k
context length (log scale)

101

9.4

9.6

9.8

10.2

10.4

pe
rp

le
xi

ty
 (l

og
 sc

al
e)

760M

TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

2k 4k 8k 16k 32k
context length (log scale)

8.4

8.6

8.8

9.0

9.2

9.4

pe
rp

le
xi

ty
 (l

og
 sc

al
e)

1.3B

TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

Figure 12. An alternative view of our complete results on Books, presented by model sizes, with context length as the
x-axis. For all methods trained from scratch, perplexity becomes worse once the context length becomes too large. This
trend is not observed with TF finetune, except for one case at the 125M scale. The best context length increases for larger
models (trained from scratch).

2k 4k 8k 16k 32k
Context length

1.5

2.0

2.5

3.0

3.5

Ti
m

e
(s

ec
 /

to
ke

n)

1e 5
Forward (prefill) latency for batch size 16

Transformer
Mamba
TTT-Linear
TTT-MLP

512 1k 2k 4k 8k
Context length

2

4

6

Ti
m

e
(s

ec
 /

to
ke

n)

1e 4
Generate (decode) latency for batch size 512

Transformer
Mamba
TTT-Linear
TTT-MLP

Figure 13. Benchmark on an NVIDIA A100 GPU with 80G HBM and PCIe connections. All models are 1.3B. Time per
token grows linearly for Transformer as context length increases, but stays roughly constant for the other methods. Left:
Forward (prefill) latency for batch size 16. Right: Generate (decode) latency for batch size 512. TTT-Linear and Mamba
have almost the same latency, which is significantly smaller than that of Transformer and TTT-MLP.

23

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

Under review as a conference paper at ICLR 2025

1018 1019 1020

FLOPs (log scale)

10

12

14

16

18

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

Scaling trends on Books
TF finetune
TF pretrain
Mamba
TTT-Linear
TTT-MLP

1k
2k
4k
8k
16k
32k

Figure 14. Experiments on Books with context lengths ranging from 1k to 32k. We treat context length as a hyper-parameter
and connect the selected points. Since we have Transformers trained from scratch and finetuned, we label them as TF
pretrain and TF finetune. The left panel of Figure 5 is a zoomed-in view between 350M and 1.3B parameters, where
Transformer is TF finetune, the stronger Transformer baseline. For all methods trained from scratch (including TF pretrain),
perplexity becomes worse once the context length becomes too large. This trend is highlighted in Figure 12 (in Appendix).
We leave further investigation of this trend to future work.

24

	Introduction
	Method
	TTT as updating a hidden state
	Training a network with TTT layers
	Learning a self-supervised task for TTT
	Parallelization with mini-batch TTT
	Dual form
	Theoretical equivalences
	Implementation details

	Experiments
	Short context: the Pile
	Long context: Books
	Wall-clock time

	Related Work
	Modern RNNs
	Learning at Test Time
	Learning to Learn

	Conclusion
	Dual Form
	Forward pass
	Primal form
	Dual form
	Derivation

	Nadaraya-Watson estimator
	Experiment details

