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Abstract
Contrastive Language-Image Pre-training (CLIP)
excels in multimodal tasks such as image-text
retrieval and zero-shot classification but strug-
gles with fine-grained understanding due to its
focus on coarse-grained short captions. To ad-
dress this, we propose Fine-Grained CLIP (FG-
CLIP), which enhances fine-grained understand-
ing through three key innovations. First, we lever-
age large multimodal models to generate 1.6 bil-
lion long caption-image pairs for capturing global-
level semantic details. Second, a high-quality
dataset is constructed with 12 million images
and 40 million region-specific bounding boxes
aligned with detailed captions to ensure precise,
context-rich representations. Third, 10 million
hard fine-grained negative samples are incorpo-
rated to improve the model’s ability to distin-
guish subtle semantic differences. We construct
a comprehensive dataset, termed FineHARD,
by integrating high-quality region-specific an-
notations with hard fine-grained negative sam-
ples. Corresponding training methods are meticu-
lously designed for these data. Extensive exper-
iments demonstrate that FG-CLIP outperforms
the original CLIP and other state-of-the-art meth-
ods across various downstream tasks, including
fine-grained understanding, open-vocabulary ob-
ject detection, image-text retrieval, and general
multimodal benchmarks. These results highlight
FG-CLIP’s effectiveness in capturing fine-grained
image details and improving overall model perfor-
mance. The data, code, and models are available
at https://github.com/360CVGroup/FG-CLIP.
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1. Introduction
The integration of vision and language (Alayrac et al., 2022;
Ramesh et al., 2022; Lin et al., 2023; Gabeff et al., 2024) has
been a long-standing goal in artificial intelligence, aiming
to develop models that can understand and reason about the
world in a visually and linguistically rich manner. Recent
advances in multimodal pre-training, such as CLIP (Radford
et al., 2021), have made significant strides in this direction
by learning joint representations of images and text through
contrastive learning. These models have achieved state-
of-the-art performance in a variety of downstream tasks,
including image-text retrieval (Pan et al., 2023; Sun et al.,
2024; Zhang et al., 2024), image captioning (Mokady et al.,
2021; Li et al., 2024; Yao et al., 2024), and visual question
answering (Li et al., 2023a; Parelli et al., 2023; Team et al.,
2024; Wang et al., 2025). However, despite their impressive
capabilities, these models often struggle with fine-grained
details, particularly in recognizing object attributes and their
relationships.

Recent works (Liu et al., 2023a; Wu et al., 2024b; Zhang
et al., 2024; Zheng et al., 2024; Jing et al., 2024) point
out two primary reasons for the limitations in CLIP’s fine-
grained learning capability. First, the original CLIP model’s
text encoder supports only up to 77 tokens, restricting its ca-
pacity to process detailed descriptions and hindering its abil-
ity to capture nuanced textual information. Second, CLIP
aligns entire images with corresponding text descriptions,
making it challenging to extract valuable region-specific rep-
resentations from visual features. Consequently, the model
struggles to achieve fine-grained alignment between image
regions and their corresponding textual attributes, limiting
its effectiveness in complex recognition scenarios.

To address these issues, researchers have proposed extend-
ing the positional encoding to support longer token se-
quences (Wu et al., 2024b; Zhang et al., 2024; Zheng et al.,
2024) and integrating object detection datasets into CLIP
training (Zhong et al., 2022; Jing et al., 2024). By align-
ing bounding boxes with category labels, these methods
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aim to enhance regional feature extraction. Although these
approaches have shown some improvements, they still fall
short in fine-grained visual recognition and open-vocabulary
object detection. Existing methods (Jing et al., 2024; Zhang
et al., 2024) typically introduce relatively few long captions,
usually on a million scale, which is inadequate for effective
learning of fine-grained details. Additionally, aligning im-
age regions with category labels limits semantic diversity,
restricting the model’s generalization to open-world scenar-
ios. Furthermore, the lack of hard fine-grained negative
samples limits the model’s ability to distinguish between
objects of the same category but with different attributes.
In this work, we introduce Fine-Grained CLIP (FG-CLIP),
a novel approach designed to enhance CLIP’s fine-grained
understanding capabilities through three key innovations.

First, we significantly enhance global-level semantic align-
ment by generating long captions using state-of-the-art large
multimodal models (LMMs) (Hong et al., 2024). This pro-
cess introduces 1.6 billion long caption-image pairs, provid-
ing an unprecedented scale of data that allows FG-CLIP to
capture nuanced details at the global-level semantic layer,
thereby enhancing its ability to perceive complex and de-
tailed information.

Second, to improve fine-grained alignment between images
and text, we develop a high-quality visual grounding dataset.
This dataset includes detailed descriptions for 40 million
bounding boxes across 12 million images, ensuring that
each region is precisely annotated with context-rich captions.
By creating such an extensive and richly annotated dataset,
we enable the model to learn precise and contextually rich
representations, significantly enhancing its performance on
tasks that require fine-grained understanding.

Third, to further enhance model robustness and discrimina-
tion abilities, we introduce a large-scale corpus of 10 million
hard fine-grained negative samples. By incorporating these
challenging negative samples into the training process, FG-
CLIP learns to distinguish subtle differences in semantically
similar but distinct pairs, thereby significantly improving its
performance across various downstream tasks. We integrate
the high-quality visual grounding data and hard fine-grained
negative samples as a whole dataset called FineHARD.

Compared to previous methods, FG-CLIP demonstrates sig-
nificant improvements across a wide range of benchmark
tasks. Our comprehensive enhancements enable the model
to achieve superior performance in capturing nuanced visual
details, as evidenced by our state-of-the-art results on tasks
such as fine-grained understanding, bounding box classifica-
tion, long caption image-text retrieval, and open-vocabulary
object detection. Moreover, when utilized as the back-
bone for LMMs (Liu et al., 2023b), FG-CLIP also demon-
strates performance improvements in tasks involving at-
tribute analysis (Hudson & Manning, 2019), object localiza-

tion (Kazemzadeh et al., 2014), and reducing output halluci-
nation (Li et al., 2023c). We provide visualization results in
Appendix C to demonstrate the improvement in fine-grained
understanding. These results highlight FG-CLIP’s effective-
ness in capturing fine-grained image details and improving
overall model performance. To facilitate future research and
application, we make the models, datasets, and code pub-
licly available at https://github.com/360CVGroup/FG-CLIP.

2. Related Work
2.1. Contrastive Language-Image Pre-training

Contrastive learning has emerged as a powerful paradigm
in multimodal pre-training, significantly advancing the field
of image-text alignment. Models like CLIP have revolu-
tionized this area by leveraging large-scale image-text pairs
to learn rich representations without explicit supervision.
CLIP achieves this through a dual-encoder architecture that
maps images and their corresponding text descriptions into
a shared embedding space, where semantically similar pairs
are pulled closer together while dissimilar pairs are pushed
apart. This approach not only simplifies data labeling but
also enables zero-shot transfer to downstream tasks, demon-
strating impressive performance on various benchmarks
such as image classification (Deng et al., 2009; Recht et al.,
2019) and image-text retrieval (Young et al., 2014; Lin et al.,
2014; Urbanek et al., 2024; Chen et al., 2024a).

2.2. Fine-Grained Understanding

Despite its success, CLIP faces limitations in handling fine-
grained visual details. Its text encoder is constrained to 77
tokens, limiting its capacity to process detailed and com-
plex descriptions. Additionally, CLIP aligns entire images
with corresponding text, making it challenging to extract
valuable region-specific representations. To address these
limitations, models like LongCLIP (Zhang et al., 2024) ex-
tend the maximum token length of the text encoder, enabling
it to handle longer and more detailed textual information.
GLIP (Li et al., 2022) and RegionCLIP (Zhong et al., 2022)
introduce grounding data, enhancing the model’s ability to
align specific regions within images with corresponding
text, thereby improving performance on downstream detec-
tion tasks (Xie et al., 2018; Gupta et al., 2019; Zhou et al.,
2022b; Minderer et al., 2024). However, even with these
improvements, existing models still struggle to fully capture
and align fine-grained features across diverse datasets.

2.3. Image-Text Datasets

Image-text datasets (Gu et al., 2022; Xie et al., 2023;
Fu et al., 2024) play a pivotal role in the performance
of multimodal models. While existing datasets such as
LAION (Schuhmann et al., 2021; 2022), COCO (Lin et al.,
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Figure 1. Overview of the FG-CLIP. CLSimg denotes the image class features output by the Vision Transformer (ViT), while CLStext

represents the class features summarized by the text model for multiple inputs, including long captions, short captions, region captions,
and positive&negative descriptions of specific regions within images. FG-CLIP’s training proceeds in two stages: the first stage leverages
global-level caption-image pairs to achieve initial fine-grained alignment, while the second stage supplements these with additional
region-level captions, including detailed region captions and positive/negative region descriptions to further refine the alignment.

2014), Flickr30K (Young et al., 2014), and Conceptual Cap-
tions (Sharma et al., 2018; Changpinyo et al., 2021) offer
valuable resources, they often emphasize general scene de-
scriptions, neglecting fine-grained details critical for ad-
vanced applications. Researchers have adopted several
strategies to mitigate these limitations. One approach in-
volves leveraging advanced large multimodal models (Lau-
rençon et al., 2024; Wang et al., 2024; Wu et al., 2024c;
Chen et al., 2024b; Team et al., 2024) to refine and enrich
text descriptions through recaptioning. For instance, Long-
CLIP (Zhang et al., 2024) utilizes 1 million long caption-
image pairs from ShareGPT4V (Chen et al., 2024a), and
FineCLIP (Jing et al., 2024) constructs a dataset of 2.5
million long caption-image pairs. Although these efforts en-
hance data richness, they remain limited in scale compared
to the vast amount of data in the image-text field. Another
strategy is to implement pseudo-labeling pipelines using
pre-trained object detection models (Li et al., 2023b; Ma
et al., 2024; Hou et al., 2024) to automatically generate fine-
grained pseudo-labels for region boxes, similar to the GRIT
dataset utilized in Kosmos-2 (Peng et al., 2024). These
methods help improve region-specific alignment but may
introduce noise due to automated labeling.

Another significant challenge is the scarcity of hard fine-
grained negative samples. Existing datasets predominantly
consist of positive examples that are relatively easy to distin-

guish, limiting the model’s ability to learn subtle variations.
The absence of hard negative samples impedes true fine-
grained understanding, as models struggle to discern small
but meaningful differences in visual and textual features.
Addressing this gap is essential for developing models ca-
pable of reliably performing fine-grained recognition and
alignment tasks, thereby enabling them to handle the nu-
anced distinctions necessary for advanced applications.

3. Approach
3.1. Fine-Grained CLIP

Figure 1 provides an overview of Fine-Grained CLIP (FG-
CLIP). Our proposed FG-CLIP extends the traditional dual-
encoder architecture of CLIP to better capture fine-grained
details in images and text. We leverage a two-stage training
paradigm to achieve this enhancement. In the first stage, FG-
CLIP focuses on aligning global representations of images
and text using only global contrastive learning. The sec-
ond stage builds on this foundation by introducing regional
contrastive learning and hard fine-grained negative samples
learning, leveraging region-text data to further refine the
model’s understanding of fine-grained details.

Global Contrastive Learning. Global contrastive learn-
ing aims to enhance the model’s fine-grained understanding
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by introducing a method of augmenting long caption align-
ment utilizing Large Multimodal Models (LMMs). This
approach generates additional long captions that provide
richer context and finer-grained descriptions. The inclu-
sion of long captions enables the model to perceive and
align with global-level semantic details, thereby enhancing
fine-grained understanding and context awareness. In addi-
tion, we retain the alignment of short caption-image pairs.
The long captions complement these short captions, ensur-
ing that the model learns from both detailed, nuanced long
captions for complex semantic information and concise, di-
rect short captions for basic concepts. This dual approach
improves the model’s overall performance in capturing a
broader spectrum of visual information.

In our framework, both short and long captions are aligned
with images by utilizing the [CLS] token features extracted
from the text encoder for the captions and the [CLS] token
features from the image encoder for the images. To accom-
modate longer and more detailed captions while preserv-
ing the alignment of short captions, position embeddings
of FG-CLIP’s text encoder are extended. Specifically, for
sequences shorter than or equal to 20 tokens, we use the
original position embedding directly. For longer sequences,
we apply linear interpolation with a factor of 4 for posi-
tions beyond 20, extending the maximum length from 77
to 248 tokens. This modification ensures that the model
can effectively handle longer, more descriptive text while
maintaining computational efficiency.

During each training step, the model employs both a short
caption and a long caption for every image to ensure com-
prehensive and fine-grained understanding. Given an image-
text pair, the outputs of both encoders are embeddings
v ∈ Rd for images and t ∈ Rd for text, where d is the
dimensionality of the embedding space. We compute the
similarity between each pair using the cosine similarity met-
ric:

s(v, t) =
v · tT

∥v∥∥t∥
. (1)

The objective function for global contrastive learning is
based on the InfoNCE loss (He et al., 2020), which maxi-
mizes the similarity between matching pairs while minimiz-
ing the similarity between mismatched pairs. Specifically,
the loss for a batch of N image-text pairs is given by:

Lglobal = − 1

2N

N∑
i=1

(log
exp(s(vi, ti)/τ)∑N
j=1 exp(s(vi, tj)/τ)

+ log
exp(s(ti, vi)/τ)∑N
j=1 exp(s(ti, vj)/τ)

), (2)

where τ is a learnable temperature parameter. This global

contrastive learning significantly improving its detail per-
ception capabilities in both granular and holistic contexts.

Regional Contrastive Learning. Regional contrastive
learning focuses on aligning specific regions within im-
ages with corresponding text segments. To achieve this,
we employ RoIAlign (He et al., 2017) to extract region-
specific features from the image. These extracted features
are then processed by applying average pooling over the
tokens within each detected region, resulting in a set of
region embeddings {rk}Kk=1, where K denotes the total
number of valid bounding boxes across all images within a
batch. This approach differs from global contrastive learn-
ing, which typically relies on the [CLS] token for deriving
image-level features. For text, we segment the full-image
caption into phrases or sentences that correspond to indi-
vidual bounding boxes, obtaining text embeddings lk. The
regional contrastive loss is defined as:

Lregional = − 1

2K

K∑
i=1

(log
exp(s(ri, li)/τ)∑K
j=1 exp(s(ri, lj)/τ)

+ log
exp(s(li, ri)/τ)∑K
j=1 exp(s(li, rj)/τ)

). (3)

This encourages the model to learn fine-grained alignments
between specific regions and textual descriptions.

Hard Fine-Grained Negative Samples Learning. To
address the scarcity of challenging fine-grained negative
samples, we introduce a hard negative mining strategy. We
define hard negative samples as those that are semantically
close but not identical to the positive sample. These hard
negatives are constructed by rewriting the descriptions of
bounding boxes, modifying certain attributes to create subtle
differences. The specific process of obtaining hard fine-
grained negative samples can be found in Section 3.2.

To incorporate hard negative samples into the learning pro-
cess, we extend the loss function to include a term for hard
negatives. For each region-text pair, we compute the sim-
ilarity between the regional feature and both the positive
description and the corresponding negative sample descrip-
tions. The hard negative loss Lhard is defined as:

Lhard = − 1

K

K∑
i=1

log
exp(s(ri, li,1)/τ)∑M
j=1 exp(s(ri, li,j)/τ)

, (4)

where M denotes the total number of captions for each
region, with j = 1 corresponding to the positive sample,
and j > 1 corresponding to the negative samples.

In the second stage, we integrate all three components:
Global Contrastive Learning, Regional Contrastive Learn-
ing, and Hard Fine-Grained Negative Samples Learning, to
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ensure comprehensive and nuanced alignment tasks. The
learning objective in the second stage combines these ele-
ments:

L = Lglobal + α ∗ Lregional + β ∗ Lhard. (5)

Here, the hyperparameters α and β are set to 0.1 and 0.5,
respectively, to balance the regional contrastive loss and
the hard negative loss, ensuring that each loss operates on
similar scales.

This integrated approach ensures that FG-CLIP not only
captures global-level semantic details but also distinguishes
subtle differences in semantically similar pairs, enhancing
its overall performance across various downstream tasks.

3.2. Curated Dataset

In this section, we describe the meticulous process of curat-
ing datasets for our FG-CLIP model, emphasizing both scale
and quality to address the limitations of existing models in
fine-grained understanding.

Enhancing LAION-2B Data with Detailed Recaptioning.
In the first stage of training, we utilize an enhanced version
of the LAION-2B dataset (Schuhmann et al., 2022), where
images are recaptioned with detailed descriptions generated
by large multimodal models, i.e., CogVLM2-19B (Hong
et al., 2024). This approach generates more detailed and
contextually rich captions, crucial for capturing subtle dif-
ferences in visual content. The original LAION-2B dataset
often suffers from overly generic or imprecise captions, lead-
ing to suboptimal performance in fine-grained tasks. For
instance, an image of a bird might be described as "a bird",
without specifying the species or environment. Such generic
captions limit the model’s ability to recognize fine details.

By leveraging advanced large multimodal models, we gen-
erate detailed descriptions that not only identify objects
but also provide rich contextual information about their at-
tributes, actions, and relationships within the scene. For
instance, rather than a generic description like "a bird", our
refined captions read "a red-winged blackbird perched on
a tree branch in a park." Utilizing a cluster of 160×910B
NPUs, the data processing is completed in 30 days. An
ablation study detailed in Section 4.5 evaluates the im-
pact of using these high-quality, detailed captions. The
results demonstrate significant improvements in model per-
formance across various tasks, underscoring the critical role
of large-scale, high-quality text annotations in enhancing
both model accuracy and context understanding.

Fine-Grained Visual Grounding+Recaption+Hard Neg-
ative Dataset (FineHARD). For the second stage, we
develop a high-quality visual grounding dataset named

FineHARD, featuring precise region-specific captions and
hard negative samples. We curate the overall dataset based
on GRIT (Peng et al., 2024) images. The process begins
with generating detailed image captions using CogVLM2-
19B (Hong et al., 2024), ensuring comprehensive and nu-
anced descriptions that capture the full context of each im-
age. Following (Peng et al., 2024), we then use SpaCy (Hon-
nibal et al., 2020) to parse the captions and extract the refer-
ring expressions. Subsequently, the images and referring ex-
pressions are fed into the pretrained object detection model,
i.e., Yolo-World (Cheng et al., 2024) to obtain the associated
bounding boxes. Non-maximum suppression is applied to
eliminate overlapping bounding boxes, retaining only those
with predicted confidence scores higher than 0.4. This pro-
cess results in 12 million images and 40 million bounding
boxes with fine-grained region captions. We provide ex-
amples of the images and their corresponding captions in
Appendix A.

Next, to create challenging fine-grained negative samples,
we modify attributes of bounding box descriptions while
keeping the object names unchanged. For this task, we
employ an open-source large language model, Llama-3.1-
70B (Dubey et al., 2024), to generate 10 negative samples
for each positive sample. To ensure clarity, we remove spe-
cial symbols such as semicolons, commas, and line breaks
from the generated descriptions. A quality check of 3,000
negative samples reveals that 98.9% are qualified, with only
1.1% considered noise—a level within the expected toler-
ance for unsupervised methods. This process generates sub-
tle variations that better reflect real-world scenarios where
objects may appear similar but differ in specific details. We
illustrate examples of the fine-grained negative samples in
Appendix B.

The resulting dataset includes 12 million images with fine-
grained captions, 40 million bounding boxes with detailed
region descriptions, and 10 million hard negative samples.
The data pipeline utilizes a cluster of 160×910B NPUs
and takes 7 days to complete. This comprehensive dataset
enhances the model’s ability to capture fine-grained details
and provides a robust foundation for training FG-CLIP to
distinguish subtle differences in visual and textual features.

4. Experiments
4.1. Implementation Details

In the first stage, we train on a dataset of 1.6 billion im-
ages, each paired with short and long texts. The model is
initialized with weights from the original CLIP (Radford
et al., 2021). For both ViT-B and ViT-L (Dosovitskiy, 2021)
configurations, the batch size per NPU is set to 384. The
learnable temperature parameter τ is initialized to 0.07. We
utilize the AdamW optimizer with a learning rate of 1e-4,
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Table 1. Results on FG-OVD benchmark. Accuracy is reported.

Method Backbone Fine-Grained Understanding
hard medium easy trivial

CLIP ViT-B/16 12.0 23.1 22.2 58.5
EVA-CLIP ViT-B/16 14.0 30.1 29.4 58.3
Long-CLIP ViT-B/16 9.2 18.4 16.2 51.8
FineCLIP ViT-B/16 26.8 49.8 50.4 71.9
FG-CLIP ViT-B/16 46.1 66.6 68.7 83.4

CLIP ViT-L/14 15.4 25.3 25.7 38.8
EVA-CLIP ViT-L/14 18.3 38.4 35.2 62.7
Long-CLIP ViT-L/14 9.6 19.7 16.0 39.8
FineCLIP ViT-L/14 22.8 46.0 46.0 73.6
FG-CLIP ViT-L/14 48.4 69.5 71.2 89.7

Table 2. Bounding box classification results.

Method Backbone BBox Classification
COCO LVIS Open Images

CLIP ViT-B/16 44.2 20.9 15.3
EVA-CLIP ViT-B/16 30.6 14.4 8.8
RegionCLIP ViT-B/16 40.0 22.2 19.1
CLIPSelf ViT-B/16 43.7 7.8 11.4
Long-CLIP ViT-B/16 36.7 18.2 14.9
FineCLIP ViT-B/16 48.4 23.3 18.1
FG-CLIP ViT-B/16 52.3 28.6 20.6

CLIP ViT-L/14 33.8 9.3 8.3
EVA-CLIP ViT-L/14 32.1 18.3 9.3
Long-CLIP ViT-L/14 35.6 10.4 8.9
FineCLIP ViT-L/14 54.5 22.5 19.1
FG-CLIP ViT-L/14 63.2 38.3 23.8

weight decay of 0.05, β1 of 0.9, β2 of 0.98, and warmup
steps for the first 200 iterations. The entire training process
employs DeepSpeed’s Zero-2 optimization technique and
Bfloat16 precision to accelerate training, and the model is
trained for one epoch.

In the second stage, we train on a dataset of 12 million
images. Apart from long and short captions, this dataset
includes high-quality visual grounding annotations and hard
fine-grained negative samples. The model is initialized with
weights obtained from the first stage. The batch size per
GPU is set to 512. We employ the AdamW optimizer with
a learning rate of 1e-6, weight decay of 0.001, β1 of 0.9,
β2 of 0.98, and warmup steps for the first 50 iterations.
Training acceleration techniques include DeepSpeed’s Zero-
2 optimization, CUDA’s TF32 technology, and Bfloat16
precision, and the model is trained for one epoch.

4.2. Comparisons on Fine-grained Region-level Task

In this section, the primary methods included for com-
parison are CLIP (Radford et al., 2021), EVA-CLIP (Sun
et al., 2023), Long-CLIP (Zhang et al., 2024), and FineCLIP
(Jing et al., 2024). Additional methods involved in open-
vocabulary detection include OV-RCNN (Zareian et al.,

Table 3. Performance on open-vocabulary object detection task.

Method Backbone OV-COCO
APnovel

50 AP base
50 AP all

50

OV-RCNN RN50 17.5 41.0 34.9
RegionCLIP RN50 26.8 54.8 47.5
Detic RN50 27.8 51.1 45.0
VLDet RN50 32.0 50.6 45.8
RO-ViT ViT-B/16 30.2 - 41.5
RO-ViT ViT-L/16 33.0 - 47.7
CFM-ViT ViT-L/16 34.1 - 46.0

F-ViT ViT-B/16 17.5 41.0 34.9
F-ViT+CLIPSelf ViT-B/16 33.6 54.2 48.8
F-ViT+FineCLIP ViT-B/16 29.8 45.9 41.7
F-ViT+FG-CLIP ViT-B/16 35.1 51.7 47.4

F-ViT ViT-L/14 24.7 53.6 46.0
F-ViT+CLIPSelf ViT-L/14 38.4 60.6 54.8
F-ViT+FineCLIP ViT-L/14 40.0 57.2 52.7
F-ViT+FG-CLIP ViT-L/14 41.2 58.0 53.6

2021), RegionCLIP (Zhong et al., 2022), Detic (Zhou et al.,
2022b), VLDet (Lin et al., 2022), RO-ViT (Kim et al.,
2023b), CFM-ViT (Kim et al., 2023a), F-ViT(Wu et al.,
2024a), and CLIPSelf (Wu et al., 2024a).

Fine-Grained Understanding. Based on the fine-grained
benchmark FG-OVD constructed by (Bianchi et al., 2024),
we evaluate open-source image-text alignment models. Un-
like previous benchmarks such as MSCOCO (Lin et al.,
2014) and Flickr (Young et al., 2014), which rely on global
information for matching, this benchmark focuses on iden-
tifying specific local regions within images. Each region
has one corresponding positive description and ten nega-
tive descriptions, with the negative samples derived from
the positive text. This benchmark primarily comprises four
subsets of varying difficulty levels: hard, medium, easy,
and trivial. The increasing difficulty across these subsets is
reflected in the degree of distinction between the texts to
be matched. In the hard, medium, and easy subsets, one,
two, and three attribute words are replaced, respectively. In
the trivial subset, the texts are entirely unrelated. For the
source collection of specific attribute words, please refer to
(Bianchi et al., 2024).

During testing, following FineCLIP, we first extract dense
features from the model by removing the last self-attention
layer as suggested by (Zhou et al., 2022a). Subsequently,
we combine the bounding box information provided by the
benchmark with ROIAlign to obtain representative features.
These features are used to calculate similarity scores with
both positive and negative sample descriptions. Top-1 accu-
racy is adopted as the evaluation metric.

As shown in Table 1, FG-CLIP achieves significant improve-
ments over existing models, particularly on the challenging
hard and medium subsets, thanks to its hard fine-grained
negative samples learning strategy. Examples of different
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Table 4. Comparisons on image-level tasks, including long/short caption image-text retrieval, and zero-shot image classification.

Method Backbone ShareGPT4V DCI MSCOCO Flickr30k ImageNet-1K ImageNet-v2
I2T T2I I2T T2I I2T T2I I2T T2I Top-1 Top-1

CLIP ViT-B/16 78.2 79.6 45.5 43.0 51.8 32.7 82.2 62.1 68.4 61.9
EVA-CLIP ViT-B/16 90.5 85.5 41.9 41.2 58.7 41.6 85.7 71.2 74.7 67.0
Long-CLIP ViT-B/16 94.7 93.4 51.7 57.3 57.6 40.4 85.9 70.7 66.8 61.2
FineCLIP ViT-B/16 70.6 73.3 35.5 34.4 54.5 40.2 82.5 67.9 55.7 48.8
FG-CLIP ViT-B/16 96.7 94.9 61.8 60.6 64.1 45.4 90.7 76.4 69.0 61.8

CLIP ViT-L/14 86.5 83.6 37.2 36.4 58.0 37.1 87.4 67.3 76.6 70.9
EVA-CLIP ViT-L/14 91.5 89.4 47.2 47.8 64.2 47.9 89.2 77.9 80.4 73.8
Long-CLIP ViT-L/14 95.8 95.6 44.2 52.5 62.8 46.3 90.0 76.2 73.5 67.9
FineCLIP ViT-L/14 73.4 82.7 40.1 46.2 - - - - 60.8 53.4
FG-CLIP ViT-L/14 97.4 96.8 66.7 66.1 68.9 50.9 93.7 81.5 76.1 69.0

models’ performance can be found in Appendix D.1.

Bounding Box Classification. To assess the model’s local
information recognition capabilities, we conduct zero-shot
testing on COCO-val2017 (Lin et al., 2014), LVIS (Gupta
et al., 2019), and Open Images (Kuznetsova et al., 2020),
following the protocol of (Jing et al., 2024). This evaluation
focuses on how well the model can classify objects within
bounding boxes using only textual descriptions. Similar to
the fine-grained understanding, we integrate known bound-
ing box information from the benchmark with ROIAlign to
obtain localized dense representations. Using all categories
as textual inputs, we perform matching and recognition for
each bounding box, evaluating Top-1 accuracy.

As shown in Table 2, FG-CLIP achieves leading perfor-
mance in bounding box classification with the help of
the regional contrastive learning strategy. Notably, Long-
CLIP (Zhang et al., 2024), fine-tuned from CLIP using long
texts, shows a significant decline in performance, indicat-
ing that long texts affect regional information granularity.
Furthermore, FineCLIP uses region alignment data and in-
corporates a real-time self-distillation scheme, leading to
meaningful improvements. While FineCLIP makes signif-
icant progress, FG-CLIP excels it by integrating regional
and global information. This approach enhances FG-CLIP’s
ability to accurately recognize and classify regions within
images, highlighting the effectiveness of FG-CLIP’s training
strategy.

Open-Vocabulary Object Detection. To further evaluate
the fine-grained localization capability of our method, we
employ FG-CLIP as the backbone for downstream open-
vocabulary detection tasks. Following prior work (Wu et al.,
2024a), we employ a two-stage detection architecture, F-
VIT, with a frozen visual encoder. The comparative results
are summarized in Table 3. Consistent with previous stud-
ies, we report the box AP at IoU 0.5 for base, novel, and all
categories (APnovel

50 , AP base
50 , and AP all

50 ) on OV-COCO.
Notably, APnovel

50 is the primary focus of interest, as it

Table 5. Comparisons on General Multimodal Benchmarks.

Method GQA POPE RefCOCO
val testA testB

LLaVA-v1.5+CLIP 61.9 85.9 76.2 83.4 67.9
+1.0 +0.9 +5.2 +3.1 +7.0

LLaVA-v1.5+FG-CLIP 62.9 86.8 81.4 86.5 74.9

measures the model’s ability to recognize novel objects.
Our findings indicate that FG-CLIP achieves leading perfor-
mance in open-vocabulary detection tasks, highlighting its
effectiveness in recognizing and localizing novel objects.

4.3. Comparisons on Image-level Task

Long/short Caption Image-Text Retrieval. To evaluate
retrieval performance comprehensively, we conduct exper-
iments on both long caption and short caption image-text
retrieval tasks. For long-text retrieval, we follow the proto-
col of Long-CLIP and use the 1K subset of ShareGPT4V
(Chen et al., 2024a) provided by it as the testset. Addi-
tionally, we incorporate a more challenging long caption
image-text pair dataset from DCI (Urbanek et al., 2024),
consisting of 7,805 pairs, into the evaluation. For short-text
retrieval, we employ the classic MSCOCO 5K (Lin et al.,
2014) and Flickr 1K (Young et al., 2014) evaluation sets,
which are widely used benchmarks for assessing image-text
alignment models. As shown in Table 4, FG-CLIP achieves
significant performance improvements in both long/short
caption image-text retrieval tasks. The model’s ability to
handle diverse caption lengths highlights its versatility and
robustness in multimodal alignment.

Zero-shot Image Classification. We evaluate the zero-
shot classification performance of our model on ImageNet-
1K (Deng et al., 2009) and ImageNet-v2 (Recht et al.,
2019). As illustrated in Table 4, despite being marginally
behind EVA-CLIP, which is trained on a larger dataset, FG-
CLIP demonstrates stable classification performance with
enhanced regional and textual understanding capabilities
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Table 6. Ablation study results for FG-CLIP. This table compares the performance of different configurations of our FG-CLIP model across
multiple evaluation metrics, including long caption image-text retrieval (DCI), short caption image-text retrieval (MSCOCO), bounding
box classification (COCO-val2017), and fine-grained understanding (FG-OVD). The results highlight the incremental improvements
achieved by incorporating global contrastive learning (Lglobal), regional contrastive learning (Lregional), and hard fine-grained negative
samples learning (Lhard).

Method Long Retrieval Short Retrieval BBox Classification Fine-Grained Understanding
I2T T2I I2T T2I Top-1 Top-5 hard medium easy

CLIP 45.5 43.0 51.8 32.7 44.2 72.3 12.0 23.1 22.2

FG-CLIP Stage1 58.3 57.5 64.6 44.9 47.2 74.2 21.8 41.6 36.2
+Stage2 (Lglobal) 62.7 61.2 64.4 46.4 46.8 73.6 25.4 46.8 42.9
+Stage2 (Lglobal,Lregional) 62.4 61.1 64.7 45.7 53.7 81.2 24.5 47.1 49.5
+Stage2 (Lglobal,Lregional,Lhard) 61.8 60.6 64.1 45.4 52.3 79.7 46.1 66.6 68.7

compared to the original baseline, CLIP. Additionally, when
compared to Long-CLIP and FineCLIP, both of which aim
to enhance fine-grained recognition capabilities, our model
exhibits a notable advantage in classification accuracy.

4.4. Comparisons on General Multimodal Benchmarks

We compare FG-CLIP as a visual feature extractor for mul-
timodal large language models with our baseline, CLIP.
Specifically, we conduct experiments using LLaVA-v1.5-7B
(Liu et al., 2023b), which itself is trained using CLIP. To en-
sure a fair comparison, all parameter configurations are kept
consistent with those in the original LLaVA, and the model
is trained using the data provided by LLaVA. Our evaluation
focuses on benchmark sets related to attribute analysis, ob-
ject localization, and output hallucination, which are GQA
(Hudson & Manning, 2019), RefCOCO (Kazemzadeh et al.,
2014), and POPE (Li et al., 2023c), respectively.

As shown in Table 5, FG-CLIP achieves certain improve-
ments on GQA, which involves attribute-based question
answering, and on POPE, which evaluates output halluci-
nation. Additionally, it demonstrates significant gains on
RefCOCO, a benchmark set that involves both attribute
analysis and object localization. These results indicate the
effectiveness of FG-CLIP’s training strategy and the data
construction, which are specifically designed to enhance
fine-grained recognition and regional alignment. We pro-
vide more results in Section D.3.

4.5. Ablation Study

To systematically evaluate the contributions of different
components in our FG-CLIP model, we conduct an ablation
study with results summarized in Table 6.

Global Contrastive Learning and Detailed Recaptioning
Data. We start by comparing the original CLIP model
with FG-CLIP Stage 1 and Stage 2 incorporating global
contrastive learning Lglobal. The results demonstrate that
generating detailed captions significantly enhances perfor-
mance across various tasks. Specifically, FG-CLIP Stage

1 outperforms CLIP in all metrics, highlighting the impor-
tance of fine-grained training data. Further improvements
are observed when adding Lglobal in Stage 2, particularly
in long caption image-text retrieval (DCI (Urbanek et al.,
2024)) and fine-grained understanding (FG-OVD (Bianchi
et al., 2024)). This underscores the effectiveness of detailed
caption data combined with global contrastive learning in
improving model performance.

Regional Contrastive Learning. We introduce regional
contrastive learning Lregional to evaluate its impact on cap-
turing detailed image regions. Compared to configurations
using only Lglobal, adding Lregional leads to substantial
improvements in bounding box classification accuracy from
46.8% to 53.7%, and FG-OVD easy dataset accuracy from
42.9% to 49.5%. These gains highlight the effectiveness of
Lregional in refining the model’s ability to understand fine-
grained details within specific image regions. Moreover, this
component maintains strong performance in both retrieval
and classification tasks, demonstrating its versatility.

Hard Fine-Grained Negative Samples Learning. We in-
corporate hard fine-grained negative samples learning Lhard

to distinguish subtle differences in semantically similar but
distinct region-text pairs. By comparing configurations with
and without Lhard, we observe significant improvements
in FG-OVD performance. Accuracy on the hard dataset in-
creases from 24.5% to 46.1%, while on the medium dataset
it rises from 47.1% to 66.6% and on the easy dataset it
jumps from 49.5% to 68.7%. These results underscore
the importance of Lhard in distinguishing subtle semantic
differences. Hard fine-grained negative samples learning
effectively addresses challenge cases, thereby enhancing the
model’s stability and discriminative power.

5. Conclusion
In this work, we introduce Fine-Grained CLIP (FG-CLIP), a
novel approach that significantly advances fine-grained un-
derstanding. By integrating advanced alignment techniques

8



FG-CLIP: Fine-Grained Visual and Textual Alignment

with large-scale, high-quality datasets and hard negative
samples, FG-CLIP captures global-level and region-level
semantic details and distinguishes subtle differences more
effectively. Extensive experiments across diverse down-
stream tasks validate the model’s superior performance. In
addition, we propose FineHARD as a unified dataset that
combines high-quality region-specific annotations with chal-
lenging fine-grained negative samples, offering a valuable
resource for advancing multimodal research. Looking ahead,
exploring the integration of more sophisticated multimodal
models and expanding dataset diversity will be crucial for
pushing the boundaries of fine-grained understanding.

Impact Statement
This paper aims to advance the field of Machine Learning,
which has broad implications for society. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Examples of Curated Visual Grounding Data
Figure 2 shows visual grounding examples utilized in our experiments. Each example comprises an image, accompanied by
its corresponding long and short captions, as well as multiple region-specific annotations, each with a detailed description.

---------long caption---------
The image shows a sewing project in progress. There is a sewing machine with its needle and presser foot engaged in 
the process. A piece of fabric with a pattern of pink shapes on an orange background is being sewn; the edges of the 
fabric are neatly folded over one another, and it appears to be pinned in place to hold its shape during the sewing. The 
sewing machine is positioned on a pink cutting mat that has a grid pattern, which is typically used to ensure accurate 
cutting when working with fabric.. . In the background, there is a white ceramic pot partially visible with a green plant 
that adds a touch of color to the setting. The lighting seems to be indoor, likely coming from overhead, as there are no 
shadows visible on the objects, and the overall lighting appears even and consistent.. . The style of the image is a close-
up photograph, capturing the details of the sewing process with high clarity. There are no people or characters in the 
image, so there are no emotions to convey. The image is factual and does not contain any subjective interpretation of 
emotions or style.
---------short caption---------
sewing machine with a semi-finished pink baby hat
---------region caption---------
a pink cutting mat that has a grid pattern which is typically used to ensure accurate cutting when working with fabric
---------region caption---------
a white ceramic pot partially visible with a green plant that adds a touch of color to the setting
---------region caption---------
a baby hat with white spots to be finished

---------long caption---------
The image presents a bedroom scene centered on a large bed with a tall, upholstered headboard. The headboard is light 
brown and has a smooth texture without any visible patterns. Two reading lights are mounted on the wall on each side 
of the headboard, extending outward with a flexible arm and a small light at the end. These lights are positioned at a 
height that seems suitable for reading. The bed frame is also light brown and has a contemporary design.. . On the bed, 
there is a white duvet and a couple of pillows, with one of them being a smaller pillow that matches the color of the 
reading lights, and the other being a larger pillow that appears to have a different color, possibly a neutral tone. At the 
foot of the bed, there is a small wooden side table with a black metal frame, which has a minimalistic design with a flat 
surface and a single visible drawer. The table's color palette includes brown and black, complementing the overall 
room tones.. . The lighting within the image is not discernible due to the lack of shadows or highlights that could 
indicate a specific light source. Instead, the room appears to be lit by ambient light that creates a soft glow, giving the 
space a cozy atmosphere.. . The style of the image is a photograph. The edges and shadows suggest a natural light 
source and the clarity of the objects points towards a high-resolution image captured by a camera.
---------short caption---------
Modern bedside table in a simple style in the hotel room – metal furniture
---------region caption---------
a small wooden side table with a black metal frame which has a minimalistic design with a flat surface and a single 
visible drawer
---------region caption---------
a white duvet and a couple of pillows with one of them
---------region caption---------
a smaller pillow that matches the color of the reading lights and a larger that appears to have a different color

---------long caption---------
This image depicts an aerial view of an oil rig's platform. In the foreground, there is a worker engaged in an activity on 
the edge of the platform, wearing safety gear such as jeans, a yellow hard hat, knee pads, and brown work boots. The 
worker appears to be suspended or working at height, secured by a safety harness and other equipment. The rig's 
infrastructure is comprised of metal beams, pipes, and various work platforms.. . The background reveals a large body 
of water, which could be the ocean. On the water's surface, there is a green helipad with a circular symbol, suggesting 
that this is a designated area for landing helicopters. The helipad is connected to the rig by a walkway. The weather 
appears to be clear, with bright sunlight casting shadows on the structure of the rig. The image is taken from a high 
vantage point, looking downwards towards the worker and the rig's platform, highlighting the scale and complexity of 
the offshore oil operation.. . The style of the image is a high-resolution photograph, capturing the intricate details of the 
industrial setting. There are no people or characters other than the worker, so there are no emotions to convey. The 
description is factual and does not include any subjective interpretations or personal opinions about the image.
---------short caption---------
An overhead view of the legs and harness of an industrial painter suspended from the underside of an offshore rig 
derrick, high above the deck below.
---------region caption---------
a worker engaged in an activity on the edge of the platform wearing safety gear such as jeans a yellow hard hat knee 
pads and brown work boots
---------region caption---------
a circular symbol suggesting that this is a designated area for landing helicopters
---------region caption---------
a high vantage point looking downwards towards the worker and the rig's platform highlighting the scale and 
complexity of the offshore oil operation

Figure 2. Examples of curated visual grounding data.
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B. Positive and Negative Descriptions Related to Image Regions
To generate hard fine-grained negative samples, we modify the attributes of bounding box descriptions while keeping object
names unchanged. Figure 3 illustrates examples of positive and corresponding negative descriptions for image regions.

---------positive---------
very long wooden jetty, jutting out into a calm blue wooden lake with mountains sunsetting in background
---------negatives---------
'0': 'very long iron jetty, jutting out into a calm pink wooden lake with mountains sunsetting in background'
'1': 'very long silver jetty, jutting out into a calm turquoise wooden lake with mountains sunsetting in background'
'2': 'very long brass jetty, jutting out into a calm lavender wooden lake with mountains sunsetting in background'
'3': 'very long golden jetty, jutting out into a calm peach wooden lake with mountains sunsetting in background'
'4': 'very long bronze jetty, jutting out into a calm mint wooden lake with mountains sunsetting in background'
'5': 'very long copper jetty, jutting out into a calm coral wooden lake with mountains sunsetting in background'
'6': 'very long steel jetty, jutting out into a calm magenta wooden lake with mountains sunsetting in background'
'7': 'very long chrome jetty, jutting out into a calm charcoal wooden lake with mountains sunsetting in background' 
'8': 'very long titanium jetty, jutting out into a calm plum wooden lake with mountains sunsetting in background'
'9': 'very long aluminum jetty, jutting out into a calm amber wooden lake with mountains sunsetting in background'

---------positive---------
british shorthair with a red collar
---------negatives---------
'0': 'british shorthair with a green collar'
'1': 'british shorthair with a copper collar'
'2': 'british shorthair with a grass green collar' 
'3': 'british shorthair with a deep blue collar'
'4': 'british shorthair with a white collar'
'5': 'british shorthair with a black collar'
'6': 'british shorthair with a light blue collar'
'7': 'british shorthair with a silver collar'
'8': 'british shorthair with a dark blue collar'
'9': 'british shorthair with a yellow collar'

---------positive---------
A two-box fastback configuration combined with cleverly concealed air intakes and lightweight roof assembly
---------negatives---------
'0': 'A brass riveted configuration combined with cleverly concealed air intakes and copper roof assembly' 
'1': 'A copper bolted configuration combined with cleverly concealed air intakes and copper roof assembly'
'2': 'A metallic braided configuration combined with cleverly concealed air intakes and metallic roof assembly'
'3': 'A woven mesh configuration combined with cleverly concealed air intakes and woven roof assembly'
'4': 'A translucent grid configuration combined with cleverly concealed air intakes and translucent roof assembly', 
'5': 'A diamond-plate configuration combined with cleverly concealed air intakes and diamond-plate roof assembly' 
'6': 'A chrome-plated configuration combined with cleverly concealed air intakes and chrome-plated roof assembly' 
'7': 'A striped metal configuration combined with cleverly concealed air intakes and striped roof assembly', 
'8': 'A glossy ceramic configuration combined with cleverly concealed air intakes and glossy roof assembly'
'9': 'A beaded mesh configuration combined with cleverly concealed air intakes and beaded roof assembly'

---------positive---------
a red train in Swiss alps
---------negatives---------
'0': 'a light blue train in Swiss alps'
'1': 'a grass green train in Swiss alps'
'2': 'a copper train in Swiss alps'
'3': 'a deep blue train in Swiss alps'
'4': 'a white train in Swiss alps'
'5': 'a black train in Swiss alps'
'6': 'a turquoise train in Swiss alps'
'7': 'a brown train in Swiss alps'
'8': 'a silver train in Swiss alps'
'9': 'a grey train in Swiss alps'

---------positive---------
a beige couch with a brick background
---------negatives---------
'0': 'A turquoise couch with a silver background'
'1': 'A copper couch with a silver background'
'2': 'A turquoise couch with a copper background'
'3': 'A copper couch with a turquoise background'
'4': 'A bronze couch with a silver background'
'5': 'A bronze couch with a copper background'
'6': 'A copper couch with a bronze background'
'7': 'A turquoise couch with a bronze background' 
'8': 'A silver couch with a turquoise background'
'9': 'A silver couch with a copper background'

Figure 3. Examples of positive and negative descriptions related to image regions.

13



FG-CLIP: Fine-Grained Visual and Textual Alignment

C. Visualization Comparison
As illustrated in Figure 4, we present a comparison of similarity matrix visualizations for different methods using challenging
sample images. We utilize the dense image feature extraction strategy introduced by (Zhou et al., 2022a). In the figure,
warmer colors (e.g., yellow) denote higher similarity, whereas cooler colors (e.g., blue) indicate lower relevance. Our goal is
for the model to precisely comprehend and interpret the fine-grained details within the images.

In the first scenario, the image contains three dogs of different colors, and we compute the similarity matrix using only the
phrase "Black dog" with each image token. It can be observed that CLIP and EVA-CLIP fail to accurately identify the target
dog, FineCLIP captures some relevant tokens but not all, whereas FG-CLIP identifies a larger number of relevant tokens,
demonstrating superior performance.

In the second scenario, the image contains multiple black entities, and we compute the similarity matrix using only the
phrase "Black nose", which occupies a very small area within the image. CLIP fails to identify the target, while EVA-CLIP
and FineCLIP locate the target but also respond to many other black regions. In contrast, FG-CLIP accurately identifies the
target, showcasing its precision in fine-grained localization.

In the third scenario, the image features gemstones of three different colors, and we compute the similarity matrix using
only the phrase "Red gemstone". Both CLIP and EVA-CLIP fail to locate the target at the bottom and exhibit high responses
to gemstones of other colors. FineCLIP shows slightly lower localization accuracy compared to FG-CLIP, which precisely
distinguishes between the colors of different gemstones and achieves more accurate localization.

Black dog CLIP EVA-CLIP FineCLIP FG-CLIP

Black nose CLIP EVA-CLIP FineCLIP FG-CLIP

Red gemstone CLIP EVA-CLIP FineCLIP FG-CLIP

Figure 4. Feature visual comparisons of different methods.

Additionally, we utilize FG-CLIP to conduct a correlation analysis between different input texts and the same image. The
results in Figure 5 indicate that FG-CLIP provides precise positional understanding of different targets within the image.
This demonstrates the model’s stable visual localization capabilities and its fine-grained understanding of image content.

To evaluate the impact of hard fine-grained negative samples learning, we further provide the qualitative results in Figure
6. After performing hard negative sampling, our FG-CLIP can capture the regions more accurately. For example, the
highlighted region of "Man in red clothes" with hard negative loss in 1st row shows significantly better than that without
hard negative loss.
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Bookshelf Black Chair Black Monitor Lamp with Black Shade Green potted plants

Banana Can Laptop Person Cell Phone

Apple Banana Bread Hat Person

Figure 5. Feature visual comparisons of different input texts.

w/o          Man in red clotheshardL w/o          Man in blue clotheshardL +         Man in red clotheshardL +          Man in blue clotheshardL

w/o          Black legged stoolhardL w/o          Yellow legged stoolhardL +         Black legged stoolhardL +          Yellow legged stoolhardL

w/o          Paper cuphardL w/o          Ceramic cuphardL +         Paper cuphardL +          Ceramic cuphardL

Figure 6. Performance of hard fine-grained negative samples learning.
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D. Further Experiments

Table 7. Comparisons of different methods on fine-grained benchmark.

Image with region Positive and Negative Region Descriptions CLIP EVA-CLIP FineCLIP FG-CLIP

Origin: A table made of dark brown wood. 0.73 0.79 0.62 1.0
1: A table made of pink wood. 0.0 0.59 0.58 0.0
2: A table made of dark brown paper. 0.48 0.34 0.48 0.48
3: A table made of light grey wood. 0.27 0.0 0.39 0.55
4: A table made of dark brown wool. 0.27 0.11 0.03 0.21
5: A table made of yellow wood. 0.38 0.44 0.38 0.14
6: A table made of dark brown velvet. 1.0 0.63 0.0 0.01
7: A table made of dark brown text. 0.94 0.72 0.38 0.55
8: A table made of grey wood. 0.53 0.47 1.0 0.61
9: A table made of dark brown plastic. 0.45 1.0 0.86 0.26
10: A table made of green wood. 0.47 0.16 0.64 0.46

Origin: A brown leather handbag. 0.62 0.79 0.78 1.0
1: A brown metal handbag. 0.45 0.88 0.56 0.37
2: A brown text handbag. 0.53 1.0 0.90 0.50
3: A brown wool handbag. 0.0 0.0 0.63 0.13
4: A orange leather handbag. 0.32 0.74 0.34 0.53
5: A brown paper handbag. 0.41 0.87 1.0 0.60
6: A light orange leather handbag. 0.08 0.72 0.08 0.56
7: A brown glass handbag. 1.0 0.59 0.75 0.0
8: A dark red leather handbag. 0.43 0.59 0.15 0.93
9: A dark yellow leather handbag. 0.31 0.82 0.11 0.73
10: A purple leather handbag. 0.21 0.91 0.0 0.27

Origin: A brown dog with black nose. 0.75 0.0 0.76 1.0
1: A brown dog with light red nose. 0.37 0.45 0.64 0.80
2: A brown dog with dark yellow nose. 0.10 0.39 0.93 0.90
3: A light blue dog with black nose. 0.40 0.39 0.0 0.0
4: A brown dog with yellow nose. 0.38 0.40 1.0 0.86
5: A red dog with black nose. 1.0 1.0 0.59 0.32
6: A brown dog with light orange nose. 0.16 0.67 0.71 0.85
7: A brown dog with light yellow nose. 0.0 0.58 0.83 0.83
8: A brown dog with light blue nose. 0.26 0.44 0.48 0.52
9: A dark green dog with black nose. 0.88 0.32 0.41 0.13
10: A brown dog with dark purple nose. 0.41 0.12 0.48 0.73

Origin: A light blue plastic trash can. 0.89 0.95 0.52 1.0
1: A light blue stone trash can. 0.90 1.0 1.0 0.77
2: A dark purple plastic trash can. 0.60 0.70 0.03 0.64
3: A light blue wool trash can. 0.68 0.57 0.37 0.29
4: A dark green plastic trash can. 0.92 0.74 0.99 0.65
5: A dark orange plastic trash can. 0.58 0.35 0.0 0.87
6: A black plastic trash can. 0.66 0.80 0.65 0.77
7: A purple plastic trash can. 0.68 0.90 0.36 0.75
8: A light blue crochet trash can. 0.0 0.0 0.10 0.0
9: A light blue glass trash can. 1.0 0.72 0.52 0.64
10: A light orange plastic trash can. 0.68 0.77 0.02 0.88

Origin: A red plastic bucket. 0.97 0.53 0.70 1.0
1: A green plastic bucket. 0.94 0.77 0.46 0.68
2: A red metal bucket. 0.83 0.29 0.54 0.61
3: A red crochet bucket. 0.0 0.10 0.10 0.39
4: A red ceramic bucket. 0.58 0.06 0.15 0.58
5: A red fabric bucket. 0.55 0.05 0.0 0.43
6: A red stone bucket. 1.0 0.10 0.84 0.48
7: A red rattan bucket. 0.47 0.51 0.58 0.0
8: A red wool bucket. 0.39 0.0 0.14 0.31
9: A yellow plastic bucket. 0.77 1.0 1.0 0.67
10: A light green plastic bucket. 0.70 0.87 0.45 0.28

D.1. Comparison of Different Methods on Fine-Grained Benchmark

As shown in Table 7, we select several samples from the test set of FG-OVD (Bianchi et al., 2024) and visualize the
comparison results of different methods. We employ the testing strategy detailed in Section 4.2 and match the text with
localized dense feature. The similarity scores computed between regions and texts are normalized, where the sentence
with the lowest similarity is assigned a score of 0.0, and the sentence with the highest similarity is assigned a score of 1.0.
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FG-CLIP demonstrates strong capability in identifying these extremely difficult samples, whereas other methods struggle to
achieve comparable performance.

D.2. Performance Comparison on Identical Datasets

Table 8. Comparisons of different methods on the same dataset.

Method Data Source COCO-Box-Top-1 COCO-Retrieval-I2T COCO-Retrieval-T2I
FineCLIP FineCLIP (CC2.5M) 50.7 54.4 40.2
FineCLIP FG-CLIP (12M) 53.5 59.6 46.2

FG-CLIP (Ours) FG-CLIP (12M) 56.1 65.9 47.1

To evaluate the effectiveness of our proposed FG-CLIP method, we conduct experiments on the same dataset to ensure a fair
comparison. Specifically, we compare FineCLIP and FG-CLIP using the 12M dataset due to time constraints, instead of the
larger 1.6B+12M setup. From Table 8, the substantial improvements (Row 1 -> Row 2 and Row 2 -> Row 3) highlight that
both our proposed dataset and model architecture are significant for FG-CLIP.

D.3. Performance on General Multimodal Benchmarks

Table 9. Comparisons on General Multimodal Benchmarks.

Method GQA POPE RefCOCO MMBench-EN MMBench-CN
val testA testB dev test dev test

LLaVA-v1.5+CLIP 61.9 85.9 76.2 83.4 67.9 65.1 66.5 58.2 58.4
+1.0 +0.9 +5.2 +3.1 +7.0 +1.5 +0.2 +0.6 +0.9

LLaVA-v1.5+FG-CLIP 62.9 86.8 81.4 86.5 74.9 66.6 66.7 58.8 59.3

In addition to GQA, POPE, and RefCOCO, we conduct experiments on other general multimodal benchmarks (Liu et al.,
2024). The experimental results in Table 9 show that LLaVA with FG-CLIP achieves better performance.
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