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Abstract

Continual learning (CL) is essential for Large001
Language Models (LLMs) to adapt to evolv-002
ing real-world demands, yet they are suscepti-003
ble to catastrophic forgetting (CF). While tra-004
ditional CF solutions rely on expensive data re-005
hearsal, recent rehearsal-free methods employ006
model-based and regularization-based strate-007
gies to address this issue. However, these ap-008
proaches often neglect the model’s plasticity,009
which is crucial to achieving optimal perfor-010
mance on newly learned tasks. Consequently,011
a key challenge in CL is striking a balance012
between preserving plasticity and mitigating013
CF. To tackle this challenge, we propose the014
Decomposed Attention-based Task Adaptation015
(DATA), which explicitly decouples and learns016
both task-specific and task-shared knowledge017
using high-rank and low-rank task adapters018
(e.g., LoRAs). For new tasks, DATA dynami-019
cally adjusts the weights of adapters of differ-020
ent ranks based on their relevance and distinc-021
tion from previous tasks, allowing the model022
to acquire new task-specific skills while effec-023
tively retaining previously learned knowledge.024
Specifically, we implement a decomposed com-025
ponent weighting strategy comprising learnable026
components that collectively generate attention-027
based weights, allowing the model to inte-028
grate and utilize diverse knowledge from each029
DATA. Extensive experiments on three widely030
used benchmarks demonstrate that our pro-031
posed method achieves state-of-the-art perfor-032
mance. Notably, our approach significantly033
enhances model plasticity and mitigates CF by034
extending learnable components and employ-035
ing stochastic restoration during training iter-036
ations. Our code will be available at https:037
//anonymous.4open.science/r/DATA1.038

1 Introduction039

Continual learning (CL) (Wang et al., 2023a; Zhou040

et al., 2024) is essential for Large Language Mod-041

els (LLMs) (Dubey et al., 2024; Yang et al., 2024)042
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Figure 1: (a) Comparisons of previous CL methods with
DATA. Rehearsal-free indicates that the methods do not
require storing sample features from previous tasks. In-
ference Efficiency denotes the computational efficiency
during the inference phase. Plasticity is the ability to
adapt effectively to new tasks. (b) Comparison of AP
and Forget (Sec. 4.1) across different CL methods.

to continuously evole, adapting to real-world de- 043

mands and progressively improve regarding a se- 044

ries of new tasks. Unlike traditional supervised 045

learning, which relies on independent and identi- 046

cally distributed (i.i.d.) data, CL focuses on the 047

dynamic and evolving demands of real-world appli- 048

cations (Zhai et al., 2023; Wu et al., 2024), such as 049

domain-specific adaptations (Roziere et al., 2023) 050

and alignment with human preferences (Ouyang 051

et al., 2022). Departing from the i.i.d. assumption 052

presents two major challenges: 1) Catastrophic 053

Forgetting (CF) — the tendency of a model to over- 054
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write previously learned knowledge when acquir-055

ing new tasks (McCloskey and Cohen, 1989). 2)056

Loss of Plasticity—the model’s diminishing abil-057

ity to adapt effectively to distribution shifts over058

time (Dohare et al., 2021).059

As illustrated in Figure 1 (a), an ideal CL method060

leveraging LLMs should possess three essential061

properties. A commonly used strategy in CL is062

the preservation (Wang et al., 2024b) or synthesis063

(Sun et al., 2019) of past training data, referred064

to as rehearsal (or replay). However, this ap-065

proach presents notable challenges, particularly066

in scenarios involving sensitive user data where067

long-term storage is impractical (Touvron et al.,068

2023). Furthermore, rehearsal methods require069

increased storage capacity and computational re-070

sources during the learning process (Scialom et al.,071

2022). Architecture-based methods (Wang et al.,072

2024a) aim to mitigate interference between new073

and previously learned tasks by dynamically ex-074

panding the model’s capacity or isolating existing075

model weights. Nevertheless, these approaches of-076

ten necessitate training separate expert models for077

each task, which in turn requires selecting (Zhao078

et al., 2024) or combining (Wang et al., 2023b)079

modules during testing. This can limit their abil-080

ity to generalize effectively to long sequence tasks.081

Moreover, as shown in Figure 1 (b), these methods082

mitigate CF by sacrificing new task accuracy (i.e.,083

insufficient plasticity), prompting us to explore in-084

novative perspectives for enhancing CL capacity.085

To address these limitations while maintain-086

ing plasticity and mitigating CF, we propose a087

Decomposed Attention-based Task Adaptation088

(DATA), as depicted in Figure 1 (a), which ex-089

plicitly manages high-rank and low-rank adapters090

for task-specific and task-shared knowledge during091

the CL. For new tasks, DATA dynamically adjusts092

the weights of different ranks adapters based on093

their relevance and distinction from previous tasks,094

enabling the model to acquire new task-specific095

skills while preserving previously learned capa-096

bilities. To extract knowledge across tasks more097

effectively, we introduce a decomposed component098

weighting strategy comprising learnable compo-099

nents that jointly generate attention-based weights,100

allowing dynamic fusion of knowledge from each101

rank DATA. During inference, low-rank and high-102

rank DATA can be reparameterized and projected103

into LLMs without increasing parameters, preserv-104

ing the model plasticity (Liu et al., 2023). We use105

stochastic restoration (Wang et al., 2022; Dohare106

et al., 2024) technique to further protect source 107

knowledge and mitigate CF. 108

We conduct extensive experiments to evaluate 109

DATA on Standard CL Benchmark (Zhang et al., 110

2015), Long Sequence Benchmark (Razdaibied- 111

ina et al., 2023) and TRACE (Wang et al., 2023c) 112

across T5 model (Raffel et al., 2019), Llama2 (Tou- 113

vron et al., 2023), Llama3.1 (Dubey et al., 2024) 114

and Qwen2.5 (Yang et al., 2024). DATA achieves 115

state-of-the-art performance on both public bench- 116

marks and in generalizing to unseen tasks. Notably, 117

DATA can be integrated with existing mainstream 118

methods to further enhance the capabilities of CL. 119

In summary, our contributions are as follows: 120

• We propose a method DATA for rehearsal- 121

free CL of LLMs that balances plasticity and 122

mitigates CF by explicitly managing both task- 123

specific and task-shared knowledge. 124

• We explore different task representations of 125

high- and low-rank adapters, decomposing 126

knowledge into shared and specific compo- 127

nents. This approach allows for better mod- 128

eling of the relevance and uniqueness of new 129

tasks concerning previous ones. 130

• To address various distribution shifts for each 131

target sample, we introduce a decomposed 132

component weighting strategy for DATA, 133

which dynamically fuses knowledge from low- 134

rank and high-rank adapters, enhancing their 135

task representations. 136

• Experiments on three benchmarks show that 137

our approach outperforms most state-of-the- 138

art techniques, significantly alleviating CF and 139

improving model plasticity. 140

2 Related Work 141

Continual Learning (CL). CL aims to effec- 142

tively acquire new task knowledge during ongo- 143

ing training while preserving knowledge from 144

previously learned tasks. Traditional CL meth- 145

ods can be broadly classified into three cate- 146

gories: rehearsal-based, regularization-based, and 147

architecture-based approaches. Rehearsal-based 148

methods mitigate catastrophic forgetting (CF) by 149

selectively retaining samples (Tiwari et al., 2021; 150

Wang et al., 2024b; He et al., 2024) or pseudo- 151

generative examples (Shin et al., 2017; Sun et al., 152

2019) from prior tasks. In contrast, regularization- 153

based methods employ quadratic regularization 154
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terms to constrain the update of weights crit-155

ical to previous tasks (Zhu et al., 2024; Du156

et al., 2024), thereby stabilizing learned knowledge.157

Architecture-based methods introduce extra task-158

specific parameters for each new task (Wang et al.,159

2023b; Zhao et al., 2024), ensuring that previously160

acquired knowledge remains intact. These methods161

typically rely on access to old task data or involve162

discrete component learning, which presents sig-163

nificant challenges for the CL. In contrast, DATA164

leverages representations from diverse rank spaces165

and harnesses the inherent capabilities of LLMs to166

enable more effective CL (Wang et al., 2022).167

Parameter Efficient Fine-Tuning (PEFT). LLMs168

have shown remarkable adaptability across a wide169

range of downstream tasks. However, traditional170

full fine-tuning for each task can incur significant171

computational and storage overheads, often re-172

sulting in overfitting (Wu et al., 2025). To miti-173

gate these challenges, researchers have increasingly174

turned to PEFT methods, which can achieve com-175

parable or even superior performance and general-176

ization by fine-tuning only a small subset of param-177

eters. For instance, adapters (Houlsby et al., 2019)178

incorporate additional modules into various lay-179

ers of the Transformer architecture, while prompt-180

tuning (Qin and Eisner, 2021) and prefix-tuning181

(Li and Liang, 2021) introduce learnable soft to-182

kens at different layers of the Transformer input.183

Low-rank adaptation (LoRA) (Hu et al., 2022) in-184

serts low-rank branches into pre-trained weights185

and fine-tunes only those branches. Although these186

common PEFT techniques offer certain advantages,187

they are generally confined to static single-task or188

multi-task learning scenarios. In contrast, DATA189

leveraging the effectiveness and efficiency of LoRA190

enables continual adaptation by dynamically com-191

bining LoRAs of two different ranks (Liu et al.,192

2023) utilizing attention-based weights.193

3 Methodology194

Preliminary. Continual learning (CL) seeks195

to tackle challenges within ongoing sequences,196

specifically addressing how to adapt to new197

tasks without forgetting previously learned knowl-198

edge. Formally, suppose there are N sequen-199

tial tasks {T1, T2, ..., TN }, where each task Ti =200

{xi
n,y

i
n}

Ni
n=1 consists of Ni training examples,201

with xi
n representing the input and yi

n is corre-202

sponding label. Let Li(·) denote the empirical risk203

on the i-th task Ti, and fθ represent the model with204

parameters θ. The goal is for the model to perform 205

well on both the current task Tj and all previously 206

learned tasks Ti, where i ∈ {1, 2, . . . , j − 1}. The 207

objective function of CL can be expressed as: 208

LCL(θ) =
1

j

j∑
i=1

Li(θ) (1) 209

where j is the index of the current training task. 210

3.1 Motivation 211

Recent advances have highlighted the effectiveness 212

of using adapters with varying ranks to model dif- 213

ferent tasks, offering a promising solution to the 214

challenges of CL. This motivates us to further ex- 215

plore and validate the core principles behind utiliz- 216

ing both low-rank and high-rank adapters in CL. 217

To further explore this phenomenon, we con- 218

duct a t-SNE distribution analysis (van der Maaten 219

and Hinton, 2008) to examine the feature distri- 220

butions of Order1 (4 tasks, Sec. 4.1) within the 221

11th transformer block of LLaMA2-7B. The results 222

as presented in Figure 2 (a) reveal that low-rank 223

adapters maintain relatively consistent feature dis- 224

tributions across different target tasks. This consis- 225

tency suggests that the low-rank embedding space 226

effectively mitigates the effects of dynamic distri- 227

bution shifts by concentrating on extracting task- 228

shared knowledge. Conversely, high-rank adapters 229

display noticeable variability across tasks. This 230

variability underscores the enhanced ability of high- 231

rank adapters to aggregate features within a single 232

task, highlighting their suitability for capturing the 233

unique data distribution of each target task. 234

Furthermore, we utilize the H-divergence metric 235

to assess the representation consistency of adapters 236

on Order 4 (15 tasks). A relatively small inter-task 237

divergence indicates that feature representations 238

remain stable and are less affected by cross-task 239

shifts (Ganin et al., 2015), while a small intra-task 240

divergence within a given task indicates that the 241

model better understands the current distribution. 242

We compare the divergence values obtained from 243

the source model alone, injecting low-rank adapters 244

and injecting high-rank adapters, as shown in Fig- 245

ure 2). Compared to the source model and high- 246

rank adapters, low-rank adapters produce feature 247

representations with lower inter-task divergence, 248

particularly when addressing mid-range target tasks 249

or significant task shifts between adjacent tasks 250

(i.e., tasks 6-10). These findings underscore the ef- 251

ficacy of low-rank adapters in acquiring long-term, 252
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Figure 2: (a) We perform a t-SNE distribution analysis of different adapter representations on Order 1(4 tasks). The
low-rank branch shows a consistent distribution across the target tasks and the high-rank branch exhibits substantial
distribution differences across the target tasks. (b) We calculate the divergence of different branches in Order 4 (15
tasks). In comparison to the source model, low-rank adapters effectively alleviates inter-task divergence across all
14 task transitions, while the high-rank adapters significantly enhances intra-task feature aggregation.

task-shared knowledge during the CL. Furthermore,253

high-rank adapters effectively reduce intra-task di-254

vergence across nearly all tasks, indicating their255

superior capability in adapting to the current task256

distribution and extracting task-specific knowledge257

in consecutive target tasks.258

In summary, the structure of low-rank DATA re-259

duces feature redundancy, placing the model in an260

underfitting state and enhancing its plasticity. This261

design enables the model to acquire general infor-262

mation across consecutive target tasks and effec-263

tively extract task-shared knowledge. In contrast,264

high-rank DATA aligns more closely with the target265

data distribution, allowing it to focus on learning266

task-specific knowledge and mitigating CF.267

3.2 High- and Low-Rank Adapter268

The above observations prompted us to introduce269

high- and low-rank Adapters into the model, aim-270

ing to simultaneously adapt current task distribu-271

tion while maintaining task-shared knowledge.272

Similar to LoRA, DATA’s design principle is273

simple and effective, as illustrated in Figure 3 (b).274

The architecture consists of three sub-branches:275

the central branch, which originates from the orig-276

inal model’s linear layer, and the right and left277

branches, which are bottleneck structures repre-278

senting high-rank and low-rank DATA, respec-279

tively. Specifically, the right branch (high-rank)280

consists of an up-projection layer with parameters281

A2 ∈ Rd×dh , and a down-projection layer with282

parameters B2 ∈ Rdh×d, where dh (e.g., dh = 32)283

represents the middle dimension of the high-rank284

feature. The same principle applies to the low-rank285

branch, except it satisfies dl < dh. For an input x,286

the resulting high-rank features fh and low-rank287

features f l from the DATA are formulated as:288

fh = A2 · (B2 · x);f l = A1 · (B1 · x) (2)289

The two-branch bottleneck is connected to the 290

output feature of the original linear fo through a 291

residual connection, with scale weights λh and λl. 292

The fusion of knowledge fx is then expressed as: 293

fx = fo + λh × fh + λl × f l (3) 294

The task knowledge scale weights λh and λl can be 295

adaptively computed through decomposed compo- 296

nent weighting strategy as detailed in Sec. 3.3. Dur- 297

ing the inference process, the distinct task represen- 298

tations of the DATA are reparameterized and pro- 299

jected into the original model, enabling dynamic 300

knowledge adjustments. 301

3.3 Decomposed Component Weighting 302

To effectively mitigate CF across various tasks and 303

samples, it is crucial to extract and manage differ- 304

ent types of knowledge. While the distinct struc- 305

ture of low-rank and high-rank DATA facilitates 306

learning diverse task representations, the continual 307

adaptation process also necessitates the normal- 308

ization of knowledge fusion weights. This nor- 309

malization ensures the effective capture of rele- 310

vant task-specific knowledge while preserving long- 311

term task-specific knowledge. 312

As illustrated in Figure 3 (a), we draw inspira- 313

tion from (Smith et al., 2022) and propose a de- 314

composed component weighting strategy. Specif- 315

ically, we introduce a set of weight components 316

that form a decomposed weight through weighted 317

summation, which is then passed to the correspond- 318

ing DATA layer. Furthermore, in new tasks, the 319

weights will essentially reuse previously acquired 320

knowledge about past tasks instead of initializing 321

new task weights from scratch: 322

λ =
∑
m

αmWm (4) 323
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Figure 3: Overview of the DATA framework. (a) We introduce a novel decomposed component weighting strategy
for generating attention-based weights, parameterized by a set of extended weight components, each associated
with a corresponding key and attention vector. Only the weighting and adapter parameters are trainable which is
parameter efficient and no training data is stored for the replay which is memory-efficient and privacy-preserving. (b)
We integrate low-rank and high-rank DATA into the linear layers of the pre-trained model guided by the generated
weights, allowing for the dynamic fusion of knowledge from each DATA with different task representations.

where W ∈ RLw×d×M represents our set of weight324

components, with M denoting the length of the set325

(i.e., the extra axis of additional capacity), Lw is326

the weight length (chosen as a hyperparameter) and327

α is a weighting vector that determines the con-328

tribution of each component, which is the cosine329

similarity γ between a query q(x) and keys:330

α = γ(q(x),K) (5)331

where K ∈ Rd×M = {K1,K2, . . . ,KM} con-332

tains keys corresponding to weight components.333

The intuition behind this is that the contribution of334

each weight component Wm to the final weight λ335

is weighted according to the similarity.336

To address the challenge of query matching,337

we introduce an additional component: attention.338

Alongside Km, each weight component Wm is339

paired with a corresponding attention vector Am,340

enabling the query to focus on specific features341

within the high-dimensional query. We utilize342

a simple feature selection attention mechanism,343

where the query vector is element-wise multiplied344

by the attention vector to generate an attended345

query which is then used to compute the similarity346

with the key. Specifically, our updated approach to347

producing the weighting vector is as follows:348

α = γ(q(x)⊙A,K) (6)349

where A ∈ Rd×M = {A1,A2, . . . ,AM} repre-350

sents the learnable attention vectors correspond-351

ing to each weight component, and ⊙ denotes352

the element-wise (Hadamard) product. It is im-353

portant to highlight that our attention vectors act354

as learnable feature weightings rather than input- 355

conditioned modules. We observe that this fixed 356

representation with its simple design is less suscep- 357

tible to forgetting, similar to the behavior of our 358

weight component keys. 359

3.4 Expansion & Orthogonality 360

The key to alleviating CF is to prevent overwriting 361

the knowledge acquired in previous tasks. When 362

encountering a new task, we freeze the existing 363

components and expand the collection by updating 364

only the new components. This is illustrated at the 365

bottom of Figure 3, where the existing parameters 366

are frozen, and only the newly added parameters 367

are trainable. Specifically, for task Tt, we learn 368
M
N components, where N denotes the number of 369

tasks and M is the hyperparameter, while the previ- 370

ously learned (t−1)·M
N components are kept frozen. 371

This extension is achieved through our attention- 372

based component weighting scheme, ensuring that 373

the expansion of parameters does not affect the 374

computation of the weights α corresponding to the 375

previously learned components. 376

To further mitigate CF, we introduce orthogonal- 377

ity constraints for W, K, and A. The underlying 378

intuition is that interference is minimized when 379

vectors are orthogonal. For instance, we aim to pre- 380

vent the keys and weights learned in task T2 from 381

influencing data from task T1. To achieve this, we 382

initialize the vectors orthogonally and incorporate 383

a simple orthogonal penalty loss as: 384

Lortho(B) = ∥BB⊤ − I∥22 (7) 385
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Methods Standard CL Benchmark (SC) Long Sequence Benchmark (LS) TRACE

FP ↑ AP ↑ Forget ↓ FP ↑ AP ↑ Forget ↓ FP ↑ AP ↑ Forget ↓
T

5-
L

ar
ge

SeqLoRA 70.7±.39 76.7±.43 6.0 59.9±.56 73.3±.28 13.4 12.1±.82 44.5±.94 32.4
LoRAReplay 73.3±.42 76.6±.51 3.3 73.6±.36 75.4±.59 1.8 34.0±.62 46.8±.63 12.8
O-LoRA (Wang et al., 2023b) 72.0±.63 74.4±.47 2.4 67.9±.82 70.3±.65 2.4 - - -

+ MIGU (Du et al., 2024) 71.6±.45 73.9±.67 2.3 65.3±.35 68.0±.47 2.7 - - -
DATA (ours) 72.7±.58 74.8±.68 2.1 70.0±.44 71.8±.36 1.8 16.7±.21 41.3±.58 24.6

+ Replay 73.9±.24 74.5±.75 0.6 74.3±.35 74.7±.91 0.4 36.5±.32 45.2±.61 8.7

L
L

aM
A

2-
7B SeqLoRA 74.9±.42 80.7±.38 5.8 73.7±.66 80.0±.65 6.3 64.1±.49 77.9±.54 13.8

LoRAReplay 79.2±.53 80.7±.61 1.5 80.0±.45 81.3±.57 1.3 71.9±.62 78.6±.75 6.7
O-LoRA (Wang et al., 2023b) 76.4±.74 78.7±.59 2.3 67.9±.74 71.9±.49 4.0 35.0±.34 47.0±.42 12.0
DATA (ours) 79.8±.54 80.3±.49 0.5 76.9±.35 79.7±.36 2.8 66.0±.33 74.6±.38 8.6

+ Replay 80.0±.24 80.4±.45 0.4 81.8±.61 80.6±.84 -1.2 73.1±.46 77.5±.98 4.4

L
L

aM
A

3.
1-

8B SeqLoRA 79.6±.62 80.8±.49 5.8 74.8±.58 83.8±.52 9.0 65.1±.69 82.4±.54 17.3
LoRAReplay 80.3±.71 80.9±.56 0.6 82.0±.69 85.0±.75 3.0 78.7±.83 85.7±.68 7.0
O-LoRA (Wang et al., 2023b) 72.3±.86 73.9±.68 1.6 71.4±.64 74.8±.64 3.7 36.7±.57 50.1±.37 13.4
DATA (ours) 80.9±.40 80.6±.35 -0.3 80.0±.53 82.3±.48 2.3 72.7±.94 80.4±.88 7.7

+ Replay 80.8±.33 80.4±.47 -0.4 82.2±.66 82.6±.77 0.4 77.6±.37 81.0±.72 3.4

Table 1: Performance of baselines and ours DATA on standard CL benchmark (Order 1,2,3) and long sequence
benchmark (Order 4,5,6) and TRACE (Order 7). Bold indicates the best in each setting. We report the mean and
standard deviation of results with 3 different runs.

where B is an arbitrary matrix, I is identity matrix,386

and ∥ ·∥2 denotes Frobenius norm, which measures387

the squared sum of all entries of the matrix.388

Additionally, we propose a stochastic restoration389

method to restore knowledge from the source pre-390

trained model, thereby enhancing plasticity. The391

update of the weight W at step t is as follows:392

Mask ∼ Bernoulli(p) (8)393
394

Wt+1 = Mask⊙W0+(1−Mask)⊙Wt+1 (9)395

where p is a small restoration probability, and396

Mask is a mask tensor of the same shape as Wt+1.397

The mask determines which elements within Wt+1398

will be restored to the source weights W0.399

3.5 Full Optimization400

Combining all objectives, our full optimization is:401

min
Wn,Kn,An

LCL(fθ,W,K,A,λh,λl
(x),y) +

β(Lortho(W) + Lortho(K) + Lortho(A))
(10)402

where Wn,Kn,An refer to the weight compo-403

nents and corresponding keys/attention vectors that404

are unfrozen and trained during task Tn and β is a405

hyperparameter balancing the orthogonality loss.406

4 Experiment407

In Section 4.4, we compare our method with other408

SOTA methods on three public benchmarks. In409

Section 4.6, we further evaluate the task general-410

ization ability of the proposed method on unseen411

target tasks. Comprehensive ablation studies are412

conducted in Section 4.7.413

4.1 Datasets 414

Standard CL Benchmark (SC) is a CL bench- 415

mark for language models, which consists of five 416

text classification datasets introduced by (Zhang 417

et al., 2015). We follow Wang et al. (2023b) to pick 418

four datasets (AG News, Amazon reviews, DBpe- 419

dia and Yahoo Answers) and shuffle the tasks into 420

three different orders to form orders 1, 2, and 3. 421

Long Sequence Benchmark (LS) is an extended 422

version of the standard CL benchmark with 15 423

datasets (five classification tasks, nine GLUE and 424

SuperGLUE tasks, and the IMDB dataset) (Razdai- 425

biedina et al., 2023). Following Razdaibiedina et al. 426

(2023), we select 1,000 random samples for train- 427

ing each task and hold out 500 samples per class 428

for validation and testing. Similarly, we shuffle 429

them to form orders 4, 5, and 6. 430

TRACE is a CL benchmark for LLMs that includes 431

8 datasets that cover multichoice QA, multilingual 432

capabilities, code generation, and mathematical 433

reasoning (Wang et al., 2023c). 434

Metrics. We adopt the following three metrics 435

to quantify various performances: 1) FP = 436
1
N

∑N
j=1 a

Tj

N is the average zero-shot performance 437

across all N tasks after tuning on the final N - 438

th task. Here, aqm denotes the zero-shot perfor- 439

mance on task q after sequentially tuning the m- 440

th task, and Tj refers to the j-th task in the se- 441

quence. 2) AP = 1
N

∑N
j=1 a

Tj

j is the average 442

zero-shot performance when learning each j-th 443

task, which measures the plasticity of the model. 444

3) Forget = AP−FP is calculated as the differ- 445
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Figure 4: The shifts in CL methods with FP and Forget on LS Order 4. DATA prevents the shift (blue bar) and thus
mitigates forgetting (orange line).

ence between AP and FP, as commonly used in446

previous studies (Wu et al., 2022; Jiang et al., 2025)447

to quantify forgetting. More detailed information448

on the datasets about orders and evaluation metrics449

is presented in the Appendix B.1.450

4.2 Baselines451

We compare our method with the following base-452

lines: 1) SeqLoRA: Trains fixed-size LoRA on a453

sequence of tasks. 2) LoRAReplay: Trains new454

tasks on LoRA with mixing a 2% past task. 3)455

O-LoRA (Wang et al., 2023b): Learns tasks in dif-456

ferent LoRA subspaces that are kept orthogonal to457

each other and sums all LoRA weights up at testing458

time. 4) MIGU (Du et al., 2024): Only updates the459

model parameters with large magnitudes.460

4.3 Implementations461

We implement DATA with the LLaMA3.1-8B462

(Dubey et al., 2024), LLaMA2-7B (Touvron et al.,463

2023), Qwen2.5-7B (Yang et al., 2024) and T5-464

Large (Raffel et al., 2019). All experiments are con-465

ducted on 2 A100 GPUs with 80GB using LLaMA-466

Factory (Zheng et al., 2024). All experimental467

results are reported as the average of 3 runs. Please468

refer to the Appendix B for more detailed settings.469

4.4 Main Results470

To demonstrate the effectiveness of the proposed471

DATA method, we perform experiments on three472

CL benchmarks, as summarized in Table 1. Fol-473

lowing O-LoRA (Wang et al., 2023b), we present474

the results of three independent runs with different475

task orders on the two previous CL benchmarks.476

Detailed results for each order and each task within477

a specific order are provided in Appendix C.478

Our DATA significantly reduces the CF of abil-479

ities and knowledge in CL. Traditional CL ap-480

proaches often result in relatively high levels of481

forgetting. While O-LoRA demonstrates slightly 482

better performance yet still experiences over 12% 483

forgetting on the TRACE benchmark in FP. In con- 484

trast, DATA consistently and significantly mitigates 485

this issue by reducing forgetting across various 486

models and benchmarks. For instance, compared 487

to O-LoRA, DATA increases FP by an average of 488

14.4 and decreases Forget by an average of 2.1 in 489

LLaMA2. Furthermore, compared to replay meth- 490

ods, DATA further increases FP by an average of 491

1.3 and reduces Forget by an average of 1.1, high- 492

lighting its compatibility with other methods to 493

effectively improve capabilities. DATA provides a 494

viable solution for addressing the problem of com- 495

monsense forgetting in existing models. 496

Our DATA method does not excessively compro- 497

mise the plasticity needed to learn new tasks. 498

Compared to other CL methods, this technique 499

demonstrates a negligible reduction in the FP and 500

AP metric particularly in longer sequence tasks 501

(LS, 15 tasks) and more challenging task instruc- 502

tion generalizations (TRACE, 8tasks), signifying 503

a well-maintained balance between plasticity and 504

stability. DATA outperforms O-LoRA in LLaMA2 505

by an average of 12.3 in AP, while the difference 506

with SeqLoRA, known for not restricting parameter 507

updates and theoretically offering the most optimal 508

plasticity, is less than 1. This indicates that DATA 509

is more suitable for practical applications in LLMs. 510

Longer task sequences and more challenging 511

task instructions contribute to increased forget- 512

ting. A comparative analysis of the Forget metrics 513

for LS and TRACE with SC reveals a significant 514

rise in forgetting. For example, in the LLaMA3.1- 515

8B model, the decline in performance escalates 516

from 5.8 in SC to 9.0 in LC, and further to 17.3 in 517

TRACE. Furthermore, across all tasks, the forget- 518

ting scores Forget for both LLaMA2 and LLaMA3 519

remain below 20, demonstrating that, compared to 520
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Methods MMLU BBH GSM8K AGIEval FP
Zero-Shot 65.65 62.12 56.33 17.72 -
SeqLoRA 63.58 11.90 0.00 20.60 79.92
LoRAReplay 60.24 5.99 1.82 10.69 80.13
O-LoRA 62.79 6.31 1.56 13.87 71.83
DATA 64.47 10.42 3.63 16.94 81.39

Table 2: Task generalization comparisons on unseen
tasks based the LLaMA3.1-8B after training in Order 1.

the T5 model, LLMs exhibit a stronger capacity to521

mitigate CF (Jiang et al., 2025).522

Forgetting in CL is model-dependent. A compar-523

ison of Forget across different models reveals that524

stronger foundational models tend to mitigate CF525

more effectively. For instance, on the LS bench-526

mark, SeqLoRA with LLaMA2-7B exhibits 2.7527

less Forget than SeqLoRA with LLaMA3.1-8B528

and 0.8 less Forget than LoRAReplay. This sug-529

gests that forgetting is influenced not only by the530

nature of the tasks but also significantly by model-531

related factors such as size, architecture, and the532

diversity of pre-training data.533

4.5 Performance Shifts534

In Figure 4, we visually depict the performance535

changes observed during the training process of536

DATA compared to other CL methods. Our pro-537

posed method clearly demonstrates its effective-538

ness in mitigating forgetting and enhancing plas-539

ticity. By maintaining a stable structure during the540

fine-tuning phase, DATA ensures consistent perfor-541

mance on general tasks. In sequential task transi-542

tions, it is evident that DATA demonstrates superior543

FP and reduce Forget compared to other methods.544

The line shifts further illustrate that LLaMA3.1-8B545

exhibits less forgetting than LLaMA2-7B, empha-546

sizing that forgetting is model-dependent.547

4.6 Task Generalization548

We select four benchmarks to evaluate the cross-549

task generalization capability of DATA, an essential550

dimension for assessing CL algorithms. As demon-551

strated in Table 2, DATA effectively balances gen-552

eralization and CL ability by efficiently extracting553

task-shared knowledge using low-rank adapters.554

This finding suggests that actively promoting task-555

shared knowledge and source capabilities between556

different tasks is beneficial. However, all methods557

experience a notable decline in performance on rea-558

soning tasks (GSM8K and BBH), which may be559

attributed to the simple classification tasks poten-560

tially impairing the ability to perform generative561

DATAh DATAl Weight Attention Ortho. Rest. FP ↑

E1 - - - - - - 73.0
E2 ✓ - - - - - 73.7
E3 - ✓ - - - - 75.4
E4 ✓ ✓ - - - - 77.6
E5 ✓ ✓ - - - ✓ 78.1
E6 ✓ ✓ ✓ - - ✓ 78.6
E7 ✓ ✓ ✓ ✓ - ✓ 79.2
E8 ✓ ✓ ✓ ✓ ✓ ✓ 79.5

Table 3: Ablation studies on different components.

reasoning required for instruction following. 562

4.7 Ablation Study 563

We conduct an ablation study in Order 1 using 564

LLaMA2-7B to evaluate the contributions of var- 565

ious components in our method DATA, includ- 566

ing high-rank DATA (DATAh), low-rank DATA 567

(DATAl), decomposed component weighting strat- 568

egy, attention keys, orthogonality regularization 569

(Ortho.), and stochastic restoration (Rest.). As 570

shown in Table 3 (E2), incorporating high-rank 571

DATA increases the FP by 0.7, indicating that 572

high-rank features can effectively extract more task- 573

specific knowledge for adaptation to the target task. 574

In E3, low-rank DATA improves performance by 575

2.4 compared to E1. The overall improvement in 576

E4 reaches 4.6, suggesting that both types of DATA 577

complement each other during continual adaptation. 578

The stochastic restoration in E5 allows the model 579

to maintain plasticity in CL, enhancing its adapt- 580

ability to new tasks. E6-E8 achieves an additional 2 581

improvements, demonstrating the effectiveness of 582

the decomposed component weighting strategy in 583

enhancing the task representations for each DATA. 584

5 Conclusion 585

In this paper, we revisit existing methods for lever- 586

aging Large Language Models (LLMs) in contin- 587

ual learning (CL) and propose three ideal charac- 588

teristics for such systems: rehearsal-free, infer- 589

ence efficiency, and plasticity. To address the chal- 590

lenges associated with these characteristics, we in- 591

troduce Decomposed Attention-based Task Adapta- 592

tion (DATA) as a solution to catastrophic forgetting 593

and plasticity loss. Moreover, we propose a de- 594

composed component weighting strategy to dynam- 595

ically integrate the knowledge from both low-rank 596

and high-rank DATA, thereby enhancing the unique 597

task representation. Extensive experiments across 598

multiple CL benchmarks and LLMs consistently 599

validate the effectiveness of DATA. 600
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Limitations601

Method The DATA method introduces a decom-602

posed component weighting strategy and employs603

both high-rank and low-rank adapters, which in-604

creases the complexity of the model architecture.605

This complexity may lead to higher computational606

costs during training and inference, particularly607

when scaling to larger models or more tasks. Addi-608

tionally, the need for dynamic weight adjustments609

based on task relevance and distinction may re-610

quire more sophisticated optimization techniques,611

potentially limiting its applicability in resource-612

constrained environments. Furthermore, our cur-613

rent approach to stochastic recovery involves a step-614

level method, where a small proportion of parame-615

ters is recovered every 200 steps. There is signifi-616

cant potential to enhance this process by exploring617

dynamically adaptive methods that can more effec-618

tively select saturated or less important parameters619

for recovery. Additionally, establishing criteria to620

determine when recovery is necessary could op-621

timize the process further, potentially improving622

model performance and efficiency.623

Task Although DATA is designed to be rehearsal-624

free, it still relies on the availability of diverse and625

high-quality task-specific data for effective adapta-626

tion. In scenarios where task-specific data is scarce627

or of low quality, the method’s ability to adapt and628

generalize may be compromised. Additionally, the629

method’s performance on tasks with significant do-630

main shifts or out-of-distribution data remains to631

be fully explored.632

Large Language Models The effectiveness of633

DATA is highly dependent on the underlying LLM634

architecture. While the method shows promising635

results on models like LLaMA2, LLaMA3.1, and636

Qwen2.5, its performance may vary across differ-637

ent LLMs, especially those with significantly dif-638

ferent architectures or pre-training objectives. Fur-639

thermore, we do not experiment with larger models640

like 13B and 72B due to computational or financial641

constraints.642

Ethical Considerations643

Our approach does not introduce ethical concerns.644

The datasets we used are public, and there are no645

privacy issues.646

AI writing statement647

This paper utilized AI assistance for language pol-648

ishing of the manuscript, including vocabulary cor-649

rection and spell checking. 650
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A Overall Framework943

Drawing from the insight that LoRA (Hu et al.,944

2022) has exhibited superior performance, we uti-945

lize a high- and low-rank framework to ensure sta-946

bility during continual task adaptation. The overall947

framework and the details of our method DATA are948

shown in Figure 3.949

LoRA (Low-Rank Adaptation), as proposed by950

(Hu et al., 2022), postulates that parameter changes951

(∆W ) during fine-tuning occur within a low-rank952

subspace. This is particularly applied to the layer953

weights W0 ∈ Rm×n of a model fθ for a down-954

stream task. The parameter update is formulated as955

∆W = A× B, where A ∈ Rm×r and B ∈ Rr×n956

are two learnable matrices, and the rank r is signif-957

icantly smaller than min{m,n}.958

For a specific layer in the model fθ, the LoRA959

update is expressed as:960

h′ = W0x+∆Wx = (W0 +AB)x961

Here, h′ represents the updated output, and x962

is the input to the layer. Importantly, the original963

weights W0 are kept frozen during the fine-tuning964

process, and only the matrices A and B are train-965

able.966

B Experimantal Settings967

B.1 Datasets968

Train Tasks. Tables 4 and 5 provide detailed in-969

formation on the datasets utilized in our continual970

learning (CL) experiments. Table 4 presents the 15971

datasets included in the Long Sequence Benchmark972

(Razdaibiedina et al., 2023), while Table 5 outlines973

the 8 datasets from TRACE (Wang et al., 2023c).974

Both tables include the corresponding evaluation975

metrics for each dataset.976

Generalization. We select the 1) Multitask Lan- 977

guage Understanding (MMLU) (Hendrycks et al., 978

2021), which includes multiple-choice questions 979

across 57 subjects. 2) GSM8K (Cobbe et al., 980

2021), which is a high-quality linguistically di- 981

verse multi-step elementary math reasoning dataset. 982

3) BIG-Bench Hard (BBH) (Suzgun et al., 2022), 983

which includes 27 challenging tasks spanning arith- 984

metic, symbolic reasoning, and more, derived from 985

BIG-Bench (BB) (bench authors, 2023). Most of 986

the data consists of multiple-choice questions. 4) 987

AGIEval (Zhong et al., 2023), which includes a 988

wide range of high-quality official entrance exams, 989

qualifying exams, and advanced competitions tai- 990

lored to human participants. 991

B.2 Task Sequence Orders 992

We report task orders used for our CL experiments 993

in Table 6. 994

B.3 Implementations 995

Our implementations are based on huggingface 996

transformers v4.45.2 (Wolf et al., 2020) using Py- 997

Torch v2.3.1 (Paszke et al., 2019) and LlamaFac- 998

tory (Zheng et al., 2024). All unseen tasks gen- 999

eralization evaluation conducted using the Open- 1000

Compass toolkit (Contributors, 2023), adopting its 1001

default configuration. 1002

For Standard CL Benchmark and Long Sequence 1003

Benchmark (Order 1 - Order 6), We trained the 1004

models with 1 epoch, a constant learning rate of 1005

1e-4. 1006

For TRACE Order 7 (C-STANCE, FOMC, 1007

MeetingBank, Py150, ScienceQA, NumGLUE-cm, 1008

NumGLUE-ds, 20Minuten), we trained with 5000 1009

samples with a constant learning rate of 1e-4 for 5, 1010

3, 7, 5, 3, 5, 5, 7 epochs respectively. 1011

In a series of performance experiments, we con- 1012

figured various parameters as follows: the LoRA 1013

rank was set to 8 refer to Figure 5, and the propor- 1014

tion of past task data mixed in LoRAReplay was set 1015

to 2%. For the DATA model, the low-rank configu- 1016

ration was set to 2 and the high-rank configuration 1017

to 8. From Figure 7, it can be observed that the 1018

performance of 2 and 8 is optimal. Additionally, 1019

compared to LoRA, the increase in parameters is 1020

limited, with only an additional set of LoRA with 1021

a rank of 2, achieving a balance between resources 1022

and performance. 1023

In terms of the decomposed component weight- 1024

ing strategy, we used a weight length (Lw) of 1025

8. The weight component for each task was set 1026
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Dataset Name Category Task Domain Metric
Yelp CL Benchmark Sentiment Analysis Yelp Reviews Accuracy
Amazon CL Benchmark Sentiment Analysis Amazon Reviews Accuracy
DBpedia CL Benchmark Topic Classification Wikipedia Accuracy
Yahoo CL Benchmark Topic Classification Yahoo Q&A Accuracy
AG News CL Benchmark Topic Classification News Accuracy
MNLI GLUE Natural Language Inference Various Accuracy
QQP GLUE Paragraph Detection Quora Accuracy
RTE GLUE Natural Language Inference News, Wikipedia Accuracy
SST-2 GLUE Sentiment Analysis Movie Reviews Accuracy
WiC SuperGLUE Word Sense Disambiguation Lexical Databases Accuracy
CB SuperGLUE Natural Language Inference Various Accuracy
COPA SuperGLUE Question and Answering Blogs, Encyclopedia Accuracy
BoolQA SuperGLUE Boolean Question and Answering Wikipedia Accuracy
MultiRC SuperGLUE Question and Answering Various Accuracy
IMDB SuperGLUE Sentiment Analysis Movie Reviews Accuracy

Table 4: The details of 15 classification datasets in the Long Sequence Benchmark (Razdaibiedina et al., 2023).
First five tasks correspond to the standard CL benchmark (Zhang et al., 2015).

to Nlayer
4 , leading to a total weight calculation of1027

M =
N×Nlayer

4 , where Nlayer is the number of1028

model layers and N represents the number of tasks.1029

The hyperparameter β was assigned a value of 10.1030

For stochastic recovery, a simple strategy was ap-1031

plied where a small proportion of parameters was1032

recovered every 200 training steps.1033

B.4 More Baselines1034

IncLoRA: Incremental learning of new LoRA pa-1035

rameters for a sequential series of tasks (without1036

adding any regularization or replaying samples1037

from previous tasks).1038

LFPT5 (Qin and Joty, 2021): Continuously train1039

a soft prompt that simultaneously learns to solve1040

tasks and generate training samples, which are sub-1041

sequently used in experience replay.1042

ProgPrompt (Razdaibiedina et al., 2023): Sequen-1043

tially concatenates previously learned prompts to1044

the current one during training and testing.1045

SAPT (Zhao et al., 2024): In the SAPT method, a1046

Shared Attentive Learning and Selection Module1047

(SALS) is used to guide training samples through1048

optimal PET blocks for task-specific learning, us-1049

ing a unique instance-level attention mechanism.1050

This process ensures efficient continual learning1051

for large language models.1052

C Extended Results 1053

C.1 Fine-grained Results for the Main 1054

Experiments 1055

We report the results of each task order on the 1056

3 benchmarks in Table 8. Overall, our proposed 1057

DATA demonstrates excellent capabilities in ad- 1058

dressing CF and Loss of plasticity. 1059

C.2 Supplementary Motivation 1060

In our analysis of LoRA’s performance with vary- 1061

ing ranks on LLaMA2-7B for Order 1, as shown 1062

in Figure 5, we observed that increasing the rank 1063

enhances Adaptation Plasticity (AP) for new tasks. 1064

However, this improvement comes at the cost of 1065

greater forgetting, as it tends to overlook the shared 1066

knowledge between tasks. Conversely, lower ranks 1067

do not lead to significant changes in forgetting, in- 1068

dicating that they are more effective at capturing 1069

the shared knowledge and skills across tasks. This 1070

observation suggests the necessity of integrating 1071

both high- and low-rank adapters. By doing so, 1072

we can better balance the modeling of task-specific 1073

and shared knowledge, potentially optimizing both 1074

AP and reducing forgetting. 1075

C.3 Efficiency Analysis 1076

In Table 9, we compare the FLOPs, trainable pa- 1077

rameters, storage features, and average predict 1078

times of various CL methods. LoRA achieves 1079

the highest inference efficiency by bypassing mod- 1080

ule selection and expansion, allowing the learned 1081
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Dataset Source Avg len Metric Language #Data
Domain-specific
ScienceQA Science 210 Accuracy English 5,000
FOMC Finance 51 Accuracy English 5,000
MeetingBank Meeting 2853 ROUGE-L English 5,000
Multi-lingual
C-STANCE Social media 127 Accuracy Chinese 5,000
20Minuten News 382 SARI German 5,000
Code Completion
Py150 Github 422 Edim Similarity Python 5,000
Mathematical Reasoning
NumGLUE-cm Math 32 Accuracy English 5,000
NumGLUE-ds Math 21 Accuracy English 5,000

Table 5: The overview of dataset statistics in TRACE (Wang et al., 2023c). The ’Source’ indicates the origin of the
context. ’Avg len’ denotes the average length, measured in word count for English, German, and code datasets, and
in character count for Chinese datasets. ’SARI’ is a score that is specific to evaluating simplification tasks.

Benchmark Order Task Sequence

Standard CL Becnhmark
1 dbpedia → amazon → yahoo → ag
2 dbpedia → amazon → ag → yahoo
3 yahoo → amazon → ag → dbpedia

Long Sequence Becnhmark

4
mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

5
multirc → boolqa → wic → mnli → cb → copa → qqp → rte
→ imdb → sst-2 → dbpedia → ag → yelp → amazon → yahoo

6
yelp → amazon → mnli → cb → copa → qqp → rte → imdb
→ sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

TRACE 7
c-stance → fomc → meetingbank → py150 → scienceqa →
numglue-cm → numglue-ds → 20minuten

Table 6: Seven distinct orders of task sequences were employed for the experiments in continual learning. Orders
1-3 align with the Standard CL Benchmarks, as adopted in previous studies (Zhang et al., 2015). Orders 4-6 pertain
to the Long Sequence Benchmarks, which encompass a total of 15 tasks (Razdaibiedina et al., 2023). Order 7 refers
to the TRACE benchmark, specifically designed for LLMs, and comprises eight datasets (Wang et al., 2023c).

Orders 2,16 2,8 4,8 4,16
1 79.4408 81.0921 80.8125 80.8387
2 78.5329 80.3684 80.4507 80.8585
3 78.9934 81.8882 80.2007 80.7500

Table 7: The performance of DATA using LLaMA3.1-
8B with different high and low ranks on the standard
CL benchmark.

LoRA weights to be directly integrated with the1082

original model weights during testing. Further-1083

more, our method utilizes only two sets of high-1084

and low-rank adapters with a small number of pa-1085

rameters for decomposed component weighting1086

and eliminates the need to store sample features.1087

This leads to excellent performance when consider-1088

ing both trainable parameters and storage features. 1089
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Figure 5: Performance of different LoRA ranks.

Methods Standard CL Benchmark (SC) Long Sequence Benchmark (LS) TRACE

Order 1 Order 2 Order 3 Avg Order 4 Order 5 Order 6 Avg Order 7

# T5-Large based
SeqLoRA 72.1 66.8 73.3 70.7 66.4 63.9 19.5 59.9 12.1
LoRAReplay 74.0 73.1 73.0 73.3 74.2 72.7 73.9 73.6 34.0
L2P∗ (Wang et al., 2021) 60.3 61.7 61.1 60.7 57.5 53.8 56.9 56.1 -
LFPT5∗ (Qin and Joty, 2021) 67.6 72.6 77.9 72.7 70.4 68.2 69.1 69.2 -
IncLoRA 66.5 64.6 66.1 65.7 59.1 60.7 59.4 59.7 -
ProgPrompt∗ (Razdaibiedina et al., 2023) 75.2 75.0 75.1 75.1 78.0 77.7 77.9 77.9 -
O-LoRA (Wang et al., 2023b) 73.2 72.4 70.4 72.0 69.9 68.5 65.3 67.9 -

+ MIGU (Du et al., 2024) 73.5 71.4 70.0 71.6 65.4 65.2 65.2 65.3 -
SAPT-LoRA∗ (Zhao et al., 2024) - - - - 83.4 - 80.6 - -
DATA (ours) 73.7 70.5 73.8 72.7 71.5 70.5 68.0 70.0 16.7

+ Replay 77.0 75.6 75.2 75.9 75.6 73.2 74.1 74.3 36.5

# LLaMA2-7B based
SeqLoRA 73.0 73.2 78.4 74.9 74.7 73.7 72.5 73.7 64.1
LoRAReplay 80.3 80.4 76.7 79.2 80.3 79.5 80.5 80.0 71.9
O-LoRA (Wang et al., 2023b) 76.2 76.3 76.8 76.4 68.5 67.8 67.5 67.9 35.0
DATA (ours) 79.5 79.9 80.0 79.8 76.6 77.0 77.2 76.9 66.0

+ Replay 80.4 81.3 78.4 80.0 83.2 82.5 81.8 81.8 73.1

# LLaMA3.1-8B based
SeqLoRA 79.9 79.0 80.0 79.6 74.2 73.7 76.5 74.8 65.1
LoRAReplay 80.1 80.6 80.1 80.3 83.2 80.7 82.2 82.0 78.7
O-LoRA (Wang et al., 2023b) 71.8 72.2 72.8 72.3 73.1 69.4 71.6 71.4 36.7
DATA (ours) 81.4 80.7 80.5 80.9 80.7 77.7 81.5 80.0 72.7

+ Replay 80.6 81.0 80.7 80.8 83.1 81.7 81.8 82.2 80.1

# Qwen2.5-7B based
SeqLoRA 80.0 77.9 78.4 78.8 79.5 79.1 81.1 79.9 65.1
LoRAReplay 80.7 80.6 80.1 80.5 83.3 83.2 82.7 83.1 75.7
DATA (ours) 79.8 79.1 79.4 79.4 79.8 80.2 81.5 80.5 70.4

+ Replay 80.3 80.6 79.9 80.3 83.7 82.9 82.9 83.2 77.3

Table 8: Summary of the results on 3 standard CL benchmarks with T5-Large, LLaMA2-7B, LLaMA3.1-8B and
Qwen2.5-7B. Averaged accuracy after training on the last task (FP, Sec. 4.1) is reported.
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Method FLOPs (1016) ↓ Trainable Parameters (%) ↓ Stored Features (%) ↓ Predict Time (ms) ↓

SeqLoRA 2.6 0.30 0 89
LoRARepaly 4.8 0.30 2% 90
O-LoRA 8.8 0.46 0 196
DATA 4.6 0.38 0 141

Table 9: Comparison of the number of trainable parameters and FLOPs for Order 4 with LLaMA2-7B.
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