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ABSTRACT

3D object detection is an essential task for computer vision applications in au-
tonomous vehicles and robotics. However, models often struggle to quantify de-
tection reliability, leading to poor performance on unfamiliar scenes. We introduce
a framework for quantifying uncertainty in 3D object detection by leveraging an
evidential learning loss on Bird’s Eye View representations in the 3D detector.
These uncertainty estimates require minimal computational overhead and are gen-
eralizable across different architectures. We demonstrate both the efficacy and im-
portance of these uncertainty estimates on identifying out-of-distribution scenes,
poorly localized objects, and missing (false negative) detections; our framework
consistently improves over baselines by 10-20% on average. Finally, we integrate
this suite of tasks into a system where a 3D object detector auto-labels driving
scenes and our uncertainty estimates verify label correctness before the labels are
used to train a second model. Here, our uncertainty-driven verification results in a
1% improvement in mAP and a 1-2% improvement in NDS.

1 INTRODUCTION

Detecting 3D objects from LiDAR and multiple camera images is crucial for autonomous driving.
Recent techniques mostly rely on bird’s eye view (BEV) representations (Zhou & Tuzel, 2018; Lang
et al., 2019; Philion & Fidler, 2020; Yin et al., 2021), where information from the different sensors
is fused to generate a consistent representation within the ego-vehicle’s coordinate system. BEV
effectively captures the relative position and size of objects, making it well-suited for perception
and planning (Ng et al., 2020; Liang et al., 2022; Chen et al., 2023).

Deep neural networks are excellent at performing detections but assessing their reliability remains
a challenge. Sampling-based uncertainty estimation methods, like MC-Dropout (Gal & Ghahra-
mani, 2016) and Deep Ensembles (Lakshminarayanan et al., 2017), are among the most common
approaches used for this purpose. MC-Dropout works by randomly deactivating network weights
and observing the impact, while Deep Ensembles involve training several networks with different
initializations. Although intuitive, these methods typically require a multiplier on the nominal com-
pute, memory, or training costs of the neural network. Consequently, these methods are inviable for
large-scale applications including the 3D detection systems used for autonomous vehicles. More-
over for common tasks such as classification or regression, sampling-free uncertainty estimation
methods are easier to implement and deploy (Wen et al., 2020; Durasov et al., 2021; 2024; Laurent
et al., 2023; Ashukha et al., 2020; Durasov et al., 2022b). In this space, Evidential Deep Learning
(EDL) has recently emerged as a promising alternative for providing high-quality epistemic uncer-
tainty estimates at low computational overhead (Sensoy et al., 2018; Amini et al., 2020).

In this paper, we introduce a computationally efficient uncertainty estimation framework for 3D ob-
ject detection motivated by EDL. The 3D detection task differs from classical uncertainty estimation
applications due to the multi-faceted nature of detection uncertainty in class label and localization,
as well as the variety of representations of the data. Consequently, we propose a generic approach
to measure the uncertainty of estimates in each cell of the BEV representation. We transform the
BEV heatmap head found in modern 3D detection models to an EDL-based head and employ a
regularized training loss to learn to generate these uncertainties. By aggregating these BEV-level
uncertainty estimates, we can simultaneously predict objectness probabilities and uncertainties as-
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Figure 1: 3D Object Detection Uncertainty Estimation Framework. Our Evidential Deep Learn-
ing approach jointly generates heatmap probabilities for objects within Bird’s Eye View and their
corresponding uncertainty values, which allows us to detect several critical problems within au-
tonomous driving, namely (left) identifying out-of-distribution scenes (e.g., with bad weather con-
ditions), (middle) erroneous predicted boxes, and (right) missed objects (e.g., missed grey and
white cars in the image). The uncertainty estimates guide selective human verification, leading to
improvements in detection metrics (e.g., mean Average Precision (mAP) and nuScenes Detection
Score (NDS)).

sociated with class and location. To demonstrate the efficacy of this method, we adapt it to several
downstream uncertainty-quantification tasks in autonomous driving, including:

• Out-of-distribution (OOD) scene detection: By using EDL-based uncertainty estimates, the
model can effectively detect scenes that differ significantly from the training distribution (8% im-
provement compared to other uncertainty baselines).

• Bounding-box quality assessment: By using the provided uncertainty estimates, the model can
effectively assess the quality of predicted bounding boxes, enabling more reliable predictions (7%
improvement compared to other uncertainty baselines).

• Missed objects detection: By leveraging uncertainty estimation, the model can effectively high-
light regions where objects are potentially missed, addressing the critical issue of false negatives
(5% improvement compared to other uncertainty baselines).

Finally, we integrate these experiments into a unified pipeline where a 3D object detector automati-
cally labels driving scenes. Using uncertainty estimates, we identify which outputs — at the scene,
bounding box, or missed object level — need human verification. This focused verification step
enhances the performance of the secondary model, resulting in significant improvements in final
detection metrics through uncertainty-driven refinement. Our approach is illustrated in Fig. 1.

2 RELATED WORK

2.1 3D OBJECT DETECTION

3D object detection has gained significant attention in recent years driven by advances in deep learn-
ing and large-scale datasets. This task is broadly classified into three main approaches (Chen et al.,
2023): camera-based, LiDAR-based, and multi-modal approaches. Recent camera-based methods
predict 3D object from multi-view camera images (Wang et al., 2023; Li et al., 2022; Liu et al.,
2022). This method aggregates features from multiple camera views to construct a comprehensive
understanding of geometry. LiDAR-based methods estimate 3D objects in given point clouds. This
method projects point clouds onto a regular grid such as pillars (Lang et al., 2019), voxels (Zhou
& Tuzel, 2018), or range images (Fan et al., 2021) because of irregular nature of point clouds, and
then deep model are used to get features for object detection. Recent advancements have explored
the integration of camera with LiDAR to further enhance 3D detection capabilities (Bai et al., 2022;
Liang et al., 2022; Wang et al., 2021). This multi-modal strategy enables the model to leverage the
complementary strengths of each sensor, yielding improved detection accuracy over single modal-
ity methods (Bai et al., 2022). However, despite their development and effectiveness, these models
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struggle to adequately assess their own confidence in the predictions they make. It therefore does
not know how uncertainty or reliable of estimation is.

2.2 UNCERTAINTY ESTIMATION

Uncertainty estimation is the study of quantifying the reliability of a model’s predictions. Most un-
certainty estimation methods must balance the quality of estimated uncertainties with the computa-
tional cost of generating such estimates. Deep Ensembles, which train multiple neural networks with
different initializations, provide more reliable uncertainty estimates than most alternatives (Laksh-
minarayanan et al., 2017; Ovadia et al., 2019; Antorán et al., 2020; Gustafsson et al., 2020; Ashukha
et al., 2020; Daxberger et al., 2021; Postels et al., 2022). However, their high compute and memory
demands make them impractical for large-scale 3D detection networks. MC-Dropout is a widely
used method for generating uncertainty estimates with low computational cost by randomly de-
activating network weights (Gal & Ghahramani, 2016). However, its estimates are generally less
reliable than those of Deep Ensembles (Ashukha et al., 2020; Wen et al., 2020; Durasov et al.,
2021). In between these two approaches lie a broad family of Bayesian Networks (Mackay, 1995)
that achieve varying performances by trading off compute (Blundell et al., 2015; Graves, 2011;
Hernández-Lobato & Adams, 2015; Kingma et al., 2015). Nonetheless, most of these uncertainty
estimation methods require multiple forward passes during inference, making them impractical for
fast inference. As a result, sampling-free single-pass approaches will modify the network archi-
tecture or training process to generate fast estimates, albeit for task-specific settings (Choi et al.,
2021; Postels et al., 2019; Malinin & Gales, 2018; Amersfoort et al., 2020; Malinin & Gales, 2018;
Mukhoti et al., 2021; Durasov et al., 2022a; Ashukha et al., 2020).

EDL is an increasingly popular single-pass paradigm for uncertainty estimation that use a single
neural network to estimate a meta-distribution representing the uncertainty over the predicted dis-
tribution (Sensoy et al., 2018; Amini et al., 2020; Ulmer et al., 2021). EDL methods are more
computationally efficient than most Bayesian and ensemble methods, while requiring only minor
architectural changes to the network. Most importantly, these methods have demonstrated strong
performance in a variety of applications involving uncertainty quantification and in detecting out-
of-distribution (OOD) or novel data (Bao et al., 2021; Aguilar et al., 2023; Zhao et al., 2023).

3 METHOD

EDL adapts the model architecture and loss function of a nominal learning problem to generate un-
certainty estimates along with predictions. Rather than class probabilities, a model designed for EDL
outputs parameters for a distribution over these probabilities, referred to as a second-order distribu-
tion. Below, we first summarize this framework for a nominal problem of multi-label classification.
We then extend this framework for 3D object detection.

3.1 PRELIMINARIES OF EVIDENTIAL DEEP LEARNING (EDL)

Model architecture. Consider a C-class multi-label classification problem where the neural net-
work would generate a C-dimensional probability vector e ∈ RC . To adapt a neural network for
EDL, we modify the head to generate two C-dimensional vectors ea, eb ∈ RC . The first vec-
tor represents positive “evidence” for each class, αj := softplus(eaj ) + 1 (i.e., indicating that
“the model input belongs to the jth class”), and the second vector represents negative evidence,
βi := softplus(ebj) + 1 (i.e., “the model input does not belong to the jth class”). Here, αj and βj

represent the parameters of Beta(αj ,βj) distributions generating the probabilities for the ith class;
further, softplus(x) := ln(1+ex) ensures α,β > 0. Consequently, the predicted probability for the
ith class is P (yj = 1|x) := αj

αj+βj
, and the model’s uncertainty is U(x) := 1

αj+βj
(Jsang, 2018).

Loss function. To train a model for multi-label classification using EDL, the loss function is de-
rived by computing the Bayes risk with respect to the class predictor. Given the ith data point, the
probability of class j is modeled with a Beta distribution Beta(αij ,βij). The loss is:
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Figure 2: Model architecture with EDL Heatmap Head. We replace the standard heatmap head
with an Evidential Deep Learning (EDL) head, which predicts both object presence probabilities
and uncertainty by outputting αi and βi for each BEV cell.

Li(Θ) :=

∫  C∑
j=1

−yij log(pij)

 1

B(αij ,βij)

C∏
j=1

p
αij−1
ij (1− pij)

βij−1 dpi (1)

=

C∑
j=1

[yij (ψ(αij + βij)− ψ(αij)) + (1− yij) (ψ(αij + βij)− ψ(βij))] , (2)

where B(αij ,βij) =
Γ(αij)Γ(βij)
Γ(αij+βij)

is the Beta function, and ψ(·) is the digamma function (the

logarithmic derivative of the gamma function, i.e., ψ(x) := d
dx ln Γ(x) = Γ′(x)

Γ(x) . We provide the
derivation of equation 2 in Appendix A.2.

3.2 EVIDENTIAL LEARNING FOR 3D DETECTION

While equation 2 is effective for simple tasks such as image classification (Sensoy et al., 2018)
and image-based action recognition (Bao et al., 2021; Zhao et al., 2023), it is not immediately
effective for detection tasks. Specifically, in 3D object detection, there are a variable number of
detections consisting of a class prediction and object bounding box coordinates. This necessitates
an uncertainty estimation method that can capture both class uncertainty (i.e., what type of object
is detected) and location uncertainty (i.e., where the object is located). Moreover, the inherent
imbalance towards the negative class can heavily bias uncertainty estimators, as most detections
correspond to background, leading to underconfidence in positive detections.

To overcome these challenges, we propose to capture uncertainty at the Bird’s Eye View (BEV) level
(Zhou et al., 2019; Ma et al., 2021; Chen et al., 2023), which allows us to simultaneously account
for both the object’s 3D position and class. Additionally, we adapt a customized EDL loss function
that mitigates the negative class imbalance.

Model architecture. In 3D object detection, a dedicated heatmap head can predict the probabilities
of object centers from a BEV representation of scene (Chen et al., 2023). In our approach, we replace
the standard heatmap head with an EDL head, as illustrated in Fig. 2. Specifically, we follow the
multiclass EDL model setup discussed in Sec. 3.1. Instead of predicting C probability values for
each BEV cell, we now predict αi and βi, enabling the model to estimate not only the probability of
an object’s presence but also the uncertainty associated with the prediction. Technically, we double
the number of output dimensions, treating the first C as αi and the second C as βi.

Loss function for 3D. Common loss functions for EDL, as discussed in Section 3.1, are not directly
applicable to object detection due to high class imbalance. In 3D object detection, especially for
center-based methods, specialized techniques like Gaussian Focal Loss (GFL) are often employed
to address these imbalances (Law & Deng, 2018; Zhou et al., 2019). GFL accounts for areas near
object centers using a Gaussian-distributed ground truth heatmap, enhancing localization precision.
For further details on GFL and related methods, we refer the reader to Appendix A.1.

To adapt EDL for 3D object detection, we propose a combined loss function: L =
∑S

i=1(LEDL
i +

λLReg
i ), where S is the number of training scenes, and λ ≥ 0 is a regularization parameter. Below,

we discuss each component of this loss in detail. We begin by introducing the first term, LEDL
i ,
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(a) Scene-level Uncertainty (b) Box-level Uncertainty
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defined per box

Figure 3: Uncertainty at different levels. (a) Scene-level uncertainty aggregates uncertainty values
across all BEV cells in a scene to produce an overall uncertainty score, which help detect OOD
scenes. (b) Box-level uncertainty focuses on each predicted bounding box’s uncertainty using ROI
pooling, allowing for the identification of poorly localized bounding boxes.

which is defined as follows:

LEDL
i :=

C∑
j=1

[
yij (ψ(αij + βij)− ψ(αij)) · (1−αij/(αij + βij))

γ

+ (1− yij) (ψ(αij + βij)− ψ(βij)) · (αij/(αij + βij))
γ · (1− ŷi)

η
]
. (3)

The above loss function is composed of two main terms:

• The first term in the sum corresponds to the BEV grid cells where an actual object center is located
(i.e., yij = 1). Since we are training an EDL model, we compute the digamma-based Bayes risk loss
for each of these cells. This risk is further scaled by a GFL-based factor (1−αij/(αij + βij))

γ ,
which helps reduce the impact of well-classified examples and focus on harder, misclassified ex-
amples during training. This is particularly important in object detection, where a large portion of
the training examples can be relatively easy (e.g., background regions), and the model needs to pay
more attention to difficult examples, such as object boundaries.

• The second term handles locations where there are no objects (i.e., yij = 0). Here, the Bayes risk
is computed similarly, also weighted by a GFL-based factor focusing more on difficult negative ex-
amples. In addition, we apply a discounting term (1−ŷi)η , which reduces the penalty for predictions
made in the vicinity of an object’s center. This means that if the model predicts a high probability for
a cell being an object’s center when it is not, but the cell is close to the object center, the penalty is
smaller. In contrast, if the model predicts high probabilities for locations far away from any objects,
the penalty is much larger. This encourages the model to be more precise in localizing object centers
while tolerating small errors near the true center.

Regularization term. In our method, we include a regularization term to manage uncertainty by
penalizing the model when it generates incorrect or overconfident predictions, following a similar
strategy to the one used in the original EDL framework (Sensoy et al., 2018). The goal is to minimize
misleading evidence, particularly when the model makes incorrect predictions. In Sensoy et al.
(2018); Amini et al. (2020), regularization is applied by encouraging the model to revert to a uniform
Dirichlet prior (representing high uncertainty) when predictions are incorrect, thereby penalizing
misleading evidence and avoiding overconfident mistakes. In our approach, we use adjust evidences
α̃i and β̃i for such regularization as follows:

α̃i := yi + (1− yi)⊙αi, β̃i := (1− yi) + yi ⊙ βi, where ⊙ is the Hadamard product. (4)

These adjustments adapt based on the correctness of the predictions, aiming to minimize evidence
for incorrect predictions. To achieve this, we introduce a divergence-based regularization term that
minimizes the Kullback-Leibler divergence between the modified Beta distribution Beta(α̃i, β̃i) and
the prior Beta(1,1), which encourages the model to express total uncertainty (i.e., a uniform distri-
bution) when necessary. In other words, we have LReg

i :=
∑C

j=1 KL
(

Beta(α̃j , β̃j) ∥Beta(1,1)
)

.
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Our regularization term can be rewritten as follows:

LReg
i =

C∑
j=1

[
(α̃ij−1)(ψ(α̃ij)−ψ(α̃ij+β̃ij)) + (β̃ij−1)(ψ(β̃ij)−ψ(α̃ij+β̃ij))− log

(
B(α̃ij , β̃ij)

)]
(5)

Using equation 5 as regularization term prevents the model from being overconfident in its predic-
tions. We provide the derivation of equation 5 in Appendix A.3.

4 EXPERIMENTS

We demonstrate the value of EDL-based uncertainty estimates across three different downstream
applications: (i) detecting out-of-distribution scenes; (ii) estimating the localization quality of pre-
dicted bounding boxes; and (iii) identifying missing detections in a scene. Our estimated uncertain-
ties consistently yield better downstream performance than existing baselines. Finally, we integrate
these tasks into an auto-labeling pipeline where estimated pseudo-labels from a 3D object detector
are flagged and verified accordingly to uncertainty scores. These “corrected” pseudo-labels are used
to train a downstream detector that achieves improved performance over baselines that use unverified
pseudo-labels for training.

4.1 EXPERIMENTAL SETUP

Dataset and metric. We evaluate our approach on the nuScenes and Waymo 3D detection datasets.

The nuScenes Dataset (Caesar et al., 2020) is a comprehensive large-scale driving dataset with 1,000
scenes of multi-modal data, including 32-beam LiDAR at 20 FPS and images from six different cam-
era views. We explore two settings: LiDAR-only and LiDAR-Camera fusion. We evaluate detection
performance on mean average precision (mAP) and the nuScenes detection score (NDS), defined by
averaging the matching thresholds of center distance D = {0.5, 1., 2., 4.} meters.

The Waymo Open Dataset (Sun et al., 2020) includes 798 scenes for training and 202 scenes for
validation. The nuScenes and Waymo Open datasets were recorded in different locations over dif-
ferent vehicles. They differ significantly in terms of detection range, scene composition, and sensor
configuration, making the Waymo dataset a suitable choice for out-of-distribution (OOD) testing.

3D Detection Baselines. We use two 3D detection models for the nuScenes dataset: 1) Focal-
Former3D (Chen et al., 2023), a state-of-the-art architecture for both Lidar and Lidar + Camera
configurations, and 2) DeformFormer3D, a Lidar-based architecture built upon DETR (Carion et al.,
2020) and Deformable DETR (Zhu et al., 2021). In our experiments, we refer to FocalFormer3D
Lidar experiments as FF (L), FocalFormer3D Lidar+Camera experiments as FF (L+C), and De-
formFormer3D Lidar experiments as DF (L).

Implementation details. Our implementation is built on the open-source MMDetection3D code-
base (Contributors, 2020). For the LiDAR backbone, we use CenterPoint-Voxel as the feature extrac-
tor for point clouds. The multi-stage heatmap encoder operates in 3 stages, producing 600 queries
by default. Data augmentation techniques include random double flips along the X and Y axes,
random global rotation within the range of [−π/4, π/4], scaling randomly between [0.9, 1.1], and
random translations with a standard deviation of 0.5 across all axes. Training is conducted with a
batch size of 16 across eight V100 GPUs. Similar to Amini et al. (2020), we set the regularization
parameter λ in the loss function to 10−4 to prevent over-regularization of the model.

Uncertainty Baselines. We compare against the standard Entropy (Malinin & Gales, 2018) baseline,
along with recent sample-based approaches: MC-Dropout (Gal & Ghahramani, 2016) (MC-D), Deep
Ensembles (Lakshminarayanan et al., 2017) (DeepE), BatchEnsemble (Wen et al., 2020) (BatchE),
Masksembles (Durasov et al., 2021) (MaskE), and Packed-Ensembles (Laurent et al., 2023) (PackE),
which are known for producing state-of-the-art uncertainty estimates (Ashukha et al., 2020; Postels
et al., 2022). For all four sampling-based methods, we use five samples to estimate uncertainty at
inference time, a setting shown to work well across multiple tasks (Durasov et al., 2021; Wen et al.,
2020; Malinin & Gales, 2018).
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Table 1: Scene OOD detection ROC- and PR-AUCs evaluation. The best result in each category
is in bold and the second best is in bold. Ours outperforms the second-best on average by 0.09
ROC-AUC & 0.16 PR-AUC, respectively.

Entropy MC-DP BatchE MaskE PackE DeepE Ours Model

ROC-AUC 0.4893 0.4875 0.4972 0.4872 0.5360 0.5059 0.6282 FF (L)PR-AUC 0.4815 0.4917 0.4887 0.4836 0.5292 0.4982 0.7168

ROC-AUC 0.4074 0.5167 0.6020 0.5910 0.4214 0.5374 0.7694 FF (L+C)PR-AUC 0.4316 0.5310 0.5594 0.5480 0.5314 0.4325 0.7424

ROC-AUC 0.4378 0.5134 0.4485 0.5447 0.3494 0.6622 0.5806 DF (L)PR-AUC 0.4589 0.5100 0.4616 0.5177 0.4016 0.5894 0.5495

Average ROC-AUC 0.4448 0.5059 0.5159 0.5410 0.4356 0.5685 0.6594 N/AAverage PR-AUC 0.4573 0.5109 0.5032 0.5164 0.4874 0.5067 0.6696
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Figure 4: Scene out-of-distribution detection ROC and PR curves evaluation. ROC and PR
curves for the OOD detection task using the uncertainty measure described in Section 4.2. A higher
position of the curve indicates a better ability of the uncertainty measure to detect OOD scenes. Our
uncertainty measure outperforms other methods by a significant margin across various setups.

4.2 DETECTING OOD SCENES

To demonstrate the quality of uncertainty estimates generated by our framework, we apply it to
detect scene-level OOD samples, under the assumption that a network will be more uncertain about
predictions made on OOD scenes than on scenes in the training distribution. As in Malinin &
Gales (2018); Durasov et al. (2021), given both in-distribution and OOD samples, we classify high-
uncertainty samples as OOD and rely on standard classification metrics (i.e., ROC and PR AUC)
to quantify the classification performance. To estimate the uncertainty score for the whole scenes,
we first produce uncertainty values for each class and BEV cell, then we average the generated
uncertainty values across all cells in a scene, as it is illustrated in Fig. 3 (a).

We train the model on the training set of the nuScenes dataset and consider scenes from the nuScenes
test set as in-distribution samples. At the same time, we take scenes from the Waymo test set and
treat them as OOD samples since the nuScenes and Waymo datasets have different statistics, objects,
and lidar specifications. This leads to a significant drop in performance (Wang et al., 2020) when a
model trained on one dataset is applied to another. We report results in terms of ROC and PR curves
in Fig. 4, and we report aggregated ROC and PR-AUC in Tab 1.

Our approach significantly outperforms other methods in detecting OOD scenes when using Focal-
Former (L) and (L+C), as shown in Fig. 4 and Tab. 1. This is due to FocalFormer’s multi-stage
procedure for BEV embedding generation, which produces richer and more detailed feature repre-
sentations. In contrast, DeformFormer uses a single-stage process, limiting its ability to fully refine
spatial and object-level features, which affects the performance of most uncertainty baselines. This
could explain its slightly lower performance, as its simpler approach leads to less detailed BEV
embeddings.
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Table 2: Detection of erroneous boxes ROC- and PR-AUCs evaluation. The best result in each
category is in bold and the second best is in bold. Ours outperforms the second-best on average by
0.06 ROC-AUC & 0.02 PR-AUC, respectively.

Entropy MC-DP BatchE MaskE PackE DeepE Ours Model

ROC-AUC 0.5615 0.5515 0.5829 0.5777 0.5890 0.5923 0.6329
FF (L)PR-AUC 0.3224 0.2874 0.3326 0.3253 0.3259 0.3340 0.3646

Corr 0.1623 0.2227 0.2151 0.2270 0.2604 0.2304 0.3142

ROC-AUC 0.5609 0.5692 0.5673 0.5663 0.5642 0.5478 0.6148
FF (L+C)PR-AUC 0.3409 0.3328 0.3334 0.2993 0.3513 0.3219 0.3529

Corr 0.1379 0.1909 0.1777 0.1614 0.1800 0.1270 0.3119

ROC-AUC 0.5319 0.5512 0.5760 0.5580 0.5565 0.5656 0.6229
DF (L)PR-AUC 0.3227 0.3286 0.3503 0.3464 0.3373 0.3518 0.3726

Corr 0.1139 0.1401 0.1584 0.1495 0.1591 0.1766 0.2716

Average ROC-AUC 0.5514 0.5573 0.5754 0.5673 0.5699 0.5686 0.6235
N/AAverage PR-AUC 0.3287 0.3163 0.3388 0.3237 0.3382 0.3359 0.3634

Average Corr 0.1380 0.1846 0.1837 0.1793 0.1998 0.1780 0.2992
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Figure 5: ROC and PR curve evaluation for the detection of erroneous boxes. ROC and PR
curves for the erroneous box detection task using the uncertainty measure in Section 4.3. A higher
position of the curve indicates a better ability of the uncertainty measure to detect erroneous boxes
predicted by the model. Our uncertainty measure outperforms baselines across various setups.

4.3 IDENTIFYING BOUNDING-BOX LOCALIZATION ERRORS

Uncertainty estimates produced via our framework can be used to predict whether the model will
generate poorly localized bounding boxes. To classify a poorly localized bounding box, we calculate
the Intersection-over-Union (IoU) between predicted and ground truth boxes; we denote a poorly
localized “erroneous” box if the IoU is below an arbitrary threshold τ ∈ [0, 1], and “accurate”
otherwise. We set τ = 0.3, which ensures that boxes classified as erroneous exhibit sufficiently
low overlap with the ground truth, indicating poor localization accuracy. We then transform the
task of detecting erroneous boxes into a binary classification based on the overall uncertainty in
the predicted box, allowing us to compute standard ROC and PR curves (and their corresponding
AUCs).

To assign an uncertainty value to each predicted box, we follow a consistent procedure across
all uncertainty methods. After generating an uncertainty map for each BEV cell and class, i.e.,
û ∈ RC×H×D where C is the number of classes, and H and D are the BEV height and depth,
respectively. For any predicted bounding box, we then collect the set of uncertainty values within
the given box {ûib} (see Fig. 3 (b)), where i corresponds to the class index and b corresponds to the
cell. Finally, we aggregate these estimates into a single uncertainty score for the predicted bounding
box ub = mini û

i
b.

We use the model trained on the nuScenes training set and run inference on the test set. After
generating predicted boxes for all scenes in the test set, we compute the uncertainty and IoU for
each box, followed by the AUC metrics as described earlier. The results are reported in Fig. 5 and
Tab. 2. Our approach consistently outperforms other uncertainty baselines by 5− 10%.
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4.4 IDENTIFYING UNDETECTED OBJECTS

We also focus on recall, which can be reframed as minimizing the number of false negative detec-
tions, and is an important metric for a 3D detector suitable for deployment in autonomous vehicles.
As discussed in Sec. 3.2, modern 3D object detection models typically include a stage where the
model estimates the probability of an object being in a specific BEV cell. If a cell has a low pre-
dicted probability, it is less likely that any bounding box will be generated with its center in that
BEV cell. This means that if the cell actually contains a ground truth object, it will not be detected,
resulting in a false negative. In some cases, our heatmap may assign low probabilities to locations
where there is an actual object, but this is often accompanied by higher uncertainty in the prediction.
This indicates the model’s uncertainty in identifying objects in certain areas. As a result, we are mo-
tivated to leverage these predicted uncertainties to identify potentially missed objects and improve
detection performance in such challenging scenarios.

To address this, we implemented a separate head Mmiss that processes the BEV embeddings ei,
predicted probabilities pi, and uncertainty ui from our EDL head for each BEV cell, using the
concatenated vector [ei,pi,ui] to estimate the confidence of potentially missed objects in the given
cells as pmiss

i = Mmiss([ei,pi,ui]). Technically, we only consider BEV cells where the heatmap-
ping head produces low probabilities (pi less than 5% in our experiments) as candidates for locations
where objects could have been missed. This threshold was chosen because cells with such low prob-
abilities are excluded from the second stage, and no bounding boxes are generated for them in the
final predictions. By focusing on these ignored cells, we aim to identify potential false negatives
that would otherwise go undetected by the model. The Mmiss head is trained using the same targets,
loss, and training procedure as the original heatmap head, with the only difference being that it is
trained on cells with low probability pi and uses pi and ui in addition to ei as input.

As in Sec. 4.3, we use the model trained on the nuScenes training set and run inference on the test set.
To evaluate the quality of the newly detected locations with potential missed objects, we followed
this evaluation procedure: First, we generated the final bounding box predictions and compared
them against the ground truth boxes from the test set to identify the missed ground truth boxes.
Next, using our new probability head, we predicted pmiss

i for each BEV cell and identified 15 new
locations with potential missed objects (this number was chosen to balance precision and recall),
selecting the locations with the highest pmiss

i scores. If a missed ground truth box was found within
a radius of d meters (d = 2 and d = 4 in our experiments) from the predicted location, it was
considered a true positive detection. By treating this as a classification task, we calculated precision,
recall, and F1-score for these detections, and the results are reported in Tab. 3. As in the previous
tasks, our method significantly outperformed other approaches.

4.5 PUTTING IT ALL TOGETHER: AUTO-LABELING WITH VERIFICATION

Finally, we introduce an auto-labeling framework with verification that leverages uncertainty esti-
mates to improve 3D object detection. Auto-labeling is crucial in contexts where acquiring annotated
data is expensive or time-consuming, allowing models to generate labels for unlabeled data (Elezi
et al., 2022; Beck et al., 2024). However, traditional auto-labeling approaches lack mechanisms to
verify the reliability of the generated labels, leading to potential noise or mislabeling.

Our framework addresses this issue by incorporating uncertainty-driven verification as a core com-
ponent. After generating initial pseudo-targets (bounding boxes) with a 3D detector, we estimate
uncertainties at multiple levels: (1) scene-level (Sec. 4.2) — identifying scenes with high uncer-
tainty and relabeling the entire scene, (2) box-level (Sec. 4.3) — detecting pseudo-labels with high
uncertainty for relabeling or verification, and (3) missed objects (Sec. 4.3) — identifying potential
missed objects through uncertainty and labeling them accordingly. To ensure balanced coverage,
we allocate an equal budget across these categories, resulting in approximately 10,000 boxes and
30,000 labels in total.

We compare our approach to two baselines in two configurations. For the first baseline (referred to
as “Nk-R” in Tab. 4), we use N thousand scenes (where N ∈ {10, 20}) from the nuScenes training
set, train on them, and then evaluate on the test set. The second baseline (referred to as “Nk-P”) also
trains onN thousand scenes but generates pseudo-labels for the unlabeled portion of the training set,
retrains on the entire dataset, and then evaluates on the test set. Our method “Nk-U”, on the other
hand, begins by training on N − 1 thousand scenes from the training set, applies our uncertainty-
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Table 3: Missed object detection evaluation. The best result in each category is in bold and the
second best is in bold. Ours outperforms others by a significant margin.

Entropy MC-DP BatchE MaskE PackE DeepE Ours d, m M

Precision 0.0766 0.0408 0.1354 0.1015 0.0459 0.0792 0.1512
2

FF
(L

)
Recall 0.0367 0.0191 0.0614 0.0491 0.0219 0.0379 0.0735
F1-Score 0.0496 0.0260 0.0758 0.0662 0.0296 0.0513 0.0989
Precision 0.1367 0.0641 0.1675 0.1662 0.0924 0.1410 0.2352

4Recall 0.0667 0.0191 0.0833 0.0829 0.0444 0.0688 0.1135
F1-Score 0.0897 0.0260 0.1113 0.1106 0.0600 0.0924 0.1531

Precision 0.0476 0.0341 0.0363 0.0786 0.0350 0.0478 0.1032
2 FF

(L
+C

)

Recall 0.0207 0.0149 0.0173 0.0375 0.0152 0.0208 0.0463
F1-Score 0.0288 0.0208 0.0234 0.0508 0.0212 0.0290 0.0639
Precision 0.0970 0.0848 0.0813 0.1418 0.0821 0.0972 0.1501

4Recall 0.0428 0.0371 0.0392 0.0688 0.0360 0.0428 0.0695
F1-Score 0.0593 0.0516 0.0529 0.0926 0.0501 0.0595 0.0950

Precision 0.0430 0.0182 0.0671 0.0562 0.0459 0.0387 0.1167
2 D

F
(L

)

Recall 0.0200 0.0084 0.0316 0.0262 0.0219 0.0180 0.0557
F1-Score 0.0273 0.0115 0.0429 0.0357 0.0296 0.0246 0.0754
Precision 0.0810 0.0788 0.1101 0.0999 0.0924 0.0810 0.1743

4Recall 0.0382 0.0364 0.0525 0.0467 0.0444 0.0382 0.0855
F1-Score 0.0519 0.0498 0.0711 0.0637 0.0600 0.0519 0.1147

Average Precision 0.0803 0.0534 0.0996 0.1073 0.0656 0.0808 0.15151
N/A N/AAverage Recall 0.0375 0.0225 0.0475 0.0518 0.0306 0.0377 0.0740

Average F1-Score 0.0511 0.0309 0.0629 0.0699 0.0418 0.0514 0.1002

Table 4: NuScenes auto-labeling results. We compare our uncertainty-based verification method
against two baselines: standard training on the smaller training set and auto-labeling without
uncertainty-based verification. FT represents training on the entire dataset, which we consider as an
upper bound for quality. The results show that our approach consistently outperforms both baselines,
achieving higher mAP and NDS scores across all configurations, with significant relative improve-
ments over the auto-labeling without uncertainty baseline, as shown in the “Imp, %” column.

10k R 10k P 10k U 20k R 20k P 20k U FT Imp, % Model

mAP (↑) 0.5881 0.5942 0.5964 0.6299 0.6321 0.6398 0.6636 +0.785 FF (L)NDS (↑) 0.5474 0.5539 0.5577 0.5827 0.5859 0.6057 0.7093 +1.829

mAP (↑) 0.6664 0.6767 0.6797 0.6966 0.6975 0.7002 0.7049 +0.412 FF (L+C)NDS (↑) 0.5868 0.5902 0.5931 0.6063 0.6057 0.6077 0.7314 +0.410

mAP (↑) 0.5847 0.6091 0.6115 0.6429 0.6100 0.6151 0.6553 +0.618 DF (L)NDS (↑) 0.5426 0.5734 0.5769 0.5777 0.5734 0.5782 0.7071 +0.722

based verification to relabel 1,000 scenes (or 30,000 boxes) from the unlabeled set, retrains on the
fully auto-labeled dataset, and evaluates on the test set. As shown in Tab. 4, our method significantly
improves regular auto-labeling by incorporating uncertainty into the label verification pipeline.

5 CONCLUSION

We have introduced an Evidential Deep Learning framework for uncertainty estimation in 3D object
detection using Bird’s Eye View representations. Our method improves out-of-distribution detec-
tion, bounding box quality, and missed object identification, all while being computationally effi-
cient. By incorporating uncertainty into the auto-labeling pipeline, we achieve significant gains in
mAP and NDS on the nuScenes dataset, which also leads to enhanced auto-label quality.

One limitation of our current approach is that we only update the head of the model. Expanding
to end-to-end learning could potentially yield better results by enabling the model to learn uncer-
tainty more holistically across all layers. Despite this, our method remains computationally efficient,
offering a practical alternative to deep ensembles, and is well-suited for large-scale, real-time appli-
cations like autonomous driving. The ability to integrate seamlessly into an auto-labeling pipeline
highlights its practical utility, reducing the cost and effort of manual labeling while improving data
quality in scenarios where high-quality annotations are critical.
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ETHICS STATEMENT

The 3D detection models discussed in this work are core components towards applications in au-
tonomous driving and robotics which interface with the human world. Accurately quantifying model
uncertainty is essential, as uncertainty estimates can be used to determine if the model predictions
are unreliable and the downstream technologies warrant human intervention. Our work specifically
targets this problem. Furthermore, this research is reliant on both the quality and quantity of training
data to mitigate biased estimates or data privacy concerns.
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A APPENDIX

A.1 OBJECT DETECTION LOSSES

Focal Loss. Focal Loss (Lin et al., 2017) is designed to address class imbalance by down-weighting
well-classified examples and focusing on harder, misclassified examples. The Focal Loss function
is defined as:

LFL(p) = −(1− p)γ log(p),

where p is the model’s estimated probability for the correct class, and γ is a tunable parameter that
controls the focus on harder examples. When γ = 0, Focal Loss reduces to standard cross-entropy
loss. As γ increases, the loss function places greater emphasis on difficult examples, which is useful
in contexts like object detection where class imbalance is common. This is particularly effective
when most examples are easy negatives (e.g., background) and would otherwise dominate the loss.

Gaussian Focal Loss. Gaussian Focal Loss (GFL) (Law & Deng, 2018; Zhou et al., 2019) is a
variant of Focal Loss specifically designed for 3D object detection. In this approach, object centers
are represented using a Gaussian heatmap, and the loss function focuses on the points near the center
of the object. The Gaussian Focal Loss function is given by:

LGFL = −(1− ŷ)η log(p),

where ŷ is the Gaussian-distributed ground truth centered around the object, and p is the predicted
probability. The term (1 − ŷ)η down-weights points far from the object’s center, ensuring that
the model focuses on improving localization precision for points near the center. The parameter η
controls the degree to which points further from the center are down-weighted.

A.2 DERIVATION OF THE LOSS

Loss function. We aim to derive the loss function for multi-label classification using the Beta
distribution by computing the Bayes risk with respect to the class predictor. The probability of class
j for instance i is modeled as a Beta distribution, Beta(αij ,βij). The resulting loss is given by:

Li(Θ) :=

∫  C∑
j=1

−yij log(pij)

 1

B(αij ,βij)

C∏
j=1

p
αij−1
ij (1− pij)

βij−1 dpi, (6)

where B(αij ,βij) is the Beta function, defined as:

B(αij ,βij) =
Γ(αij)Γ(βij)

Γ(αij + βij)
, (7)

and Γ(·) is the Gamma function. For each class j, we consider the individual term:

Li(Θ) =

C∑
j=1

∫
−yij log(pij)

p
αij−1
ij (1− pij)

βij−1

B(αij ,βij)
dpij . (8)

The integral term is the expected value of − log(pij) with respect to a Beta distribution. The expec-
tation of log(pij) under a Beta distribution Beta(αij ,βij) is given by:

Epij∼Beta(αij ,βij) [log(pij)] = ψ(αij)− ψ(αij + βij), (9)
.

Thus, applying the expectation for both pij and (1− pij), the loss function becomes:

Li(Θ) =

C∑
j=1

[yij (ψ(αij + βij)− ψ(αij)) + (1− yij) (ψ(αij + βij)− ψ(βij))] . (10)
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A.3 DERIVATION OF THE REGULARIZATION TERM

We want to compute the Kullback-Leibler (KL) divergence between the predicted Beta distribution
Beta(α̃i, β̃i) and the prior Beta distribution Beta(1,1). The KL divergence between two distribu-
tions P (x) and Q(x) is given by:

KL(P∥Q) =

∫
P (x) log

P (x)

Q(x)
dx.

The Beta distribution is parameterized by two values, α and β, and is given by:

Beta(x | α, β) = xα−1(1− x)β−1

B(α, β)
,

where B(α, β) is the Beta function that normalizes the distribution and is defined as:

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
,

with Γ(·) being the Gamma function. For two Beta distributions Beta(α1, β1) and Beta(α2, β2), the
KL divergence is computed as:

KL (Beta(α1, β1)∥Beta(α2, β2)) =

∫ 1

0

Beta(x | α1, β1) log
Beta(x | α1, β1)

Beta(x | α2, β2)
dx.

Substituting the expressions for both Beta distributions, we get:

Beta(x | α1, β1)

Beta(x | α2, β2)
=
xα1−1(1− x)β1−1B(α2, β2)

xα2−1(1− x)β2−1B(α1, β1)
.

Simplifying, we obtain:

Beta(x | α1, β1)

Beta(x | α2, β2)
=
B(α2, β2)

B(α1, β1)
xα1−α2(1− x)β1−β2 .

Thus, the KL divergence becomes:

KL(Beta(α1, β1)∥Beta(α2, β2)) = log
B(α2, β2)

B(α1, β1)

+ (α1 − α2)

∫ 1

0

Beta(x | α1, β1) log x dx

+ (β1 − β2)

∫ 1

0

Beta(x | α1, β1) log(1− x) dx.

From known properties of the Beta distribution, we have the following results:∫ 1

0

Beta(x | α1, β1) log x dx = ψ(α1)− ψ(α1 + β1),

and ∫ 1

0

Beta(x | α1, β1) log(1− x) dx = ψ(β1)− ψ(α1 + β1),

where ψ(·) is the digamma function, defined as the derivative of the logarithm of the Gamma func-
tion, ψ(x) = d

dx log Γ(x). Substituting these results into the KL divergence formula, we get the full
expression:

KL (Beta(α1, β1)∥Beta(α2, β2)) = log
B(α2, β2)

B(α1, β1)
+(α1−α2)(ψ(α1)−ψ(α1+β1))+(β1−β2)(ψ(β1)−ψ(α1+β1)).
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