
Under review as a conference paper at ICLR 2022

NEURONAL LEARNING ANALYSIS USING CYCLE-
CONSISTENT ADVERSARIAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding how activity in neural circuits reshapes following task learning
could reveal fundamental mechanisms of learning. Thanks to the recent advances
in neural imaging technologies, high-quality recordings can be obtained from hun-
dreds of neurons over multiple days or even weeks. However, the complexity
and dimensionality of population responses pose significant challenges for analy-
sis. Existing methods of studying neuronal adaptation and learning often impose
strong assumptions on the data or model, resulting in biased descriptions that do
not generalize. In this work, we use a variant of deep generative models called
– cycle-consistent adversarial networks, to learn the unknown mapping between
pre- and post-learning neuronal activities recorded in vivo. To do so, we develop
an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence sig-
nals, and a procedure to interpret the resulting deep learning models. To assess
the validity of our method, we first test our framework on a synthetic dataset with
known ground-truth transformation. Subsequently, we applied our method to neu-
ronal activities recorded from the primary visual cortex of behaving mice, where
the mice transition from novice to expert-level performance in a visual-based vir-
tual reality experiment. We evaluate model performance on generated calcium
imaging signals and their inferred spike trains. To maximize performance, we de-
rive a novel approach to pre-sort neurons such that convolutional-based networks
can take advantage of the spatial information that exists in neuronal activities. In
addition, we incorporate visual explanation methods to improve the interpretabil-
ity of our work and gain insights into the learning process as manifested in the
cellular activities. Together, our results demonstrate that analyzing neuronal learn-
ing processes with data-driven deep unsupervised methods holds the potential to
unravel changes in an unbiased way.

1 INTRODUCTION

One of the main objectives in computational neuroscience is to study the dynamics of neural pro-
cessing and how neural activity reshapes in the course of learning. A major hurdle was the difficulty
in obtaining high-quality neural recordings of the same set of neurons across multiple experiments,
though such limitation in recording techniques has seen tremendous improvements in recent years.
With the advent of modern neural imaging technologies, it is now possible to monitor a large pop-
ulation of neurons over days or even weeks (Williams et al., 2018a; Steinmetz et al., 2021), thus
allowing experimentalists to obtain in vivo recordings from the same set of neurons across different
learning stages. Significant efforts have been put into extracting interpretable and unbiased descrip-
tions of how cortical responses change with experience. Proposed approaches to model changes
in neuronal activity include linear latent variable models such as PCA, TCA, GPFA, GPFADS and
PSID (Cunningham & Byron, 2014; Williams et al., 2018b; Sani et al., 2021; Yu et al., 2009; Rutten
et al., 2020). Methods employing deep learning models but with linear changes or mapping include
LFADS and PfLDS (Pandarinath et al., 2018; Gao et al., 2016). While these methods enabled sub-
stantial progress in understanding the structure of neuronal activity, they do have strong assumptions
inherent in the modelling technique or the analysis, such as the linearity assumption in linear latent
variable models. Therefore, making sense of the unknown mapping between pre- and post-learning
neural activity in an unbiased manner remains a significant challenge, and a data-driven method to
interpret the circuit dynamics in learning is highly desirable.

1

Under review as a conference paper at ICLR 2022

Thanks to their ability to self-identity and self-learn features from complex data, deep neural net-
works (DNNs) have seen tremendous success in many biomedical applications (Cao et al., 2018;
Zemouri et al., 2019; Piccialli et al., 2021). Specifically, deep generative networks have shown
promising results in analyzing and synthesizing neuronal activities in recent years. Pandarinath et al.
(2018) developed a variational autoencoder (VAE) to learn latent dynamics from single-trial spik-
ing activities and Prince et al. (2020) extended the framework to work with calcium imaging data.
Numerous work have demonstrated generative adversarial networks (GAN) are capable of synthe-
sizing neuronal activities that capture the low-level statistics of recordings obtained from behaving
animals (Molano-Mazon et al., 2018; Ramesh et al., 2019; Li et al., 2020).

In this work, we explore the use of cycle-consistent adversarial networks (Zhu et al., 2017), or Cy-
cleGAN, to learn the mapping between pre- and post-learning neuronal activities in an unsupervised
and data-driven manner. In other words, given the neural recordings of a novice animal, can we
translate the neuronal activities that correspond to the animal with expert-level performance, and
vice versa? The resulting transformation summarizes these changes in response characteristics in
a compact form and is obtained in a fully data-driven way. Such a transformation can be useful in
follow-up studies to 1) identify neurons that are particularly important for describing the changes
in the overall response statistics, not limited to first or second order statistics; 2) detect response
patterns relevant for changes from pre- to post-learning; and 3) determine what experimental details
are of particular interest for learning.

To learn the transformation, we derive a standardized procedure to train, evaluate and interpret the
CycleGAN framework. To improve the explainability of our work, we incorporate a self-attention
mechanism into our generator models and also employ a feature-importance visualization method
into our pipeline so that we can visualize and identify the input that the networks deemed relevant
in their decision making process. In addition, we introduced a novel neuron ordering method to im-
prove the learning performance of convolutional neural networks (CNN). To quantify the capability
of the proposed unsupervised learning method, we evaluate our method on two datasets: 1) an arti-
ficially constructed dataset with a handcrafted transformation, and 2) recordings obtained from the
primary visual cortex of a behaving animal across multiple days. We then compare several metrics
and statistics between the recorded and translated calcium traces and their inferred spike trains.

2 METHODS

2.1 ANIMAL EXPERIMENT To obtain neuronal activities that can demonstrate pre- and post-
learning responses, we conducted a visual-based experiment which follows a similar procedure as
Pakan et al. (2018) and Henschke et al. (2020). Briefly, a head-fixed mouse was placed on a linear
treadmill that allows it to move forward and backward. A lick spout and two monitors were placed in
front of the treadmill and a virtual corridor with defined grating pattern was shown to the mouse. A
reward (water drop) would be made available if the mouse licked within the predefined reward loca-
tion (at 120-140 cm), in which a black screen is displayed as a visual clue. Figure A.1 illustrates the
experiment setup. The mouse should learn to utilize both visual information and self-motion feed-
back to maximize reward. The same set of neurons in the primary visual cortex were labelled with
GCaMP6 calcium indicator and monitored throughout 4 days of experiment, the relative changes in
fluorescence (∆F/F0) over time were used as a proxy for an action potential. 4 mice were used in
the virtual-corridor experiment and all mice transitioned from novice to expert in the behaviour task
within 4 days of training. Mouse 1 took on average 6.94s per trial on day 1 and 4.43s per trial on
day 4, Table A.1 and A.2 shows the trial information of all the mice. Hence, this dataset can provide
excellent insights into how cortical responses reshape with experience.

2.2 CYCLEGAN CycleGAN (Zhu et al., 2017) is a GAN-based unsupervised framework that
learns the mapping between two unpaired distributions X and Y via the adversarial training and
cycle-consistency optimization. The framework has shown excellent results in a number of unsuper-
vised translation tasks, including natural language translation (Gomez et al., 2018) and molecular
optimization (Maziarka et al., 2020), to name a few.

Let X and Y be two distributions with unknown mappings that correspond to (novice) pre- and
(expert) post-learning neuronal activity, respectively. CycleGAN consists of four DNNs: generator
G : X → Y that maps novice activities to expert activities and generator F : Y → X that
maps expert activities to novice activities; discriminator DX : X → [0, 1] and discriminator DY :
Y → [0, 1] that learn to distinguish novice and expert neural activities, respectively. In a forward

2

Under review as a conference paper at ICLR 2022

cycle step (X → Y → X , illustrated in Figure B.1), we first sample a novice recording x from
distribution X and apply transformation G to obtain ŷ = G(x). We expect ŷ to resembles data
from the expert distribution Y , hence DY learns to minimize (1) LDY = −Ey∼Y [(DY (y)− 1)2] +
Ex∼X [DY (G(x))2]. Similar to a typical GAN, generator G learns to deceive DY with the objective
of (2) LG = −Ex∼X [(DY (G(x))−1)2]. Note that these are same objectives in LSGAN (Mao et al.,
2017). However, DY can only verify if ŷ ∈ Y , though cannot ensure that ŷ is the corresponding
expert activity of the novice recording x. Moreover,X and Y are not paired hence we cannot directly
compare ŷ with samples in Y . To tackle this issue, CycleGAN applies another transformation to
reconstruct the novice recording x̄ = F (ŷ) where the distance ‖ x − x̄ ‖ or ‖ x − F (G(x)) ‖
should be minimal. Therefore, the generators also optimize this cycle-consistent loss (3) Lcycle =
Ex∼X [‖ x − F (G(x)) ‖] + Ey∼Y [‖ y − G(F (y)) ‖]. Mean absolute error (MAE) was used as the
distance function, though other distance functions can also be employed. In addition, we would
expect x̂ = F (x) and ŷ = G(y) to be in distributions X and Y given that F : Y → X and
G : X → Y , hence the identity loss objective (4) LG

identity = Ey∼Y [‖ y −G(y) ‖].

Taken all together, G optimizes the following objectives: (5) LG
total = LG + λcycleLcycle +

λidentityLG
identity where λidentity and λcycle are hyper-parameters for identity and cycle loss coefficients.

All four networks are trained jointly where LF
total and LDX are similar to LG

total and LDY though in
opposite directions. In this work, we adapt the CycleGAN framework to learn the unknown map-
ping between pre- and post-learning neuronal activities recorded from the primary visual cortex of
behaving mice. In addition, we experiment with different GANs objective formulations on top of the
original LSGAN objective, including GAN (Goodfellow et al., 2014), WGANGP (Arjovsky et al.,
2017) and DRAGAN (Kodali et al., 2017). Table C.2 shows their exact formulations in CycleGAN.

2.3 MODEL PIPELINE We devise a consistent analysis framework, including data preprocessing
and augmentation, networks interpretation, and evaluation of the generated calcium fluorescence
signals and their inferred spike trains. Figure C.1 illustrates the complete pipeline of our work.1

We denote the day 1 (pre-learning) and day 4 (post-learning) recording distributions to be X and Y .
With Mouse 1, W = 102 neurons from the primary visual cortex were monitored, as well as trial
information such as the virtual distance, licks and rewards. In total, 21471 and 21556 samples were
recorded on day 1 and 4. Since we want the generators and discriminators to identify patterns rele-
vant to the animal experiment in a data-driven manner, we do not incorporate any trial information
into the training data. We first segment the two datasets with a sliding window of size H = 2048
along the temporal dimension (around 85 s in wall-time), resulting in data with shape (N,H,W)
for X and Y where N is the total number of segments. We select a stride size that space out each
segment evenly so that we obtained a sufficient number of samples while keeping the correlations
between samples reasonably low. In order to take advantage of the spatiotemporal information in the
neuronal activities in a 2D CNN, we further convert the two sets to have shape (N,H,W,C) where
C = 1. Finally, we normalize each set to the range [0, 1], and divide them into train, validation and
test set with 3000, 200 and 200 samples respectively.

To evaluate the transformation results of G and F , we can compare the cycle-consistency
MAE(X,F (G(X))) and MAE(Y,G(F (Y))), as well as the identity losses MAE(X,F (X)) and
MAE(Y,G(Y)) (e.g. we expect F to apply no transformation to a novice sample x). We also evalu-
ate the generated data in terms of spike activities in the following distribution combinations: novice
against translated novice (X | F (Y)), novice against reconstructed novice (X | F (G(X))), ex-
pert against translated expert (Y | G(X)) and expert against reconstructed expert (Y | G(F (Y))).
We use Cascade (Rupprecht et al., 2021) to infer spike trains from the recorded and generated cal-
cium signals to assess the credibility of the generated signals. We measure the following com-
monly used spike train similarities and statistics: 1) mean firing rate for evaluating single neuron
statistics; 2) pairwise Pearson correlation for evaluating pairwise statistics; 3) pairwise van Rossum
distance (Rossum, 2001) for evaluating general spike train similarity. We evaluate these quantities
across the whole population for each neuron or neuron pairs and compare the resulting distributions
over these quantities obtained from the recorded and generated data. We, therefore, validate the
whole spatiotemporal first and second-order statistics as well as general spike train similarities.

To improve the explainability of this work we introduce a number of recently proposed model inter-
pretation methods into our pipeline. We design a self-attention generator architecture which allows

1The software codebase will be made publicly available upon acceptance.

3

Under review as a conference paper at ICLR 2022

the network to learn a set of attention masks such that it encourages the network to better focus on
specific areas of interest in the input and also enables us to visually inspect the learned attention
maps. In addition, we use GradCAM (Selvaraju et al., 2017), a method to visualize discriminative
region(s) learned by a CNN classifier w.r.t to the input, to extract localization maps from the gen-
erators and discriminators. The self-attention mechanism and GradCAM visualization allow us to
verify and interpret that the networks are learning meaningful features. Moreover, these extracted
attention maps can reveal neurons or activity patterns that are informative in the neuronal learning
process. A detail description of the model architectures are available in Section D.

2.3.1 NEURON ORDERING CNNs with a smaller kernel can often perform as well or even better
than models with larger kernels while consisting of fewer trainable parameters (He et al., 2016a;
Li et al., 2021). Nevertheless, a smaller kernel can also limit the receptive field of the model, or
the region in the input that the model is exposed to in each convolution step (Araujo et al., 2019).
In addition, the recordings obtained from the virtual-corridor experiment were annotated based on
how visible the neurons were in the calcium image, rather than ordered in a particular manner (see
Figure A.1). This could potentially restrict CNNs with small receptive field to learn meaningful
spatial-temporal information from the population responses. To mitigate this issue, we derive a
procedure to pre-sort X and Y , such that neurons that are highly correlated or relevant are nearby
in their ordering. A naive approach is to sort the neurons by their firing rate or average pairwise
correlation, where the neuron with the highest firing rate or the neuron that, on average, is most
correlated to other neurons is ranked first in the data matrix. However, it is possible that not all high-
firing neurons or most correlated neurons are the most influential in the learning process. Therefore,
we also explore a data-driven approach. Deep autoencoders have shown excellent results in feature
extraction and representation learning (Gondara, 2016; Wang et al., 2016; Tschannen et al., 2018),
and we can take advantage of its unsupervised feature learning ability.

We employ a deep autoencoder AE which learns to reconstruct calcium signals in X and Y
jointly. AE consists of 3 convolution down-sampling blocks, followed by a bottleneck layer, then
3 transposed-convolution up-sampling blocks. The down-sampling block consists of a convolution
layer followed by Instance Normalization (Ulyanov et al., 2016), Leaky ReLU (LReLU) activa-
tion (Maas et al., 2013) and Spatial Dropout (Tompson et al., 2015), whereas a transpose convolution
is used in the up-sampling block instead. We optimize the mean-squared error (MSE) reconstruction
loss on the training set of X and Y , then we use the per-neuron reconstruction error on the test set to
sort the neurons (in ascending order): order = argsort(0.5×[MSE(X,AE(X))+MSE(Y,AE(Y))]).
The neuron sorting process is part of the data preprocessing step and is independent from the Cycle-
GAN framework.

2.3.2 SYNTHETIC DATA CycleGAN was originally introduced for image-to-image translation.
Albeit the two image distributions are not aligned hence cannot be directly compared easily, one
could still visually inspect whether or not x̂ = F (y) and ŷ = G(x) are reasonable transformations.
However, it would be difficult to visually inspect the two transformations with calcium signals. To
this end, we introduce an additional dataset Y = Φ(X) with a known transformation Φ, such that
G : X → Y = Φ(X) and F : Y = Φ(X) → X . We can then verify G(x) = ŷ = Φ(x) and
F (y) = x̂ = x. We defined the spatiotemporal transformation Φ that can be identified visually as
follows: (6) Φ(x) = mdiagonalx + 0.5η, where mdiagonal is a diagonal mask to zero-out the lower
left corners of the signals and η ∼ N (µx, σ

2
x). µx and σx are the per-neuron mean and standard

deviation ofX . Figure 1 shows an augmented example. Importantly, we shuffle the train set after the
augmentation procedure so that X and Y appears to be unpaired to the model. Whereas the test set
remains in its original paired arrangement so that we can compare ‖ X−F (Y) ‖ and ‖ Y −G(X) ‖.

Figure 1: (Left) original x and (Right) augmented y = Φ(x) calcium traces, where the bottom left
corner (yellow dashed triangle) in y has been masked out and noise being added to the segment.

4

Under review as a conference paper at ICLR 2022

3 RESULTS

We assessed the CycleGAN framework on synthetic data with known ground truth and on experi-
mental data where we recovered trial information. We also experimented with different GAN objec-
tive formulations as well as different neuron ordering methods. All models presented below were
trained with the Adam optimizer (Kingma & Ba, 2014) for 200 epochs where all models converged.
We trained all CycleGAN models on a single NVIDIA A100 GPU which on average took 15 hours
to complete. It took an additional hour to train the autoencoder in the case where we pre-sort neurons
according to the AE reconstruction loss. Table C.1 details the hyper-parameters used.

3.1 SYNTHETIC DATA To show that our method is capable of learning subtle differences in cal-
cium traces, we first fit our model on the synthetic dataset. Figure 2 shows calcium signals of the
forward and backward cycle transformation of neuron 75 from a randomly selected test segment,
where AGResNet generators were trained with LSGAN objectives (more examples in Figure F.1).
Without paired samples, F (y) made a reasonable attempt in reconstructing the augmented region
in y, whereas G(x) was able to learn to mask out the appropriate regions in x. Since Φ(X) = Y
performed a systematic spatiotemporal transformation to X , one would expect the networks to learn
features that focus on the augmented region of the data. We, therefore, use GradCAM (Selvaraju
et al., 2017) localization maps to visualize regions of interest learned by the discriminators. The
localization map of discriminator DY (Y) when given an augmented sample y = Φ(x), shown in
Figure 3, demonstrates a high level of attention around the edge of the diagonal region. This indi-
cates that DY learned to distinguish whether or not a given sample is from distribution Y = Φ(X)
by predominantly focusing on the edge of the masking area. On the other hand, since no augmen-
tation was done on the input to discriminator DX , the localization map does not appear to have a
particular structural area of focus at first (c.f. Figure F.3). Interestingly, once we overlay the reward
zones on the input, we observe that the area of focus learned by DX is loosely aligned with the
reward zones. Note that reward zones are external task-relevant regions that are expected to shape
the neural activity in the primary visual cortex as the visual patterns change when the mouse enters
the reward zone. Our findings therefore suggest that DX learned distinctive patterns from highly
ranked neurons around the reward zones. Figure 3 shows the AG sigmoid masks from G(x). Both
attention masks ignored the augmentation region (i.e. bottom left corner), as information in that area
is not relevant in the G : X → Φ(X) transformation. Similar, F which should learn Φ(X) → X
also allocated less focus in the masked region in its reconstruction process, as it contains no useful
information. (see Figure F.3).

Since X and Y = Φ(X) are paired in the test set, this allows us to compute MAE(Y,G(X)) and
MAE(X,F (Y)) hence providing a good testbed to compare different generator architectures, GAN
objective formulations and neuron ordering methods. We also added the identity models as baseline,
which should have perfect cycle-consistent loss as F (G(x)) and G(F (y)) perform no operation on
the data. Nevertheless, despite the fact that Φ is a relatively simple augmentation, one would expect
the difference between X and Φ(X) to be small. Table 1 shows the direct comparison results of
different combinations of objective formulations, generator architectures and neuron ordering meth-
ods. Both ResNet and AGResNet achieved significantly better results than the identity model. To
mitigate the issues of vanishing gradient and mode collapse, we used gradient penalty regulariza-
tion to enforce the 1-Lipschitz condition in the discriminator. We, therefore, tested 4 popular GAN
objectives with the CycleGAN framework. Interestingly, the LSGAN objectives achieved slightly
better results than GAN objectives while both performed better than identity. The two objectives
with gradient penalty obtained lower cycle-consistent errors than GAN and LSGAN, yet performed
significantly worse in the intermediate transformations F (Y) and G(X). This suggests that the dis-
criminators could be overpowered by the generators when trained with WGANGP and DRAGAN,
in which DX(F (Y)) and DY (G(X)) are neither informative nor impactful to the overall objective.
This is likely because the gradient penalty regularization further complicates the already perplexing
CycleGAN objectives. We employed 3 different methods to pre-sort neurons in the data, including
firing rate, pairwise correlation and autoencoder reconstruction loss. In addition, to demonstrate
that 2D convolution can indeed better learn the spatial structure in neuronal activities, we trained
a 1D variant of AGResNet (denoted as 1D-AGResNet) as baseline which disregards all spatial
information. Overall, models trained on sorted neurons achieved better results compared to un-
ordered neurons and in most cases, sorting neurons according to the autoencoder reconstruction loss
performed the best. Moreover, 1D-AGResNet performed significantly worse than its 2D coun-
terparts, suggesting that the spatial structure in the neural activities is indeed important. In the

5

Under review as a conference paper at ICLR 2022

remaining work, we use the LSGAN objective to train the generators with the AGResNet archi-
tecture along with neurons ordered based on autoencoder reconstruction loss as this combination
achieved the best overall results on the synthetic data.

Figure 2: Forward and backward cycle steps of neuron 75 from a randomly selected test segment.
G should learn to translate signals in the yellow solid box to yellow dotted box, and F from green
dotted box to green solid box. We expect the signals in the green solid box resemble signals in the
yellow solid box and yellow dotted box to green dotted box. More examples are shown in Figure F.1

Figure 3: (Left) Learned attention masks AG1 and AG2 in AGResNet G given a random test
segment x ∼ X . AG1 and AG2 both learned to ignore information in (to-be) masked region in x.
Note that AG1 and AG2 are 4 and 2 times lower-dimensional than the original input dimension.
(Right) GradCAM localization map of DY given a randomly select test segment y = Φ(x) ∼ X .
The top panel shows the original input, where yellow and orange dotted lines mark the start and
end of each reward zone. The second panel shows the GradCAM localization map superimposed on
the input. Neurons were ordered based on AE reconstruction loss, the exact ordering is available in
Table E.1. Figure F.3 shows the attention gates and GradCAM map of F (y) and DX(x).

3.2 RECORDED DATA As our proposed method has successfully learned the unpaired transforma-
tions in the synthetic dataset, we now move on to the recordings obtained from the virtual-corridor
experiment where we attempt to learn the unknown mapping between pre- and post-learning neu-
ronal activity. Figure 4 shows the cycle transformation of neuron 50 from a randomly selected test
segment. Visually, G and F seems to be able to reconstruct x̄ = F (G(x)) and ȳ = G(F (y)),
and that the two generators are not simply passing through x and y in intermediate step ŷ = G(x)
and x̂ = F (y). To better analyse the transformation performance, we first compare the generated
calcium florescence signals with the recorded test set data. The cycle-consistent loss on the test set
achieved a values of MAE(X,F (G(X))) = 0.0733 and MAE(Y,G(F (Y))) = 0.0737. The identity
losses for MAE(Y,G(Y)) and MAE(Y,G(Y)) are also minimal, with values of 0.0101 and 0.0069,
respectively. For reference, MAE(X,Y) = 0.3674. This suggest G and F are not simply passing
through the data without any processing. In addition, the low identity loss indicates that the gener-
ators can correctly identify whether or not the given input is already part of its target distribution.
Table G.1 reports the cycle-consistent and identity loss with different neuron ordering methods.

Since we lack paired data in the in vivo recordings, we cannot directly compare MAE(X,F (Y)) nor
MAE(Y, F (X)), in contrast to Section 3.1. In order to better analyse the two intermediate transfor-
mations ŷ = G(x) and x̂ = F (y), and show that G and F can indeed translate x and y into their
respective distributions ŷ ∼ Y and x̂ ∼ X , we also compare a set of spike train statistics. Section H

6

Under review as a conference paper at ICLR 2022

|X − F (Y)| |X − F (G(X))| |Y −G(X)| |Y −G(F (Y))|

(A) DIFFERENT MODELS WITH LSGAN OBJECTIVE

IDENTITY 0.4234± 0.0172 0 0.4234± 0.0172 0
RESNET 0.1617± 0.0071 0.1173± 0.0043 0.3743± 0.0391 0.1247± 0.0067

AGRESNET 0.1508± 0.0089 0.1107± 0.0051 0.2520± 0.0262 0.1467± 0.0084

(B) DIFFERENT OBJECTIVES WITH AGRESNET

GAN 0.1611± 0.0063 0.0948± 0.0069 0.2513± 0.0350 0.1491± 0.0050
LSGAN 0.1508± 0.0089 0.1107± 0.0051 0.2520± 0.0262 0.1467± 0.0084

WGANGP 0.2381± 0.0123 0.1600± 0.0098 0.3186± 0.0096 0.1960± 0.0093
DRAGAN 0.3832± 0.0115 0.0434± 0.0021 0.4012± 0.0207 0.0568± 0.0027

(C) DIFFERENT NEURON ORDERING WITH AGRESNET AND LSGAN OBJECTIVE

1D-AGRESNET 0.2724± 0.0101 0.1878± 0.0115 0.3151± 0.0445 0.1655± 0.0115
ORIGINAL 0.1508± 0.0089 0.1107± 0.0051 0.2520± 0.0262 0.1467± 0.0084

FIRING RATE 0.1578± 0.0079 0.0722± 0.0044 0.1304± 0.0306 0.0842± 0.0036
CORRELATION 0.1556± 0.0044 0.0852± 0.0042 0.1369± 0.0209 0.0930± 0.0034
AUTOENCODER 0.1433± 0.0083 0.0639± 0.0032 0.1227± 0.0135 0.0671± 0.0030

Table 1: MAE comparison between synthetic and generated calcium signals. Results of (A) identity,
ResNet and AGResNet generators trained with LSGAN objective, (B) AGResNet generators
trained with different objectives and (C) neurons ordered by original annotation, firing rate, pairwise
correlation and autoencoder reconstruction loss. We also trained a 1D variant of AGResNet as a
baseline which disregards the neuron spatial structure. Lowest values marked in bold.

-0.21

0.49

1.19

∆
F
/F

x G(x) F(G(x))

0 21 42 63 85
-0.28

0.39

1.06
y

0 21 42 63 85

Time (s)

F(y)

0 21 42 63 85

G(F(y))

Figure 4: Forward and backward cycle steps of neuron 50 from a randomly selected test segment.
More examples are shown in Figure G.1 and Figure G.2

shows that per-neuron and per-segment comparison. We first compare the firing rate distribution of
each neuron between recorded and translated data (e.g. X vs F (Y) and X vs F (G(X))). Examples
of the distribution comparisons are available in Section H. Since we expect that the distribution of
the generated data resemble of those from the recorded data, we can compare the KL divergence
for each neuron to quantify the transformation performance. The firing rate distributions of F (Y)
and G(X) closely matched the distributions of X and Y , with average KL divergence of 1.1648
and 1.0697, respectively. Similarly, we can compute the pairwise correlation of each neuron w.r.t
the population and compare the distribution between translated and recorded data. X | F (Y) and
Y |G(X) achieved an average KL divergence value of 0.0479 and 0.0493 in the pairwise correlation
comparison, both were significantly better results than the baseline identity model. In addition, we
measure the van Rossum distance between X and F (Y) for each neuron across 200 test samples,
and represent the results in the form of a heatmap. We can observe a clear diagonal line of low-
intensity values in the heatmaps for most neurons (e.g. Figure H.3 and H.4 for G and F). Hence,
there exists a spike train in X and Y that corresponds to a translated spike train in F (Y) and G(X).
Table G.2 summaries the average KL divergence of the 3 spike statistics in different distribution
combinations, the results indicate that the generators can indeed learn the distribution translation
from pre- to post-learning neuronal activities, and vice-versa. We additionally trained separate mod-
els on the activities recorded from the other mice and obtained similar results, which are available
in Section I, J and K.

7

Under review as a conference paper at ICLR 2022

In the previous section, we were able to identify and interpret the learned features in a relatively
straightforward manner due to the systematic augmentation we introduced into the data. However,
visualizing and interpreting the attention maps on pre- and post-learning data could be more chal-
lenging as there would not be obvious patterns in the inputs to anticipate. Nevertheless, we would
expect a higher level of activities in the V1 neurons when the mouse is about to enter or inside the re-
ward zone, where the grating pattern on the virtual walls turn to black. Subsequently, the generators
and discriminators should learn meaningful features from responses surrounding the reward zones.
We first visualize the sigmoid masks in AGResNet. Figure 5 shows the learned attention masks of
G superimposed on the latent inputs (see Figure G.3 for F). When the neurons were ordered, either
by firing rate or autoencoder, we observe that the generators allocate more attention toward neurons
that rank higher. This suggest that by grouping neurons in a meaningful manner, the convolutional
layers in the generators can extract relevant features more effectively as compared to when neurons
were randomly ordered. The spike analysis showed that ordering neurons in a structured manner
does indeed yield better results across the board. In most cases, ordering the neurons based on the
reconstruction error achieved the best results.

We then inspect the GradCAM localization maps of the discriminators. Similar to DX in the syn-
thetic dataset, we observed regions of high attention surrounding the reward zones in both DX and
DY (see Figure G.3 and 5). To better visualize the relationship between the area of focus learned
by the model and the virtual-corridor, we generate positional attention maps as shown in Figure 6.
We first compute GradCAM maps for all test samples, then we average the activation value for each
neuron at each virtual position (160 cm in total) and plot the average activation value against dis-
tance. Effectively, these maps should represent the average attention learned by the models w.r.t. the
visual location of the animal. Importantly, the only objective the discriminators had was to distin-
guish if a given sample is from a particular distribution. Thus, the discriminators could have learned
trivial features. Instead, DX focused on a specific group of neurons at 100 - 130 cm in the virtual
environment, which coincides with the beginning of the reward zone. Moreover, DY learned to
focus on two groups of neurons with attention patterns that were also in alignment with the reward
zone in the virtual-corridor experiment. Similarly, we can extract these positional attention maps
for G(X) and F (Y) following the same procedure, where we monitor the change in gradient in
the last residual block RB9 (bottom row in Figure 6). Interestingly, both generators focused on the
first few neurons in their transformation operations. G focused on activities at the beginning of the
trial as well as activities in the reward zone; whereas with F , it paid higher level of attention to
activities right before the reward zone. This suggests that to learn the transformation from post- to
pre-learning responses, the activities the mouse exhibit as it approaches the reward zone is deemed
more important by the networks. Note that no trial information was incorporated into the training
data nor was it formulated in the objective function. Hence, these interesting patterns we observe
here were learned entirely by the networks themselves via the adversarial process.

Figure 5: (Left) AG sigmoid masks in AGResNet G given a random test segment x ∼ X . The
histograms on the right show the neuron-level attention. Note that AG1 and AG2 are at 4 and 2
times lower dimension than the input. (Right) GradCAM localization map of DY given a randomly
select test segment y ∼ Y . The top panel shows the original input, where yellow and orange dotted
lines mark the start and end of each reward zones. The second panel shows the localization map
superimposed on the input. Neurons were ordered based on AE reconstruction loss. The exact
ordering is available in Table E.1. Plots of F and DX are shown in Figure G.3

8

Under review as a conference paper at ICLR 2022

Figure 6: Positional attention maps of (Top Left) DX , (Top Right) DY , (Bottom Left) G and (Bot-
tom Right) F w.r.t virtual position in the animal experiment. Yellow and orange dotted lines indicate
the start and end of the reward zone. Neurons were ordered based on AE reconstruction loss. The
exact ordering is available in Table E.1. The pre- and post-learning activities of top 10 highlighted
neurons learned by DX and DY are available in Figure G.5 and Figure G.6b, respectively.

4 DISCUSSION

We demonstrated that the CycleGAN (Zhu et al., 2017) framework is a capable data-driven method
to model the translation between pre- and post-learning responses recorded in vivo. With self-
attention and feature-importance visualization methods, we are able to visualize information that
the networks deemed important in their translation and discrimination process. Intriguingly, without
providing trial information in the training process, the networks self-identified activities surrounding
the reward zone in the virtual-corridor experiment to be highly influential, which aligns with our
understanding that the responses in the visual cortex were shaped by the change of visual cues. In
addition, we introduced a novel and simple to implement neuron ordering method enabling more
effective learning by convolutional-based networks.

A significant portion of the neuronal activity validation in Section 3.2 was performed in spike trains
inferred from the recorded and generated calcium fluorescent signals using Cascade (Rupprecht
et al., 2021), which is a recently introduced method that has outperformed existing model-based
algorithms. However, reliable spike inference from fluorescent calcium indicators signals remains an
active area of research (Theis et al., 2016). For instance, Vanwalleghem et al. (2020) demonstrated
that spiking activities could be missed due to the implicit non-negativity assumption in calcium
imaging data which exists in many deconvolution algorithms, including Cascade. Nonetheless, we
would like to emphasize that Cascade was used to deconvolve calcium signals for all distributions
of data and therefore all inferred spike trains experienced the same bias. Another notable constraint
in our method is the fundamental one-to-one mapping limitation in the CycleGAN framework. The
generators learn a deterministic mapping between the two domains and only associate each input
with a single output. However, most cross-domain relationships consist of one-to-many or many-
to-many mappings. More recently proposed methods, such as Augmented CycleGAN (Almahairi
et al., 2018), aim to address such fundamental limitations by introducing auxiliary noise to the two
distributions, and are thus able to generate outputs with variations. Nevertheless, these methods are
most effective when trained in a semi-supervised manner which is not possible with our unpaired
neural activity.

All in all, as deep unsupervised methods have become more expressive and explainable, and neu-
ronal activities in different learning phases from behaving animals have become more readily avail-
able, there is potential for novel insights into fundamental learning mechanisms. Future directions
include sorting neurons in 2D space, as they were recorded, such that the model can take advantage
of both vertical and horizontal spatial information.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Amjad Almahairi, Sai Rajeshwar, Alessandro Sordoni, Philip Bachman, and Aaron Courville. Aug-
mented cyclegan: Learning many-to-many mappings from unpaired data. In International Con-
ference on Machine Learning, pp. 195–204. PMLR, 2018.

André Araujo, Wade Norris, and Jack Sim. Computing receptive fields of convolutional neural net-
works. Distill, 2019. doi: 10.23915/distill.00021. https://distill.pub/2019/computing-receptive-
fields.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

Chensi Cao, Feng Liu, Hai Tan, Deshou Song, Wenjie Shu, Weizhong Li, Yiming Zhou, Xiaochen
Bo, and Zhi Xie. Deep learning and its applications in biomedicine. Genomics, proteomics &
bioinformatics, 16(1):17–32, 2018.

John P Cunningham and M Yu Byron. Dimensionality reduction for large-scale neural recordings.
Nature neuroscience, 17(11):1500–1509, 2014.

Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham. Linear dynamical neural
population models through nonlinear embeddings. Advances in neural information processing
systems, 29:163–171, 2016.

Aidan N Gomez, Sicong Huang, Ivan Zhang, Bryan M Li, Muhammad Osama, and Lukasz Kaiser.
Unsupervised cipher cracking using discrete gans. arXiv preprint arXiv:1801.04883, 2018.

Lovedeep Gondara. Medical image denoising using convolutional denoising autoencoders. In 2016
IEEE 16th international conference on data mining workshops (ICDMW), pp. 241–246. IEEE,
2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

Julia U Henschke, Evelyn Dylda, Danai Katsanevaki, Nathalie Dupuy, Stephen P Currie, Theok-
litos Amvrosiadis, Janelle MP Pakan, and Nathalie L Rochefort. Reward association enhances
stimulus-specific representations in primary visual cortex. Current Biology, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of gans.
arXiv preprint arXiv:1705.07215, 2017.

Bryan M Li, Theoklitos Amvrosiadis, Nathalie Rochefort, and Arno Onken. Calciumgan: A gen-
erative adversarial network model for synthesising realistic calcium imaging data of neuronal
populations. arXiv preprint arXiv:2009.02707, 2020.

10

Under review as a conference paper at ICLR 2022

Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. A survey of convolutional neural
networks: analysis, applications, and prospects. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. icml, volume 30, pp. 3. Citeseer, 2013.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley.
Least squares generative adversarial networks. In Proceedings of the IEEE international confer-
ence on computer vision, pp. 2794–2802, 2017.

Łukasz Maziarka, Agnieszka Pocha, Jan Kaczmarczyk, Krzysztof Rataj, Tomasz Danel, and Michał
Warchoł. Mol-cyclegan: a generative model for molecular optimization. Journal of Cheminfor-
matics, 12(1):1–18, 2020.

Manuel Molano-Mazon, Arno Onken, Eugenio Piasini*, and Stefano Panzeri*. Synthesizing real-
istic neural population activity patterns using generative adversarial networks. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=r1VVsebAZ.

Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa,
Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net:
Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018.

Janelle MP Pakan, Stephen P Currie, Lukas Fischer, and Nathalie L Rochefort. The impact of visual
cues, reward, and motor feedback on the representation of behaviorally relevant spatial locations
in primary visual cortex. Cell reports, 24(10):2521–2528, 2018.

Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
methods, pp. 1, 2018.

Francesco Piccialli, Vittorio Di Somma, Fabio Giampaolo, Salvatore Cuomo, and Giancarlo Fortino.
A survey on deep learning in medicine: Why, how and when? Information Fusion, 66:111–137,
2021.

Luke Yuri Prince, Shahab Bakhtiari, Colleen J Gillon, and Blake Aaron Richards. Calfads: latent
factor analysis of dynamical systems in calcium imaging data. 2020.

Poornima Ramesh, Mohamad Atayi, and Jakob H Macke. Adversarial training of neural encoding
models on population spike trains. 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

MCW van Rossum. A novel spike distance. Neural computation, 13(4):751–763, 2001.

Peter Rupprecht, Stefano Carta, Adrian Hoffmann, Mayumi Echizen, Antonin Blot, Alex C Kwan,
Yang Dan, Sonja B Hofer, Kazuo Kitamura, Fritjof Helmchen, et al. A database and deep learning
toolbox for noise-optimized, generalized spike inference from calcium imaging. Nature Neuro-
science, pp. 1–14, 2021.

Virginia Rutten, Alberto Bernacchia, Maneesh Sahani, and Guillaume Hennequin. Non-reversible
gaussian processes for identifying latent dynamical structure in neural data. Advances in Neural
Information Processing Systems, 2020.

Omid G Sani, Hamidreza Abbaspourazad, Yan T Wong, Bijan Pesaran, and Maryam M Shanechi.
Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification.
Nature Neuroscience, 24(1):140–149, 2021.

11

https://openreview.net/forum?id=r1VVsebAZ
https://openreview.net/forum?id=r1VVsebAZ

Under review as a conference paper at ICLR 2022

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu, Marius
Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, et al. Neuropixels 2.0: A
miniaturized high-density probe for stable, long-term brain recordings. Science, 372(6539), 2021.

Lucas Theis, Philipp Berens, Emmanouil Froudarakis, Jacob Reimer, Miroslav Román Rosón, Tom
Baden, Thomas Euler, Andreas S Tolias, and Matthias Bethge. Benchmarking spike rate inference
in population calcium imaging. Neuron, 90(3):471–482, 2016.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 648–656, 2015.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in autoencoder-based
representation learning. arXiv preprint arXiv:1812.05069, 2018.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Gilles Vanwalleghem, Lena Constantin, and Ethan K Scott. Calcium imaging and the curse of
negativity. Frontiers in neural circuits, 14, 2020.

Yasi Wang, Hongxun Yao, and Sicheng Zhao. Auto-encoder based dimensionality reduction. Neu-
rocomputing, 184:232–242, 2016.

Alex H. Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I. Ryu, Krishna V. Shenoy,
Mark Schnitzer, Tamara G. Kolda, and Surya Ganguli. Unsupervised discovery of demixed,
low-dimensional neural dynamics across multiple timescales through tensor component anal-
ysis. Neuron, 98(6):1099–1115.e8, 2018a. ISSN 0896-6273. doi: https://doi.org/10.1016/j.
neuron.2018.05.015. URL https://www.sciencedirect.com/science/article/
pii/S0896627318303878.

Alex H Williams, Tony Hyun Kim, Forea Wang, Saurabh Vyas, Stephen I Ryu, Krishna V Shenoy,
Mark Schnitzer, Tamara G Kolda, and Surya Ganguli. Unsupervised discovery of demixed, low-
dimensional neural dynamics across multiple timescales through tensor component analysis. Neu-
ron, 98(6):1099–1115, 2018b.

Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Krishna V Shenoy, and Ma-
neesh Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity. Journal of neurophysiology, 102(1):614–635, 2009.

Ryad Zemouri, Noureddine Zerhouni, and Daniel Racoceanu. Deep learning in the biomedical
applications: Recent and future status. Applied Sciences, 9(8):1526, 2019.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

12

https://www.sciencedirect.com/science/article/pii/S0896627318303878
https://www.sciencedirect.com/science/article/pii/S0896627318303878

Under review as a conference paper at ICLR 2022

APPENDIX

A ANIMAL EXPERIMENT

DAY NUM. TRIALS EXPERIMENT DURATION AVG. TRIAL DURATION LICKS REWARDS

1 129 894.73S 6.94S 2813 140
2 177 898.68S 5.08S 2364 182
3 192 897.16S 4.67S 2217 198
4 203 898.45S 4.43S 1671 213

Table A.1: Trial information of mouse 1 in the virtual-corridor experiment across 4 days of training,
which include the number of trials, average duration of each trial, total number of licks and the total
reward received by the mouse. The mouse achieved “expert” level by day 4 where it had a success
rate of > 75% at the task. All data were recorded at a sampling rate of 24Hz. Note that the same
mouse was used in the experiment.

MOUSE NUM. NEURONS DAY 1 LICKS DAY 1 REWARDS DAY 4 LICKS DAY 4 REWARDS

1 102 2813 140 1671 213
2 59 1038 75 1069 157
3 21 919 98 1065 302
4 32 1239 192 2493 230

Table A.2: The number of licks and rewards the 4 mice exhibit on day 1 and 4 in the virtual-corridor
experiment (see Section 2.1).

Ca 2+ imaging

n 1 n 2 n 3 n 102

(N, 2048, 102, 1)

Figure A.1: (Left) illustration of the mouse virtual-environment setup. A defined grating pattern is
displayed on the monitors and the mouse can move forward and backward in the virtual-corridor.
When the mouse approaches the reward zone, which was set at 120 cm to 140 cm from the initial
start point, the grating pattern would disappear and be replaced with a blank screen. If the mouse
licked within the virtual reward zone, then a droplet of water was given to the mouse as a reward.
Trials reset at 160 cm. The figure is based on Figure 1 in Pakan et al. (2018). (Right) original
coordinates and annotation order of the 102 recorded neurons. i.e. neuron #1 here would be at
index 0 in the data matrix, and neuron #65 would be at index 64. Neurons followed the same order
across all experiments.

13

Under review as a conference paper at ICLR 2022

B CYCLEGAN

(a)

cycle consistent loss

(b)

Figure B.1: Illustration of (a) the data flow and (b) the cycle-consistent loss in a forward cycle
X → Y → X . G and F are generators that learn the transformation of X → Y and Y → X
respectively. We first sample x ∼ X , then apply transformation G to obtain ŷ = G(x). To ensure
ŷ resemble distribution Y , we train discriminator DY to distinguish generated samples from real
samples. However, even if ŷ is of distribution Y , we cannot verify that ŷ is the direct correspondent
of x. Hence, we apply transformation F which convert x̄ = G(ŷ) back to domain X . If both F
and G are reasonable transformations, then the cycle-consistency |x − x̄| should be minimal. The
backward cycle Y → X → X is a mirrored but opposite operation that run concurrently with the
forward cycle. Illustration re-created from Figure 3 in Zhu et al. (2017).

C METHODS

HYPER-PARAMETERS GAN LSGAN WGANGP DRAGAN

FILTERS 32
KERNEL SIZE 4

REDUCTION FACTOR 2
ACTIVATION LRELU

NORMALIZATION INSTANCENORM
SPATIAL DROPOUT 0.25

WEIGHT INITIALIZATION RANDOM NORMAL N (0, 0.02)
λ CYCLE 10
λ IDENTITY 5
λGP N/A N/A 10 10
c N/A N/A N/A 10

NUM. DIS UPDATE 1 1 5 1
αG 0.0001
αD 0.0004

DISTANCE FUNCTION MEAN ABSOLUTE ERROR

Table C.1: The hyper-parameters used for each objective formulation. NUM. DIS UPDATE is the
number of discriminator updates for every generator update, such procedure was introduced in op-
timizing WGANGP Arjovsky et al. (2017). αG and αD denotes the learning rates of the generators
and discriminators. λGP is the gradient penalty coefficient for WGANGP and DRAGAN and c is
the Gaussian variance hyper-parameter in DRAGAN.

14

Under review as a conference paper at ICLR 2022

MODEL LOSS FUNCTIONS OF G AND DY

GAN LG = − E
x∼X

[
log(DY (G(x)

]
LDY = − E

y∼Y

[
log(DY (y))

]
− E

x∼X

[
log(1−DY (G(x)))

]
LSGAN LG = − E

x∼X

[
(DY (G(x)− 1)2

]
LDY = − E

y∼Y

[
(DY (y)− 1)2

]
+ E

x∼X

[
DY (G(x))2

]
WGANGP LG = − E

x∼X

[
DY (G(x))

]
LDY = E

x∼X

[
DY (G(x))

]
− E

y∼Y

[
DY (y)

]
+ λGP E

x∼X,y∼Y

[(
‖ ∇D(εy + (1− ε)G(x)) ‖2 −1

)2]
DRAGAN LG = E

x∼X

[
log(1−DY (G(x)))

]
LDY = − E

y∼Y

[
log(Dy(y))

]
− E

x∼X

[
log(1−DY (G(x)))

]
+ λGP E

y∼Y,z∼N (0,c)

[(
‖ ∇D(y + z) ‖2 −1

)2]

Table C.2: The objective functions of the generator G and discriminator DY in GAN (Goodfellow
et al., 2014), LSGAN (Mao et al., 2017), WGANGP (Arjovsky et al., 2017) and DRAGAN (Kodali
et al., 2017) formulations. The loss functions for F and DX are symmetric to G and DY shown
above. λGP denotes the gradient penalty coefficient in WGANGP and DRAGAN, ε is the [0, 1] linear
interpolation coefficient for WGANGP and c is the Gaussian standard deviation for DRAGAN.
Note that the LG listed in the table are the generator loss, and the total generator loss remains
LG

total = LG + λcycleLcycle + λidentityLG
identity.

15

Under review as a conference paper at ICLR 2022

cycle-consistent loss
Autoencoder Preprocessing

segementation

order neurons

augmentation

normalization

Generator G Generator F

Discriminator D X Discriminator D Y

1

2

3

4

3

5

6

6

Anaylsis

Ca 2+ comparsion

feature visualization

spike inference

spike analysis

CycleGAN

Figure C.1: Illustration of the complete pipeline used in this work. Black directed lines represent the
flow of data and the numbers indicate its order. Note that only the forward cycle step X → Y → X
is shown here for better readability.

16

Under review as a conference paper at ICLR 2022

D NETWORKS ARCHITECTURE

The generator architecture used in this work, shown in Figure D.1, is based on the ResNet-like (He
et al., 2016a) generator in CycleGAN with a number of modifications. Generally, the model consists
of 2 down-sampling blocks (DS1 and DS2), followed by 9 residual blocks (RBi for 1 ≤ i ≤ 9), then
2 up-sampling blocks (US1 and US2). Each down-sampling block uses a 2D strided convolution
layer to reduce the spatiotemporal dimensions by factor of 2, which is then follows by Instance Nor-
malization, LReLU activation and Spatial Dropout. Each up-sampling block has the same structure
as the down-sampling blocks but with a transposed convolution layer instead. Each residual block
consists of two convolution blocks with padding added to offset the dimensionality reduction and a
skip connection that connect the input to the block with the output of the last convolution block via
element-wise addition. A convolution layer with a filter size of 1 then compresses the channel of the
output from US1, followed by a sigmoid activation to scale the final output to have range [0, 1].

Residual connections are known to improve gradient flow in CNN, thus mitigating the issue of
vanishing gradients and allowing deeper networks to be trained effectively (He et al., 2016a;b;
Huang et al., 2017). Therefore, shortcut connections are added between the down-sampling and
up-sampling blocks of the same level. For instance, the output of down-sampling block DS2 is
concatenated with the output of residual block RB9, then passes the resultant vector to the next up-
sampling block US1, such level-wise residual connection was first introduced in Ronneberger et al.
(2015). We denote the level-wise residual connected network as ResNet.

Furthermore, we adapted the Additive Attention Gate (AG) module in Oktay et al. (2018) as a
replacement for the concatenation operation in the residual connection described above. The yellow
block in Figure D.1 illustrates the AG structure. AG takes two inputs q and a, both with height HAG
and width WAG but varying channels, where q is the output of the previous processing block and a
is a shortcut connection from the down-sampling block of the same level. In AG1 for instance, q and
a are the output of RB9 and DS2 respectively. Both q and a are processed by two separate 1 × 1
convolution layers followed by Instance Normalization. The two vectors are then summed element-
wise such that overlapping regions from the two vectors would have higher intensity. We then apply
ReLU activation to eliminate negative values, followed by a 1 × 1 convolution layer with 1 filter
and Instance Normalization, resulting in a vector with shape (HAG,WAG, 1). Sigmoid activation is
applied to obtain a [0, 1] attention mask σ, where units closer to 1 indicate regions that are more
relevant. We apply the sigmoid mask to a, and concatenate it with q. Since q is a set of high-level
features processed by the stack of residual blocks, whereas a is the low-dimensional representation
of the original input. Therefore, the sigmoid attention mask should learn to eliminate information in
the input that is less relevant to the output. Moreover, as the attention mask is of the same dimension
of the input q, we can later superimpose the attention mask onto q to visualize the region of interest
learned by the model. We denote the attention-gated ResNet as AGResNet.

We use a PatchGAN-based (Isola et al., 2017) discriminator architecture in this work, as it provides
more fine-grained discrimination information to the generators instead of the single value discrim-
ination in the discriminator in vanilla GAN. DX and DY contain 3 down-sampling blocks where
each block reduces the spatiotemporal dimension by a factor of 2, like the down-sampling blocks in
the generators. For an input sample with shape (H = 2048,W = 102, C = 1), the discriminator
outputs a sigmoid activated vector with shape (256, 13, 1). Each element has range [0, 1] where a
value closer to 1 suggests that the corresponding patch is a real sample.

17

Under review as a conference paper at ICLR 2022

Padding

CONV Block

×9

Input

CONV Block DS 1

CONV
InstanceNorm

LReLU
2D Dropout

CONV Block DS 2

Residual Block RB i

Attention Gate AG 1

CONV Block

+

Padding
CONV Block

Padding

CONV Block US 1

Attention Gate AG 2

CONV Block

CONV Block

Padding

Sigmoid

Output

q

+

InstanceNorm
1×1 CONV

InstanceN
orm

1×1 CO

N
V

a

InstanceNorm
1×1 CONV

ReLU

Sigmoid

×
Concat

Figure D.1: Architecture diagram of generatorG and F . + and× denotes addition and element-wise
multiplication respectively. Note that the Attention Gate (AG) block can be replaced by a concate-
nation operation between the output of the previous block and the output from the down-sampling
block from the same-level. e.g. if AG is not used, then the input to US1 is concat(DS2, RB9).

18

Under review as a conference paper at ICLR 2022

E NEURON ORDERING

1 2 3

456
78

9

10
11

12

13
14

15

16 17 18

19
20

21

22

2324

25

26

27

28

29

30

31
32
33

34
35

36

37
38

39

4041 42

43

4445

464748

4950

51

5253

54

55

56

57
58

59

60

61

62
63

64

65

66

67

68

69
70

71

72

73

74
75

76
77

78

79

80

81

82
83 84

85

86

87

88

89

90 91

92

93

94

95 96
97

98

99

100

101
102

(a) Original

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16

17

18

19
20

21

22

23

24
25

26

27

28

29

30

31

32

33
34

35

36
37

38

39

40

41

4243

44

45

46

47

48
49

50 51

52

53
54

55

56

57

58

5960

61

62 63

64

65

66

67
68

69

70

71

72

73

74

75

76

77

78
79

80

81

82
83

84

85

86

87

88

89

90
91

92

93

94

9596

97

98

99

100
101 102

(b) Firing rate

1

2

3

4

5

6

78 9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24 25

26

27

28
29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45
46

47

4849

50

51

52
53

54

55
56

57

58

59

6061

62

63

64
65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81 82

83

84

85
86

87

88

89

90

91

92
93

94
95

96

97

98

99

100

101

102

(c) Autoencoder

Figure E.1: Neuron ordering based on (a) original annotation, (b) firing rate and (c) autoencoder
reconstruction loss. The original order was based on how visible the neuron were in the calcium
imaging data, hence not sorted in a particular manner. One naive approach is to sort neurons base
on their overall firing rate, such that active neurons can be closer in space thus allow more efficient
learning by convolutional-based networks. We proposed to train an autoencoder AE which learns to
reconstruct X and Y jointly, and sort neurons base on the average reconstruction error on the test
set. See Section 2.3.1 for detail regarding different neuron ordering methods and their motivations.

METHOD ORDER

(A) N/A 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102

(B) FIRING RATE 18, 14, 12, 30, 8, 15, 36, 4, 21, 19, 3, 7, 43, 33, 20, 42, 13, 6, 11, 39, 2, 22, 75,
28, 55, 100, 31, 62, 10, 67, 63, 54, 17, 40, 52, 46, 99, 88, 61, 77, 57, 34, 85, 41,
27, 98, 84, 47, 65, 73, 5, 1, 44, 101, 58, 80, 16, 29, 87, 9, 26, 83, 92, 74, 24, 45,
49, 23, 97, 48, 68, 60, 71, 76, 59, 53, 70, 89, 25, 93, 32, 56, 66, 81, 72, 94, 38,
64, 79, 82, 50, 51, 96, 90, 37, 86, 95, 91, 102, 69, 35, 78

(C) CORRELATION 36, 27, 46, 28, 39, 30, 42, 20, 92, 10, 18, 11, 67, 14, 4, 33, 19, 77, 75, 13, 24, 99,
8, 43, 65, 101, 63, 7, 25, 44, 12, 76, 80, 9, 47, 3, 34, 71, 87, 52, 22, 1, 85, 61, 84,
29, 45, 31, 93, 100, 5, 58, 57, 17, 74, 21, 96, 55, 82, 91, 2, 48, 6, 56, 83, 62, 49,
16, 26, 81, 97, 53, 73, 94, 89, 59, 40, 95, 23, 32, 54, 66, 98, 72, 35, 88, 15, 41,
50, 60, 90, 70, 78, 68, 69, 86, 38, 51, 64, 79, 37, 102

(D) AUTOENCODER 89, 52, 100, 97, 83, 59, 64, 51, 93, 37, 96, 50, 99, 38, 61, 81, 87, 60, 53, 62, 55,
35, 40, 94, 21, 86, 95, 17, 32, 23, 72, 69, 3, 54, 41, 58, 49, 22, 91, 84, 90, 36, 92,
82, 39, 68, 66, 8, 73, 88, 71, 4, 46, 18, 11, 44, 70, 78, 25, 85, 29, 56, 20, 80, 28,
9, 26, 101, 65, 24, 5, 98, 1, 57, 43, 10, 12, 31, 63, 33, 75, 77, 19, 47, 45, 76, 27,
74, 42, 102, 30, 48, 7, 34, 13, 67, 16, 79, 2, 15, 14, 6

Table E.1: Neuron ordering based on (a) original annotation, (b) firing rate, (c) average pairwise
correlation and (d) autoencoder reconstruction loss with respect to the original annotation order
recorded on Day 4 data. The physical location of each neuron is available in Figure E.1.

19

Under review as a conference paper at ICLR 2022

F RESULTS IN SYNTHETIC DATA

-0.24

1.56

3.36
x G(x) F(G(x))

-0.15

0.31

0.78

∆
F
/
F

0 21 42 63 85
-0.29

1.29

2.87

0 21 42 63 85

Time (s)

0 21 42 63 85

25
N

eu
ron

50
75

(a) Forward cycle: X → Y → X

-0.25

1.71

3.67
y F(y) G(F(y))

-0.11

0.3

0.7

∆
F
/F

0 21 42 63 85
-0.33

1.35

3.04

0 21 42 63 85

Time (s)

0 21 42 63 85

25
N

eu
ron

50
75

(b) Backward cycle: Y → X → Y

Figure F.1: (a) forward and (b) backward cycle of neuron 25, 50 and 75 from AGResNet trained
with LSGAN objectives. Since X and Y in the test set are paired (see Section 2.3.2), we expect
x ≈ F (y) and y ≈ G(x). Notice that neurons with a higher index (e.g. neuron 75 in y) would
have more units being masked out and replaced by noise. We can see that generator F was able to
reconstruct the masked out regions (e.g. neuron 50 and 75 in F (y)) that resemble the traces in X .

20

Under review as a conference paper at ICLR 2022

1

26

51

76

102
1

26

51

76

102

N
eu

ro
n

0 21 42 63 85

Time (s)

1

26

51

76

102

x
G

(x
)

F
(G

(x
))

(a) Forward cycle: X → Y → X
1

26

51

76

102
1

26

51

76

102

N
eu

ro
n

0 21 42 63 85

Time (s)

1

26

51

76

102

y
F

(y
)

G
(F

(y
))

(b) Backward cycle: Y → X → Y

Figure F.2: (a) forward and (b) backward cycle of the entire 102 neurons from a randomly selected
test segment. Model was trained with AGResNet using the LSGAN objectives on the synthetic
dataset where Y = Φ(X), see Section 2.3.2 for detail.

21

Under review as a conference paper at ICLR 2022

Figure F.3: (Left) Self-learned attention masks in AG1 and AG2 in AGResNet G given a random
test segment y = Φ(x) ∼ X . AG1 and AG2 were less focused in the masked region as it is
filled with Gaussian noise and it not informative in the reconstruction process. Note that AG1 and
AG2 are at 4 and 2 times lower-dimensional than the original input dimension (see Section D).
(Right) GradCAM localization maps of DX given a randomly select test segment x ∼ X . The
top panel shows the original input, where yellow and orange dotted lines mark the start and end
of each reward zones. The second panel shows the GradCAM localization map superimposed on
the input. We observe that DX focused on neuronal activities surrounding the reward zone areas in
its discrimination process, which is expected since the activities in the visual cortex are shaped by
the visual-clues in the virtual-corridor experiment. Note that trial information such as reward zone
locations were not provided to the networks, the pattern observed here was learned by the models
themselves.

22

Under review as a conference paper at ICLR 2022

G RESULTS IN RECORDED DATA

-0.24

0.48

1.21
x G(x) F(G(x))

-0.21

0.49

1.19

∆
F
/
F

0 21 42 63 85
-0.25

0.54

1.32

0 21 42 63 85

Time (s)

0 21 42 63 85

25
N

eu
ron

50
75

(a) Forward cycle: X → Y → X

-0.24

0.47

1.17
y F(y) G(F(y))

-0.28

0.39

1.06

∆
F
/F

0 21 42 63 85
-0.25

0.61

1.47

0 21 42 63 85

Time (s)

0 21 42 63 85

25
N

eu
ron

50
75

(b) Backward cycle: Y → X → Y

Figure G.1: (a) forward and (b) backward cycle of neuron 6, 27 and 75 from a randomly selected
segment. Model was trained with AGResNet using the LSGAN objective on the recorded dataset.
Note that, unlike the synthetic dataset, the traces presented here are not unpaired. Hence, we cannot
directly compare x with F (y) nor y with G(x).

23

Under review as a conference paper at ICLR 2022

ORDER |X − F (G(X))| |X − F (X)| |Y −G(F (Y))| |Y −G(Y)|

1D-AGRESNET 0.1806± 0.0077 0.1502± 0.0064 0.1811± 0.0163 0.1463± 0.0149
ORIGINAL 0.0874± 0.0037 0.0123± 0.0015 0.0766± 0.0025 0.0101± 0.0010

FIRING RATE 0.0760± 0.0030 0.0108± 0.0013 0.0752± 0.0028 0.0070± 0.0005
CORRELATION 0.0778± 0.0028 0.0111± 0.0012 0.0757± 0.0024 0.0089± 0.0022
AUTOENCODER 0.0733± 0.0025 0.0101± 0.0012 0.0737± 0.0027 0.0069± 0.0007

Table G.1: Cycle-consistent and identity loss in the test set of Mouse 1 recordings, where neu-
rons were ordered by 1) original annotation, 2) firing rate 3) pairwise correlation and 4) autoen-
coder reconstruction loss. We also trained a 1D variant of the model as an additional baseline
(1D-AGResNet in the table) such that all spatial information of the neurons is disregarded. The
AGResNet generator architecture was used for G and F , and were optimized with LSGAN objec-
tives. The lowest loss in each category is marked in bold. For reference, |X−Y | = 0.3674±0.0236
in the test set.

KL(X,F (Y)) KL(X,F (G(X))) KL(Y,G(X)) KL(Y,G(F (Y)))

(A) PAIRWISE CORRELATION

IDENTITY 0.0875± 0.0549 0 0.0821± 0.0471 0
1D-AGRESNET 0.2027± 0.1040 0.4715± 0.2051 0.1901± 0.1003 0.4149± 0.2194

ORIGINAL 0.0552± 0.0419 0.0754± 0.0353 0.0583± 0.0553 0.0174± 0.0110
FIRING RATE 0.0507± 0.0358 0.0266± 0.0146 0.0504± 0.0438 0.0267± 0.0176

CORRELATION 0.0539± 0.0329 0.0339± 0.0176 0.0534± 0.0474 0.0205± 0.0133
AUTOENCODER 0.0479± 0.0372 0.0329± 0.0163 0.0493± 0.0448 0.0283± 0.0206

(B) FIRING RATE

IDENTITY 8.0705± 6.5500 0 7.7781± 6.7338 0
1D-AGRESNET 3.5688± 3.8895 7.9101± 5.3517 3.0572± 3.1114 8.3185± 5.5950

ORIGINAL 1.5401± 1.2491 2.0442± 2.0936 1.8527± 1.3563 1.4697± 1.1412
FIRING RATE 1.3402± 1.0450 1.2658± 1.0784 1.6994± 1.4170 1.4152± 1.2221

CORRELATION 1.4006± 1.1079 1.5450± 1.0786 1.4088± 1.0828 1.4674± 1.3505
AUTOENCODER 1.1648± 0.7934 1.4022± 1.2734 1.0697± 0.7689 1.2705± 1.1148

(C) PAIRWISE VAN ROSSUM DISTANCE

IDENTITY 0.5510± 0.2960 0 0.3053± 0.1211 0
1D-AGRESNET 0.3613± 0.1597 0.8045± 0.1846 0.3764± 0.1565 1.3897± 0.8256

ORIGINAL 0.2790± 0.2186 0.1878± 0.0477 0.3216± 0.1352 0.1581± 0.0664
FIRING RATE 0.2539± 0.1708 0.1003± 0.0514 0.3080± 0.1173 0.1536± 0.0663

CORRELATION 0.2629± 0.1877 0.1905± 0.0485 0.2953± 0.1230 0.1797± 0.0696
AUTOENCODER 0.2387± 0.1488 0.1041± 0.0376 0.3031± 0.1138 0.1328± 0.0592

Table G.2: The average KL divergence between generated and recorded distributions of Mouse 1 in
(a) pairwise correlation, (b) firing rate and (c) pairwise van Rossum distance. We trained AGResNet
with neurons ordered according to the following methods: 1) original annotation, 2) firing rate, 3)
pairwise correlation and 4) autoencoder reconstruction loss. We also trained a 1D variant of the
model (denoted as 1D-AGResNet) such that all spatial information of the neurons is disregarded.
Note that we added the identity model (first row of each sub-table) as a baseline where we should
obtain perfect cycle reconstruction. Entries with the lowest value are marked in bold.

24

Under review as a conference paper at ICLR 2022

1

26

51

76

102
1

26

51

76

102

N
eu

ro
n

0 21 42 63 85

Time (s)

1

26

51

76

102

x
G

(x
)

F
(G

(x
))

(a) Forward cycle: X → Y → X
1

26

51

76

102
1

26

51

76

102

N
eu

ro
n

0 21 42 63 85

Time (s)

1

26

51

76

102

y
F

(y
)

G
(F

(y
))

(b) Backward cycle: Y → X → Y

Figure G.2: (a) forward and (b) backward cycle of the entire 102 neurons from a randomly se-
lected segment. Model was trained with AGResNet generators using the LSGAN objective on the
recorded dataset.

25

Under review as a conference paper at ICLR 2022

Figure G.3: (Left) self-learned sigmoid attention masks AG1 and AG2 in AGResNet F given a
random test segment y ∼ Y , where neurons were sorted by the autoencoder AE reconstruction loss.
(Right) GradCAM localization map of DX given a randomly select test segment x ∼ X . The top
panel shows the original input, where yellow and orange dotted lines mark the start and end of each
reward zones. The second panel shows the localization map superimposed on the input. Again, we
observe attention patterns that loosely align with the reward zones. Note that trial information such
as reward zone locations were not provided to the networks, the pattern observed here was learned
by the models themselves.

0 511 1023 1535 2047

1
26
51
76

102

In
pu

t

0 127 255 383 511

1
7

13
19
26

AG
1

0 255 511 767 1023

1
13
26
38
51

AG
2

0 511 1023 1535 2047
Time-step

1
26
51
76

102

Ou
tp

ut

(a) G(x)

0 511 1023 1535 2047

1
26
51
76

102

In
pu

t

0 127 255 383 511

1
7

13
19
26

AG
1

0 255 511 767 1023

1
13
26
38
51

AG
2

0 511 1023 1535 2047
Time-step

1
26
51
76

102

Ou
tp

ut

(b) F (y)

Figure G.4: Self-learned sigmoid attention masks AG1 and AG2 in AGResNet (a) G given a
random test segment x ∼ X and (b) F for a given random test segment y ∼ Y . Top panels shows
the original input, where yellow and orange dotted lines mark the start and end of each reward zones.
Bottom panels show the generated outputs of G(x) and F (y). The learned sigmoid masks shown
here did not exhibit strong patterns as compare to Figure 5 and Figure G.3.

26

Under review as a conference paper at ICLR 2022

0.05

0.10

0.1

0.2

0.3

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.15

0.05

0.10

0.05

0.10

0.1

0.2

0 21 42 64 85

Time (s)

0.05

0.10

N
6
4

N
5
1

N
9
3

N
3
7

N
9
6

N
5
0

N
9
9

N
3
8

N
6
1

N
8
1

∆
F
/F

(a) Pre-learning

0.25

0.50

0.2

0.4

0.05

0.10

0.15

0.05

0.10

0.1

0.2

0.05

0.10

0.05

0.10

0.05

0.10

0.1

0.2

0 21 42 64 85

Time (s)

0.1

0.2

N
6
4

N
5
1

N
9
3

N
3
7

N
9
6

N
5
0

N
9
9

N
3
8

N
6
1

N
8
1

∆
F
/F

(b) Post-learning

Figure G.5: The (a) pre-learning and (b) post-learning traces of the top 10 neurons that DX paid the
most attention to. The positional attention maps of DX is available in Figure 6 (Top Left). Note that
the pre-learning and post-learning activities are not paired.

27

Under review as a conference paper at ICLR 2022

0.05

0.10

0.05

0.10

0.15

0.05

0.10

0.05

0.10

0.1

0.2

0.05

0.10

0.050

0.075

0.25

0.50

0.75

0.1

0.2

0.3

0 21 42 64 85

Time (s)

0.05

0.10

N
9
6

N
5
0

N
9
9

N
3
8

N
8
6

N
9
5

N
1
7

N
3
2

N
2
3

N
7
2

∆
F
/F

(a) Pre-learning

0.1

0.2

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.05

0.10

0.1

0.2

0.050

0.075

0.05

0.10

0 21 42 64 85

Time (s)

0.2

0.4

N
9
6

N
5
0

N
9
9

N
3
8

N
8
6

N
9
5

N
1
7

N
3
2

N
2
3

N
7
2

∆
F
/F

(b) Post-learning

Figure G.6: The (a) pre-learning and (b) post-learning traces of the top 10 neurons that DY paid the
most attention to. The positional attention maps of DY is available in Figure 6 (Top Right). Note
that the pre-learning and post-learning activities are not paired.

28

Under review as a conference paper at ICLR 2022

H SPIKE ANALYSIS

-0.4 -0.0 0.3 0.7 1.0
Pair-wise correlation

0

588

1176

1764

2353

C
ou

nt
Trial 0

x
x = F(y)

-0.5 -0.1 0.2 0.6 1.0
Pair-wise correlation

0

747

1495

2243

2991

C
ou

nt

Trial 5

x
x = F(y)

-0.5 -0.1 0.3 0.6 1.0
Pair-wise correlation

0

744

1488

2232

2976

C
ou

nt

Trial 10

x
x = F(y)

0.0 0.1 0.2 0.3 0.3
KL divergence

0

9

18

27

37

C
ou

nt

Correlation KL

0.1 0.6 1.1 1.7 2.2
Hz

0

7

14

21

28

C
ou

nt

Neuron 25

x
x = F(y)

0.0 0.2 0.4 0.6 0.8
Hz

0

15

30

45

61

C
ou

nt
Neuron 50

x
x = F(y)

0.1 0.6 1.1 1.6 2.0
Hz

0

5

11

16

22

C
ou

nt

Neuron 75

x
x = F(y)

0.0 1.0 2.0 3.0 4.0
KL divergence

0

3

7

11

15

C
ou

nt

Firing Rate

132 92 17 14 64 177 7 147 102 196 180 98
x = F(y)

153

56

168

188

106

30

148

162

159

150

71

51

x

Neuron 25

8

18

28

38

48

58

1 88 13 40 44 142 51 166 143 199 141 178
x = F(y)

99

63

106

153

112

51

180

29

187

38

35

20

x

Neuron 50

0

6

12

18

24

31

77 152 177 150 31 168 11 132 125 136 40 57
x = F(y)

104

106

137

157

109

85

29

60

146

51

101

65

x

Neuron 75

11

20

30

40

50

60

0.1 0.3 0.6 0.8 1.1
KL divergence

0

9

19

28

38

C
ou

nt

van-Rossum distance KL

Figure H.1: Spike statistics of (top) firing rate of 3 randomly selected neurons, (middle) pairwise
correlation of 3 randomly selected segments and (bottom) van Rossum distance of 3 randomly se-
lected segments between X and F (Y) where X was ordered by autoencoder reconstruction loss.
The right columns show the KL divergence of each metrics and Table G.2 shows the mean and
standard deviation of the KL divergence comparisons.

29

Under review as a conference paper at ICLR 2022

-0.3 -0.0 0.3 0.7 1.0
Pair-wise correlation

0

853

1706

2559

3412

C
ou

nt

Trial 0

x
x = F(G(x))

-0.5 -0.1 0.2 0.6 1.0
Pair-wise correlation

0

847

1694

2541

3388

C
ou

nt

Trial 5

x
x = F(G(x))

-0.3 0.0 0.4 0.7 1.0
Pair-wise correlation

0

834

1668

2502

3337

C
ou

nt

Trial 10

x
x = F(G(x))

0.0 0.0 0.1 0.1 0.1
KL divergence

0

5

11

17

23

C
ou

nt

Correlation KL

0.1 0.6 1.2 1.7 2.3
Hz

0

6

12

18

24

C
ou

nt

Neuron 25

x
x = F(G(x))

0.0 0.2 0.3 0.5 0.7
Hz

0

15

31

46

62

C
ou

nt

Neuron 50

x
x = F(G(x))

0.1 0.6 1.0 1.4 1.9
Hz

0

5

11

16

22

C
ou

nt

Neuron 75

x
x = F(G(x))

0.0 1.4 2.8 4.3 5.7
KL divergence

0

4

9

13

18

C
ou

nt

Firing Rate

153 160 168 27 39 192 194 182 145 150 172 51
x = F(G(x))

153

160

168

27

39

192

194

182

145

150

172

51

x

Neuron 25

1

12

24

36

47

59

1 137 169 2 112 51 180 29 187 38 35 20
x = F(G(x))

99

63

106

153

112

51

180

29

187

38

35

20

x

Neuron 50

0

5

11

17

23

29

104 22 134 157 45 148 127 74 121 94 101 65
x = F(G(x))

104

22

134

157

45

148

127

74

121

94

101

65

x

Neuron 75

1

11

22

33

43

54

0.0 0.1 0.1 0.2 0.2
KL divergence

0

4

8

12

17

C
ou

nt

van-Rossum distance KL

Figure H.2: Spike statistics of (top) firing rate of 3 randomly selected neurons, (middle) pairwise
correlation of 3 randomly selected segments and (bottom) van Rossum distance of 3 randomly se-
lected segments between X and F (G(X)) where X was ordered by autoencoder reconstruction
loss. The right columns show the KL divergence of each metrics and Table G.2 shows the mean and
standard deviation of the KL divergence comparisons.

30

Under review as a conference paper at ICLR 2022

-0.5 -0.1 0.3 0.6 1.0
Pair-wise correlation

0

895

1790

2685

3581

C
ou

nt

Trial 0

y
y = G(x)

-0.4 -0.1 0.3 0.6 1.0
Pair-wise correlation

0

938

1877

2816

3755

C
ou

nt

Trial 5

y
y = G(x)

-0.4 -0.0 0.3 0.7 1.0
Pair-wise correlation

0

820

1641

2461

3282

C
ou

nt

Trial 10

y
y = G(x)

0.0 0.1 0.1 0.2 0.3
KL divergence

0

10

21

31

42

C
ou

nt

Correlation KL

0.0 0.2 0.3 0.5 0.6
Hz

0

7

15

23

31

C
ou

nt

Neuron 25

y
y = G(x)

0.0 0.5 1.0 1.5 2.1
Hz

0

22

45

68

91

C
ou

nt

Neuron 50

y
y = G(x)

0.0 0.2 0.3 0.5 0.6
Hz

0

16

32

48

64

C
ou

nt

Neuron 75

y
y = G(x)

0.0 1.9 3.7 5.6 7.5
KL divergence

0

4

8

12

17

C
ou

nt

Firing Rate

18 15 194 47 86 155 169 36 49 128 184 197
y = G(x)

186

185

193

49

130

9

57

149

170

124

39

85

y

Neuron 25

0

7

13

20

26

33

0 161 33 90 9 199 99 45 186 129 114 108
y = G(x)

199

48

120

184

163

57

157

131

27

116

78

134

y

Neuron 50

0

13

26

39

52

65

1 35 60 93 91 127 25 122 55 31 177 116
y = G(x)

133

110

37

161

154

112

84

41

188

78

145

40

y

Neuron 75

0

6

13

20

27

34

0.1 0.3 0.4 0.6 0.8
KL divergence

0

5

11

17

23

C
ou

nt

van-Rossum distance KL

Figure H.3: Spike statistics of (top) firing rate of 3 randomly selected neurons, (middle) pairwise
correlation of 3 randomly selected segments and (bottom) van Rossum distance of 3 randomly se-
lected segments between Y and G(X) where Y was ordered by autoencoder reconstruction loss.
The right columns show the KL divergence of each metrics and Table G.2 shows the mean and
standard deviation of the KL divergence comparisons.

31

Under review as a conference paper at ICLR 2022

-0.5 -0.1 0.3 0.6 1.0
Pair-wise correlation

0

892

1784

2676

3569

C
ou

nt

Trial 0

y
y = G(F(y))

-0.4 -0.1 0.3 0.6 1.0
Pair-wise correlation

0

1017

2034

3051

4069

C
ou

nt

Trial 5

y
y = G(F(y))

-0.4 -0.1 0.3 0.6 1.0
Pair-wise correlation

0

957

1914

2871

3828

C
ou

nt

Trial 10

y
y = G(F(y))

0.0 0.0 0.1 0.1 0.1
KL divergence

0

10

21

31

42

C
ou

nt

Correlation KL

0.0 0.2 0.3 0.5 0.7
Hz

0

6

12

18

25

C
ou

nt

Neuron 25

y
y = G(F(y))

0.0 0.5 1.0 1.5 2.1
Hz

0

22

45

67

90

C
ou

nt

Neuron 50

y
y = G(F(y))

0.0 0.2 0.4 0.6 0.8
Hz

0

21

42

63

84

C
ou

nt

Neuron 75

y
y = G(F(y))

0.0 1.6 3.3 4.9 6.5
KL divergence

0

3

6

9

13

C
ou

nt

Firing Rate

98 90 115 59 133 99 18 120 157 55 191 85
y = G(F(y))

98

185

115

59

133

99

18

120

157

55

191

85

y

Neuron 25

1

7

14

21

28

35

2 56 95 128 22 57 157 131 27 116 78 134
y = G(F(y))

199

48

120

184

163

57

157

131

27

116

78

134

y

Neuron 50

0

14

28

42

56

70

3 101 66 125 194 112 84 131 188 78 145 40
y = G(F(y))

133

110

37

161

154

112

84

41

188

78

145

40

y

Neuron 75

0

7

15

22

30

37

0.0 0.1 0.2 0.3 0.4
KL divergence

0

5

11

16

22

C
ou

nt

van-Rossum distance KL

Figure H.4: Spike statistics of (top) firing rate of 3 randomly selected neurons, (middle) pairwise
correlation of 3 randomly selected segments and (bottom) van Rossum distance of 3 randomly se-
lected segments between Y andG(F (Y)) where Y was ordered by autoencoder reconstruction loss.
The right columns show the KL divergence of each metrics and Table G.2 shows the mean and
standard deviation of the KL divergence comparisons.

32

Under review as a conference paper at ICLR 2022

I MOUSE 2 RECORDED DATA

ORDER |X − F (G(X))| |X − F (X)| |Y −G(F (Y))| |Y −G(Y)|

NONE 0.5875± 0.1050 0.1292± 0.0168 0.4416± 0.0763 0.0923± 0.0064
FIRING RATE 0.5794± 0.1055 0.1276± 0.0152 0.4396± 0.0793 0.0894± 0.0048

AUTOENCODER 0.5692± 0.1008 0.1030± 0.0099 0.4378± 0.0769 0.0101± 0.0018

Table I.1: Cycle-consistent and identity loss of AGResNet on Mouse 2 recordings, where neurons
were ordered by 1) original annotation, 2) firing rate and 3) autoencoder reconstruction loss. For
reference, |X − Y | = 0.6057± 0.1146 in the test set. The lowest loss in each category marked in
bold.

KL(X,F (Y)) KL(X,F (G(X))) KL(Y,G(X)) KL(Y,G(F (Y)))

(A) PAIRWISE CORRELATION

IDENTITY 0.6528± 0.4980 0 0.4583± 0.4366 0
N/A 0.5523± 0.4251 0.1617± 0.0715 0.1212± 0.0833 0.0499± 0.0266

FIRING RATE 0.5639± 0.4679 0.1951± 0.1031 0.1126± 0.0831 0.0399± 0.0231
AUTOENCODER 0.5209± 0.5554 0.0582± 0.0361 0.1231± 0.0988 0.0352± 0.0228

(B) FIRING RATE

IDENTITY 8.3096± 6.1580 0 5.5783± 5.8451 0
N/A 1.2881± 1.1147 2.5786± 2.7222 1.5782± 1.2217 1.6722± 1.3286

FIRING RATE 1.2181± 0.9909 2.4912± 2.5037 1.3656± 1.1475 1.1767± 1.0625
AUTOENCODER 0.8087± 0.5764 1.1326± 1.3149 1.2521± 0.9649 1.0592± 1.0722

(C) PAIRWISE VAN ROSSUM DISTANCE

IDENTITY 1.3894± 2.0529 0 1.1240± 1.5159 0
N/A 1.3392± 1.6653 0.5782± 0.9743 0.6043± 0.5250 0.2497± 0.2443

FIRING RATE 1.2464± 1.7505 0.5946± 0.9352 0.5638± 0.4181 0.1977± 0.1234
AUTOENCODER 0.6946± 0.5687 0.1996± 0.3232 0.5287± 0.3897 0.1775± 0.0959

Table I.2: The average KL divergence between generated and recorded distributions of Mouse 2
in (a) pairwise correlation, (b) firing rate and (c) population pairwise van Rossum distance. We
compare AGResNet results with different neuron ordering including 1) original annotation, 2) firing
rate and 3) autoencoder reconstruction loss. Note that we added the identity model (first row of each
sub-table) as a baseline where we should obtain perfect cycle reconstruction. Entries with the lowest
value are marked in bold.

33

Under review as a conference paper at ICLR 2022

J MOUSE 3 RECORDED DATA

ORDER |X − F (G(X))| |X − F (X)| |Y −G(F (Y))| |Y −G(Y)|

NONE 0.2684± 0.0290 0.0656± 0.0037 0.3229± 0.0476 0.0796± 0.0047
FIRING RATE 0.2679± 0.0309 0.0585± 0.0034 0.3192± 0.0477 0.0777± 0.0043

AUTOENCODER 0.2677± 0.0282 0.0554± 0.0023 0.3199± 0.0487 0.0672± 0.0034

Table J.1: Cycle-consistent and identity loss of AGResNet on Mouse 3 recordings, where neurons
were ordered by 1) original annotation, 2) firing rate and 3) autoencoder reconstruction loss. For
reference, |X − Y | = 0.4764± 0.1520 in the test set. The lowest loss in each category marked in
bold.

KL(X,F (Y)) KL(X,F (G(X))) KL(Y,G(X)) KL(Y,G(F (Y)))

(A) PAIRWISE CORRELATION

IDENTITY 1.0188± 0.5731 0 0.7363± 0.3732 0
N/A 0.5361± 0.2817 0.5678± 0.3145 0.6975± 0.2202 0.7381± 0.2977

FIRING RATE 0.5021± 0.2596 0.5184± 0.2536 0.6281± 0.2830 0.6616± 0.2850
AUTOENCODER 0.5140± 0.2538 0.4751± 0.2421 0.6137± 0.2997 0.4625± 0.2443

(B) FIRING RATE

IDENTITY 12.2077± 7.3556 0 12.4075± 7.3156 0
N/A 1.0164± 0.7129 1.8203± 1.9280 1.2904± 0.9448 1.4786± 1.4374

FIRING RATE 0.9371± 0.6735 1.7893± 2.5419 1.0712± 0.7793 1.2805± 1.5136
AUTOENCODER 0.8936± 0.5655 1.1152± 0.6797 1.2114± 0.7281 0.6928± 0.4643

(C) PAIRWISE VAN ROSSUM DISTANCE

IDENTITY 4.2704± 2.0834 0 4.9623± 1.4393 0
N/A 3.0412± 1.8467 2.0246± 1.3422 4.6059± 2.0664 3.0293± 1.5854

FIRING RATE 2.9009± 1.7587 1.6458± 1.2375 4.1910± 1.7950 2.8613± 1.7788
AUTOENCODER 2.8383± 1.5942 1.4747± 1.1150 3.9709± 1.7732 1.4767± 1.0195

Table J.2: The average KL divergence between generated and recorded distributions of Mouse 3
in (a) pairwise correlation, (b) firing rate and (c) population pairwise van Rossum distance. We
compare AGResNet results with different neuron ordering including 1) original annotation, 2) firing
rate and 3) autoencoder reconstruction loss. Note that we added the identity model (first row of each
sub-table) as a baseline comparison and should obtain perfect cycle reconstruction. Entries with the
lowest value are marked in bold.

34

Under review as a conference paper at ICLR 2022

K MOUSE 4 RECORDED DATA

ORDER |X − F (G(X))| |X − F (X)| |Y −G(F (Y))| |Y −G(Y)|

NONE 0.2538± 0.0399 0.0443± 0.0015 0.2403± 0.0395 0.0808± 0.0061
FIRING RATE 0.2511± 0.0389 0.0376± 0.0015 0.2388± 0.0406 0.0764± 0.0067

AUTOENCODER 0.2489± 0.0381 0.0382± 0.0012 0.2367± 0.0396 0.0764± 0.0053

Table K.1: Cycle-consistent and identity loss of AGResNet on Mouse 4 recordings, where neurons
were ordered by 1) original annotation, 2) firing rate and 3) autoencoder reconstruction loss. For
reference, |X − Y | = 0.4383± 0.2354 in the test set. The lowest loss in each category marked in
bold.

KL(X,F (Y)) KL(X,F (G(X))) KL(Y,G(X)) KL(Y,G(F (Y)))

(A) PAIRWISE CORRELATION

IDENTITY 0.3724± 0.2169 0 0.5124± 0.3238 0
N/A 0.2849± 0.1552 0.1735± 0.0918 0.3536± 0.2541 0.5750± 0.2883

FIRING RATE 0.2482± 0.1502 0.1478± 0.0848 0.3482± 0.2561 0.5471± 0.2577
AUTOENCODER 0.2096± 0.1155 0.1587± 0.0867 0.3460± 0.2568 0.4795± 0.2457

(B) FIRING RATE

IDENTITY 5.8031± 4.8030 0 5.1383± 5.4684 0
N/A 1.3062± 1.0097 0.6034± 0.6294 1.4253± 1.5599 2.9196± 3.1077

FIRING RATE 1.0818± 0.9274 0.5480± 0.5043 1.2120± 1.2971 2.8206± 2.7266
AUTOENCODER 1.0564± 1.1415 0.5474± 0.5223 1.1570± 1.0830 2.1015± 2.2399

(C) PAIRWISE VAN ROSSUM DISTANCE

IDENTITY 2.2670± 1.2707 0 2.8134± 1.5536 0
N/A 1.8698± 1.1525 0.5625± 0.4399 2.4011± 1.4879 3.3849± 1.7608

FIRING RATE 1.5416± 0.9327 0.3931± 0.2821 2.1379± 1.4338 3.3865± 1.9320
AUTOENCODER 1.3246± 0.8537 0.4578± 0.3639 2.2134± 1.3838 2.6537± 1.6526

Table K.2: The average KL divergence between generated and recorded distributions of Mouse
4 in (a) pairwise correlation, (b) firing rate and (c) population pairwise van Rossum distance. We
compare AGResNet results with different neuron ordering including 1) original annotation, 2) firing
rate and 3) autoencoder reconstruction loss. Note that we added the identity model (first row of each
sub-table) as a baseline comparison and should obtain perfect cycle reconstruction. Entries with the
lowest value are marked in bold.

35

	Introduction
	Methods
	Animal experiment
	CycleGAN
	Model pipeline
	Neuron ordering
	Synthetic data

	Results
	Synthetic data
	Recorded data

	Discussion
	Animal experiment
	CycleGAN
	Methods
	Networks architecture
	Neuron ordering
	Results in synthetic data
	Results in recorded data
	Spike analysis
	Mouse 2 recorded data
	Mouse 3 recorded data
	Mouse 4 recorded data

