

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TEMPORAL ALIGNMENT GUIDANCE: ON-MANIFOLD SAMPLING IN DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion models have achieved remarkable success as generative models. However, even a well-trained model can accumulate errors throughout the generation process. These errors become particularly problematic when arbitrary guidance is applied to steer samples toward desired properties, which often breaks sample fidelity. In this paper, we propose a general solution to address the off-manifold phenomenon observed in diffusion models. Our approach leverages a time predictor to estimate deviations from the desired data manifold at each timestep, identifying that a larger time gap is associated with reduced generation quality. We then design a novel guidance mechanism, ‘*Temporal Alignment Guidance*’ (TAG), attracting the samples back to the desired manifold at every timestep during generation. Through extensive experiments, we demonstrate that TAG consistently produces samples closely aligned with the desired manifold at each timestep, leading to significant improvements in generation quality across various downstream tasks.

1 INTRODUCTION

Diffusion models have shown remarkable performance as generative models across various domains, including image (Dhariwal & Nichol, 2021; Rombach et al., 2022), video (Liu et al., 2024; Polyak et al., 2024), audio Kong et al. (2021); Popov et al. (2021), language Austin et al. (2021), and molecular generation (Hoogeboom et al., 2022). A key factor in their success is the ability to perform guided generation, where conditions from different modalities can be effectively injected during the generative process (Dhariwal & Nichol, 2021; Ho & Salimans, 2021).

Recently, diffusion models have been applied to a variety of real-world use cases, such as black-box optimization (Krishnamoorthy et al., 2023), personalization (Zhang et al., 2023), and inverse problems (Chung et al., 2023). These downstream applications often require modifications to the standard sampling procedure, incorporating an additional guidance term during the reverse process of the diffusion model. This guidance term steers the generated samples towards desired properties relevant to the specific downstream task (Graikos et al., 2022; Wang et al., 2024; Wei et al., 2024). Notably, several works have demonstrated the ability to guide samples even towards conditions unseen during training, a technique often referred to as training-free guidance (Chung et al., 2023; Bansal et al., 2024).

However, naively modifying the originally learned reverse process of diffusion models can catastrophically break other basic properties, as it may lead samples toward low density regions where the output of diffusion model is unreliable (Song & Ermon, 2019). These score approximation errors can accumulate over each timestep (Chen et al., 2023b; Oko et al., 2023) which contributes to the final generated samples deviate significantly from the true data manifold, resulting in unrealistic outputs (Shen et al., 2024; Guo et al., 2024). In this work, we refer to this problem as the ‘off-manifold’ phenomenon in diffusion models and demonstrate that it can pose a significant challenge to their practical applications.

To address the off-manifold problem in diffusion models, we introduce ‘*Temporal Alignment Guidance*’ (TAG), a general solution designed to mitigate score approximation error induced by arbitrary modifications to the reverse process. Unlike traditional approaches that rely on fixed timesteps in the reverse process, TAG leverages the inherent uncertainty of the time variable by representing it as a probability distribution over a range of possible values. This novel guidance term is designed to steer samples back to the higher density region, where learned score of the model becomes reliable,

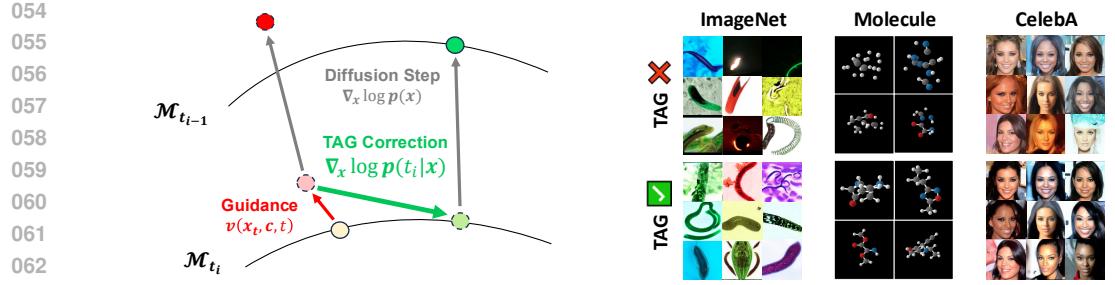


Figure 1: Overview of TAG algorithm. (Left) Without TAG, external guidance pushes samples off-manifold, causing the standard diffusion step $\nabla_x \log p(x)$ to miss the target manifold $\mathcal{M}_{t_{i-1}}$. TAG’s correction actively steers the sample back to the correct manifold \mathcal{M}_{t_i} , ensuring the diffusion step accurately reaches the desired manifold $\mathcal{M}_{t_{i-1}}$. (Right) Applying TAG can greatly improve the fidelity in conditional generation tasks with target conditions: worm for ImageNet, polarizability α for Molecule, female and black hair for CelebA.

thereby improving sample quality while providing control in downstream tasks. This mechanism is visually summarized in Figure 1 (Left).

Through extensive experiments, we show that TAG significantly improves the quality of generated samples across multiple domains and tasks, as demonstrated in Figure 1 (Right). Promising results of TAG on these diverse scenarios implies that TAG could indeed serve as a universal solution for mitigating the off-manifold phenomenon in diffusion models, a common issue that arises in numerous downstream tasks but yet to be solved. We believe that this work represents an important stepping stone toward achieving reliable generation for real-world applications using diffusion models.

Our main contributions can be summarized as follows:

- We identify off-manifold phenomena in diffusion models across multiple scenarios and demonstrate that these phenomena can be significantly amplified when the learned reverse process of the original diffusion model is arbitrarily adjusted.
- We design a novel framework, ‘Temporal Alignment Guidance’ (TAG), which pushes the samples toward the desired manifold at each timestep during generation and provide theoretical guarantees.
- We demonstrate that TAG significantly improves sample quality through extensive experiments in various domains and tasks, achieving state-of-the art results.

2 OFF-MANIFOLD PHENOMENON IN DIFFUSION MODELS

Off-manifold phenomenon happens in each timestep if the sample is tilted towards the low density region of true marginal distribution $p_t(\mathbf{x})$, which represents the distribution of a noisy sample \mathbf{x} at timestep t . Below, we list typical situations where off-manifold phenomenon can occur in diffusion models.

Controlling by external guidance Anderson (1982) shows the forward process of diffusion model can be reversed once a score function $\nabla_{\mathbf{x}} \log q_t(\mathbf{x})$ of marginal distribution q_t is given for each t by the following reverse SDE:

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}) - g^2(t) \nabla_{\mathbf{x}} \log q_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}}_t, \quad (1)$$

where $\bar{\mathbf{w}}_t$ denotes a standard wiener process with backward time flows.

In many practical scenarios, diffusion model sampling needs an extra guidance term $\mathbf{v}(\mathbf{x}, \mathbf{c}, t)$ to generate high-quality samples which modifies reverse diffusion process as follows:

$$d\mathbf{x} = [\mathbf{f}(\mathbf{x}) - g(t)^2 (\nabla_{\mathbf{x}} \log q_t(\mathbf{x}) + \mathbf{v}(\mathbf{x}, \mathbf{c}, t))] dt + g(t) d\bar{\mathbf{w}}_t, \quad (2)$$

One notable approach is training-free guidance (Chung et al., 2023) where,

$$\mathbf{v}(\mathbf{x}_t, \mathbf{c}, t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{c} | \hat{\mathbf{x}}_0), \quad (3)$$

108 and $\hat{\mathbf{x}}_0$ is a target estimate approximated with Tweedie’s formula (Efron, 2011) as follows:

$$110 \quad \hat{\mathbf{x}}_0 = \frac{\mathbf{x}_t + (1 - \bar{\alpha}_t) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)}{\sqrt{\bar{\alpha}_t}}. \quad (4)$$

112 Here, $\bar{\alpha}_t$ is a function determined by the forward process (Appendix B.3 for further details). Although training-free guidance can approximate sampling from conditional distribution only with 113 unconditional model (Chung et al., 2023; Ye et al., 2024), this extra guidance in each timestep make 114 samples far from the original learned data manifold (Shen et al., 2024).

116 **Multi-conditional guidance** Downstream applications with diffusion models often required 117 fine-grained control such as multi-conditional guidance (Du et al., 2023) or constrained guidance 118 (Schramowski et al., 2023), where linear combination of more than two score functions are 119 used to satisfy target properties. However, as stated in (Du et al., 2023), naive combination of two 120 independent conditional score functions does not equal to multi-conditional score function:

$$121 \quad \nabla_{\mathbf{x}} \log p(\mathbf{x} | \mathbf{c}_1, \mathbf{c}_2) \neq \nabla_{\mathbf{x}} \log p(\mathbf{x} | \mathbf{c}_1) + \nabla_{\mathbf{x}} \log p(\mathbf{x} | \mathbf{c}_2). \quad (5)$$

123 **Few-step generation** The probability flow ODE formulation of diffusion models (Song et al., 124 2021b) accelerates generation by reducing the number of function evaluation (NFE) for sampling. 125 However, discretization errors accumulate during the reverse process, resulting in off-manifold 126 problem. We provide further details in Appendix B.5.

127 **Degradation of sample quality in low-density regions** The score function $\nabla \log p_t(\mathbf{x}_t)$ of the 128 diffusion model is trained to guide samples toward high density regions of the noisy data distribution 129 $p_t(\mathbf{x}_t)$ at each timestep t . Ideally, in a perfectly learned diffusion process, this ensures generated 130 outputs remain close to the original data manifold, resulting in high-fidelity samples. However, if an 131 external force \mathbf{v} drives a sample to the low density region $p_t(\mathbf{x}_t) \approx 0$, the score function $\nabla \log p_t(\mathbf{x}_t)$ 132 estimated by the diffusion model becomes unreliable, as it is trained on noisy data that assumes 133 the forward process is intact at the given timestep. This, often known as a score approximation 134 error (Oko et al., 2023; Chen et al., 2023a), accumulates over time as generation process goes on, 135 causing compounding errors that degrade sample quality in the subsequent steps of the generation 136 process (Li & van der Schaar, 2024).

137 To illustrate how off-manifold phenomenon can become detrimental in diffusion sampling process, 138 we construct a toy example of two Gaussian mixtures where external drift term is added in every 139 timestep of the reverse process (details in Appendix E.1). Figure 2a shows that applying this external 140 drift term in every diffusion step results in samples far from the original distribution.

142 3 METHOD

144 In this section, we introduce Temporal Alignment Guidance (TAG), a novel framework designed to 145 maintain sample fidelity during diffusion model generation by mitigating off-manifold deviations at 146 each timestep. We first formally define TAG, introducing the core concept of the Time-Linked Score 147 (TLS) (Sec. 3.1). Subsequently, we detail how TAG integrates with practical guidance techniques 148 to enhance conditional generation (Sec. 3.2). Finally, we provide a theoretical analysis on how 149 TAG improves sample quality in the presence of off-manifold phenomenon (Sec. 3.3) along with 150 illustrative example (Sec. 3.4).

152 3.1 TEMPORAL ALIGNMENT GUIDANCE (TAG)

153 **Projecting samples back to the On-Manifold** We reinterpret timestep information as a 154 conditioning variable rather than a fixed input in the reverse diffusion process. Fixed times scheduling 155 suffices when samples remain on the original reverse path, it breaks down off-manifold because \mathbf{x}_t 156 loses its temporal identity. To project \mathbf{x}_t back onto the correct manifold \mathcal{M}_t (formal definition in 157 Appendix B.4), we introduce the gradient term $\nabla_{\mathbf{x}} \log p_t(t | \mathbf{x})$, analogous to the conditional score 158 in classifier guidance (Dhariwal & Nichol, 2021). Figure 2b illustrates that this vector field directs 159 samples toward high-probability regions of the original distribution q_t , whereas the conventional 160 diffusion score struggles once off-manifold. Incorporating this term into each reverse step thus keeps 161 generated samples aligned with the data distribution (Figure 2b). In the next subsection, we formally 162 define and analyze this new gradient correction.

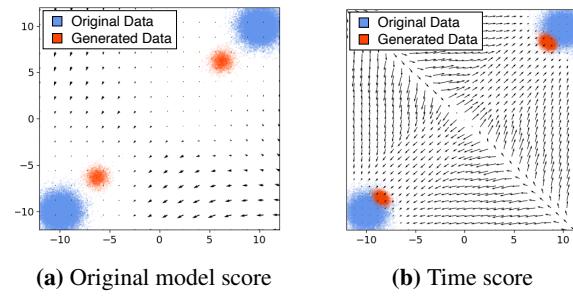


Figure 2: Generated samples with score field. (Left) Generated outputs from reverse diffusion process with external drift, with vector field of the diffusion model output at $t = 0$. (Right) Generated outputs when applying TAG with external drift, with vector field of the TLS at $t = 0$.

Algorithm 1 Temporal Alignment Guidance (TAG)

Input: Diffusion model θ , time predictor ϕ , guidance strength schedule ω_t , number of total diffusion steps T
 $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
for $t = T, \dots, 1$ **do**
 $\tilde{\mathbf{x}}_t \leftarrow \mathbf{x}_t + \omega_t \cdot \nabla \log p_\phi(t | \mathbf{x}_t)$
 Obtain $\nabla \log p(\mathbf{x})$ from a diffusion model θ
 $\mathbf{x}_{t-1} \leftarrow \tilde{\mathbf{x}}_t$ from reverse diffusion step following Eq. 1.
end for
Output: \mathbf{x}_0

Time-Linked Score (TLS) To further investigate the effect of this gradient term, we introduce the following definition:

Definition 3.1. Time-Linked Score for data point \mathbf{x} and target time t is defined as,

$$\text{TLS}(\mathbf{x}, t) := \nabla_{\mathbf{x}} \log p(t | \mathbf{x}). \quad (6)$$

Combining TLS with original score function of diffusion models, we now define Temporal Alignment Guidance:

Definition 3.2. The *Temporal Alignment Guidance (TAG)* at time t is defined as

$$\text{TAG}(\mathbf{x}, t) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) + \omega \cdot \nabla_{\mathbf{x}} \log p_\phi(t | \mathbf{x}). \quad (7)$$

where ω is a hyperparameter that controls the strength.

Applying TAG in the reverse diffusion provides a shortcut for a sample to the original manifold by sending it to the tilted probability $p(\mathbf{x}|t)p(t|\mathbf{x})^\omega$, just as in the classifier guidance [Dhariwal & Nichol \(2021\)](#). We provide a pseudo-code of sampling with TAG in Algorithm 1.

Time classification by time predictor Accurately identifying the correct manifold for each time is analytically impossible due to the complexity of the score function of real-world dataset [Zhang & Chen \(2023\)](#); [Han et al. \(2024b\)](#). Instead, we utilize a time predictor [Jung et al. \(2024\)](#), which is an auxiliary neural network trained with one-hot embeddings of timestep labels with following objective function:

$$\mathcal{L}_{\text{tp}}(\phi) = -\mathbb{E}_{t, \mathbf{x}_0} [\log (\hat{\mathbf{p}}_\phi(\mathbf{x}_t)_t)], \quad (8)$$

where $\hat{\mathbf{p}}$ denotes a logit vector of the model output. Time predictor learns to classify which timestep a random data with forward process should belong to. By calculating gradient of the time predictor, we can estimate TLS in Eq. 6. We use the simple CNN architecture that is substantially lightweight compared to the diffusion backbone. Details of the designing mechanism and performance of time predictor is in Appendix E.4.

3.2 IMPROVING GUIDANCE WITH TAG

We now present how TAG can be combined with a standard zero-shot conditional sampling framework like training-free guidance (TFG) ([Chung et al., 2023](#); [Ye et al., 2024](#)) to improve conditional generation of diffusion models.

Let $\mathbf{c} \in \mathcal{Y}$ be the target property and let $\mathcal{A} : \mathcal{X} \rightarrow \mathcal{Y}$ be a off the shelf function that maps $\mathbf{x}_0 \in \mathcal{X}$ to their predicted property values. Training-free guidance is applied as,

$$\nabla_{\mathbf{x}_t} \log p_t(\mathbf{c} | \mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\exp(-\ell_c(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c})] \quad (9)$$

where $\ell_c : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ measures the discrepancy between the estimated property and target property, and $\hat{\mathbf{x}}_0$ is the denoised estimate from Eq. 4.

216 One can obtain TLS with similar approach by observing
 217

$$218 \quad p(t|\mathbf{x}_t, \mathbf{c}) \propto \exp(-\ell_t(\phi(\mathbf{x}_t, \mathbf{c}), t)), \quad (10)$$

219 where ℓ_t is a penalty function for misalignment in time, and we set as a cross-entropy loss.
 220

221 With the extended view of adding time information as another condition, we use Bayes' rule to the
 222 conditional probability as:

$$223 \quad p_t(\mathbf{x}_t | \mathbf{c}) \propto p_t(\mathbf{x}_t) p(\mathbf{c} | \mathbf{x}_t) p(t | \mathbf{x}_t, \mathbf{c}). \quad (11)$$

224 Taking gradient respect to \mathbf{x}_t for both sides, one can obtain conditional score function as follows:
 225

$$226 \quad \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{c}) \approx \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \sigma_t \nabla_{\mathbf{x}_t} \ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c}) + \omega_t \nabla_{\mathbf{x}_t} \ell_t(\phi(\mathbf{x}_t, \mathbf{c}), t).$$

228 In essence, by treating time as an additional conditioning signal, TAG act as an on-manifold anchor
 229 at every reverse step: it pulls samples back onto the learned diffusion path, preventing off-manifold
 230 drift and markedly improving fidelity under arbitrary guidance.
 231

232 3.3 THEORETICAL ANALYSIS OF TAG

233 Here, we provide the theoretical justification of TAG. We rigorously show that TAG can effectively
 234 reduce the error bound between the distribution of generated samples and the target distribution.
 235

236 To start with, we first present the following theorem which states that TLS is a linear combination of
 237 the score functions of different timesteps in the following way:

238 **Theorem 3.3.** *Assuming discrete diffusion timesteps $[t_1, t_2, \dots, t_n]$, Time-linked Score of a random
 239 noisy sample \mathbf{x} to the target time t_i can be represented as:*

$$241 \quad \nabla_{\mathbf{x}} \log p(t_i | \mathbf{x}) = \sum_{k \neq i} \underbrace{\frac{p_{t_k}(\mathbf{x})}{p_{\text{tot}}(\mathbf{x})}}_{\substack{\text{greater when} \\ \text{off } t_i\text{-manifold}}} \left(\underbrace{\nabla_{\mathbf{x}} \log p_{t_i}(\mathbf{x})}_{\text{pull to } t_i \text{ manifold}} - \underbrace{\nabla_{\mathbf{x}} \log p_{t_k}(\mathbf{x})}_{\text{repel other manifolds}} \right). \quad (12)$$

245 Here, p_{t_i} 's are marginal distributions at each timestep and $p_{\text{tot}} = \sum_j p_{t_j}(\mathbf{x})$. The proof of Theorem 3.3 is in Appendix C.4.
 246

247 Theorem 3.3 implies that TLS is particularly effective when $p_{t_i}(\mathbf{x}) \ll p_{\text{tot}}(\mathbf{x})$. In this regime,
 248 $\nabla_{\mathbf{x}} \log p_{t_i}(\mathbf{x})$ attracts the sample toward original data manifold, while simultaneously repelling it
 249 from competing manifolds through the negative terms $-\nabla_{\mathbf{x}} \log p_{t_k}(\mathbf{x})$ for $k \neq i$. Moreover, if
 250 $p_{t_j}(\mathbf{x})$ dominates for some $j \neq i$, the repulsive force $\nabla_{\mathbf{x}} \log p_{t_j}(\mathbf{x})$ in equation 12 grows, aiding the
 251 sample to escape an incorrect manifold. The above result can be naturally extend to continuous time
 252 (Appendix C.5).
 253

254 Intuitively, at time t , score approximation errors tend to be larger in low-density regions of $p_t(\mathbf{x})$, since
 255 the model rarely encounters such regions during training. Consequently, corrector sampling (Song
 256 et al., 2021b) may become ineffective there, as the neural network's score estimates degrade. More-
 257 over, even an accurate score estimate can struggle to guide samples out of inherently flat probability
 258 landscapes. Indeed, our empirical findings in Appendix D.2 show that corrector sampling becomes
 259 ineffective, sometimes degrades the sample quality under external guidance. Applying TAG can
 260 mitigate the aforementioned problems by increasing the chance of escape in this low density region.
 261 This can be formalized into the following proposition.

262 **Proposition 3.4.** *Applying TAG alters energy barrier map $U_k(\mathbf{x}) = -\log p_{t_k}(\mathbf{x})$ at timestep t_k to
 263 $\Phi_k(\mathbf{x})$ for any k by:*

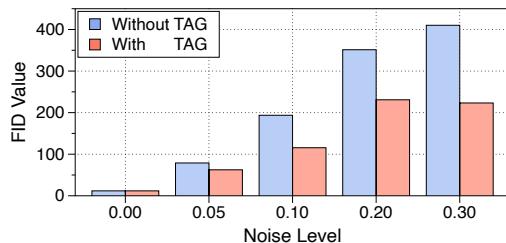
$$264 \quad \Phi_k(\mathbf{x}) = U_k(\mathbf{x}) - \sum_i \gamma_i U_i(\mathbf{x}), \quad (13)$$

265 where $\gamma_i = \frac{p_i(\mathbf{x})}{p_{\text{tot}}(\mathbf{x})}$ for $i \neq k$ and $\gamma_k = 1 - \sum_{i \neq k} \frac{p_i(\mathbf{x})}{p_{\text{tot}}(\mathbf{x})}$.

266 We defer the proof to Appendix C.6. Under mild assumptions, it shows that TAG sharpens the
 267 potential map via the negative repulsion of alternative timestep manifolds. Building on the Jordan-
 268 Kinderlehrer-Otto (JKO) scheme (Jordan et al., 1998), one can show that the modified Langevin
 269

270
271 **Table 1:** Effect of TAG across strength ω of TAG
272 when reverse process is corrupted with noise level σ .
273

ω	$\sigma = 0.1$			$\sigma = 0.2$			$\sigma = 0.3$		
	TG ↓	FID ↓	IS ↑	TG ↓	FID ↓	IS ↑	TG ↓	FID ↓	IS ↑
0.0	104.1	193.6	2.37	229.6	351.4	1.50	274.0	410.1	1.28
0.5	47.9	127.7	3.65	200.6	340.1	1.56	261.6	408.5	1.28
1.0	41.8	120.9	3.69	175.5	323.7	1.61	250.9	406.7	1.28
2.0	39.0	132.6	3.33	140.2	285.1	1.64	232.6	390.3	1.27
4.0	44.4	159.8	3.00	103.4	246.3	1.70	197.8	361.2	1.31



274
275
276
277
278
279
280
281 **Figure 3:** FID values over different corruption levels for
282 original diffusion process without TAG and with TAG.
283

284 dynamics under this sharpened potential map accelerates correction with stronger gradient flows. In
285 particular, applying a single reverse diffusion step with TAG increases the chance of a sample to move
286 towards higher-density regions, thereby reducing expected score approximation errors. Building on
287 prior analyses of diffusion models (Oko et al., 2023; Chen et al., 2023b), we show that TAG can
288 improve the convergence guarantee by lowering the upper bound on the total variation distance d_{TV}
289 between the sample distribution and the target distribution:

290 **Theorem 3.5.** (Informal) Let p_t and \tilde{p}_t be the probability distribution at time t in the original reverse
291 process in equation 1 and in the reverse process apply with TAG (Algorithm 1). Then, under mild
292 assumptions, the upper bound of $d_{TV}(q_{data}, \tilde{p}_0)$ can be reduced compared to $d_{TV}(q_{data}, p_0)$.

293 Theorem 3.5 demonstrates TAG’s ability to enhance sample quality, a finding that aligns with our
294 experimental observations. We provide a formal statement of Theorem 3.5 with corresponding proof
295 in Appendix C.7.

296 3.4 UNDERSTANDING TAG UNDER CORRUPTED REVERSE PROCESS

297 To analyze TAG’s corrective mechanism and evaluate its effectiveness under extreme perturbation, we
298 conduct an experiment where artificial noise is applied at every reverse step. To quantify the temporal
299 deviation during generation, we define the *Time-Gap* metric. Denoting the sample at timestep t as
300 \mathbf{x}_t and the time predictor as ϕ , the *Time-Gap* is defined as $\frac{1}{T} \sum_{t=1}^T |\arg \max \phi(\mathbf{x}_t) - t|$. A lower
301 *Time-Gap* indicates that samples remain closer to their expected temporal manifold and correlates
302 with improved generation quality (see Appendix F.1 for a formal definition and empirical validation).

303 Table 1 shows the effect of applying TAG under various noise levels (σ) and guidance strengths (ω).
304 As ω increases, both FID and IS improve, while the Time-Gap decreases, indicating that samples
305 are drawn closer to the correct manifold. Figure 3 further illustrates that TAG significantly alleviates
306 the degradation caused by increasing σ . These findings empirically confirm that the TLS component
307 indeed corrects deviations and steers samples back to the appropriate temporal manifold, even under
308 extreme perturbations. Further details of the experiments with additional results are in Appendix E.2.

309 4 EXPERIMENTS

310 We evaluate TAG empirically across diverse scenarios including those prone to off-manifold errors
311 and practical applications mentioned in Sec. 3. First, we show that TAG improves standard
312 TFG benchmarks via extensive comparisons with related methods (Sec. 4.1). Next, we extend
313 to multi-conditional guidance, demonstrating efficient conditioning on multiple attributes without
314 combinatorial overhead (Sec. 4.2). Then, we assess its ability to mitigate errors in few-step generation
315 (Sec. 4.3). Finally, we demonstrate its applicability and benefits in large-scale text-to-image
316 generation tasks (Sec. 4.4).

317 4.1 TFG BENCHMARK

318 **Setup** We follow the setup of TFG benchmark (Ye et al., 2024), a standard zero-shot conditional
319 sampling framework, applying TAG to DPS (Chung et al., 2023) and TFG with their reported
320 optimal hyperparameters. This offers a challenging comparison, since these carefully tuned base-
321 lines should exhibit less off-manifold drift than simpler methods. Experiments use 6 pretrained

324 Table 2: Quantitative results of TAG on TFG benchmark. Each cell presents the guidance validity / generation
 325 fidelity averaged across multiple targets in the task. The best result for each cell is reported in **bold**.

326 Method	327 Deblur		328 Super-resolution		329 CIFAR10		330 ImageNet		331 Audio declipping		332 Audio inpainting	
	FID \downarrow	LPIPS \downarrow	FID \downarrow	LPIPS \downarrow	FID \downarrow	Acc. \uparrow	FID \downarrow	Acc. \uparrow	FAD \downarrow	DTW \downarrow	FAD \downarrow	DTW \downarrow
DPS (Chung et al., 2023)	139.7	0.613	139.0	0.614	217.1	57.5	196.9	24.5	2.41	191	2.26	176
DPS + TAG (ours)	128.9	0.570	128.3	0.572	190.4	63.2	192.2	22.9	2.33	189	2.25	157
Rel. Improvement	7.7%	7.0%	7.7%	6.8%	12.3%	9.9%	2.4%	-6.5%	3.3%	1.0%	0.4%	10.8%
TFG (Ye et al., 2024)	64.2	0.154	65.5	0.187	114.1	55.8	231.0	14.3	1.42	256	0.52	74
TFG + TAG (ours)	62.7	0.151	64.7	0.175	102.7	61.5	219.4	17.8	0.74	120	0.42	51
Rel. Improvement	2.3%	1.9%	1.2%	6.4%	10.0%	10.2%	5.0%	24.5%	47.9%	53.1%	19.3%	31.1%
<i>Baseline Results</i>												
TCS (Jung et al., 2024)	454.7	0.751	465.1	0.748	213.4	29.4	344.9	12.0	23.89	567	21.41	558
Timestep Guidance (Sadat et al., 2024)	480.3	0.995	480.3	0.995	393.2	11.3	545.7	25.0	46.22	492	45.94	491
Self-Guidance (Li et al., 2024b)	231.8	0.709	231.0	0.710	205.4	51.6	257.4	10.8	8.90	521	6.99	463
<i>Method</i>												
<i>Polarizability α</i>		<i>Dipole μ</i>		<i>Heat capacity C_v</i>		ϵ_{HOMO}		ϵ_{LUMO}		<i>Gap ϵ_{Δ}</i>		
MAE \downarrow		Stab. \uparrow		MAE \downarrow		Stab. \uparrow		MAE \downarrow		MAE \downarrow		
DPS (Chung et al., 2023)	13.33	28.4	4779.92	34.4	3.47	36.2	0.68	30.3	1.57	17.6	1.65	10.6
DPS + TAG (ours)	7.96	96.4	1.48	97.2	3.03	93.0	0.58	56.2	1.11	48.4	1.29	93.5
Rel. Improvement	40.3%	239.7%	99.9%	182.5%	13.1%	157.0%	6.1%	85.7%	29.6%	174.5%	21.4%	779.2%
TFG (Ye et al., 2024)	8.91	19.2	2.41	26.3	2.65	96.2	0.55	14.6	1.33	10.8	1.40	16.1
TFG + TAG (ours)	4.46	43.6	1.28	94.3	2.67	96.7	0.43	93.9	0.89	92.5	0.78	82.8
Rel. Improvement	49.9%	127.1%	46.9%	258.6%	0.3%	0.5%	21.8%	543.8%	33.1%	757.4%	44.3%	414.2%
<i>Baseline Results</i>												
TCS (Jung et al., 2024)	11.44	15.3	1.60	6.3	3.17	19.6	0.59	50.2	1.23	28.8	1.58	13.9
Timestep Guidance (Sadat et al., 2024)	25.07	70.2	N/A	N/A	4.18	82.9	N/A	N/A	N/A	N/A	1.39	48.7
Self-Guidance (Li et al., 2024b)	16.33	65.3	62.86	70.9	3.89	79.7	N/A	N/A	2.32	10.8	1.30	24.9

346 models—CIFAR10-DDPM (Nichol & Dhariwal, 2021), ImageNet-DDPM (Dhariwal & Nichol,
 347 2021), Cat-DDPM (Elson et al., 2007), CelebA-DDPM (Karras et al., 2018), Molecule-EDM (Hooge-
 348 boom et al., 2022), and Audio-Diffusion (Kong et al., 2021; Popov et al., 2021). The tasks include
 349 image restoration (deblurring, super-resolution), conditional generation (label-guided sampling,
 350 multi-attribute generation), molecular generation (molecular property control), and audio synthesis
 351 (clipping, inpainting). For all tasks, we report generation fidelity and validity, with further details
 352 provided in Appendix E.3.

353
 354 **External guidance scenario** We evaluate TAG in a single-conditional guidance setting, where
 355 the objective is to sample from the target distribution $p(\mathbf{x}_0 | \mathbf{c})$ with DPS Chung et al. (2023) and
 356 TFG (Ye et al., 2024). We set the guidance schedule of TAG as $\omega_t = \omega_0 \sqrt{1 - \bar{\alpha}_t}$. The final results
 357 are averaged over the best-performing guidance strength ω_0 according to the grid search for all target
 358 values in each task.

359 The results in Table 2 demonstrate that TAG significantly improves the fidelity while maintaining
 360 conditioning effect across most tasks. We observe that TAG is particularly effective when the
 361 adversarial effect of external guidance becomes larger (i.e., when training free guidance guidance
 362 degrades sample fidelity). To confirm this, we compare TAG against several recent approaches
 363 applied on top of DPS, including TCS (Jung et al., 2024), Timestep Guidance (Sadat et al., 2024),
 364 Self-Guidance (Li et al., 2024b), and exposure-bias methods (Ning et al., 2024; Li et al., 2024a; Ning
 365 et al., 2023). The result confirms that while these baselines degrade under external guidance drift,
 366 TAG remains robust (see further details in Appendix D).

367 To further highlight this effectiveness, we conduct additional experiments by increasing the DPS
 368 strength from 1.0 to 5.0. Table 3 shows that TAG effectively mitigates the negative influence
 369 of stronger guidance strength, while applying only DPS results in generating mostly non-valid
 370 samples. In contrast, applying TAG with DPS show robust performance across all evaluation metrics.
 371 Qualitative results are in Appendix G.

372 4.2 MULTI-CONDITIONAL GUIDANCE

373 We next evaluate TAG in multi-conditional settings, where naively combining multiple guidance
 374 terms can induce severe off-manifold errors. Extending to multiple conditions is nontrivial, as naive
 375 approaches demand combinatorial training or multiple specialized time predictors, motivating a more
 376 efficient approach.

378

379
380
381
Table 3: Quantitative result of TAG for different val-
ues of DPS guidance strength. (DPS / DPS + TAG)

Str.	TAG	CIFAR10		ImageNet		Polar. α		Heat cap. C_v	
		FID \downarrow	Acc \uparrow	FID \downarrow	Acc \uparrow	MAE \downarrow	Stab \uparrow	MAE \downarrow	Stab \uparrow
1.0	✗	217.1	57.5	196.9	24.5	103.7	1.1	13.7	1.9
	✓	190.4	63.2	192.2	22.9	48.5	32.2	9.9	5.4
1.5	✗	269.5	51.4	219.3	27.0	109.8	0.9	16.2	2.1
	✓	231.9	62.3	204.1	32.7	50.3	31.8	11.1	14.0
2.5	✗	334.1	41.9	230.2	28.5	159.5	1.0	18.4	2.9
	✓	289.7	51.9	212.7	30.2	49.9	31.2	12.2	9.7
5.0	✗	384.8	29.4	246.7	24.3	112.7	1.1	N/A	N/A
	✓	347.8	41.0	233.1	27.2	51.7	30.4	14.7	8.0

390

391
392
393
Table 5: Quantitative results of TAG in Multi-Conditional generation on TFG benchmark. Each cell presents the
guidance validity/generation fidelity averaged across multiple targets in the task. The best result for each cell is
reported in **bold**.

Method	TAG	CelebA				Molecule												
		Gender + Age		Gender + Hair		α, μ		C_v, μ		$\alpha, \mu, C_v, \epsilon_\Delta, \epsilon_{\text{HOMO}}, \epsilon_{\text{LUMO}}$								
		KID \downarrow	Acc \uparrow	KID \downarrow	Acc \uparrow	MAE \downarrow	Stab \uparrow	MAE \downarrow	Stab \uparrow	MAE \downarrow	Stab \uparrow	MAE \downarrow	Stab \uparrow					
Baseline	✗	-2.75	80.5	-3.16	92.1	13.7	1782.8	68.9	4.97	1425.2	70.9	10.1	31.9	4.33	0.635	1.14	1.18	56.0
Multi.	✓	-2.85	87.1	-3.19	94.9	4.56	1.31	84.7	2.72	1.33	84.2	4.52	1.45	2.94	0.610	1.13	1.15	91.2
Single.	✓	-2.86	91.0	-3.27	96.1	4.65	1.33	83.9	2.63	1.40	82.9	4.58	1.39	3.05	0.577	1.05	1.11	85.9
Uncon.	✓	-2.87	89.1	-3.08	96.0	4.56	1.35	84.9	2.74	1.36	84.2	4.48	1.44	2.82	0.530	1.07	1.15	85.9

401

402
403
Multi-condition reparametrization For multiple conditions $\mathbf{c}_i \in \mathcal{Y}$ with corresponding predictors
 \mathcal{A}_i and losses ℓ_i , we write

404
405
$$p_t(\mathbf{x}_t \mid \mathbf{c}_1, \mathbf{c}_2) \propto p_t(\mathbf{x}_t) p(\mathbf{c}_1 \mid \mathbf{x}_t) p(\mathbf{c}_2 \mid \mathbf{x}_t, \mathbf{c}_1) p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2). \quad (14)$$

406
407
Although a multi-condition time predictor $\phi(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ is possible, it is often impractical; instead,
via *single-condition reparameterization*, we approximate $p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \approx p(t \mid \mathbf{x}'_t, \mathbf{c}_2)$ by

408
409
$$\mathbf{x}'_t \approx \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1), \quad (15)$$

410
411
) where $\hat{\mathbf{x}}_0 = \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$. A detailed derivation is provided in Proposition B.1. For an *unconditional*
time predictor, we iteratively incorporate each condition:

412
413
$$\mathbb{E}[\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2] \approx \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1) - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_2(\mathcal{A}_2(\mathbf{x}'_t), \mathbf{c}_2), \quad (16)$$

414
415
where \mathbf{x}'_t reflects \mathbf{c}_1 , leading to $p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \approx p(t \mid \mathbf{x}'_t)$ and naturally extending to more
conditions while remaining efficient. The formal details are provided in Proposition B.2.

416

417
418
Setup We consider molecule-generation tasks with (i) α, μ , (ii) C_v, μ , and (iii) all six molecular
properties ($\alpha, \mu, C_v, \epsilon_{\text{HOMO}}, \epsilon_{\text{LUMO}}, \epsilon_\Delta$), along with CelebA (Gender+Age, Gender+Hair). We follow
the TFG framework (Ye et al., 2024) to combine these conditions and compare three time-predictor
variants—multi, single, and unconditional as introduced in Sec. 3.2. (Refer to Appendix E.3 for
setting details).

422

423
424
425
Result As shown in Table 5, TAG significantly outperforms the baseline combination of independent
guidance for all tasks. Notably, single and unconditional time predictors match or exceed multi-
conditional performance, indicating that explicit training of a multi-conditional time predictor is not
strictly necessary, and TAG can achieve effective multi-conditional guidance.

426

427
428

4.3 FEW-STEP GENERATION

429
430
431
We evaluate TAG in widely-used accelerated sampling, where diffusion models skip timesteps to
reduce computation but risk larger discretization errors. We compare a standard DDIM sampler (Song
et al., 2021a) with TAG for various step counts. As shown in Table 4, TAG consistently boosts sample
quality, particularly under fewer steps. Notably, in an extreme single-step scenario on CIFAR10378
379
380
Table 4: Quantitative evaluation of FID for few-step
using DDPM sampling without external guidance.

Dataset	TAG	Inference Steps					
		1 Step	3 Step	5 Step	10 Step	50 Step	100 Step
CIFAR10	✗	460.0	234.1	158.6	106.3	71.8	67.6
	✓	271.1	160.5	118.8	93.1	70.9	66.5
ImageNet	✗	430.3	297.6	295.2	286.7	259.6	251.1
	✓	352.8	265.1	265.1	245.7	244.7	
Cat	✗	433.7	313.5	243.9	209.9	166.4	154.9
	✓	314.8	178.8	199.5	188.1	164.2	152.2

(Table 17), TAG lowers FID by 41.1%. This aligns with our theoretical analysis indicating stronger negative guidance helps the sample escape incorrect manifolds. While one can analytically reduce discretization error (Karras et al., 2022), our focus is on treating it as external noise and demonstrating how TAG mitigates off-manifold drift in practice (see Appendix B.5 for further discussion).

4.4 LARGE-SCALE TEXT-TO-IMAGE GENERATION

We further evaluate TAG on large-scale text-to-image generations by integrating it into models based on Stable Diffusion v1.5 (Rombach et al., 2022), demonstrating its effectiveness on more practical generative tasks. Further details of the experimental setup are provided in Appendix E.5.

Enhanced Reward Alignment We integrate TAG into DAS (Kim et al., 2025)—a state-of-the-art test-time sampler that optimizes text-to-image generation under explicit reward functions (e.g., Aesthetic score (Schuhmann et al., 2022) or CLIP score (Radford et al., 2021)). First, we follow Kim et al. (2025) to evaluate reward alignment using simple animal prompts and an Aesthetic target score. Next, we switch to a CLIP-based reward and the HPSv2 prompt set (Wu et al., 2023). Finally, we evaluate a multi-objective scenario where the target reward is a linear combination of the Aesthetic and CLIP scores with HPSv2 prompt dataset. In each setting, we compare the original DAS sampler against DAS enhanced with TAG (DAS+TAG) on 256 randomly selected prompts.

As shown in Table 6, adding TAG substantially increases the final reward while reducing the average Time-Gap (Def. F.1) which measures off-manifold deviation, confirming TAG’s stabilization capability in practical, large-scale alignment scenario.

Table 6: TAG enhances reward alignment with signle objective DAS, multi-objective DAS and Style Transfer on SD v1.5. Higher reward scores and lower Time-Gap (TG) are better.

Method	Single-objective DAS			Multi-objective DAS			Method	Style Transfer		
	Aesthetic ↑	TG ↓	CLIP ↑	TG ↓	Aesthetic↑	CLIP ↑	TG ↓	Style Score ↓	TG ↓	
DAS (Kim et al., 2025)	7.948	90.04	0.389	20.73	8.107	0.439	20.73	TFG (Ye et al., 2024)	4.82	80.6
DAS + TAG	9.087	28.84	0.439	11.62	8.572	0.463	9.765	TFG + TAG	3.03	23.6

Improved Style Transfer We also apply TAG to style transfer task building on TFG (Ye et al., 2024). Specifically, we combine text prompts (Partiprompts (Yu et al., 2022)) and reference style images (WikiArt (Yu et al., 2022)) via a CLIP-based (Radford et al., 2021) Gram matrix alignment. Table 6 compares TFG alone with TFG+TAG, reporting Style Score and Time-Gap. Integrating TAG yields a sizable drop in Style Score and substantially reduces the Time-Gap, indicating more faithful style adherence and fewer off-manifold deviations.

4.5 ABLATION STUDY

We also probe how the time predictor’s training steps influence off-manifold correction, exploring the effect of different guidance strengths under added noise, verifying that TAG’s gains persist when scaling to 50k samples, and analyzing how the Time-Gap metric correlates with standard image quality scores. Detailed analyses of predictor robustness, hyperparameter sensitivity, and additional baseline comparisons are in Appendix E–F.

5 CONCLUSION AND FUTURE WORKS

In this work, we identify when off-manifold phenomenon happen in diffusion models by measuring Time-Gap using a time prediction mechanism. To reduce a time gap, we introduce Temporal Alignment Guidance (TAG) as a novel guidance mechanism to force the samples to desired manifold in each timestep. Our experimental results demonstrates TAG can significantly reduce this off-manifold phenomenon in multiple scenarios which shows the robustness of our method. We believe our method could be especially effective when applied to real-world downstream tasks where desired condition can vary in real-time. For future work, it would be promising to investigate the effect of TAG in another domains such as in reinforcement learning tasks Janner et al. (2022), discrete diffusion models Austin et al. (2021); Chen et al. (2023c).

486 REFERENCES
487488 Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their*
489 *Applications*, 12(3):313–326, 1982. 2490 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
491 denoising diffusion models in discrete state-spaces. In A. Beygelzimer, Y. Dauphin, P. Liang, and
492 J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems*, 2021. URL
493 <https://openreview.net/forum?id=h7-XixPCAL>. 1, 9494 Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Roni Sengupta, Micah Goldblum, Jonas Geiping,
495 and Tom Goldstein. Universal guidance for diffusion models. In *The Twelfth International*
496 *Conference on Learning Representations*, 2024. URL [https://openreview.net/forum?](https://openreview.net/forum?id=pzpWBbnwiJ)
497 [id=pzpWBbnwiJ](https://openreview.net/forum?id=pzpWBbnwiJ). 1, 34498 Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, and Jun Zhu. Equivariant energy-
499 guided SDE for inverse molecular design. In *The Eleventh International Conference on Learning*
500 *Representations*, 2023. URL [https://openreview.net/forum?](https://openreview.net/forum?id=r0otLtOwYW)
501 [id=r0otLtOwYW](https://openreview.net/forum?id=r0otLtOwYW). 43502 Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. MultiDiffusion: Fusing diffusion paths
503 for controlled image generation. In *Proceedings of the 40th International Conference on Ma-*
504 *chine Learning*, pp. 1737–1752, 2023. URL [https://proceedings.mlr.press/v202/](https://proceedings.mlr.press/v202/bar-tal23a.html)
505 [bar-tal23a.html](https://proceedings.mlr.press/v202/bar-tal23a.html). 34, 37506 Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
507 generative modeling. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
508 <https://openreview.net/forum?id=oYIjw37pTP>. 34509 Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying
510 MMD GANs. In *International Conference on Learning Representations*, 2018. URL [https://](https://openreview.net/forum?id=r11lUOzWCW)
511 openreview.net/forum?id=r11lUOzWCW. 42512 Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
513 *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL [https://](https://openreview.net/forum?id=MhK5aXo3gB)
514 openreview.net/forum?id=MhK5aXo3gB. Expert Certification. 23515 Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
516 distribution recovery of diffusion models on low-dimensional data. In *International Conference*
517 *on Machine Learning*, pp. 4672–4712. PMLR, 2023a. URL [https://proceedings.mlr.](https://proceedings.mlr.press/v202/chen23o.html)
518 [press/v202/chen23o.html](https://proceedings.mlr.press/v202/chen23o.html). 3519 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as
520 easy as learning the score: theory for diffusion models with minimal data assumptions. In
521 *The Eleventh International Conference on Learning Representations*, 2023b. URL [https://](https://openreview.net/forum?id=zyLVMgsZ0U_)
522 openreview.net/forum?id=zyLVMgsZ0U_. 1, 6, 27, 33523 Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using
524 diffusion models with self-conditioning. In *The Eleventh International Conference on Learning*
525 *Representations*, 2023c. URL <https://openreview.net/forum?id=3itjR9QxFw>. 9526 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
527 Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International*
528 *Conference on Learning Representations*, 2023. URL [https://openreview.net/forum?](https://openreview.net/forum?id=OnD9zGAGT0k)
529 [id=OnD9zGAGT0k](https://openreview.net/forum?id=OnD9zGAGT0k). 1, 2, 3, 4, 6, 7, 22, 23, 34, 42530 Hyungjin Chung, Jeongsol Kim, Geon Yeong Park, Hyelin Nam, and Jong Chul Ye. CFG++:
531 Manifold-constrained classifier free guidance for diffusion models. In *The Thirteenth International*
532 *Conference on Learning Representations*, 2025. URL [https://openreview.net/forum?](https://openreview.net/forum?id=E77uvbOTtp)
533 [id=E77uvbOTtp](https://openreview.net/forum?id=E77uvbOTtp). 34, 35534 Kevin Clark, Paul Vicol, Kevin Swersky, and David J. Fleet. Directly fine-tuning diffusion models
535 on differentiable rewards. In *The Twelfth International Conference on Learning Representations*,
536 2024. URL <https://openreview.net/forum?id=1vmSEVL19f>. 37

540 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999. 27
 541

542 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
 543 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural*
 544 *Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=AAWuCvzaVt>. 1, 3, 4, 7, 20, 50
 545

546 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fer-
 547 gus, Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse,
 548 recycle: Compositional generation with energy-based diffusion models and mcmc. In *In-
 549 ternational conference on machine learning*, pp. 8489–8510. PMLR, 2023. URL <https://proceedings.mlr.press/v202/du23a.html>. 3
 550

551 Yilun Du, Jiayuan Mao, and Joshua B. Tenenbaum. Learning iterative reasoning through energy
 552 diffusion. In *Forty-first International Conference on Machine Learning*, 2024. URL <https://openreview.net/forum?id=CduFAALvGe>. 37
 553

554 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 555 106(496):1602–1614, 2011. 3, 21, 22, 23, 36
 556

557 Jeremy Elson, John R Douceur, Jon Howell, and Jared Saul. Asirra: a captcha that exploits interest-
 558 aligned manual image categorization. *CCS*, 7:366–374, 2007. 7, 42
 559

560 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
 561 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-tuning
 562 text-to-image diffusion models. In *Thirty-seventh Conference on Neural Information Processing*
 563 *Systems*, 2023. URL <https://openreview.net/forum?id=80TPepXzeh>. 34, 37
 564

565 Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as plug-
 566 and-play priors. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
 567 *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?> id=yh1MZ3iR7Pu. 1, 33
 568

569 Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, and Mengdi Wang. Gradient guidance
 570 for diffusion models: An optimization perspective. In *The Thirty-eighth Annual Conference on*
 571 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?> id=X1QeUYBXke. 1
 572

573 Xu Han, Caihua Shan, Yifei Shen, Can Xu, Han Yang, Xiang Li, and Dongsheng Li. Training-
 574 free multi-objective diffusion model for 3d molecule generation. In *The Twelfth International*
 575 *Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?> id=X41c4uB4k0. 27
 576

577 Yinbin Han, Meisam Razaviyayn, and Renyuan Xu. Neural network-based score estimation in diffu-
 578 sion models: Optimization and generalization. In *The Twelfth International Conference on Learning*
 579 *Representations*, 2024b. URL <https://openreview.net/forum?> id=h8GeqOxtd4. 4
 580

581 Yutong He, Naoki Murata, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Dongjun Kim, Wei-
 582 Hsiang Liao, Yuki Mitsuji, J Zico Kolter, Ruslan Salakhutdinov, and Stefano Ermon. Manifold
 583 preserving guided diffusion. In *The Twelfth International Conference on Learning Representations*,
 584 2024. URL <https://openreview.net/forum?> id=o3BxOLoxm1. 23, 34, 35, 47
 585

586 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
 587 iter. Gans trained by a two time-scale update rule converge to a local nash equilib-
 588 rium. In *NIPS*, pp. 6629–6640, 2017. URL <http://papers.nips.cc/paper/7240-gans-trained-by-a-two-time-scale-update-rule-converge-to-a-local-nash-equilibrium.pdf>. 41
 589

590 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
 591 *Deep Generative Models and Downstream Applications*, 2021. URL <https://openreview.net/forum?> id=qw8AKxfYbI. 1, 20
 592

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic
 595 models. *Advances in neural information processing systems*, 33:6840–6851,
 596 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>. 20, 21

597 Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
 599 Cascaded diffusion models for high fidelity image generation. *Journal of Machine Learning
 600 Research*, 23(47):1–33, 2022. URL <http://jmlr.org/papers/v23/21-0635.html>.
 601 42

602 Emiel Hoogeboom, Víctor García Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
 603 for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–
 604 8887. PMLR, 2022. URL <https://proceedings.mlr.press/v162/hoogeboom22a.html>.
 605 1, 7, 43

606 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
 607 *Journal of Machine Learning Research*, 6(4), 2005. 20

608 Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
 609 flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
 610 Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine
 611 Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 9902–9915. PMLR,
 612 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/janner22a.html>.
 613 9

614 Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
 615 super-resolution. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
 616 Netherlands, October 11–14, 2016, Proceedings, Part II* 14, pp. 694–711. Springer, 2016. 47

617 Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–planck
 618 equation. *SIAM journal on mathematical analysis*, 29(1):1–17, 1998. 5, 30

619 Hojung Jung, Youngrok Park, Laura Schmid, Jaehyeong Jo, Dongkyu Lee, Bongsang Kim, Se-Young
 620 Yun, and Jinwoo Shin. Conditional synthesis of 3d molecules with time correction sampler. In
 621 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 622 <https://openreview.net/forum?id=gipFT1vfF1>. 4, 7, 34, 35, 37, 45

623 Khaled Kahouli, Stefaan Simon Pierre Hessmann, Klaus-Robert Müller, Shinichi Nakajima, Stefan
 624 Gugler, and Niklas Wolf Andreas Gebauer. Molecular relaxation by reverse diffusion with
 625 time step prediction. *Machine Learning: Science and Technology*, 5(3):035038, August 2024.
 626 ISSN 2632-2153. doi: 10.1088/2632-2153/ad652c. URL <http://dx.doi.org/10.1088/2632-2153/ad652c>. 34, 46

627 Ioannis Karatzas and Steven Shreve. *Brownian motion and stochastic calculus*, volume 113. Springer
 628 Science & Business Media, 1991. 26

629 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
 630 improved quality, stability, and variation. In *International Conference on Learning Representations*,
 631 2018. URL <https://openreview.net/forum?id=Hk99zCeAb>. 7, 39, 40, 42

632 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of
 633 diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
 634 Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
 635 <https://openreview.net/forum?id=k7FuTOWM0c7>. 9, 25

636 Kevin Kilgour, Mauricio Zuluaga, Dominik Roblek, and Matthew Sharifi. Fr\’echet audio distance:
 637 A metric for evaluating music enhancement algorithms. *Interspeech 2019*, 2018. 44

638 Beomsu Kim and Jong Chul Ye. Denoising MCMC for accelerating diffusion-based generative
 639 models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
 640 Sabato, and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine
 641 Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 16955–16977. PMLR,
 642 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/kim23z.html>. 34

648 Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-time alignment of diffusion models without
 649 reward over-optimization. In *The Thirteenth International Conference on Learning Representations*,
 650 2025. URL <https://openreview.net/forum?id=vi3DjUhFVm>. 9, 37, 46

651 Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
 652 diffusion model for audio synthesis. In *International Conference on Learning Representations*,
 653 2021. URL <https://openreview.net/forum?id=a-xFK8Ymz5J>. 1, 7

654 Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models
 655 for black-box optimization. In *International Conference on Machine Learning*,
 656 pp. 17842–17857. PMLR, 2023. URL <https://proceedings.mlr.press/v202/krishnamoorthy23a.html>. 1

657 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
 658 41

659 Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating exposure
 660 bias in diffusion models through sampling with shifted time steps. In *The Twelfth International
 661 Conference on Learning Representations*, 2024a. URL <https://openreview.net/forum?id=ZSD3M1oKe6>. 7, 34, 36

662 Tiancheng Li, Weijian Luo, Zhiyang Chen, Liyuan Ma, and Guo-Jun Qi. Self-guidance: Boosting
 663 flow and diffusion generation on their own. *CoRR*, abs/2412.05827, 2024b. URL <https://doi.org/10.48550/arXiv.2412.05827>. 7, 34, 35

664 Yangming Li and Mihaela van der Schaar. On error propagation of diffusion models. In *The Twelfth
 665 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=RtAct1E2zS>. 3, 34

666 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
 667 Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on background,
 668 technology, limitations, and opportunities of large vision models. *CoRR*, abs/2402.17177, 2024.
 669 URL <https://doi.org/10.48550/arXiv.2402.17177>. 1

670 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A
 671 fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Alice H. Oh,
 672 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
 673 Processing Systems*, 2022. URL https://openreview.net/forum?id=2uAaGwlP_V.
 674 20, 24, 25

675 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver++:
 676 Fast solver for guided sampling of diffusion probabilistic models, 2023. URL <https://openreview.net/forum?id=4vGwQcqviud5>. 25

677 Eloi Moliner and Vesa Välimäki. Diffusion-based audio inpainting. *Journal of the Audio Engineering
 678 Society*, 72(3):100–113, March 2024. ISSN 1549-4950. doi: 10.17743/jaes.2022.0129. URL
 679 <http://dx.doi.org/10.17743/jaes.2022.0129>. 43

680 Eloi Moliner, Jaakko Lehtinen, and Vesa Välimäki. Solving audio inverse problems with a diffusion
 681 model. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal
 682 Processing (ICASSP)*, pp. 1–5. IEEE, 2023. 43

683 Meinard Müller. Information retrieval for music and motion. *Information Retrieval for Music and
 684 Motion*, 2007. 44

685 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 686 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021. URL <https://proceedings.mlr.press/v139/nichol21a.html>. 7, 39, 41, 50

687 Mang Ning, Enver Sangineto, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Input
 688 perturbation reduces exposure bias in diffusion models. In Andreas Krause, Emma Brunskill,
 689 Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *Proceedings of
 690 the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine
 691 Learning Research*, pp. 26245–26265. PMLR, 23–29 Jul 2023. URL <https://proceedings.mlr.press/v202/ning23a.html>. 7, 34, 36

702 Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the exposure
 703 bias in diffusion models. In *The Twelfth International Conference on Learning Representations*,
 704 2024. URL <https://openreview.net/forum?id=xEJMoj1SpX>. 7, 34, 36

705 Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
 706 estimators. In *International Conference on Machine Learning*, pp. 26517–26582. PMLR, 2023.
 707 URL <https://proceedings.mlr.press/v202/oko23a.html>. 1, 3, 6, 27, 33

708 Bernt Øksendal. *Stochastic differential equations*. Springer, 2003. 20

709

710 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 711 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
 712 Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Jagadeesh,
 713 Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu, Mitesh Kumar
 714 Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sumbaly, Sai Saketh
 715 Rambhatla, Sam S. Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell, Sharadh
 716 Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe Li,
 717 Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng
 718 Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali K.
 719 Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh
 720 Wood, Ce Liu, Cen Peng, Dmitry Vengertsev, Edgar Schönenfeld, Elliot Blanchard, Felix Juefei-
 721 Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar,
 722 Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson,
 723 Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming Du.
 724 Movie gen: A cast of media foundation models. *CoRR*, abs/2410.13720, 2024. URL <https://doi.org/10.48550/arXiv.2410.13720>. 1

725

726 Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-tts: A
 727 diffusion probabilistic model for text-to-speech. In *International Conference on Machine Learning*,
 728 pp. 8599–8608. PMLR, 2021. URL <https://proceedings.mlr.press/v139/popov21a.html>. 1, 7

729

730

731 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 732 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 733 models from natural language supervision. In *International conference on machine learning*, pp. 8748–
 734 8763. PMLR, 2021. URL <https://proceedings.mlr.press/v139/radford21a.html>. 9, 46

735

736

737 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 738 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014. 43

739

740 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
 741 High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF
 742 conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 743 URL https://openaccess.thecvf.com/content/CVPR2022/html/Rombach_High-Resolution_Image_Synthesis_With_Latent_Diffusion_Models_CVPR_2022_paper.html. 1, 9, 46, 47

744

745 Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai,
 746 and Wen-Sheng Chu. RB-modulation: Training-free stylization using reference-based modulation.
 747 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=bnINPG5A32>. 37

748

749

750 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 751 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 752 challenge. *International journal of computer vision*, 115:211–252, 2015. 41, 46

753

754 Seyedmorteza Sadat, Manuel Kansy, Otmar Hilliges, and Romann M. Weber. No training, no problem:
 755 Rethinking classifier-free guidance for diffusion models. *CoRR*, abs/2407.02687, 2024. URL
<https://doi.org/10.48550/arXiv.2407.02687>. 7, 34, 35

756 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
 757 Image super-resolution via iterative refinement. *IEEE transactions on pattern analysis and machine*
 758 *intelligence*, 45(4):4713–4726, 2022. 42

759 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 760 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 761 2016. URL <https://openreview.net/forum?id=WNzy9bRDvG>. 39, 40

762 Robin San-Roman, Eliya Nachmani, and Lior Wolf. Noise estimation for generative diffusion models.
 763 *arXiv preprint arXiv:2104.02600*, 2021. 34, 35

764 Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural
 765 networks. In *International conference on machine learning*, pp. 9323–9332. PMLR, 2021. URL
 766 <https://proceedings.mlr.press/v139/satorras21a.html>. 43, 45

767 Patrick Schramowski, Manuel Brack, Björn Deiseroth, and Kristian Kersting. Safe latent diffusion:
 768 Mitigating inappropriate degeneration in diffusion models. In *CVPR*, pp. 22522–22531, 2023.
 769 URL <https://doi.org/10.1109/CVPR52729.2023.02157>. 3

770 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi
 771 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski,
 772 Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
 773 Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models.
 774 In *Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks*
 775 *Track*, 2022. URL <https://openreview.net/forum?id=M3Y74vmsMcY>. 9, 46

776 Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
 777 Chen, Yu Zhang, Yuxuan Wang, RJ-Skerr Ryan, Rif A. Saurous, Yannis Agiomyrgiannakis, and
 778 Yonghui Wu. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions.
 779 In *ICASSP*, pp. 4779–4783, 2018. URL <https://doi.org/10.1109/ICASSP.2018.8461368>. 43

780 Yifei Shen, XINYANG JIANG, Yifan Yang, Yezhen Wang, Dongqi Han, and Dongsheng Li.
 781 Understanding and improving training-free loss-based diffusion guidance. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=Eu80DGuOcs>. 1, 3

782 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021a. URL <https://openreview.net/forum?id=St1giarCHLP>. 8, 19, 20

783 Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=WNzy9bRDvG>. 47

784 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 785 *Advances in neural information processing systems*, 32, 2019. URL <https://openreview.net/forum?id=B1lcYrBgLH>. 1, 20, 34, 37

786 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 787 Poole. Score-based generative modeling through stochastic differential equations. In *International Conference on Learning Representations*, 2021b. URL <https://openreview.net/forum?id=PxTIG12RRHS>. 3, 5, 20, 21, 37

788 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In Andreas
 789 Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 790 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume
 791 202 of *Proceedings of Machine Learning Research*, pp. 32211–32252. PMLR, 23–29 Jul 2023.
 792 URL <https://proceedings.mlr.press/v202/song23a.html>. 20

793 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 794 Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-time
 795 diffusion models as entropy-regularized control, 2025. URL <https://openreview.net/forum?id=pfS4D6RWC8>. 34, 37

810 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 23(7):1661–1674, 2011. [20](#)

811

812 Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam,
813 Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using
814 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition*, pp. 8228–8238, 2024. URL https://openaccess.thecvf.com/content/CVPR2024/papers/Wallace_Diffusion_Model_Alignment_Using_Direct_Preference_Optimization_CVPR_2024_paper.pdf. [34](#)

815

816

817

818

819 Wei Wang, Dongqi Han, Xufang Luo, Yifei Shen, Charles Ling, Boyu Wang, and Dongsheng
820 Li. Toward open-ended embodied tasks solving, 2024. URL <https://openreview.net/forum?id=vsW5vJqBuv>. [1](#)

821

822 Chen Wei, Jiachen Zou, Dietmar Heinke, and Quanying Liu. Cocog-2: Controllable generation of
823 visual stimuli for understanding human concept representation. *CoRR*, abs/2407.14949, 2024.
824 URL <https://doi.org/10.48550/arXiv.2407.14949>. [1](#)

825

826 Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng
827 Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-
828 to-image synthesis. *CoRR*, abs/2306.09341, 2023. URL <https://doi.org/10.48550/arXiv.2306.09341>. [9](#), [46](#)

829

830 Mengfei Xia, Yujun Shen, Changsong Lei, Yu Zhou, Deli Zhao, Ran Yi, Wenping Wang, and
831 Yong-Jin Liu. Towards more accurate diffusion model acceleration with a timestep tuner. In
832 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5736–
833 5745, 2024. URL https://openaccess.thecvf.com/content/CVPR2024/html/Xia_Towards_More_Accurate_Diffusion_Model_Acceleration_with_A_Timestep_Tuner_CVPR_2024_paper.html. [34](#), [35](#)

834

835

836 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
837 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*, pp.
838 38592–38610. PMLR, 2023. URL <https://proceedings.mlr.press/v202/xu23n.html>. [43](#)

839

840 Shahar Yadin, Noam Elata, and Tomer Michaeli. Classification diffusion models: Revitalizing density
841 ratio estimation. In *The Thirty-eighth Annual Conference on Neural Information Processing
Systems*, 2024. URL <https://openreview.net/forum?id=d99yCfOnwK>. [34](#), [36](#)

842

843

844 Lingxiao Yang, Shutong Ding, Yifan Cai, Jingyi Yu, Jingya Wang, and Ye Shi. Guidance with
845 spherical gaussian constraint for conditional diffusion. In *Forty-first International Conference on
Machine Learning*, 2024. URL <https://openreview.net/forum?id=VtqyurB4Af>.
846 [35](#)

847

848 Haotian Ye, Haowei Lin, Jiaqi Han, Minkai Xu, Sheng Liu, Yitao Liang, Jianzhu Ma, James Zou,
849 and Stefano Ermon. TFG: Unified training-free guidance for diffusion models. In *The Thirty-
eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=N8YbGX98vc>. [3](#), [4](#), [6](#), [7](#), [8](#), [9](#), [34](#), [37](#), [41](#), [42](#), [44](#), [45](#), [47](#),
850 [51](#)

851

852

853 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
854 adapter for text-to-image diffusion models. 2023. [37](#)

855

856 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
857 Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
858 Li, Han Zhang, Jason Baldridge, and Yonghui Wu. Scaling autoregressive models for content-rich
859 text-to-image generation. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856.
860 URL <https://openreview.net/forum?id=AFDcYJKhND>. Featured Certification. [9](#),
861 [47](#)

862

863 Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and Jian Zhang. Freedom: Training-
864 free energy-guided conditional diffusion model. In *Proceedings of the IEEE/CVF International
Conference on Computer Vision*, pp. 23174–23184, 2023. [47](#)

864 Lvmi Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-
865 image diffusion models. In *Proceedings of the IEEE/CVF international conference on*
866 *computer vision*, pp. 3836–3847, 2023. URL <https://openaccess.thecvf.com/>
867 [content/ICCV2023/papers/Zhang_Adding_Conditional_Control_to_](https://openaccess.thecvf.com/content/ICCV2023/papers/Zhang_Adding_Conditional_Control_to_)
868 [Text-to-Image_Diffusion_Models_ICCV_2023_paper.pdf](https://openaccess.thecvf.com/content/ICCV2023/papers/Zhang_Adding_Conditional_Control_to_Text-to-Image_Diffusion_Models_ICCV_2023_paper.pdf). 1, 37

869 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
870 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=Loek7hfb46P>. 4

873 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The
874 unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of*
875 *the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
876 URL https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.pdf. 42

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 TABLE OF CONTENTS
919

920	1	Introduction	1
921			
922	2	Off-manifold Phenomenon in Diffusion Models	2
923			
924	3	Method	3
925	3.1	Temporal Alignment Guidance (TAG)	3
926	3.2	Improving guidance with TAG	4
927	3.3	Theoretical Analysis of TAG	5
928	3.4	Understanding TAG under Corrupted reverse process	6
929			
930	4	Experiments	6
931	4.1	TFG Benchmark	6
932	4.2	Multi-conditional guidance	7
933	4.3	Few-Step Generation	8
934	4.4	Large-scale Text-to-Image Generation	9
935	4.5	Ablation Study	9
936			
937	5	Conclusion and Future Works	9
938			
939	A	Broader Impact and Limitations	19
940			
941	B	Further background	19
942	B.1	Diffusion models	19
943	B.2	Score based diffusion model	20
944	B.3	Training-free guidance	21
945	B.4	Manifold assumption	23
946	B.5	Few step generation	24
947			
948	C	Mathematical Derivations	26
949	C.1	Upper bound by external drift	26
950	C.2	Proof of Proposition B.1	27
951	C.3	Proof of Proposition B.2	28
952	C.4	Proof of Theorem 3.3	29
953	C.5	Continuous time limit of TAG	29
954	C.6	Proof of Proposition 3.4	30
955	C.7	Formal version of Theorem 3.5 with its proof	30
956			
957	D	Relation to Prior Works	33
958	D.1	Related Works	33
959	D.2	Comparison with baseline methods	35
960			
961			
962			
963			
964			
965			
966			
967			
968			
969			
970			
971			

972	E Implementation Details	37
973	E.1 Toy experiment	37
974	E.2 Corrupted reverse process	39
975	E.3 Training-Free Guidance Benchmark	41
976	E.3.1 Label guidance	41
977	E.3.2 Guassian deblurring	42
978	E.3.3 Super-resolution	42
979	E.3.4 Multi-Conditional Guidance	42
980	E.3.5 Molecular generation	43
981	E.3.6 Audio generation	43
982	E.3.7 Hyper-parameters	45
983	E.4 Time Predictor	45
984	E.5 Large-scale Text-to-Image Generation	46
985		
986		
987		
988	F Ablation Studies	47
989	F.1 Few Step Unconditional Generation	47
990	F.2 Time Gap	48
991		
992		
993	G Visualizations of Generated Samples	50
994		
995		
996		
997		
998		
999	A BROADER IMPACT AND LIMITATIONS	
1000		
1001	Broader impact Our algorithm improves the sample quality of diffusion models. While beneficial	
1002	for applications like image generation or drug discovery, this also carries the risk of misuse common	
1003	to generative models, potentially enabling harmful generation of images (e.g., disinformation),	
1004	molecules (e.g., unsafe compounds), or audio. Developing stronger safeguard mechanisms within	
1005	generative systems, including diffusion models, is essential to counteract such potential negative	
1006	societal impacts.	
1007	Limitations In our experiments, we noticed that once sample fidelity reaches a high level, further	
1008	narrowing the time-gap yields only marginal or no improvements in quality. Although our existing	
1009	time-predictor training procedure is sufficient to demonstrate TAG’s practical benefits (see Section 4),	
1010	we anticipate that more sophisticated predictor architectures could unlock additional gains. We leave	
1011	this exploration to future work.	
1012		
1013	Usage of Large Language Models We utilized a large language model to aid in polishing the	
1014	writing and improving the clarity of this manuscript. The model’s role was strictly limited to assistance	
1015	with grammar, phrasing, and style. All scientific ideas, methodologies, experimental results, and	
1016	conclusions presented in this paper are the original work of the authors.	
1017		
1018	B FURTHER BACKGROUND	
1019		
1020	In this section, we introduce more background of the key concepts used in this work.	
1021		
1022	B.1 DIFFUSION MODELS	
1023		
1024	Diffusion Models Diffusion models are generative models that sample from the data distribution,	
1025	denoted as $\mathbf{x}_0 \sim q_{data}$. Following the stochastic differential equation (SDE) framework (Song et al.,	
1026	2021a), the forward diffusion process can be defined by the following SDE:	

1026

$$dx = f(x, t)dt + g(t)d\mathbf{w}_t, \quad (17)$$

1028 where \mathbf{w}_t is a standard wiener process (Øksendal, 2003). Ideally, if we denote $q_t(\mathbf{x})$ as the marginal
 1029 distribution of the forward process in equation 17, it becomes close to $\mathcal{N} \sim (0, \mathbf{I})$ when t goes to
 1030 large enough T .

1031 Then, diffusion model θ is trained to learn how to denoise a noisy data by learning a score function
 1032 which is done by minimizing the following objective function (Song & Ermon, 2019; Song et al.,
 1033 2021b):

$$1035 \quad \mathcal{L}(\theta) = \mathbb{E}_{t, \mathbf{x}_0} \lambda(t) \|s_\theta(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log q_t(\mathbf{x}_t | \mathbf{x}_0)\|_2^2, \quad (18)$$

1036 where t is uniformly sampled from $[0, T]$, \mathbf{x}_t denotes \mathbf{x} at timestep t in equation 17, and $\lambda(t)$ is a
 1037 weight parameter usually set to be a constant Ho et al. (2020).

1038

1039 **Conditional Diffusion Model** The aim of conditional diffusion models is to sample from the
 1040 conditional posterior $p_0(\mathbf{x} | \mathbf{c})$ with given condition \mathbf{c} . This is achieved by learning a conditional score
 1041 function $\nabla_{\mathbf{x}} \log q_t(\mathbf{x} | \mathbf{c})$. Using Bayes' rule the conditional score can be re-expressed as:

$$1042 \quad \nabla_{\mathbf{x}} \log q_t(\mathbf{x} | \mathbf{c}) = \nabla_{\mathbf{x}} \log q_t(\mathbf{x}) + \nabla_{\mathbf{x}} \log q_t(\mathbf{c} | \mathbf{x}). \quad (19)$$

1043

1044 One could obtain $\nabla_{\mathbf{x}} \log q_t(\mathbf{c} | \mathbf{x})$ with auxiliary classifier (Dhariwal & Nichol, 2021) (classifier
 1045 guidance), or train with condition-labeled data (Ho & Salimans, 2021) (classifier-free guidance)

1046

1047 B.2 SCORE BASED DIFFUSION MODEL

1048

1049 Here, we systematically present different forms of forward and reverse diffusion model processes and
 1050 their types in the existing literature.

1051

1052 **Denoising score matching** Learning score function $\nabla_{\mathbf{x}} \log p(\mathbf{x})$ perfectly for all \mathbf{x} can ideally
 1053 guide the sample towards high density region Hyvärinen & Dayan (2005). However, Song & Ermon
 1054 (2019) suggests that neural network struggles to accurately model low density region. One alternative
 1055 is use denoising score matching (Vincent, 2011; Song & Ermon, 2019) where a neural network instead
 1056 models a score function of perturbed dataset $\nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$ where $\mathbf{x}_t \sim \mathcal{N}(\mathbf{x}, \sigma(t)^2 \mathbf{I})$.

1057

1058 **SDE framework** Song et al. (2021b) define the forward and reverse process of diffusion model by
 1059 the following form of stochastic differential equation (SDE).

1060

$$1061 \quad dx = f(x, t)dt + g(t)d\mathbf{w}_t, \quad (20)$$

1062 where \mathbf{w}_t is a standard wiener process. Two types of SDE is widely used in current diffusion models,
 1063 one is variance preserving SDE (VP-SDE) which has a following form:

1064

$$1065 \quad dx = \sqrt{\sigma(t)\sigma'(t)} d\mathbf{w}_t, \quad (21)$$

1066

1067 where $\sigma(t)$ is noise schedule as in Song & Ermon (2019). The other is variance exploding SDE
 1068 (VE-SDE) which has a following form:

1069

$$1070 \quad dx_t = -\frac{1}{2}\beta(t)x dt + \sqrt{\beta(t)} d\mathbf{w}_t, \quad (22)$$

1071

1072 where $\beta(t)$ is another noise schedule.

1073

1074 **ODE framework** Reverse process of SDE in Eq. 1 has its corresponding ODE with same marginal
 1075 probability density which is called probability flow ODE Song et al. (2021b):

1076

$$1077 \quad dx = \left[f(x) - \frac{1}{2}g^2(t)\nabla_x \log q_t(x) \right] dt. \quad (23)$$

1078 A discretized version of the PF-ODE sampler can be interpreted as DDIM sampling Song et al.
 1079 (2021a). This ODE formulation can be leveraged to skip network evaluation, enabling faster inference
 1080 time of diffusion models (Lu et al., 2022; Song et al., 2023).

1080
 1081 **Connection to DDPM** Here we offer the relationship between different frameworks for convenience.
 1082 [Song et al. \(2021b\)](#) unified denoising score matching with DDPM [Ho et al. \(2020\)](#) by viewing forward
 1083 process of DDPM as a discretized version of VP-SDE in Eq. 21. In DDPM [Ho et al. \(2020\)](#), forward
 1084 noise schedule is defined by $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}$ where $\boldsymbol{\epsilon}$ is a random noise from $\mathcal{N}(0, \mathbf{I})$. This
 1085 is a discretized version of VP-SDE in Eq. 21 [Song et al. \(2021b\)](#), where notations have following
 1086 relations:

$$1087 \quad 1088 \quad 1089 \quad \bar{\alpha}_t = \exp\left(-\frac{1}{2} \int_0^t \beta(s) ds\right). \quad (24)$$

1090 In DDPM, model output is denoted as $\boldsymbol{\epsilon}_\theta(\mathbf{x}, t)$ which has following relationship with a score function
 1091 $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$:

$$1092 \quad 1093 \quad 1094 \quad \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) = -\frac{1}{\sqrt{1 - \bar{\alpha}_t}} \boldsymbol{\epsilon}_\theta(\mathbf{x}_t). \quad (25)$$

1095 Unless otherwise stated, this work utilizes a VP-SDE diffusion process with DDIM sampling.

1097 B.3 TRAINING-FREE GUIDANCE

1099 Training free guidance leverages clean estimates \mathbf{x}_0 during the reverse process. Specifically, Tweedie's
 1100 formula [Efron \(2011\)](#) is used to estimate original data during the reverse diffusion process. For
 1101 VE-SDE, this can be represented as:

$$1102 \quad 1103 \quad 1104 \quad \hat{\mathbf{x}}_0 := \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \frac{\mathbf{x}_t + (1 - \bar{\alpha}_t) \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)}{\sqrt{\bar{\alpha}_t}}. \quad (26)$$

1105 where $\bar{\alpha}_t = e^{-\frac{1}{2} \int_0^t \beta(s) ds}$ by Eq. 24. And for VE-SDE in Eq. 22, estimation of $\hat{\mathbf{x}}_0$ can be represented
 1106 as

$$1107 \quad 1108 \quad \hat{\mathbf{x}}_0 := \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t] = \mathbf{x}_t + \sigma^2(t) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t). \quad (27)$$

1109 $\hat{\mathbf{x}}_0$, conditional probability for the target condition \mathbf{c} can be obtained as

$$1111 \quad p(\mathbf{c} | \hat{\mathbf{x}}_0) \propto \exp(-\ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c})), \quad (28)$$

1113 where \mathcal{A} denotes a classifier or an analytic function that outputs a condition given the clean estimate
 1114 $\hat{\mathbf{x}}_0$ and $\ell_{\mathbf{c}} : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ measures the discrepancy between the estimated property and the target
 1115 property which is usually heuristically chosen function. Now conditional score function in Eq. 19
 1116 can be approximated by

$$1117 \quad 1118 \quad 1119 \quad \nabla_{\mathbf{x}_t} \log p_t(\mathbf{c} | \mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \mathbb{E}_{p(\mathbf{x}_0 | \mathbf{x}_t)} [\exp(-\ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0)))] \\ \approx \nabla_{\mathbf{x}_t} \hat{\mathbf{x}}_0 \cdot \nabla_{\hat{\mathbf{x}}_0} (-\ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0))), \quad (29)$$

1120 where we use chain-rule and the Tweedie's formula.

1122 **Extended view by TAG** One can view applying TAG with Training Free Guidance as an extended
 1123 framework.

1124 Denote $\phi : \mathcal{X} \times \mathcal{Y} \rightarrow [0, T]$ as a time predictor mapping noisy samples $x_t \in \mathcal{X}$ and conditions \mathbf{c} to
 1125 plausible time indices $t \in [0, T]$. The corresponding likelihood of having a correct time t becomes,

$$1127 \quad 1128 \quad p(t | \mathbf{x}_t, \mathbf{c}) \propto \exp(-\ell_t(\phi(\mathbf{x}_t, \mathbf{c}), t)), \quad (30)$$

1129 where $\ell_t : \mathbb{R} \times [0, T] \rightarrow \mathbb{R}$ is a loss function that quantifies the difference between estimated time
 1130 and the desired time.

1131 With the extended view of adding time information as another condition, we can approximate the
 1132 conditional distribution $p_t(\mathbf{x}_t | \mathbf{c})$ as:

$$1133 \quad p_t(\mathbf{x}_t | \mathbf{c}) \propto p_t(\mathbf{x}_t) p(\mathbf{c} | \mathbf{x}_t) p(t | \mathbf{x}_t, \mathbf{c}), \quad (31)$$

1134 where $p_t(\mathbf{x}_t)$ is from the pre-trained unconditional diffusion model. However, we only have access
 1135 to $p(\mathbf{c} \mid \mathbf{x}_0)$ and $p(t \mid \mathbf{x}_t, \mathbf{c})$. To bridge \mathbf{x}_0 and \mathbf{x}_t , we replace \mathbf{x}_0 with its denoised estimate
 1136 $\hat{\mathbf{x}}_0 = \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$. This gives:

$$1138 \quad p(\mathbf{c} \mid \mathbf{x}_t) \propto \exp(-\ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c})). \quad (32)$$

1140 To further align \mathbf{x}_t to the temporal manifold, we reparameterize \mathbf{x}_t as $\mathbf{x}'_t \approx \mathbf{x}_t - \eta_t \nabla_{\mathbf{x}_t} \ell_c(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c})$
 1141 and write,

$$1142 \quad p(t \mid \mathbf{x}_t, \mathbf{c}) \propto \exp(-\ell_t(\phi(\mathbf{x}'_t, \mathbf{c}), t)). \quad (33)$$

1143 Consequently, the approximated conditional distribution becomes,

$$1145 \quad p_t(\mathbf{x}_t \mid \mathbf{c}) \propto p_t(\mathbf{x}_t) \exp(-\ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c})) \exp(-\ell_t(\phi(\mathbf{x}'_t, \mathbf{c}), t)). \quad (34)$$

1147 If $\epsilon_{\theta}(\mathbf{x}_t, t) \approx -\sigma_t \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$ represents the unconditioned diffusion score, the new guided score
 1148 for single-condition TAG is given by,

$$1149 \quad \tilde{\epsilon}_{\theta}(\mathbf{x}_t, \mathbf{c}, t) = \epsilon_{\theta}(\mathbf{x}_t, t) - \sigma_t \nabla_{\mathbf{x}_t} \ell_{\mathbf{c}}(\mathcal{A}(\hat{\mathbf{x}}_0), \mathbf{c}) \\ 1150 \quad - \sigma_t \nabla_{\mathbf{x}_t} \ell_t(\phi(\mathbf{x}'_t, \mathbf{c}), t). \quad (35)$$

1152 In practice, one updates $\mathbf{x}_t \rightarrow \mathbf{x}'_t$ before applying ℓ_t , ensuring that each sampling step remains
 1153 aligned with both the property \mathbf{c} and the correct time t , mitigating off-manifold drifting.

1155 **Muti-conditional TAG** Let $\mathbf{c}_1 \in \mathcal{Y}_1, \mathbf{c}_2 \in \mathcal{Y}_2$ be the target property value, and let $\mathcal{A}_1, \mathcal{A}_2 : \mathcal{X} \rightarrow \mathcal{Y}$
 1156 be property classifiers that map samples $\mathbf{x}_0 \in \mathcal{X}$ to their respective predicted property values. To
 1157 sample from the conditional distribution $p_t(\mathbf{x}_t \mid \mathbf{c}_1, \mathbf{c}_2)$, we factorize,

$$1159 \quad p_t(\mathbf{x}_t \mid \mathbf{c}_1, \mathbf{c}_2) \propto p_t(\mathbf{x}_t) p(\mathbf{c}_1 \mid \mathbf{x}_t) p(\mathbf{c}_2 \mid \mathbf{x}_t, \mathbf{c}_1) p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2), \quad (36)$$

1160 where $p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ ensures ensures alignment of \mathbf{x}_t to the temporal manifold under \mathbf{c}_1 and \mathbf{c}_2 .

1162 A straightforward method is to directly model $p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ via a multi-condition time predictor
 1163 $\phi(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$:

$$1164 \quad p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \propto \exp(-\ell_t(\phi(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2), t)). \quad (37)$$

1165 While this method fully accounts for multi-condition effects, it requires training a separate model for
 1166 every condition combination, which becomes infeasible for complex or high-dimensional conditions.

1168 To address this challenge, we employ a single-condition time predictor $\phi(\mathbf{x}_t, \mathbf{c})$ that models $p(t \mid$
 1169 $\mathbf{x}_t, \mathbf{c})$ for a single condition \mathbf{c} . In this case, we approximate $p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ by re-parameterizing \mathbf{x}_t
 1170 to reflect \mathbf{c}_1 .

1171 **Proposition B.1.** Let \mathbf{x}'_t be a latent variable conditioned on \mathbf{x}_t and target property \mathbf{c}_1 , with prior dis-
 1172 tribution $p(\mathbf{x}_t \mid \mathbf{x}'_t, \mathbf{c}_1) \sim \mathcal{N}(\mathbf{x}'_t, \eta_t^2 \mathbf{I})$. Given a first-order approximation of the property likelihood:

$$1173 \quad p(\mathbf{c}_1 \mid \mathbf{x}'_t) \propto \exp(-\ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1) - (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla_{\mathbf{x}_t} \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1)), \quad (38)$$

1175 the posterior expectation of \mathbf{x}'_t under $p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1)$ satisfies:

$$1176 \quad \mathbb{E}_{\mathbf{x}'_t \sim p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1)}[\mathbf{x}'_t] = \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1). \quad (39)$$

1178 *Proof.* See Appendix C.2 □

1180 Practically, Using Tweedie's formula Efron (2011); Chung et al. (2023), we replace $\mathcal{A}_1(\mathbf{x}_t)$ with
 1181 $\mathcal{A}_1(\hat{\mathbf{x}}_0)$, where $\hat{\mathbf{x}}_0 = \mathbb{E}[\mathbf{x}_0 \mid \mathbf{x}_t]$ is the denoised estimate. Thus we have an approximation:

$$1183 \quad \mathbf{x}'_t \approx \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1). \quad (40)$$

1185 As a result of Proposition B.1, the single-condition time predictor allows us to approximate $p(t \mid$
 1186 $\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ by reparameterizing \mathbf{x}_t to reflect the influence of \mathbf{c}_1 , yielding,

$$1187 \quad p(t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \approx p(t \mid \mathbf{x}'_t, \mathbf{c}_2),$$

1188 where $\mathbf{x}'_t = \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1)$. This reparameterization ensures that \mathbf{x}'_t partially aligns with
 1189 \mathbf{c}_1 , reducing the approximation error when conditioning on \mathbf{c}_2 (see Algorithms 1 for implementation).
 1190

1191 We could further extend this framework to the case of an unconditional time predictor $\phi(\mathbf{x}_t)$, which
 1192 models $p(t | \mathbf{x}_t)$ without explicit dependence on any condition. This extension significantly reduces
 1193 the computational cost of training by requiring only a single predictor for all possible conditions,
 1194 relying on additional approximations of $p(t | \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ to capture the influence of \mathbf{c}_1 and \mathbf{c}_2 within
 1195 the unconditional framework.

1196 **Proposition B.2.** *Let \mathbf{x}'_t be a latent variable conditioned on \mathbf{x}_t and target properties $\mathbf{c}_1, \mathbf{c}_2$, with
 1197 priors:*

$$\begin{aligned} p(\mathbf{x}_t | \mathbf{x}'_t, \mathbf{c}_1, \mathbf{c}_2) &\sim \mathcal{N}(\mathbf{x}'_t, \eta_t^2 \mathbf{I}), \\ p(\mathbf{x}'_t | \mathbf{x}''_t, \mathbf{c}_1) &\sim \mathcal{N}(\mathbf{x}''_t, \tilde{\eta}_t^2 \mathbf{I}), \end{aligned} \quad (41)$$

1200 where \mathbf{x}''_t are intermediate samples reflecting \mathbf{c}_1 before updating \mathbf{c}_2 . The posterior expectation
 1201 satisfies:

$$\mathbb{E}_{\mathbf{x}'_t \sim p(\mathbf{x}'_t | \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)}[\mathbf{x}'_t] = \mathbf{x}_t - \eta_t^2 \nabla \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1) - \eta_t^2 \nabla \ell_2(\mathcal{A}_2(\mathbf{x}''_t), \mathbf{c}_2). \quad (42)$$

1203 *Proof.* See Appendix C.3 □

1204 Again, in practical scenarios using Tweedie’s formula Efron (2011); Chung et al. (2023), we replace
 1205 $\mathcal{A}_1(\mathbf{x}_t)$ and $\mathcal{A}_2(\mathbf{x}'_t)$ with denoised estimates:

$$\begin{aligned} \nabla \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1) &\approx \nabla \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1), \\ \nabla \ell_2(\mathcal{A}_2(\mathbf{x}'_t - \tilde{\eta}_t^2 \nabla \ell_1(\mathcal{A}_1(\mathbf{x}_t), \mathbf{c}_1)), \mathbf{c}_2) &\approx \nabla \ell_2(\mathcal{A}_2(\hat{\mathbf{x}}'_0), \mathbf{c}_2), \end{aligned} \quad (43)$$

1206 where $\hat{\mathbf{x}}'_0 = \mathbb{E}[\mathbf{x}_0 | \mathbf{x}_t - \tilde{\eta}_t^2 \nabla \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1)]$. Substituting these approximations gives:

$$\mathbf{x}'_t \approx \mathbf{x}_t - \eta_t^2 \nabla \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1) - \eta_t^2 \nabla \ell_2(\mathcal{A}_2(\hat{\mathbf{x}}'_0), \mathbf{c}_2). \quad (44)$$

1207 The unconditional time predictor incorporates the influences of \mathbf{c}_1 and \mathbf{c}_2 by sequentially reparameterizing \mathbf{x}_t through iterative updates. This approach leverages reparameterization steps that align \mathbf{x}_t to the conditions \mathbf{c}_1 and \mathbf{c}_2 , reducing the approximation gap to the true conditional distribution. The framework naturally extends to handle $k > 2$ conditions, iteratively integrating each condition while maintaining computational efficiency (see Algorithms 2 for implementation).

1208 **Pseudo-Code** We provide the pseudo-code for implementing multi-conditional guidance using a
 1209 single-conditional (B.1) time predictor and an unconditional time predictor (B.2) in Alg. 1 and Alg. 2,
 1210 respectively.

1224 B.4 MANIFOLD ASSUMPTION

1225 Ideally, even if original data manifold \mathcal{M}_0 can be a low-dimensional object as pointed out in several
 1226 works (Bortoli, 2022; He et al., 2024), with noise added from forward process in Eq. 17, $p_t(\mathbf{x}_t) > 0$
 1227 for all $\mathbf{x}_t \in \mathcal{X}$ where \mathcal{X} denotes the data domain. Since our motivation of off-manifold phenomenon
 1228 happens in low-density region, we redefine the target data manifold for each timestep by the following
 1229 definition.

1230 **Definition B.3.** Let $\epsilon_t > 0$ be some threshold. The correct manifold at timestep t is defined as

$$\mathcal{M}_t = \{\mathbf{x} \in \mathcal{X} : p_t(\mathbf{x}) \geq \epsilon_t\}, \quad (45)$$

1231 where \mathcal{X} is domain of the data. In other words, \mathcal{M}_t consists of all points in \mathcal{X} whose probability
 1232 density is at least ϵ_t .

1233 With above definition, we can formally define the off-manifold in diffusion models.

1234 **Definition B.4.** For given timestep t in reverse diffusion process in Eq. 1, we define off-manifold
 1235 phenomenon by \mathbf{x}_t becomes out of the correct manifold \mathcal{M}_t defined in Definition B.3. In other
 1236 words:

$$\mathbf{x}_t \notin \mathcal{M}_t. \quad (46)$$

1237 We leave further theoretical understanding of off-manifold phenomenon from the above definition as
 1238 a future work.

1242

Algorithm 1: DDIM Sampling with Single-Conditional Time Predictor

1243

Input : Unconditional score model $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$, property classifier $\mathcal{A}_1 : \mathcal{X} \rightarrow \mathbb{R}$, loss function $\ell_1 : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, single-condition time predictor $\tau(\mathbf{x}_t, \mathbf{c})$, operator \mathcal{G} , target properties $\mathbf{c}_1, \mathbf{c}_2$, guidance strength ρ_t , temporal alignment strength ω_t , time steps T .

1244

Output : Conditional sample \mathbf{x}_0 .

1245

```

1 Initialize  $\mathbf{x}_T \sim \mathcal{N}(0, I)$ ;
2 for  $t = T, \dots, 1$  do
3   Compute  $\hat{\mathbf{x}}_0 \leftarrow \frac{\mathbf{x}_t + (1 - \alpha_t) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\sqrt{\alpha_t}}$ ;
4   Reparameterize  $\mathbf{x}'_t$  to reflect  $\mathbf{c}_1$ :  $\mathbf{x}'_t \leftarrow \mathbf{x}_t - \eta_t^2 \nabla \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1)$ ;
5   Compute temporal alignment term using  $\tau(\mathbf{x}'_t, \mathbf{c}_2)$ :  $\mathcal{T} \leftarrow -\nabla_{\mathbf{x}_t} \ell_t(\tau(\mathbf{x}'_t, \mathbf{c}_2), t)$ ;
6   Define the generalized guidance operator  $\mathcal{G}(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$  to compute joint or independent
7   guidance contributions;
8    $\mathbf{x}_{t-1} \leftarrow \sqrt{\alpha_{t-1}} \left( \frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) +
9   \rho_t \mathcal{G}(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) + \omega_t \mathcal{T} + \sigma_t \epsilon_t$ .
10  return  $\mathbf{x}_0$ ;

```

1246

Algorithm 2: DDIM Sampling with Unconditional Time Predictor

1247

Input : Unconditional score model $\nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)$, property classifiers $\mathcal{A}_1 : \mathcal{X} \rightarrow \mathbb{R}$, $\mathcal{A}_2 : \mathcal{X} \rightarrow \mathbb{R}$, loss functions $\ell_1, \ell_2 : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, unconditional time predictor $\tau(\mathbf{x}_t)$, operator \mathcal{G} , target properties $\mathbf{c}_1, \mathbf{c}_2$, guidance strength ρ_t , temporal alignment strength ω_t , time steps T .

1248

Output : Conditional sample \mathbf{x}_0 .

1249

```

1 Initialize  $\mathbf{x}_T \sim \mathcal{N}(0, I)$ ;
2 for  $t = T, \dots, 1$  do
3   Compute  $\hat{\mathbf{x}}_0 \leftarrow \frac{\mathbf{x}_t + (1 - \alpha_t) \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\sqrt{\alpha_t}}$ ;
4   Reparameterize  $\mathbf{x}'_t$  to reflect  $\mathbf{c}_1$ :  $\mathbf{x}'_t \leftarrow \mathbf{x}_t - \eta_t^2 \nabla \ell_1(\mathcal{A}_1(\hat{\mathbf{x}}_0), \mathbf{c}_1)$ ;
5   Compute  $\hat{\mathbf{x}}'_0 \leftarrow \frac{\mathbf{x}'_t + (1 - \alpha_t) \nabla_{\mathbf{x}'_t} \log p_t(\mathbf{x}'_t)}{\sqrt{\alpha_t}}$ ;
6   Reparameterize  $\mathbf{x}''_t$  to reflect  $\mathbf{c}_2$ :  $\mathbf{x}''_t \leftarrow \mathbf{x}'_t - \tilde{\eta}_t^2 \nabla \ell_2(\mathcal{A}_2(\hat{\mathbf{x}}'_0), \mathbf{c}_2)$ ;
7   Compute temporal alignment term using  $\tau(\mathbf{x}''_t)$ :  $\mathcal{T} \leftarrow -\nabla_{\mathbf{x}_t} \ell_t(\tau(\mathbf{x}''_t), t)$ ;
8   Define the generalized guidance operator  $\mathcal{G}(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$  to compute joint or independent
9   guidance contributions;
10   $\mathbf{x}_{t-1} \leftarrow \sqrt{\alpha_{t-1}} \left( \frac{\mathbf{x}_t - \sqrt{1 - \alpha_t} \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t) +
11  \rho_t \mathcal{G}(\mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) + \omega_t \mathcal{T} + \sigma_t \epsilon_t$ .
12  return  $\mathbf{x}_0$ ;

```

1250

1251

B.5 FEW STEP GENERATION

1252

As shown in [Lu et al. \(2022\)](#), PF-ODE in Eq. 23 sends \mathbf{x}_s at timestep s to \mathbf{x}_t at timestep t by solving,

1253

$$\mathbf{x}_t = e^{\int_s^t f(\tau) d\tau} \mathbf{x}_s + \int_s^t (e^{\int_\tau^t f(\tau) d\tau} \cdot \frac{g^2(\tau)}{2\sigma_\tau} \epsilon_\theta(\mathbf{x}_\tau, \tau)) d\tau. \quad (47)$$

1254

Here, forward SDE is defined as follows.

1255

1256

1257

1258

$$d\mathbf{x}_t = f(t) \mathbf{x}_t \cdot dt + \frac{g^2(t)}{2\sigma_t} \epsilon_\theta(\mathbf{x}_t, t) \cdot dt, \quad \mathbf{x}_t \sim \mathcal{N}(0, \sigma_t^2 \mathbf{I}), \quad (48)$$

which incorporates both VP-SDE and VE-SDE scenarios (Appendix B.2) and $f(t), g(t)$ are defined as:

1259

1260

1261

$$f(t) = \frac{d \log \alpha_t}{dt}, \quad g^2(t) = \frac{d \sigma_t^2}{dt} - 2 \frac{d \log \alpha_t}{dt} \sigma_t^2. \quad (49)$$

After using change of variable $\lambda(t) := \log(\frac{\alpha_t}{\sigma_t})$, [Lu et al. \(2022\)](#) show following equation holds:

1296

1297

1298

$$\mathbf{x}_t = \frac{\alpha_t}{\alpha_s} \mathbf{x}_s - \alpha_t \int_{\lambda_s}^{\lambda_t} e^{-\lambda} \hat{\epsilon}_\theta(\hat{\mathbf{x}}_\lambda, \lambda) d\lambda. \quad (50)$$

1299

1300

1301

1302

Now, from Eq. 50, one can observe how discretization error occurs if we skip the evaluation of the diffusion models for some of timesteps. Note that the discretization errors can be reduced by considering higher-order term in Eq. 50 (Karras et al., 2022; Lu et al., 2022; 2023) where we leave combining TAG with higher order diffusion solver as a future work.

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350
1351
1352 Table 7: Mathematical terms and notations used in this work.
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

Notation	Descriptions
x_t	Sample of the diffusion process at timestep $t \in [0, T]$
$q_t(x)$	Marginal probability density of the forward diffusion process at time t
$p_t(x)$	Marginal probability density of the learned reverse process at time t
$s_\theta(x, t)$	Score network approximating the score function $\nabla_x \log q_t(x)$
\mathcal{M}_t	Target data manifold at time t , defined as the ϵ -support $\{x \in \mathcal{X} : p_t(x) \geq \epsilon_t\}$
$\phi(x)$	Time predictor network estimating the posterior $p(t x)$
$\nabla_x \log p(t x)$	Time-Linked Score (TLS); the gradient field for temporal alignment
$\text{TAG}(x, t)$	Total score function modified by Temporal Alignment Guidance
ω_t	Time-dependent scalar controlling the strength of TAG
$v(x, c, t)$	Arbitrary external guidance vector field (e.g., classifier gradient)
$\mathcal{A}(\cdot)$	Pre-trained property predictor or classifier for condition c
\hat{x}_0	Tweedie's estimate of x_0 given noisy observation x_t
$\mathbb{P}, \tilde{\mathbb{P}}$	Path measures of the standard and guided reverse processes
$d_{TV}(\cdot, \cdot)$	Total variation distance between two probability measures
τ	Stopping time indicating escape from the manifold \mathcal{M}_t

1373
1374 C MATHEMATICAL DERIVATIONS
13751376 C.1 UPPER BOUND BY EXTERNAL DRIFT
13771378 To analyze the error induced by the random shift, we compare how the samples follow original reverse
1379 SDE in equation 1, and the modified SDE in equation 2 differs by the following proposition:1380 **Proposition C.1** (Error bound by the drift). *Let p_t and \tilde{p}_t be the probability distribution at time t in
1381 the original reverse process in equation 1 and in the reverse process with external guidance $\mathbf{v}(\mathbf{x}, \mathbf{c}, t)$
1382 in equation 2, respectively. The total variation distance p_0 and \tilde{p}_0 can be bounded as follows:*

1383
1384
$$d_{TV}^2(p_0, \tilde{p}_0) \leq KL(p_0, \tilde{p}_0) \leq \frac{1}{2} \int_0^T \int_{\mathbf{x}} g(t)^{-2} p_t(\mathbf{x}) \|\mathbf{v}(\mathbf{x}, \mathbf{c}, t)\|_2^2 d\mathbf{x} dt. \quad (51)$$

1385

1386 Proposition C.1 provides an upper bound indicates that external guidance \mathbf{v} can induce distributional
1387 divergence in the worst case, even if the underlying score function for $p_t(\mathbf{x})$ is perfectly known.1388 **Proof of Proposition C.1** For the ease of analysis, we first redefine the notations. Suppose \mathbf{Y}_t and
1389 $\tilde{\mathbf{Y}}_t$ be the random variable of backward process of original reverse diffusion process by satisfying
1390 $\mathbf{Y}_{T-t} = \mathbf{x}_t$ in Eq. 1 and reverse process with external guidance by satisfying $\tilde{\mathbf{Y}}_{T-t} = \mathbf{x}_t$ in Eq. 2,
1391 respectively. This can be restated with following formulations:

1392
1393
$$\begin{aligned} d\mathbf{Y}_t &= [-\mathbf{f}(\mathbf{Y}_t, t) + g(t)^2 \nabla \log q_t(\mathbf{Y}_t)] dt + g(t) d\mathbf{w}_t, \quad \mathbf{Y}_0 \sim \mathcal{N}(0, \mathbf{I}) \\ 1394 \quad d\tilde{\mathbf{Y}}_t &= [-\mathbf{f}(\tilde{\mathbf{Y}}_t, t) + g(t)^2 (\nabla \log q_t(\tilde{\mathbf{Y}}_t) + \mathbf{v}(\tilde{\mathbf{Y}}_t, \mathbf{c}, t))] dt + g(t) d\tilde{\mathbf{w}}_t, \quad \tilde{\mathbf{Y}}_0 \sim \mathcal{N}(0, \mathbf{I}). \end{aligned} \quad (52)$$

1395

1396 Also, denote p_t and \tilde{p}_t be probability distributions of \mathbf{Y}_t and $\tilde{\mathbf{Y}}_t$, respectively and denote path
1397 measure of two process by $\mathbb{P}, \tilde{\mathbb{P}}$, respectively. Now, the goal is to bound the distance between p_T and
1398 \tilde{p}_T which are final output of two SDE processes. This can be proved by automatic consequence of
1399 Girsanov's Theorem (Karatzas & Shreve, 1991). To start, we first define the stochastic process
1400

1401
1402
$$M_t = \exp \left(- \int_0^T \sigma(t)^{-1} \mathbf{v} \cdot d\mathbf{w}_t - \frac{1}{2} \int_0^T \int_{\mathbf{y}} \sigma(t)^{-2} \|\mathbf{v}\|^2 dy dt \right) \quad (53)$$

1403

1404 and assume M_t is a Martingale. Then, Girsanov's Theorem states that the Radon-Nikodym derivative
 1405 of \mathbb{P} with respect to $\tilde{\mathbb{P}}$ becomes
 1406

$$d\mathbb{P} = M_T d\tilde{\mathbb{P}}, \quad (54)$$

1407 and this consequently bounds the KL divergence between two path measures as follows:
 1408

$$KL(\mathbb{P}, \tilde{\mathbb{P}}) = \frac{1}{2} \int_0^T \int_{\mathbf{y}} p_t(\mathbf{y}) \sigma(t)^{-2} \|\mathbf{v}\|^2 d\mathbf{y} dt. \quad (55)$$

1412 Finally, using data processing inequality and Pinsker's inequality together (Cover, 1999), one can
 1413 obtain:
 1414

$$d_{TV}^2(p_0, \tilde{p}_0) \leq KL(p_0, \tilde{p}_0) \leq KL(\mathbb{P}, \tilde{\mathbb{P}}) = \mathbb{E}_{\mathbb{P}} \left[\frac{1}{2} \int_0^T \int_{\mathbf{y}} \sigma(t)^{-2} \|\mathbf{v}\|^2 d\mathbf{y} dt \right]. \quad (56)$$

1417 It is known that following is a sufficient condition for M_t to be a Martingale (Novikov's condition):
 1418

$$\mathbb{E}_{\mathbb{P}} \left[\exp \left(\frac{1}{2} \int_0^T \int_{\mathbf{y}} \sigma(t)^{-2} \|\mathbf{v}\|^2 d\mathbf{y} dt \right) \right] < \infty, \quad (57)$$

1422 and this can be further relaxed by the following condition:
 1423

$$\int_{\mathbf{y}} p_t(\mathbf{y}) \sigma(t)^{-2} \|\mathbf{v}\|^2 d\mathbf{y} \leq C \quad (58)$$

1426 for all t and some constant C (Chen et al., 2023b). \square
 1427

1428 Note that similar analysis has been conducted to prove the convergence rate of diffusion models
 1429 in (Chen et al., 2023b; Oko et al., 2023) while their analysis does not contain any additional guidance.
 1430

C.2 PROOF OF PROPOSITION B.1

1433 **Proposition B.1** Let \mathbf{x}'_t be a latent variable conditioned on \mathbf{x}_t and target property \mathbf{c}_1 , with prior dis-
 1434 tribution $p(\mathbf{x}_t | \mathbf{x}'_t, \mathbf{c}_1) \sim \mathcal{N}(\mathbf{x}'_t, \eta_t^2 \mathbf{I})$. Given a first-order approximation of the property likelihood:
 1435

$$p(\mathbf{c}_1 | \mathbf{x}'_t) \propto \exp \left(-\ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) \right), \quad (59)$$

1437 the posterior expectation of \mathbf{x}'_t under $p(\mathbf{x}'_t | \mathbf{x}_t, \mathbf{c}_1)$ satisfies:
 1438

$$\mathbb{E}_{\mathbf{x}'_t \sim p(\mathbf{x}'_t | \mathbf{x}_t, \mathbf{c}_1)} [\mathbf{x}'_t] = \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1). \quad (60)$$

1441 *Proof.* Similar to Han et al. (2024a), which assumes a prior on the clean sample estimate given a
 1442 latent variable and applies a first-order expansion of the loss function, we assume a prior on \mathbf{x}_t at
 1443 each t . We model the temporal distribution $p(t | \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)$ via a property loss function, whereas
 1444 Han et al. (2024a) models $p(\mathbf{c}_2 | \hat{\mathbf{x}}_0, \mathbf{c}_1)$, with $\hat{\mathbf{x}}_0$ as the clean estimate.

1445 The posterior distribution is derived via Bayes' rule:
 1446

$$p(\mathbf{x}'_t | \mathbf{x}_t, \mathbf{c}_1) \propto p(\mathbf{x}_t | \mathbf{x}'_t, \mathbf{c}_1) p(\mathbf{c}_1 | \mathbf{x}'_t) p(\mathbf{x}'_t). \quad (61)$$

1448 Assuming a flat prior $p(\mathbf{x}'_t) \propto 1$, the posterior simplifies to:
 1449

$$p(\mathbf{x}'_t | \mathbf{x}_t, \mathbf{c}_1) \propto p(\mathbf{x}_t | \mathbf{x}'_t, \mathbf{c}_1) p(\mathbf{c}_1 | \mathbf{x}'_t). \quad (62)$$

1452 The Gaussian prior is given by:
 1453

$$p(\mathbf{x}_t | \mathbf{x}'_t, \mathbf{c}_1) \propto \exp \left(-\frac{\|\mathbf{x}_t - \mathbf{x}'_t\|^2}{2\eta_t^2} \right). \quad (63)$$

1456 The likelihood $p(\mathbf{c}_1 | \mathbf{x}'_t)$ is approximated using a first-order Taylor expansion of $\ell_1(A_1(\mathbf{x}'_t), \mathbf{c}_1)$
 1457 around \mathbf{x}_t :

$$\ell_1(A_1(\mathbf{x}'_t), \mathbf{c}_1) \approx \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) + (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1). \quad (64)$$

1458 Thus, the likelihood becomes:

$$1459 \quad p(\mathbf{c}_1 \mid \mathbf{x}'_t) \propto \exp \left(-\ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) \right). \quad (65)$$

1460 Combining the prior and likelihood, the log-posterior is:

$$1461 \quad \log p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1) \propto -\frac{\|\mathbf{x}_t - \mathbf{x}'_t\|^2}{2\eta_t^2} - \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1). \quad (66)$$

1462 Differentiating the log-posterior with respect to \mathbf{x}'_t yields:

$$1463 \quad \frac{\partial}{\partial \mathbf{x}'_t} \log p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1) = -\frac{\mathbf{x}'_t - \mathbf{x}_t}{\eta_t^2} - \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1). \quad (67)$$

1464 Setting the gradient to zero for the MAP estimate gives:

$$1465 \quad \mathbf{x}'_t = \mathbf{x}_t - \eta_t^2 \nabla_{\mathbf{x}_t} \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1). \quad (68)$$

1466 For Gaussian posteriors, the MAP estimate coincides with the expectation. \square

1467 C.3 PROOF OF PROPOSITION B.2

1468 **Proposition B.2** Let \mathbf{x}'_t be a latent variable conditioned on \mathbf{x}_t and target properties $\mathbf{c}_1, \mathbf{c}_2$, with priors:

$$1469 \quad p(\mathbf{x}_t \mid \mathbf{x}'_t, \mathbf{c}_1, \mathbf{c}_2) \sim \mathcal{N}(\mathbf{x}'_t, \eta_t^2 \mathbf{I}), \quad (69)$$

$$1470 \quad p(\mathbf{x}'_t \mid \mathbf{x}''_t, \mathbf{c}_1) \sim \mathcal{N}(\mathbf{x}''_t, \tilde{\eta}_t^2 \mathbf{I}),$$

1471 where \mathbf{x}''_t are intermediate samples reflecting \mathbf{c}_1 before updating \mathbf{c}_2 . The posterior expectation satisfies:

$$1472 \quad \mathbb{E}_{\mathbf{x}'_t \sim p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2)} [\mathbf{x}'_t] = \mathbf{x}_t - \eta_t^2 \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - \eta_t^2 \nabla \ell_2(A_2(\mathbf{x}''_t), \mathbf{c}_2). \quad (70)$$

1473 *Proof.* The posterior distribution is derived via hierarchical Bayesian inference:

$$1474 \quad p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \propto p(\mathbf{x}_t \mid \mathbf{x}'_t, \mathbf{c}_1, \mathbf{c}_2) p(\mathbf{c}_1, \mathbf{c}_2 \mid \mathbf{x}'_t) p(\mathbf{x}'_t). \quad (71)$$

1475 Assuming flat priors $p(\mathbf{x}'_t) \propto 1$ and $p(\mathbf{x}''_t) \propto 1$, the model simplifies to:

$$1476 \quad p(\mathbf{x}'_t \mid \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \propto p(\mathbf{x}_t \mid \mathbf{x}'_t, \mathbf{c}_1, \mathbf{c}_2) p(\mathbf{c}_1 \mid \mathbf{x}'_t) p(\mathbf{c}_2 \mid \mathbf{x}'_t, \mathbf{c}_1). \quad (72)$$

1477 The Gaussian prior for $p(\mathbf{x}_t \mid \mathbf{x}'_t, \mathbf{c}_1, \mathbf{c}_2)$ is:

$$1478 \quad p(\mathbf{x}_t \mid \mathbf{x}'_t, \mathbf{c}_1, \mathbf{c}_2) \propto \exp \left(-\frac{\|\mathbf{x}_t - \mathbf{x}'_t\|^2}{2\eta_t^2} \right). \quad (73)$$

1479 The likelihood for \mathbf{c}_1 is approximated using a first-order Taylor expansion of $\ell_1(A_1(\mathbf{x}'_t), \mathbf{c}_1)$ around \mathbf{x}_t :

$$1480 \quad \ell_1(A_1(\mathbf{x}'_t), \mathbf{c}_1) \approx \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) + (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1). \quad (74)$$

1481 Thus, the likelihood becomes:

$$1482 \quad p(\mathbf{c}_1 \mid \mathbf{x}'_t) \propto \exp \left(-\ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) \right). \quad (75)$$

1483 For $p(\mathbf{c}_2 \mid \mathbf{x}'_t, \mathbf{c}_1)$, we introduce an intermediate latent variable \mathbf{x}''_t conditioned on \mathbf{x}'_t and \mathbf{c}_1 :

$$1484 \quad p(\mathbf{x}'_t \mid \mathbf{x}''_t, \mathbf{c}_1) \propto \exp \left(-\frac{\|\mathbf{x}'_t - \mathbf{x}''_t\|^2}{2\tilde{\eta}_t^2} \right). \quad (76)$$

1485 The likelihood for \mathbf{c}_2 is approximated using a first-order Taylor expansion of $\ell_2(A_2(\mathbf{x}''_t), \mathbf{c}_2)$ around \mathbf{x}'_t :

$$1486 \quad \ell_2(A_2(\mathbf{x}''_t), \mathbf{c}_2) \approx \ell_2(A_2(\mathbf{x}'_t), \mathbf{c}_2) + (\mathbf{x}''_t - \mathbf{x}'_t)^\top \nabla \ell_2(A_2(\mathbf{x}'_t), \mathbf{c}_2). \quad (77)$$

1487 Substituting $\mathbf{x}''_t = \mathbf{x}'_t - \tilde{\eta}_t^2 \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1)$ (from Proposition C.2), the likelihood becomes:

$$1488 \quad p(\mathbf{c}_2 \mid \mathbf{x}'_t, \mathbf{c}_1) \propto \exp \left(-\ell_2 \left(A_2 \left(\mathbf{x}'_t - \tilde{\eta}_t^2 \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) \right), \mathbf{c}_2 \right) \right). \quad (78)$$

Combining the Gaussian prior and the likelihood, the log-posterior is:

$$\log p(\mathbf{x}'_t | \mathbf{x}_t, \mathbf{c}_1, \mathbf{c}_2) \propto -\frac{\|\mathbf{x}_t - \mathbf{x}'_t\|^2}{2\eta_t^2} - \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - (\mathbf{x}'_t - \mathbf{x}_t)^\top \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - \ell_2(A_2(\mathbf{x}'_t), \mathbf{c}_2). \quad (79)$$

Differentiating with respect to \mathbf{x}'_t and setting the gradient to zero for the MAP estimate gives:

$$\mathbf{x}'_t = \mathbf{x}_t - \eta_t^2 \nabla \ell_1(A_1(\mathbf{x}_t), \mathbf{c}_1) - \eta_t^2 \nabla \ell_2(A_2(\mathbf{x}'_t), \mathbf{c}_2). \quad (80)$$

For Gaussian posteriors, the MAP estimate coincides with the expectation, completing the proof. \square

C.4 PROOF OF THEOREM 3.3

For discretized diffusion timesteps $[t_1, t_2, \dots, t_n]$, and with denoting $p_{tot} := \sum_j p_j(\mathbf{x})$, TAG for i -th timestep t_i can be represented by rearranging the terms as follows:

$$\begin{aligned} \nabla_{\mathbf{x}} \log p(t_i | \mathbf{x}) &= \nabla_{\mathbf{x}} \log \left(\frac{p(\mathbf{x}|t_i)p(t_i)}{\sum_k p(\mathbf{x}|t_k)p(t_k)} \right) \\ &= \nabla_{\mathbf{x}} \log \left(\frac{p_i(\mathbf{x})}{p_{tot}(\mathbf{x})} \right) \\ &= \frac{\nabla_{\mathbf{x}} p_i(\mathbf{x})}{p_i(\mathbf{x})} - \frac{\nabla_{\mathbf{x}} p_{tot}(\mathbf{x})}{p_{tot}(\mathbf{x})} \\ &= \frac{\nabla_{\mathbf{x}} p_i(\mathbf{x})}{p_i(\mathbf{x})} - \frac{\sum_k \nabla_{\mathbf{x}} p_k(\mathbf{x})}{p_{tot}(\mathbf{x})} \\ &= \left(1 - \frac{p_i(\mathbf{x})}{p_{tot}(\mathbf{x})}\right) \nabla_{\mathbf{x}} \log p_i(\mathbf{x}) - \sum_{k \neq i} \frac{p_k(\mathbf{x})}{p_{tot}(\mathbf{x})} \nabla_{\mathbf{x}} \log p_k(\mathbf{x}) \\ &= \sum_{k \neq i} \frac{p_k(\mathbf{x})}{p_{tot}(\mathbf{x})} (\nabla_{\mathbf{x}} \log p_i(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_k(\mathbf{x})). \end{aligned} \quad (81)$$

\square

C.5 CONTINUOUS TIME LIMIT OF TAG

Theorem C.2. (Continuous time TAG decomposition) For continuous time diffusion models, TLS score can be decomposed in the following way.

$$\nabla_{\mathbf{x}} \log p(t | \mathbf{x}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) - \int \gamma_s \nabla_{\mathbf{x}} \log p_s(\mathbf{x}) ds, \quad (82)$$

where $\gamma_s = \frac{p_s(\mathbf{x})}{\int p_k(\mathbf{x}) dk}$.

Proof.

$$\begin{aligned} \nabla_{\mathbf{x}} \log p(t | \mathbf{x}) &= \nabla_{\mathbf{x}} \log \left(\frac{p(\mathbf{x}|t)p(t)}{\int_s p(\mathbf{x}|s)p(s)} \right) \\ &= \nabla_{\mathbf{x}} \log \left(\frac{p_t(\mathbf{x})}{\int_s p(\mathbf{x}|s) ds} \right) \\ &= \frac{\nabla_{\mathbf{x}} p_t(\mathbf{x})}{p_t(\mathbf{x})} - \frac{\int \nabla_{\mathbf{x}} p_s(\mathbf{x}) ds}{\int p_s(\mathbf{x}) ds} \\ &= \nabla_{\mathbf{x}} \log p_t(\mathbf{x}) - \int \frac{p_s(\mathbf{x})}{\int p_k(\mathbf{x}) dk} \nabla_{\mathbf{x}} \log p_s(\mathbf{x}) ds, \end{aligned} \quad (83)$$

gives the result. \square

1566 C.6 PROOF OF PROPOSITION 3.4
15671568 We restate Proposition 3.4 below for convenience.
15691570 **Proposition C.3.** *Applying TAG alters energy barrier map $U_k(\mathbf{x}) = -\log p_k(\mathbf{x})$ at timestep t_k to*
1571 *$\Phi_k(\mathbf{x})$ for any k by:*

1572
$$\Phi_k(\mathbf{x}) = U_k(\mathbf{x}) - \sum_i \gamma_i U_i(\mathbf{x}), \quad (84)$$

1573

1574 where $\gamma_i = \frac{p_i(\mathbf{x})}{p_{tot}(\mathbf{x})}$ for all i .
15751576
1577 *Proof.* Denote s_k as a new score term obtained by applying TAG at timestep t_k . Then, from
1578 Theorem 3.3, one can see that:
1579

1580
$$\begin{aligned} \tilde{s}_k &:= \sum_{i \neq k} \gamma_i (s_k - s_i) \\ 1581 &= s_k - (1 - \sum_{i \neq k} \gamma_i) s_k - \sum_{i \neq k} \gamma_i s_i, \end{aligned} \quad (85)$$

1582
1583
1584

1585 where $\gamma_i = \frac{p_i(\mathbf{x})}{p_{tot}(\mathbf{x})}$ as before. From the definition of the potential $U_i(\mathbf{x}) = -\log p_k(\mathbf{x})$ gradient of
1586 the U_i equals to the score function s_i for all i . Integrating both sides of the above equation and noting
1587 that the potential U_k is defined up to additive constants, we get the result. \square
15881590 C.7 FORMAL VERSION OF THEOREM 3.5 WITH ITS PROOF
15911592 JKO scheme (Jordan et al., 1998) establishes the foundational argument that the Fokker-Planck
1593 equation of the Langevin dynamic is the gradient flow of the KL divergence with respect to the
1594 Wasserstein-2 metric. We can leverage this to analyze the convergence guarantee of the modified
1595 correction sampling by TAG. We start by defining original and modified Langevin dynamics below.
15961597 **Modified Langevin dynamics** Original Langevin dynamics at timestep t_k can be stated as,
1598

1599
$$d\mathbf{y}_t = \mathbf{s}_k(\mathbf{y}_t)dt + \sqrt{2}dW_t. \quad (86)$$

1600

1601 When applying TAG, from Theorem 3.3, Langevin dynamics in each step can be modified as,
1602

1603
$$d\mathbf{x}_t = \left[\mathbf{s}_k(\mathbf{x}_t) - \sum_{i \neq k} \gamma_i \mathbf{s}_i(\mathbf{x}_t) \right] dt + \sqrt{2}dW_t. \quad (87)$$

1604
1605
1606

1607 **Fokker-Plank equation and gradient flow**
16081609 **Proposition C.4. (Fokker-Plank equation)** *For any smoothly evolving density q_t driven by the*
1610 *Langevin dynamics of*

1611
$$d\mathbf{x}_t = \mathbf{v}(\mathbf{x}_t, t)dt + \sqrt{2}dW_t, \quad (88)$$

1612

1613 *following equation holds:*
1614

1615
$$\partial_t q_t = -\nabla \cdot (q_t \mathbf{v}) + \Delta q_t, \quad (89)$$

1616

1617 *where Δ denotes Laplacian operator.*
16181619 **Theorem C.5.** *For Langevin dynamics in eq. 88, gradient flow of the KL functional has the following*
1620 *form:*

1621
$$\frac{d}{dt} KL(q_t || p_k) = -\mathbb{E}_{q_t} \left[\left\| \nabla \log \frac{q_t}{p_k} \right\|^2 - \nabla \log \frac{q_t}{p_k} \cdot (\mathbf{v} - \nabla \log p_k) \right]. \quad (90)$$

1620 *Proof.* Define the mismatch score $\mathbf{r}_k(\mathbf{x}, t) = \nabla_{\mathbf{x}} \log \frac{q_t(\mathbf{x})}{p_k(\mathbf{x})}$. One can observe that,
 1621

$$\begin{aligned} 1622 \quad \frac{d}{dt} KL(q_t || p_k) &= \int (\partial_t q_t) \log \frac{q_t}{p_k} d\mathbf{x} \\ 1623 &= \int [-\nabla \cdot (q_t \mathbf{v}) + \Delta q_t] \log \frac{q_t}{p_k} d\mathbf{x} \\ 1624 &= \int q_t \mathbf{v} \cdot \nabla \log \frac{q_t}{p_k} d\mathbf{x} - \int \nabla q_t \cdot \nabla \log \frac{q_t}{p_k} d\mathbf{x} \\ 1625 &= \int q_t \mathbf{v} \cdot \nabla \log \frac{q_t}{p_k} d\mathbf{x} - \int q_t \nabla \log q_t \cdot \nabla \log \frac{q_t}{p_k} d\mathbf{x} \\ 1626 &= \mathbb{E}_{q_t} [\mathbf{v} \cdot \mathbf{r}_k - \nabla \log q_t \cdot \mathbf{r}_k], \\ 1627 \\ 1628 \\ 1629 \\ 1630 \\ 1631 \end{aligned} \tag{91}$$

1632 where second equality comes from the Proposition C.4, third equality comes from the integration-by-
 1633 parts, and the last equality comes from the definition of \mathbf{r}_k . Now, from the definition of \mathbf{r}_k , we can
 1634 rewrite,

$$1635 \quad \nabla \log q_t = \mathbf{r}_k + \nabla \log p_k. \tag{92}$$

1636 Putting this into the above result in Eq. 91, we get the result. \square
 1637

1638 Above theorem gives exact decreasing rate of KL divergence as shown by the following corollary:

1639 **Corollary C.6.** (*Gradient flow of KL divergence*) *Applying Theorem C.5 to the original Langevin*
 1640 *(Eq. 86), we can observe $\mathbf{v} - \nabla \log p_k = 0$, and from this, the last term in Eq. 90 is canceled out*
 1641 *which gives,*

$$1642 \quad \frac{d}{dt} KL(q_t || p_k) = -\mathbb{E}_{q_t} \|\mathbf{r}_k\|^2, \tag{93}$$

1644 *Similarly, by applying Proposition C.3, we can obtain decreasing rate of modified Langevin (Eq. 87)*
 1645 *as follows:*

$$1647 \quad \frac{d}{dt} KL(\tilde{q}_t || p_k) = -\mathbb{E}_{\tilde{q}_t} [\|\tilde{\mathbf{r}}_k\|^2 + A(t)], \tag{94}$$

1649 *where $\tilde{\mathbf{r}}_k = \nabla \log \frac{\tilde{q}_t}{p_k}$ as before and $A(t) = \sum_i \gamma_i \mathbb{E}_{\tilde{q}_t} [\tilde{\mathbf{r}}_k(\mathbf{x}, t) \cdot \mathbf{s}_i(\mathbf{x})]$ is the extra term from the*
 1650 *TAG.*

1652 Intuitively, if the expectation of $A(t)$ in Eq. 94 is strictly positive, this helps escaping the low-density
 1653 region faster compared to the original Langevin dynamics. To formalize this, we first define a
 1654 low-density region in the following way.

1655 **Definition C.7.** (*Low density region*) We say \mathbf{x} falls into low-density region whenever,

$$1657 \quad \mathbf{x} \in D_{k,\epsilon} \quad D_{k,\epsilon} = \{p_k(\mathbf{x}) \leq \epsilon\}, \tag{95}$$

1658 for some constant $\epsilon > 0$.

1659 **Definition C.8.** (*Escape time*) Define stopping times $\tau, \tilde{\tau}$ as follows:

$$1661 \quad \tau = \inf\{t \geq 0 : \mathbf{y}_t \notin D_{k,\epsilon}\}, \quad \mathbf{y}_0 \sim q_0, \tag{96}$$

1662 where q_t follows from original Langevin (Eq. 86) and

$$1664 \quad \tilde{\tau} = \inf\{t \geq 0 : \mathbf{x}_t \notin D_{k,\epsilon}\}, \quad \mathbf{x}_0 \sim \tilde{q}_0, \tag{97}$$

1665 where \tilde{q} is from the modified Langevin by TAG (Eq. 87).

1666 One can see that $\tau, \tilde{\tau}$ is the escaping time of the low-density region. Thus, lower $\tau, \tilde{\tau}$ implies a faster
 1667 convergence toward high-density region, meaning accelerated initial convergence speed. This is
 1668 captured by the following theorem.

1669 **Theorem C.9.** *Assume the support of initial distribution $q_0(\mathbf{x})$ is inside $D_{k,\epsilon}$ and for all $t < \tilde{\tau}$,*
 1670 *following equation holds:*

$$1672 \quad \mathbb{E}_{q_t} \left[\sum_j \gamma_j \tilde{\mathbf{r}}_k(\mathbf{x}_t) \cdot \mathbf{s}_j(\mathbf{x}_t) \mid \mathbf{x} \in D_{k,\epsilon} \right] \geq \beta, \quad \beta > 0. \tag{98}$$

1674 Moreover, assume the mixture score satisfies $\sum_i \gamma_i \mathbb{E}_{q_t} [\mathbf{s}_i] \leq \eta$ for $t \leq \tilde{\tau}$.

1675 Then, the expectation of the stopping time $\tilde{\tau}$ is bounded as,

$$1677 \mathbb{E}[\tilde{\tau}] \leq \frac{KL(q_0||p_k)}{(\beta + \frac{\beta}{\eta^2})}, \quad (99)$$

1680 and consequently, tail bound of the escaping probability becomes:

$$1682 \Pr(\tilde{\tau} \geq t) \leq \frac{KL(q_0||p_k)}{t(\beta + \frac{\beta}{\eta^2})}. \quad (100)$$

1685 *Proof.* First, from Cauchy-Schwarz inequality, one can observe:

$$1687 \mathbb{E}_{q_t} \|\tilde{\mathbf{r}}_k(\mathbf{x})\|^2 \geq \frac{\mathbb{E}_{q_t} \sum_i \gamma_i \tilde{\mathbf{r}}_k(\mathbf{x}) \cdot \mathbf{s}_i(\mathbf{x})}{\mathbb{E}_{q_t} \|\sum_i \gamma_i \mathbf{s}_i(\mathbf{x})\|^2} \geq \frac{\beta}{\eta^2}. \quad (101)$$

1689 As a result, gradient flow of KL divergence in Eq. 94 can be upper bounded by,

$$1691 \frac{d}{dt} KL(\tilde{q}_t||p_k) = -\mathbb{E}_{\tilde{q}_t} [\|\tilde{\mathbf{r}}_k\|^2 + A(t)] \\ 1692 = -\mathbb{E}_{\tilde{q}_t} \|\tilde{\mathbf{r}}_k\|^2 - \sum_i \gamma_i \mathbb{E}_{\tilde{q}_t} [\tilde{\mathbf{r}}_k \cdot \mathbf{s}_i] \\ 1693 \leq -(\beta + \frac{\beta}{\eta^2}). \quad (102)$$

1695 Now, it is straightforward to see that for $t^* = t \wedge \tilde{\tau}$ and $\delta := \beta + \frac{\beta}{\eta^2}$,

$$1699 KL(q_{t^*}||p_k) \leq KL(q_0||p_k) - \delta t^*. \quad (103)$$

1701 From the positiveness of the KL,

$$1702 \delta t^* \leq KL(q_0||p_k). \quad (104)$$

1703 Now, taking expectation and sends $t \rightarrow \infty$ gives

$$1705 \mathbb{E}[\tilde{\tau}] = \frac{KL(q_0||p_k)}{\delta}, \quad (105)$$

1707 which recovers Eq. 99. Now, form Markov's inequality, Eq. 100 holds. \square

1708 **Corollary C.10.** Applying TAG can accelerate convergence speed in a sense that upper bound of
1709 $\mathbb{E}[\tilde{\tau}]$ is reduced compared to the upper bound of $\mathbb{E}[\tau]$ by the factor of $1 + \eta^2$. Moreover, continuous
1710 flow of the modified Langevin dynamics until time t reduces KL divergence to the target measure by,
1711

$$1712 KL(q_0||p_k) - KL(q_t||p_k) \geq t\beta(1 + \frac{1}{\eta^2}) \quad (106)$$

1715 The improvement factor $1 + \eta^2$ grows over increasing η which implies that if the expectation of the
1716 mixture score increases, faster convergence can be guaranteed. This agrees with our intuition that
1717 even the $\mathbf{x} \sim q_t$ mostly resides in the low density region of the single timestep distribution p_k , $p_j(\mathbf{x})$
1718 can be high for some $j \neq k$ and thereby contribute to the term η .

1719 **Assumption C.11.** Score approximation error is *monotonically decreasing* function of the density
1720 function $p_t(\mathbf{x})$. Specifically, assume for all t in the diffusion process, there exist a monotonic
1721 increasing function $h_t : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with $\|\nabla h_t\| \geq m > 0$ such that following relation holds:

$$1722 \mathbb{E}_{\mathbf{x} \sim q_t} \|\nabla_{\mathbf{x}} \log p_k(\mathbf{x}) - s_{\theta}(\mathbf{x}, t_k)\|_2^2 = h_t(KL(q_t||p_k)) \quad (107)$$

1724 The above assumption implies that if a particle deviates far from the true distribution p_k , score
1725 approximation error increases. This is reasonable to assume in a sense that a neural network is trained
1726 only with the sample from p_k and rarely sees the sample from $p_k(\mathbf{x}) \approx 0$.

1727 With above assumptions, we provide the formal version of the Theorem 3.5.

1728 **Theorem C.12.** (Formal version of Theorem 3.5) Denote \tilde{p}_t is reverse process of diffusion in Eq. 2.
 1729 Given, Assumption C.11 and assumptions in Theorem C.5, the convergence guarantee for small
 1730 $t_0 > 0$ can be improved by simulating modified Langevin correction in Eq. 87 until time s in the
 1731 following way.

1732
$$d_{TV}(\tilde{p}_{t_0}, q_0) \leq d_{TV}(p_{t_0}, q_0) - \frac{G}{4\sqrt{F}}, \quad (108)$$

1733 where

1734
$$F = (T - t_0) \sqrt{\mathbb{E}_{\mathbf{x} \sim p_t} \left[\frac{1}{2} \int_{t_0}^T g(t)^{-2} \|\mathbf{s}_\theta(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\|_2^2 dt \right]}, \quad (109)$$

1735 is the original score approximation error and

1736
$$G = m\beta(1 + \frac{1}{\eta^2})s \cdot \int_{t_0}^T g(t)^{-2} dt. \quad (110)$$

1737

1738 *Proof.* For path measure of forward process \mathbb{Q} defined from t_0 to T and the path measure of the
 1739 corresponding reverse process \mathbb{P} , estimation error is decomposed as

1740
$$\mathbb{E}[\text{TV}(\mathbf{x}_0, \mathbf{x}_{t_0})] + \mathbb{E}[\text{TV}(\mathbf{x}_T, \mathcal{N}(0, \mathbf{I})] + \text{TV}(\mathbb{P}, \mathbb{Q}) \quad (111)$$

1741

1742 where first term is the truncation error, second term is initial noise mismatch between forward and
 1743 reverse process, and the third term is KL divergence between path measures score approximation
 1744 errors(for discrete sampling, additional discretization error is added as in (Chen et al., 2023b)). Chen
 1745 et al. (2023b); Oko et al. (2023) show that the third term can be bounded by score approximation
 1746 errors (please refer to Appendix C.1 and Section 5.2 of (Chen et al., 2023b) for details). Specifically,
 1747 it can be shown from the Proposition C.1 and triangle inequality,

1748
$$\text{TV}(\mathbb{P}, \mathbb{Q}) \leq \sqrt{\mathbb{E}_{\mathbf{x} \sim p_t} \left[\frac{1}{2} \int_{t_0}^T g(t)^{-2} \|\mathbf{s}_\theta(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\|_2^2 dt \right]} \quad (112)$$

1749
$$+ \sqrt{\mathbb{E}_{\mathbf{x} \sim p_t} \left[\frac{1}{2} \int_{t_0}^T g(t)^{-2} \|\mathbf{v}(\mathbf{x}, \mathbf{c}, t)\|_2^2 dt \right]}.$$

1750

1751 Now, one can observe from Corollary C.10, reduced score approximation error by simulating modified
 1752 Langevin (Eq. 87) until time s gives,

1753
$$\mathbb{E}_{\mathbf{x} \sim q_s} \|\nabla_{\mathbf{x}} \log p_k(\mathbf{x}) - s_\theta(\mathbf{x}, t_k)\|_2^2 \leq \mathbb{E}_{\mathbf{x} \sim q_0} \|\nabla_{\mathbf{x}} \log p_k(\mathbf{x}) - s_\theta(\mathbf{x}, t_k)\|_2^2 - m\beta(1 + \frac{1}{\eta^2})s. \quad (113)$$

1754

1755 Now, observing that for two constants $f, g > 0$ and $f > g$,

1756
$$\sqrt{f} - \sqrt{f - g} = \frac{g}{\sqrt{f} + \sqrt{f - g}} \geq \frac{g}{2\sqrt{f}}. \quad (114)$$

1757

1758 Putting $f = \mathbb{E}_{\mathbf{x} \sim q_0} \|\nabla_{\mathbf{x}} \log p_k(\mathbf{x}) - s_\theta(\mathbf{x}, t_k)\|_2^2$, $g = m\beta(1 + \frac{1}{\eta^2})s$ into above and combining with
 1759 Eq. 112 by applying Cauchy-Schwarz inequality gives the result. \square

1760 Note that for the single discretized Langevin step can be also analyzed similarly for small step-size h
 1761 from the Girasonov theorem.

1762 D RELATION TO PRIOR WORKS

1763 D.1 RELATED WORKS

1764 **External Guidance in Diffusion Models** Diffusion models can be leveraged in downstream
 1765 applications by combining an unconditional diffusion process with external guidance—without any
 1766 additional training. Graikos et al. (2022) use off-the-shelf diffusion models to generate samples

1782 constrained to specific conditions, demonstrating applications in combinatorial optimization, while
 1783 [Chung et al. \(2023\)](#) apply similar guidance to solve inverse problems. [Bansal et al. \(2024\)](#) extend this
 1784 approach to user-specific conditioning in the image domain. TFG ([Ye et al., 2024](#)) provide a unified
 1785 training-free guidance framework by consolidating the design space of prior methods, searching for
 1786 optimal hyperparameter combinations, and establishing benchmarks for training-free guidance. For
 1787 scenarios involving multiple constraints, MultiDiffusion ([Bar-Tal et al., 2023](#)) achieves spatial control
 1788 by fusing diffusion paths from different prompts.

1789
 1790 **Off-Manifold Phenomenon** Diffusion models exhibit exposure bias ([Ning et al., 2024](#)), as the
 1791 reverse process does not match the learned forward process. [Ning et al. \(2023\)](#) reduce exposure bias
 1792 by randomly perturbing the training data in diffusion models. [Ning et al. \(2024\)](#) show that scaling
 1793 the vector norm of the diffusion model outputs can alleviate errors, while [Li et al. \(2024a\)](#) identify
 1794 variance across sample batches to correct the time information in diffusion models. [Song & Ermon](#)
 1795 ([2019](#)) explore Langevin dynamics-based steps that utilize the learned score function for iterative
 1796 refinement. [Li & van der Schaar \(2024\)](#) theoretically analyze how errors accumulate during the
 1797 reverse process of diffusion models.

1798
 1799 **Timestep in Diffusion Models** Several studies have investigated the impact of timestep information
 1800 in diffusion models. [Xia et al. \(2024\)](#) optimize timestep embeddings to correct the sampling direction,
 1801 and [San-Roman et al. \(2021\)](#) demonstrate the effectiveness of adjusting the noise schedule. [Kim &](#)
 1802 [Ye \(2023\)](#) and [Kahouli et al. \(2024\)](#) train neural networks to estimate accurate timestep information,
 1803 while [Jung et al. \(2024\)](#) leverage a time predictor to modify the reverse diffusion schedule and correct
 1804 the reverse process. [Sadat et al. \(2024\)](#) and [Li et al. \(2024b\)](#) perturb time inputs in the primary score
 1805 model to derive contrastive signals. [Yadin et al. \(2024\)](#) utilize time classifiers for score function
 1806 approximation. In contrast, our TAG framework learns a dedicated time predictor for $p(t | x_t)$ and
 1807 directly leverages its score $\nabla_x \log p(t | x)$ to provably pull samples back onto their true temporal
 1808 manifold—yielding both convergence guarantees and empirical gains for the first time. A formal
 1809 proof and discussion are provided in Appendix D.

1810
 1811 **Comparison with other regularization techniques** Recent works ([Fan et al., 2023; Wallace](#)
 1812 [et al., 2024](#)) show fine-tune diffusion model using the reinforcement learning algorithm can boost
 1813 the performance of diffusion models. To not diverge from the original diffusion process, they
 1814 utilize KL regularization technique. However, fine-tuning diffusion models for practical downstream
 1815 tasks is highly costly where target condition vary in real-time. Another option is to utilize control
 1816 theory ([Berner et al., 2024; Uehara et al., 2025](#)) where the objective is to refine the sample trajectory
 1817 to the desired reward weighted distribution with the KL regularization term added. However, this
 1818 usually rely on generating multiple sample trajectories. In contrast to above techniques, our method
 1819 does not require offline history nor multiple iterations, readily applicable even when target condition
 1820 changes for every generation.

1821
 1822 **Off-Manifold in Classifier-Free Guidance and TAG** Although, well-optimized CFG methods
 1823 may show fewer deviations, they fundamentally rely on a linear extrapolation between conditional
 1824 and unconditional scores. [Chung et al. \(2025\); Sadat et al. \(2024\)](#) analyze that at high guidance scales,
 1825 this extrapolation inevitably pushes the sampling trajectory away from the natural data manifold,
 1826 resulting in over-saturated or "burned" artifacts. This aligns precisely with the off-manifold deviation
 1827 defined in our work (Section 2), where the generated samples drift into low-density regions of the
 1828 data distribution.

1829
 1830 TAG is uniquely positioned to address this issue because it introduces an orthogonal corrective
 1831 force. While CFG modifies the score to satisfy the condition c (often at the cost of realism), TAG's
 1832 Time-Linked Score (TLS) $\nabla_x \log p(t|x)$ provides a distinct gradient that pulls the sample back to the
 1833 high-density manifold of the current noise level. As discussed visualized in Figure 2, this correction
 1834 helps restore the valid noise level without conflicting with the semantic steering of the guidance.
 1835 Therefore, integrating TAG into the CFG framework can serve as an effective manifold constraint,
 1836 mitigating the "burned" artifacts caused by excessive extrapolation.

1837
 1838 This perspective is consistent with recent manifold-preserving approaches like [Chung et al. \(2025\)](#)
 1839 and [He et al. \(2024\)](#), which also identify the need for correction in CFG. However, unlike methods that

1836 require specific architectural changes or heavy optimization, TAG offers a lightweight, plug-and-play
 1837 solution by leveraging the temporal consistency inherent in the diffusion process itself.
 1838

1839 **Relation to Prior Manifold-Preserving Approaches** Prior approaches address manifold deviation
 1840 through geometric constraints or vector corrections within the data space, TAG introduces a com-
 1841 pletely novel perspective: identifying and correcting off-manifold errors via the temporal axis. We
 1842 are the first to frame this issue as a timestep deviation and correct it using the Time-Linked Score
 1843 (TLS), providing a unique orthogonal contribution that can be applied on top of the prior methods.
 1844

1845 **DSG** (Yang et al., 2024) constrains the guidance step within a spherical shell centered at the uncondi-
 1846 tional mean $\mu_\theta(x_t)$, based on the concentration of high-dimensional Gaussian distributions. While
 1847 DSG relies on a projection onto a sphere to mitigate deviation, TAG employs a learned Time-Linked
 1848 Score (TLS), $\nabla_x \log p(t|x)$. Unlike DSG’s hard constraint which assumes isotropy, TAG provides a
 1849 soft correction that respects the complex, non-isotropic structure of the density field, actively pulling
 1850 samples back to the high-density region of the specific timestep manifold \mathcal{M}_t .
 1851

1852 **MPGD** (He et al., 2024) projects the guidance gradient onto the tangent space of the data manifold
 1853 using a pre-trained autoencoder’s Jacobian. MPGD relies on the locally linear approximation and
 1854 requires an auxiliary autoencoder, which may not be available for all domains (e.g., molecular graphs).
 1855 In contrast, TAG is model-agnostic and does not require manifold linearity or external autoencoders.
 1856 It leverages the diffusion process’s own temporal information, making it applicable to diverse domains
 1857 (images, molecules, audio) where such geometric assumptions may fail.
 1858

1859 **CFG++** (Chung et al., 2025) modifies the vector field of classifier-free guidance to remain on the
 1860 data manifold by correcting the unconditional score component. CFG++ is specific to the CFG
 1861 framework and focuses on correcting the extrapolation error of the guidance vector itself. TAG is a
 1862 general-purpose correction mechanism applicable to various guidance settings (classifier guidance,
 1863 cfg, and training-free guidance). TAG can be integrated on top of CFG to further correct off-manifold
 1864 drifts caused by aggressive scaling, offering an orthogonal layer of robustness.
 1865

1866 D.2 COMPARISON WITH BASELINE METHODS

1867 Here, we elaborate on the detailed discussions of TAG with other relevant literatures that were briefly
 1868 introduced in Sec. D.1.
 1869

1870 **Early timestep and schedule optimizations** Early works exploring the role of time include Xia
 1871 et al. (2024) optimizing timestep embeddings, and San-Roman et al. (2021) focusing adjusting noise
 1872 schedules. These approaches typically aim to find globally or locally optimal fixed schedules or input
 1873 representations for time and generally do not offer sample-adaptive corrections at each step based
 1874 on the evolving state of x . TAG, in contrast, provides such a dynamic, sample-specific correction
 1875 via its TLS (Eq. 12). This helps the sample adhere to the manifold implied by the schedule at each
 1876 current timestep t by considering the full posterior $p_\phi(\cdot|x)$, thus acting as a more flexible and adaptive
 1877 generalized constraint than pre-defined temporal strategies.
 1878

1879 **Time Correction Sampler** TCS (Jung et al., 2024) also employs a time predictor. However, TCS
 1880 uses the predictor’s output, $\tilde{t} = \arg \max \phi(x_t)$, to directly modify the perceived timestep of the
 1881 sample x_t , subsequently altering the solver step to use $s_\theta(x_t, \tilde{t})$ and adjusting the noise schedule.
 1882 This constitutes a “hard” temporal reassignment. TAG differs significantly by maintaining the solver’s
 1883 current timestep t for $s_\theta(x_t, t)$ and instead adding the TLS as an additive correction to the sample
 1884 itself. The TLS decomposition (Eq. 12) suggests TAG’s correction is a generalized constraint, as it
 1885 considers attractive and repulsive forces from all potential timesteps based on $p_\phi(\cdot|x)$, rather than
 1886 a singular reassignment, offering a robust means to maintain manifold fidelity; our comparative
 1887 experiments (Table 2) demonstrate TAG’s superior performance over TCS.
 1888

1889 **Time perturbation methods** TSG (Sadat et al., 2024) and SG (Li et al., 2024b) leverage the score
 1890 model’s (s_θ) local sensitivity to time by perturbing its time input τ (e.g., $\tau \pm \delta\tau$) to derive contrastive
 1891 guidance. In contrast, TAG employs its distinct TLS (Eq. 12) as an additive corrective term, without
 1892 altering s_θ ’s time input. Theorem 3.3 shows that applying TAG has effect of getting negative guidance
 1893 from all timesteps except the target timestep (i.e, current timestep) which potentially renders TAG

more robust than the typically symmetric or single-perturbation strategies of TSG and SG, especially for significantly off-manifold scenarios.

Exposure bias While methods like Epsilon Scaling (Ning et al., 2024) and the Time-Shift Sampler (Li et al., 2024a) act during inference, similar to TAG, they typically apply heuristic adjustments (e.g., scaling model outputs or shifting time inputs) to mitigate train-inference mismatch. Other approaches, such as that by Ning et al. (2023), modify the training data itself. TAG differs fundamentally by introducing a learned score term – the adaptive TLS, $\nabla_{\mathbf{x}} \log p_{\phi}(t|\mathbf{x})$ – which provides active, sample-specific correction based on learned temporal consistency, rather than relying on pre-defined heuristics or training data alterations. We compare TAG against (Ning et al., 2023) (Table 8), (Ning et al., 2024) and (Li et al., 2024a) (in Table 9). TAG demonstrate consistent improvements against all baselines.

Classification Diffusion Models While both TAG and CDM (Yadin et al., 2024) uses a timestep classifier, the primary purpose of CDM is to estimate the log density of the generative output and approximate the score function in each timestep. Contrary to this, TAG leverages the gradient of a time classifier whose purpose is to attract the sample to the desired timestep for reducing off-manifold phenomenon. We notice that Theorem 3.1 in CDM (Yadin et al., 2024) can be deduced from rearranging term in Theorem 3.3 of ours as follows:

We begin by noting that in Theorem 3.3, t_i is an arbitrary label in $\{t_1, \dots, t_n\}$. In CDM (Yadin et al., 2024) setting, we simply identify $t_i = t$ and $t_{T+1} = T + 1$.

We now show that

$$\begin{aligned} \nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(t|\mathbf{x})) - \nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(T+1|\mathbf{x})) &= \nabla_{\mathbf{x}} \log p(t_i|\mathbf{x}) - \nabla_{\mathbf{x}} \log p(t_{T+1}|\mathbf{x}) \\ &= \nabla \log p_i(\mathbf{x}) - \nabla \log p_{T+1}(\mathbf{x}). \end{aligned}$$

Let $\gamma_k = \frac{p_k(\mathbf{x})}{p_{\text{tot}}(\mathbf{x})}$. Then

$$\begin{aligned} \nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(t|\mathbf{x})) &= \sum_{k \neq i} \gamma_k \left(\nabla \log p_i(\mathbf{x}) - \nabla \log p_k(\mathbf{x}) \right) \\ &= \underbrace{(1 - \gamma_i) \nabla \log p_i(\mathbf{x})}_{\sum_{k \neq i} \gamma_k \nabla \log p_i(\mathbf{x})} - \underbrace{\sum_k \gamma_k \nabla \log p_k(\mathbf{x})}_{(\star)} + \gamma_i \nabla \log p_i(\mathbf{x}), \end{aligned}$$

because $\sum_{k \neq i} \gamma_k = 1 - \gamma_i$. Similarly,

$$\begin{aligned} -\nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(T+1|\mathbf{x})) &= -\sum_{k \neq T+1} \gamma_k \left(\nabla \log p_{T+1}(\mathbf{x}) - \nabla \log p_k(\mathbf{x}) \right) \\ &= -(1 - \gamma_{T+1}) \nabla \log p_{T+1}(\mathbf{x}) + \underbrace{\sum_k \gamma_k \nabla \log p_k(\mathbf{x})}_{(\star)} - \gamma_{T+1} \nabla \log p_{T+1}(\mathbf{x}). \end{aligned}$$

The terms $\sum_k \gamma_k \nabla \log p_k(\mathbf{x})$, labeled (\star) , cancel out. What remains is $\nabla \log p_i(\mathbf{x}) - \nabla \log p_{T+1}(\mathbf{x})$.

Thus,

$$\begin{aligned} \nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(t|\mathbf{x})) - \nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(T+1|\mathbf{x})) &= \nabla \log p_i(\mathbf{x}) - \nabla \log p_{T+1}(\mathbf{x}) \\ &= \nabla_{\mathbf{x}} \log(p_{\mathbf{x}_t}(\mathbf{x})) - \nabla_{\mathbf{x}} \log(p_{\mathbf{x}_{T+1}}(\mathbf{x})). \end{aligned}$$

As shown in Appendix B.1, Eq. (15) of (Yadin et al., 2024), combining this with the Gaussian prior argument and Tweedie's formula Efron (2011) yields

$$\mathbb{E}[\varepsilon_t | \mathbf{x}_t = \mathbf{x}] = \sqrt{1 - \bar{\alpha}_t} \left[\nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(T+1|\mathbf{x})) - \nabla_{\mathbf{x}} \log(p_{\tau|\tilde{\mathbf{x}}}(t|\mathbf{x})) + \mathbf{x} \right],$$

which completes the derivation.

1944 **Predictor-Corrector (PC) sampling** Energy Diffusion (Du et al., 2024) and NCSN (Song &
 1945 Ermon, 2019) rely on the score $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$ for generation and refinement. TAG, however, adds
 1946 a separate correction using the distinct TLS gradient, $\nabla_{\mathbf{x}} \log p_{\phi}(t|\mathbf{x})$. Theorem 3.3 implies TAG’s
 1947 correction is uniquely adaptive—strengthening when samples are far from the manifold based on
 1948 relative time probabilities. This adaptiveness may offer greater robustness than relying solely on
 1949 $\nabla_{\mathbf{x}} \log p_t(\mathbf{x})$, which can be error-prone when off-manifold phenomena are present. Our direct
 1950 experimental comparisons support this distinction; for instance, while some score-based correction
 1951 sampling approaches (e.g., (Song et al., 2021b)) can degrade sampling quality under external guidance
 1952 (such as with DPS), Table 9 demonstrates TAG outperforms over such baselines.

1953 **Multi-condition generation** MultiDiffusion (Bar-Tal et al., 2023) achieves spatial multi-condition
 1954 control by fusing diffusion paths from multiple prompts, primarily targeting different image regions.
 1955 Our approach to handling multiple conditions with TAG differs: we focus on combining multiple
 1956 standard guidance terms and mitigating any resulting off-manifold drift by applying TAG. For
 1957 efficiency in such scenarios, TAG’s corrective temporal gradient, the TLS ($\nabla_{\mathbf{x}} \log p_{\phi}(t|\mathbf{x})$), can be
 1958 approximated using time predictors conditioned on single conditions or even an unconditional time
 1959 predictor, as detailed in Sec. 3.2 and Appendix B.3. Thus, while MultiDiffusion employs path fusion
 1960 mainly for spatial control objectives, TAG utilizes approximated temporal alignment to maintain
 1961 manifold adherence when faced with combined guidance from multiple standard conditional inputs.

1962 **Fine-tuning vs. TAG** Standard approaches to adapt diffusion models for downstream tasks—such
 1963 as adding spatial conditioning modules in ControlNet (Zhang et al., 2023), text-compatible prompt
 1964 adapters in IP-Adapter (Ye et al., 2023), or rl-based reward tuning (Fan et al., 2023; Clark et al.,
 1965 2024)—require collecting task-specific labeled data, modifying model architectures, and performing
 1966 hours of gradient-based optimization. In contrast, TAG trains only a lightweight time predictor on
 1967 noisy vs. clean timestep labels, completing in minutes on a minimal computational resources (Jung et al.,
 1968 2024). At inference, TAG injects a temporally driven corrective gradient that steers samples back onto
 1969 the appropriate diffusion manifold without altering the base model’s weights. This inference-time,
 1970 training-free correction avoids fine-tuning’s cost and overfitting risks while supporting new guidance
 1971 objectives such as reward alignment with DAS (Kim et al., 2025), multi-condition steering (Uehara
 1972 et al., 2025), and style control via RB-Modulation (Rout et al., 2025). Moreover, by leveraging
 1973 fundamental temporal consistency, TAG improves out-of-distribution robustness in tasks ranging
 1974 from image and audio restoration to molecular generation (Ye et al., 2024; Bar-Tal et al., 2023). Thus,
 1975 TAG offers a general, low-overhead alternative to fine-tuning for mitigating off-manifold drift in
 1976 guided diffusion.

1977 **Baseline experiments** Here, we present experimental results comparing TAG against the baselines
 1978 and prior works discussed throughout the section.

1979 Table 8: Effect of Input perturbation on DPS, CIFAR-10. For fair comparison, we train diffusion models
 1980 with different η from scratch following the official implementation code in [9]. No improvement over original
 1981 diffusion model ($\eta = 0$) is observed in the presence of off-manifold phenomenon. We report the average value
 1982 for 512 samples per each conditioning labels.

Method	FID \downarrow	Acc. \uparrow
$\eta = 0$	332.0	28.5
$\eta = 0.05$	409.9	23.3
$\eta = 0.10$	376.6	25.4
$\eta = 0.15$	326.7	29.2

E IMPLEMENTATION DETAILS

E.1 TOY EXPERIMENT

1997 **Setup** We construct the dataset from randomly generate 40,000 samples from the mixtures of
 two Gaussians as $q_0 \sim \frac{1}{2} \mathcal{N}((10, 10), \mathbf{I}) + \frac{1}{2} \mathcal{N}((-10, -10), \mathbf{I})$. DDPM (VP-SDE) is utilized for

1998 Table 9: Additional baselines when applying DPS on CIFAR-10. TAG improves the performance of DPS while
 1999 other method struggles.

Method	FID \downarrow	Acc. \uparrow
DPS	217.1	57.5
TAG (ours)	190.4	63.2
TCS [15]	213.4	29.4
Timestep Guidance [16]	393.2	9.4
Self-Guidance [17]	205.4	51.6
Epsilon Scaling [10]	186.0	53.0
Time Shift Sampler [11]	237.0	60.8
Langevin Dynamics [13]	226.8	58.2

2000
 2001 diffusion process with total 100 diffusion timesteps. $\mathbf{v}(\mathbf{x}, t) = -0.01\mathbf{x}$ is applied as an external drift
 2002 for every timestep.

2003
 2004 **Training details** For diffusion models, we use 3-layer MLP with 5000 training epochs with full-
 2005 batch size. For time predictor, 5-layer MLP is utilized with 5000 training epochs with full-batch size.
 2006 We utilize a single RTX 3090 GPU for the experiment.

2007
 2008 The predictor size in the toy experiment was not critical; TAG performed well even with a predictor
 2009 smaller than the score network, as shown in our ablation study Table 10. Importantly, in our main
 2010 experiments (Table 2), the effective SimpleCNN predictor is significantly smaller than the UNet
 2011 diffusion backbone, demonstrating TAG’s efficiency and lack of dependence on a large predictor
 2012 relative to the main model. See Appendix E.4 for further discussion on classifier robustness.

Layers	W1 distance \downarrow
0 (No TAG)	6.458
1	1.716
2	1.681
3	1.975
4	1.714
5	1.713
6	1.788

2013 Table 10: Robustness of time classifier network on toy experiment. We measure Wasserstein distance (W_1) for
 2014 10,000 samples. Consistent improvement compared to original reverse process when applying TAG independent
 2015 of layer numbers.

2016
 2017 **Trajectory analysis** We further analyze the effect of the TAG along the diffusion sampling trajectory.
 2018 To do this, we quantitatively compare the W_1 distance between the two objective at each sampling
 2019 timestep: (1) original sampling without external drift term ($\mathbf{v}(\mathbf{x}, t) = -0.01\mathbf{x}$) and original sampling
 2020 with external drift, (2) original sampling without external drift and TAG with external drift.

2021 Fig. 4 demonstrates that our Temporal Alignment Guidance (TAG, red curve) actively steers the
 2022 generation process significantly more than standard DDPM sampler (Blue), resulting in high gap of
 2023 W_1 at $t=0$. We also put the visualization result in Fig. 5. Here, while original DDPM sample struggle
 2024 to move the sample to the data manifold due to the external drift, TAG effectively push the sample
 2025 toward the target manifold, staying near the target distribution even with strong external drift term \mathbf{v} .

2026
 2027 **Score approximation error** We further conduct an experiment to directly observe the score
 2028 approximation error accumulation. We do this by measuring the Fisher Divergence at each timestep
 2029 during the sampling, which is defined by the $\mathbb{E}_{\mathbf{x}_t} [\|s_\theta(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p_t(\mathbf{x}_t)\|_2^2]$. We compare
 2030 DDPM sampler and TAG in the presence of the external drift $\mathbf{v}(\mathbf{x}, t) = -0.01\mathbf{x}$ and measure (1)

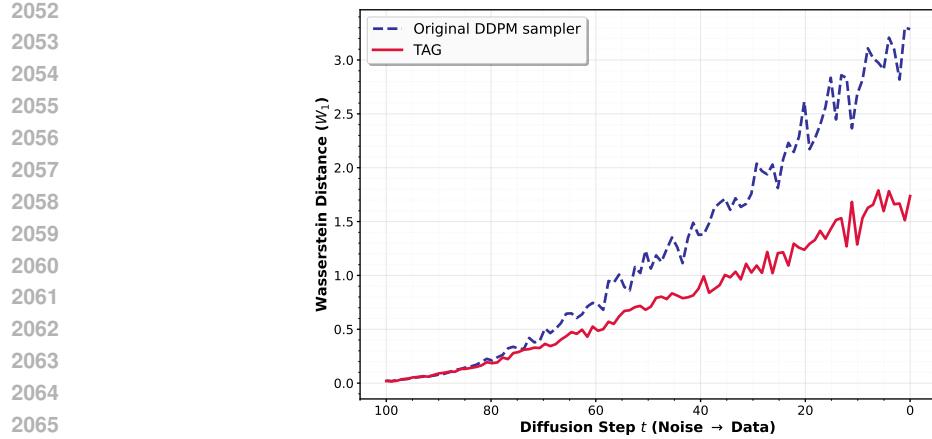


Figure 4: We measure the Sliced Wasserstein (W_1) distance between samples with the external drift and without the external drift for each timestep.

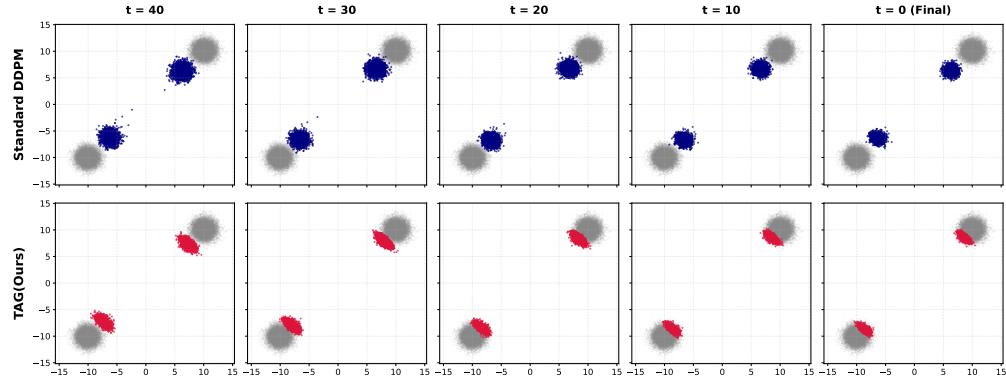


Figure 5: Visualization of the sampling trajectory for the toy experiment. Samples in timestep 40,30,20,10, and 0 for standard DDPM vs. TAG with external drift term.

instantaneous error: score approximation error for each timestep, (2) cumulative error: cumulative score approximation error during the sampling history. The result in Fig. 6 shows how the ratio between score approximation error (TAG’s approximation error divided by DDPM’s approximation error). The result shows that TAG significantly reduce the score approximation error both at each timestep (instantaneous) and over the trajectory (cumulative), reaching more than 40 times of reduction in error, demonstrating TAG’s effectiveness for reducing score approximation errors.

The above analyses together show that TAG consistently performs as an effective corrector throughout the diffusion sampling process, proving robustness of our approach as a new sampler.

E.2 CORRUPTED REVERSE PROCESS

Setup We use the CIFAR-10 dataset and intentionally add random noise $\mathbf{z}_t \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ to the sample \mathbf{x}_t at each reverse timestep t . This simulates a strong, non-physical perturbation pushing samples off-manifold. We generate 50,000 samples and evaluate using FID (Karras et al., 2018), IS (Salimans et al., 2016), and the Time-gap (Def. F.1). We utilize the pre-trained model CIFAR10-DDPM Nichol & Dhariwal (2021) and use DDIM sampling with 50 diffusion timesteps. We run our experiment on a single A6000 GPU for the inference.

Algorithm In Algorithm 2, we provide a pseudo-code of the corrupted reverse process setting conducted in Section 3.4.

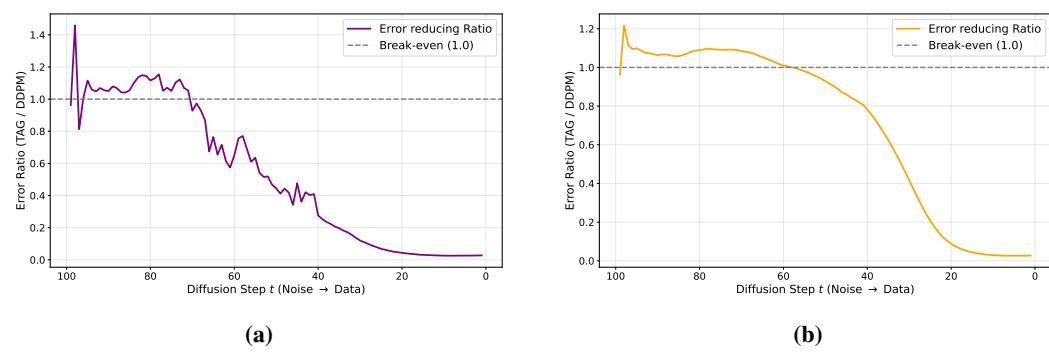


Figure 6: Visualization of score approximation error between standard TAG and DDPM (TAG/DDPM): (a) Instantaneous ratio of each timestep. (b) Cumulative ratio along diffusion sampling trajectory.

Algorithm 2 Corrupted reverse process with TAG

```

Input: Diffusion model  $\theta$ , time predictor  $\phi$ , guidance strength schedule  $\omega(t)$ , number of total diffusion steps  $T$ , Noise level  $\sigma$ .  

 $x_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$   

for  $t = T, \dots, 1$  do  

     $x_t \leftarrow x_t + \sigma \cdot \epsilon_t$  where  $\epsilon_t \sim \mathcal{N}(0, \mathbf{I})$   $\triangleright$  Random noise with strength  $\sigma$  is added at each reverse diffusion timestep  

    Obtain  $\nabla \log p(\mathbf{x})$  from a diffusion model  $\theta$   

     $\tilde{\mathbf{x}}_{t-1} \leftarrow x_t$  from reverse diffusion step  $\triangleright$  following Eq. 1  

    Calculate  $\nabla \log p_\phi(\tilde{\mathbf{x}}_{t-1})$   $\triangleright$  Calculating TLS score from the time predictor  $\phi$   

     $\mathbf{x}_{t-1} \leftarrow \tilde{\mathbf{x}}_{t-1} + \omega(t) \cdot \nabla \log p_\phi(\tilde{\mathbf{x}}_{t-1})$ .  $\triangleright$  Applying TAG  

end for  

Output:  $x_0$ 

```

Guidance schedule For the experiment, we use guidance schedule of $w_t = w \cdot (1 - \bar{\alpha}_t)$ and where we refer ω as the guidance strength unless stated otherwise.

Additional experimental results Here, to illustrate the correlation between TAG strength ω and performance metrics, we provide a grid search results on the effect of guidance strength weight ω .

For the experiment, we fix the noise schedule $\sigma = 0.3$ and follow the same setting in Section 3.4. The result is in Table 11 and one can observe that applying strong time guidance consistently increase the generation quality until performance is saturated.

Table 11: Grid search result on the effects of TAG strength ω with $\sigma = 0.3$.

ω	0	0.5	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0
TG ↓	273.9	261.6	250.9	232.6	213.3	197.8	185.1	175.1	167.9	162.7	158.9
FID ↓	410.1	408.5	406.7	390.3	376.2	361.2	350.6	344.3	339.1	335.6	334.6
IS ↑	1.27	1.28	1.28	1.27	1.29	1.31	1.35	1.38	1.41	1.43	1.45
ω	10.0	15.0	20.0	25.0	30.0	40.0	50.0	75.0	100.0	150.0	200.0
TG ↓	156.0	143.2	129.1	116.2	107.5	98.8	108.6	140.0	153.7	160.0	158.9
FID ↓	345.6	318.8	291.4	277.1	270.7	257.6	247.1	240.8	236.7	229.5	223.2
IS ↑	1.43	1.52	1.57	1.60	1.63	1.72	1.78	1.90	2.01	2.14	2.17

We also provide quantitative results of Figure 3 in Table 12. We measure FID (Karras et al., 2018), IS (Salimans et al., 2016), with time gap F.1 for the experiment and the best values for each noise strength σ where the guidance strength w with the lowest FID value is reported. We find $w = 0.2, 1.25, 4.5, 200.0$ shows the lowest FID value for the noise strength level of $\sigma = 0.05, 0.1, 0.2, 0.3$ respectively. The results shows that applying TAG consistently improves the FID and IS scores

2160 across all noise levels, particularly with higher external noise strength (higher σ), demonstrating the
 2161 effectiveness of the TAG under the presence of external guidance.
 2162

2163 Table 12: Comparison between original diffusion process and diffusion process with TAG across different noise
 2164 strengths.

TAG	$\sigma = 0.05$			$\sigma = 0.1$			$\sigma = 0.2$			$\sigma = 0.3$		
	TG ↓	FID ↓	IS ↑	TG ↓	FID ↓	IS ↑	TG ↓	FID ↓	IS ↑	TG ↓	FID ↓	IS ↑
✗	43.0	78.9	5.29	104.1	193.6	2.37	229.6	351.4	1.50	274.0	410.1	1.28
✓	42.1	62.5	5.73	41.6	115.6	3.80	97.3	230.9	1.67	158.9	223.2	2.17

E.3 TRAINING-FREE GUIDANCE BENCHMARK

2171 Here, we provide experimental details that we follow in Section 4.1. We mainly follow TFG
 2172 benchmark (Ye et al., 2024) for the fair comparison. All of the experiments in this subsection utilize
 2173 training-free guidance as a conditional guidance as stated in B.3.
 2174

E.3.1 LABEL GUIDANCE

2175 **Task description** Label guidance target to generate designated label condition with only unconditional
 2176 diffusion models.
 2177

2178 **Dataset** Two experiments are conducted using two image dataset: CIFAR10 (Krizhevsky et al.,
 2179 2009) and ImageNet (Russakovsky et al., 2015).
 2180

2181 **Evaluation** Following the image generation literature, we measure FID (Heusel et al., 2017) to
 2182 assess fidelity and use accuracy to evaluate generation validity, defined as the proportion of generated
 2183 samples classified as the target label. In other words, we measure:
 2184

$$p(\arg \max \rho(\mathbf{x}) = \mathbf{c}_{\text{target}}), \quad (115)$$

2185 where ρ denotes a classifier and $\mathbf{c}_{\text{target}}$ refers to the target label.
 2186

2187 For CIFAR 10, we average the result across all 10 targets. For ImageNet, following (Ye et al., 2024),
 2188 we randomly take different target values and report the average value across the selected target. We
 2189 set the sample sizes to 512 for CIFAR10 and 256 for ImageNet in Table 2, while using 128 samples
 2190 for ImageNet in the rest of the experiments. We note that the use of fewer evaluation samples is the
 2191 primary reason for initially higher FIDs, which might consequently lag CFG SOTA. In Table 13,
 2192 we present standard comparisons on CIFAR-10 using 50,000 samples that yielded improved and
 2193 benchmark-consistent scores.
 2194

2195 Table 13: Originally, 512 samples were used for rapid, extensive experiments across various tasks. For a more
 2196 rigorous evaluation, we used 50,000 samples on CIFAR-10 with 100 inference steps. As expected, increasing
 2197 the number of samples to match standard benchmark protocols led to improved FID scores.
 2198

Method	FID ↓	Acc. ↑
<i>512 samples</i>		
TFG	114.1	55.8
TFG + TAG (ours)	102.7	61.5
<i>50000 samples</i>		
TFG	77.5	54.3
TFG + TAG (ours)	47.1	84.4

2211 **Models** For backbone diffusion models, DDPM in Nichol & Dhariwal (2021) is utilized for both
 2212 CIFAR-10 and ImageNet.
 2213

2214 E.3.2 GUASSIAN DEBLURRING
22152216 **Task description** Gaussian deblurring task aims to restore the noisy images which are blurred by
2217 a Guassian process. This inverse problem has been extensively studied with diffusion models and
2218 notably, DPS (Chung et al., 2023) utilize training free guidance when given the blurring operator:

2219
$$\mathbf{y} = \mathcal{A}_{\text{blur}}(\mathbf{x}). \quad (116)$$

2220 We set the loss objective function ℓ_c in Eq. 29 as l_2 norm between the blurred estimates and the target,

2221
$$\ell_c = \|\mathcal{A}_{\text{blur}}(\mathbf{x}) - \mathbf{y}\|_2. \quad (117)$$

2223 **Dataset** Cat images (Elson et al., 2007) is utilized for the diffusion model training with resolution
2224 256×256 .2225 **Evaluation** We measure FID score for the sample fidelity and LPIPIIS (Zhang et al., 2018) for
2226 evaluating conditioning effects.2227 E.3.3 SUPER-RESOLUTION
22282229 **Task description** Super-resolution targets to upscale the originally lower-resolution images to
2230 the higher resolution images. Previous works (Saharia et al., 2022; Ho et al., 2022) show one can
2231 leverage diffusion models for this task. In super-resolution case, we assume having an downgrade
2232 operator $\mathcal{A}_{\text{down}}$. With the operator we suppose low-resolution images \mathbf{y} is obtained from a higher
2233 resolution image \mathbf{x} by

2234
$$\mathcal{A}_{\text{down}} : \mathbb{R}^{256 \times 256 \times 3} \rightarrow \mathbb{R}^{64 \times 64 \times 3}, \mathbf{y} = \mathcal{A}_{\text{down}}(\mathbf{x}). \quad (118)$$

2235 Now, by setting following loss objective function in Eq. 29:

2236
$$\ell_c = \|\mathcal{A}_{\text{down}}(\mathbf{x}) - \mathbf{y}\|_2, \quad (119)$$

2237 we leverage training free guidance to restore the target high-resolution image.

2238 **Dataset** Cat images Elson et al. (2007) is utilized for the diffusion model training with resolution
2239 256×256 .2240 **Evaluation** FID is used for the sample fidelity and LIPPIIS is used for evaluating conditioning
2241 effects. We set the sample size as 256 for the result in the Table 2 and 128 for all the other experiments.2242 E.3.4 MULTI-CONDITIONAL GUIDANCE
22432244 **Task Description** Multi-conditional guidance leverages multiple target functions to guide a single
2245 sample towards multiple attribute-based targets. We explore two scenarios: (gender, hair color) and
2246 (gender, age). Each attribute has two labels: Gender: {male, female}, Age: {young, old}, Hair color:
2247 {black, blonde}.

2248 Following Ye et al. (2024), we sampled images that maximize the marginal probability:

2249
$$\max_{\mathbf{x}_0} p_{\text{combined}}(\mathbf{x}_0) = \max_{\mathbf{x}_0} p_{\text{target1}}(\mathbf{x}_0)p_{\text{target2}}(\mathbf{x}_0), \quad (120)$$

2250 where $p_{\text{target}}(\mathbf{x}_0)$ is estimated using label guidance. However such a naive approach of summing
2251 score functions for each condition, as in Eq. 5, can lead to off-manifold artifacts.2252 **Dataset** Experiments are conducted on CelebA-HQ (Karras et al., 2018) at a resolution of 256×256 .2253 **Evaluation** We assess sample fidelity using Kernel Inception Distance (KID) (Bińkowski et al.,
2254 2018), with 1,000 randomly sampled CelebA-HQ images as references. The KID(log) scores are
2255 reported in Section 4.2256 For validity, we compute classification accuracy using three independent attribute classifiers, evaluating
2257 the conjunction of target attributes:

2258
$$\text{Accuracy} = \frac{\#\bigwedge_{\text{target label}} (\text{classified as target label})}{\#\text{generated samples}}. \quad (121)$$

2259 We set the sample size as 256 across all experiments.

2268 **Models** We use the CelebA-DDPM model, trained on CelebA-HQ, as the base diffusion model.
 2269 Binary classifiers are employed for attribute validation.
 2270

2271 E.3.5 MOLECULAR GENERATION

2273 **Task description** The goal of molecular generation in this work is to guide 3D molecules generated
 2274 from unconditional diffusion models to the desired quantum chemical properties (Hoogeboom et al.,
 2275 2022). Utilizing the property predictor $\mathcal{A}_{\text{property}}$ is trained for each quantum chemical property,

$$2276 \mathcal{A}_{\text{property}} : \mathbb{R}^d \rightarrow \mathbb{R}, \mathcal{A}_{\text{property}}(\mathbf{x}) = c. \quad (122)$$

2278 Then, we set the training-free guidance objective function ℓ_c as a square of l_2 norm of the property
 2279 gap as follows:

$$2280 \ell_c = \|\mathcal{A}_{\text{property}}(\hat{\mathbf{x}}_0) - c\|_2^2, \quad (123)$$

2281 where $\hat{\mathbf{x}}_0$ is obtained from the Tweedie's formula (Appendix B.3).

2282 **Dataset** We use QM-9 dataset (Ramakrishnan et al., 2014), which consists of 134k molecules with
 2283 molecules having maximum 9 heavy atoms (C, N, O, F) labeled with 12 quantum chemical properties.
 2284 The dataset is split into 130k / 18k / 13k molecules of training, valid, test data following (Hoogeboom
 2285 et al., 2022). Following previous works (Hoogeboom et al., 2022; Bao et al., 2023; Xu et al., 2023),
 2286 we take 6 quantum chemical properties as a target property where we describe details in the following.
 2287

- 2288 • **Polarizability** (α): The extent to which a molecule's electron cloud can be distorted by an
 2289 external electric field.
- 2290 • **HOMO-LUMO gap** ($\Delta\epsilon$): The energy difference between the highest occupied and lowest
 2291 unoccupied molecular orbitals, signifying possible electronic transitions.
- 2292 • **HOMO energy** (ϵ_{HOMO}): The energy of the highest occupied orbital, often linked to how
 2293 easily a molecule donates electrons.
- 2294 • **LUMO energy** (ϵ_{LUMO}): The energy of the lowest unoccupied orbital, often linked to how
 2295 readily a molecule can accept electrons.
- 2296 • **Dipole moment** (μ): A numerical measure of charge separation within a molecule, reflecting
 2297 its polarity.
- 2298 • **Heat capacity** (C_v): The amount of heat required to change the temperature of a molecule
 2299 by a given amount.

2301 **Models** We utilize unconditional EDM from Hoogeboom et al. (2022) for the backbone diffusion
 2302 model which consists of EGNN (Satorras et al., 2021). For the property prediction, we utilize EGNN
 2303 backbone architecture as in (Bao et al., 2023) where each specialized prediction model which outputs
 2304 scalar value is used.
 2305

2306 **Evaluation** We evaluate Atom Stability (AS) which measures percentage of atoms within generated
 2307 molecules that have right valencies. An atom is stable if its total bond count matches the expected
 2308 valency for its atomic number (Hoogeboom et al., 2022). To measure conditioning effect, we calculate
 2309 Mean Absolute Error (MAE) values between the target condition and predicted condition. We set the
 2310 sample size as 4096 for the result in the Table 2 and 1024 for all the other experiments.

2311 E.3.6 AUDIO GENERATION

2313 **Task description** We conduct experiments for two types of tasks with audio diffusion models:
 2314 Audio declipping and Audio inpainting (Moliner & Välimäki, 2024; Moliner et al., 2023). Audio
 2315 declipping is a process that repairs distorted audio signals, specifically addressing the issue of
 2316 clipping. Clipping occurs when the audio signal's intensity surpasses the limits of the recording
 2317 system, resulting in a distorted sound with missing portions of the waveform. Audio inpainting is a
 2318 technique used to reconstruct missing or damaged parts of an audio signal.

2319 For the declipping test, we assume having clipping operator $\mathcal{A}_{\text{blur}}$ which corrupts mel spectro-
 2320 grams (Shen et al., 2018) as follows.

$$2321 \mathcal{A}_{\text{clip}} : \mathbb{R}^{256 \times 256} \rightarrow \mathbb{R}^{256 \times 256}, \mathcal{A}_{\text{clip}}(\mathbf{x}) = \mathbf{y}, \quad (124)$$

2322 where clipping operator is operated by zeroing out the 40 highest dimensions and zeroing out the
 2323 lowest 40 dimensions in terms of the frequency values.

2324 For inpainting task, we assume we have blurring operator $\mathcal{A}_{\text{blur}}$ as

$$\mathcal{A}_{\text{blur}} : \mathbb{R}^{256 \times 256} \rightarrow \mathbb{R}^{256 \times 256}, \mathcal{A}_{\text{blur}}(\mathbf{x}) = \mathbf{y}, \quad (125)$$

2325 where deblurring is conducted by zeroing out the values of middle 80 dimensions in the mel spectrograms.

2326 For both tasks, we set the training-free guidance objective function ℓ_c with l_2 norm.

$$\ell_c = \|\mathcal{A}_{\text{clip}}(\hat{\mathbf{x}}_0) - \mathbf{y}\|_2, \quad \ell_c = \|\mathcal{A}_{\text{blur}}(\hat{\mathbf{x}}_0) - \mathbf{y}\|_2. \quad (126)$$

2327 **Dataset** We borrow open-source training data of Audio-DDPM ¹ following [Ye et al. \(2024\)](#).

2328 **Evaluation** For both tasks, we use Frechet Audio Distance (FAD) ([Kilgour et al., 2018](#)) for
 2329 measure how close the generated data is from the original distribution and Dynamic Time Warping
 2330 (DTW) ([Müller, 2007](#)) for evaluating how generated samples are derived into the desired conditions.
 2331 We set the sample size as 256 across all experiments.

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

¹<https://huggingface.co/teticio/audio-diffusion-256>

2376 E.3.7 HYPER-PARAMETERS
23772378 In Table 14, we provide hyper-parameter settings for the DPS and TFG where we follow the optimal
2379 reported values in [Ye et al. \(2024\)](#).2380 Table 14: Parameter table $(\bar{\rho}, \bar{\mu}, \bar{\gamma})$ DPS, TFG for all methods, tasks, and targets.
2381

Target	DPS			TFG		
	$\bar{\rho}$	$\bar{\mu}$	$\bar{\gamma}$	$\bar{\rho}$	$\bar{\mu}$	$\bar{\gamma}$
CIFAR-10 label guidance						
0	1	0	0	1	2	0.001
1	8	0	0	0.25	2	0.001
2	1	0	0	2	0.25	1
3	4	0	0	4	0.25	0.01
4	0.5	0	0	1	0.5	0.001
5	4	0	0	2	0.25	0.001
6	1	0	0	0.25	0.5	1
7	2	0	0	1	0.5	0.001
8	2	0	0	1	0.25	0.001
9	4	0	0	0.5	2	0.001
ImageNet label guidance						
111	2	0	0	2	0.5	0.1
222	2	0	0	0.5	1	0.1
333	2	0	0	1	4	1
444	4	0	0	0.5	2	0.1
Fine-grained guidance						
111	0.25	0	0	0.5	0.5	0.01
222	0.25	0	0	0.5	0.5	0.01
333	0.25	0	0	0.5	0.5	0.01
444	0.25	0	0	0.5	0.5	0.01
Combined Guidance (gender & hair)						
(0,0)	4	0	0	1	2	0.01
(0,1)	4	0	0	2	8	0.01
(1,0)	4	0	0	1	1	0.01
(1,1)	2	0	0	0.5	1	0.1

Target	DPS			TFG		
	$\bar{\rho}$	$\bar{\mu}$	$\bar{\gamma}$	$\bar{\rho}$	$\bar{\mu}$	$\bar{\gamma}$
Combined Guidance (gender & age)						
(0,0)	8	0	0	1	2	0.01
(0,1)	1	0	0	0.5	8	1
(1,0)	4	0	0	0.5	2	0.01
(1,1)	2	0	0	1	0.5	0.1
Super-resolution						
	16	0	0	4	2	0.01
Gaussian Deblur						
	16	0	0	1	8	0.01
Molecule Property						
α	0.005	0	0	0.016	0.001	0.0001
μ	0.02	0	0	0.001	0.002	0.1
C_v	0.005	0	0	0.004	0.001	0.001
ϵ_{HOMO}	0.005	0	0	0.002	0.004	0.001
ϵ_{LUMO}	0.005	0	0	0.016	0.002	0.0001
Δ	0.005	0	0	0.032	0.001	0.001
Audio Declipping						
	1	0	0	1	1	0.1
Audio Inpainting						
	16	0	0	0.25	2	0.1

2409
2410 E.4 TIME PREDICTOR
24112412 **Architecture** Time Predictor is a foundational component of our TAG framework, designed to
2413 estimate $p(t|\mathbf{x}_t)$ or $p(t|\mathbf{x}_t, \mathbf{c})$ for guiding noisy samples back to the desired data manifold. Its
2414 architecture is tailored to the input modality.2415 For image and audio data, a *SimpleCNN* is employed, comprising four convolutional layers with
2416 channel sizes (32, 64, 128, 256), each followed by ReLU activation and average pooling. This design
2417 is significantly lighter than the diffusion backbone. A final linear layer produces logits for all
2418 timesteps. In conditional settings, learned embedding vectors for conditions are concatenated before
2419 the linear layer to model $p(t|\mathbf{x}_t, \mathbf{c})$.2420 For molecular data, a modified *Equivariant Graph Neural Network (EGNN)* [Satorras et al. \(2021\)](#)
2421 processes node and edge features along with spatial coordinates. The concatenated node and spatial
2422 features are passed through a feed-forward network to output logits representing the time distribution.2423 These architectures are lightweight compared to the diffusion model backbone yet expressive enough
2424 to capture temporal and conditional relationships, involving minimal computational cost during
2425 sample generation. We present the performance analysis in next subsection.2426 Following [Jung et al. \(2024\)](#), training involves minimizing a cross-entropy loss between the true time
2427 step t and the predicted distribution over timesteps. For each sample \mathbf{x}_0 from the data distribution, a
2428 noisy version \mathbf{x}_t is generated at a random t using the forward process. The objective is:

2429
$$\mathcal{L}_{\text{time-predictor}}(\phi) = -\mathbb{E}_{t, \mathbf{x}_0} [\log (\hat{\mathbf{p}}_\phi(\mathbf{x}_t)_t)], \quad (127)$$

where $\hat{p}_\phi(\mathbf{x}_t)_t$ is the predicted probability for t . Cross-entropy is chosen over regression due to overlapping supports of $p_t(\mathbf{x})$ and $p_s(\mathbf{x})$, ensuring ambiguity is handled probabilistically. The model is trained using the Adam optimizer (learning rate 1×10^{-4}) for 300K iterations on most datasets, except for ImageNet, which uses 600K iterations. The batch sizes and GPU configurations for each dataset are summarized in Table 15.

Table 15: Training Details for the Time Predictor

Dataset	Batch Size	Training Iterations	A100 GPUs
ImageNet	1024	600K	4
CIFAR10	256	300K	1
CelebAHQ	256	300K	1
Cat	128	300K	1
Molecule	128	300K	2
Audio	128	300K	1

Performance We compare the performance of time predictors across diverse datasets and tasks. The *time gap* (Def. F.1) is presented in the Appendix F.2, where we evaluate its behavior across different datasets and tasks. Given true forward noise samples $x_t \sim q(x_t|x_0)$, we measure the *time gap*, where a lower value indicates higher prediction accuracy.

The results presented in Figure F.2 demonstrate that the time predictor achieves strong performance across most datasets and tasks, despite employing a relatively simple CNN architecture. Notably, for timesteps $t < 600$, nearly all models accurately predict the true timestep. However, for lower-dimensional datasets such as CIFAR-10 and molecular data, the prediction error increases as t approaches the final timestep T of the diffusion process, indicating degraded performance. This observation aligns with the findings of [Kahouli et al. \(2024\)](#), reported that higher data dimensionality enhances predictability, whereas overlapping distributions near T impede accurate predictions. Consistent with these observations, our results indicate that some model struggles in this regime, which we leave as an avenue for future work.

The performance of TAG improves with a better classifier, as it provides a more accurate estimate of the true TLS. We conducted experiments using different training checkpoints (10K and 30K). Table 16 shows that performance on all metrics improved at the 30K checkpoint, correlating with the better performance of the more trained classifier.

Table 16: Quantitative evaluation of TFG+TAG across varying training steps on CIFAR-10 confirms the relationship between classifier robustness and TAG performance.

Training Steps

10 K 30 K

FID \downarrow 116.0 **102.7**

Acc. \uparrow 55.3 **61.5**

E.5 LARGE-SCALE TEXT-TO-IMAGE GENERATION

Enhanced Reward Alignment All reward alignment experiments build on the DAS test-time sampler (Kim et al., 2025) with Stable Diffusion v1.5 (Rombach et al., 2022) as the base model. Unless stated otherwise, we follow the hyperparameter setting in DAS (Kim et al., 2025). We evaluate with two settings:

Single-objective alignment: We optimize two separate reward functions: the LAION Aesthetic predictor (Schuhmann et al., 2022) using 256 simple animal prompts from ImageNet (Russakovsky et al., 2015), and CLIPScore (Radford et al., 2021) using the HPSv2 prompt set (Wu et al., 2023).

Multi-objective alignment: We combine aesthetic and CLIP rewards via

$$r_{\text{total}}(x) \equiv w r_{\text{Aesthetic}}(x) + (1-w) r_{\text{GLIB}}(x) \quad w \equiv 0.5$$

In all experiments we use $T = 100$ diffusion steps, single particle setting, and the tempering schedule $\lambda_t = (1 + \gamma)^{t-1}$ with $\gamma = 0.008$ following original setting for the fair comparison. Resampling is triggered when the effective sample size ESS < 0.5 . We set the KL coefficient $\alpha = 0.01$ for aesthetic alignment and $\alpha = 0.001$ for CLIP alignment (single-objective), and $\alpha = 0.005$ for multi-objective trials. For each prompt set, we sample 256 images and report the mean reward and mean Time-Gap (Def. F.1) over three independent runs.

Improved Style Transfer We adopt the setup of (Ye et al., 2024). Our goal is to steer the latent diffusion model Stable-Diffusion-v-1-5 (Rombach et al., 2022) so that the generated images both match the input text prompts and reflect the style of given reference images. We achieve this by matching the Gram matrices (Johnson et al., 2016) of intermediate features from a CLIP image encoder for the generated and reference images.

Specifically, let x_{ref} be a reference style image and $D(z_{0|t})$ be the decoded image obtained from the estimated latent $z_{0|t}$. We extract features from the third layer of the CLIP image encoder and compute their Gram matrices

$$G(x_{\text{ref}}), \quad G(D(z_{0|t}))$$

following the methodology of MPGD (He et al., 2024) and FreeDoM (Yu et al., 2023). The style-guidance objective maximizes

$$\exp(-\|G(x_{\text{ref}}) - G(D(z_{0|t}))\|_F^2),$$

where $\|\cdot\|_F$ denotes the Frobenius norm.

We measure style transfer quality using the Style Score and CLIP Score. As reference styles, we use the same four WikiArt images employed by MPGD (He et al., 2024), and for text prompts we select 64 samples from Partiprompts (Yu et al., 2022). For each style, we generate 64 images. To prevent inflated CLIP scores, we compute guidance and evaluation with two different CLIP models from the Hugging Face Hub, Guidance² and Evaluation³. Throughout our experiments, we fix the guidance strength at $\omega_t = 1$. We leave exploring hyperparameter tuning to improve results as a future work.

F ABLATION STUDIES

F.1 FEW STEP UNCONDITIONAL GENERATION

In few step generation experiments in Section 4.3, we study on the effect of TAG in unconditional generation scenario where no extra guidance is applied in reverse diffusion process. Specifically, we focus on few step generation scenario where discretization error happens as introduced in Appendix B.5.

We further report the evaluation results with 50,000 samples in Table 17 where number of function evaluation (NFE) refers to how many times we evaluate with diffusion models during the reverse process. The result shows that TAG significantly improves FID and IS scores when less evaluation steps are used which aligns with our intuition that fewer NFE induces more severe off-manifold phenomenon in reverse diffusion process. For the experiment, we utilize CIFAR-10 DDPM Song & Dhariwal (2024) as in Section 4.3 and use DDPM sampling.

Table 17: Comparison of FID values before and after applying TAG in unconditional generation scenario.

	NFE 1		NFE 3		NFE 5	
TAG	FID ↓	IS ↑	FID ↓	IS ↑	FID ↓	IS ↑
✗	449.8	1.26	194.5	2.04	116.5	3.08
✓	232.9	2.26	124.2	3.55	97.4	3.66

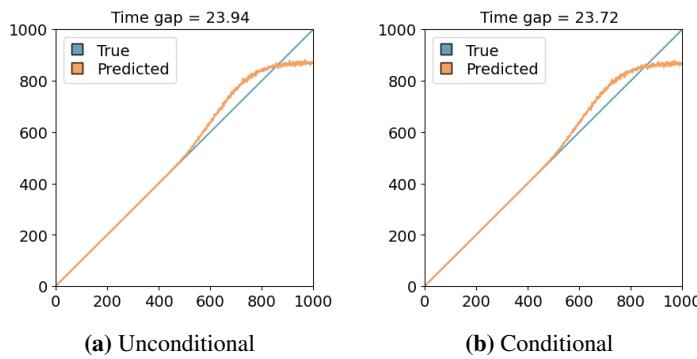
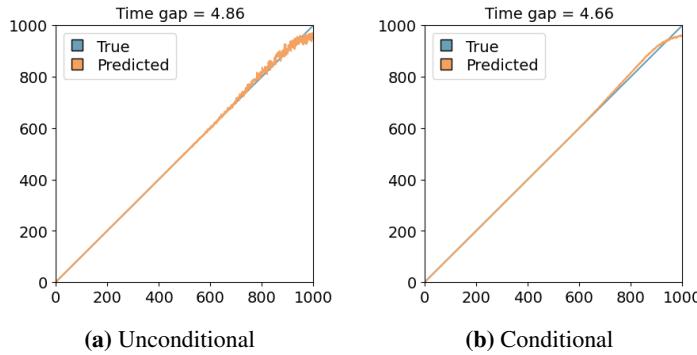
²Guidance: [openai/clip-vit-base-patch16](https://openai.com/research/clip-vit-base-patch16)

³Evaluation: [openai/clip-vit-base-patch32](https://openai.com/research/clip-vit-base-patch32)

2538 F.2 TIME GAP
25392540 **Time-Gap (TG)** To quantify the temporal deviation during generation, we define the Time-Gap
2541 metric. Denoting the sample at timestep t as \mathbf{x}_t and the time predictor as ϕ , the Time-Gap is the
2542 average absolute difference between the predicted timestep index and the true index:2543 **Definition F.1** (Time-Gap).

2544
2545
$$\text{Time-gap} := \frac{1}{T} \sum_{t=1}^T |\arg \max \phi(\mathbf{x}_t) - t|. \quad (128)$$

2546
2547

2548 A lower Time-gap indicates samples are closer to their expected temporal manifold.
25492550 **Time Gap across different timesteps** To further identify how time gap varies across different
2551 diffusion timesteps, we conduct an ablation study where we measure time gap for every timestep in
2552 diffusion models. For each step, average time gap value over 512 samples are reported.
25532554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591**Figure 7:** Time gap in CIFAR10.**Figure 8:** Time gap in ImageNet.

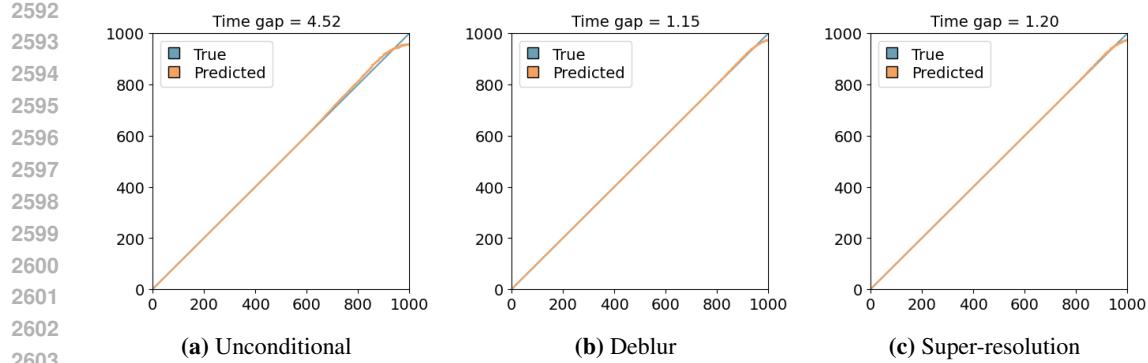


Figure 9: Time gap in Cat.

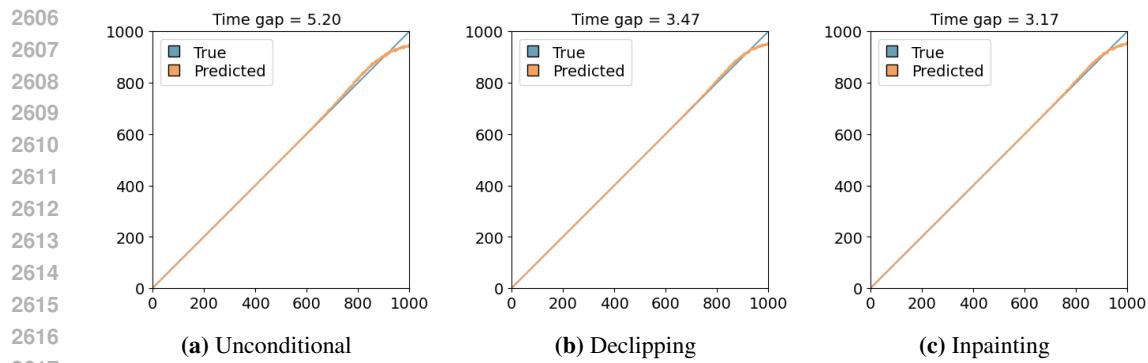


Figure 10: Time gap in Audio.

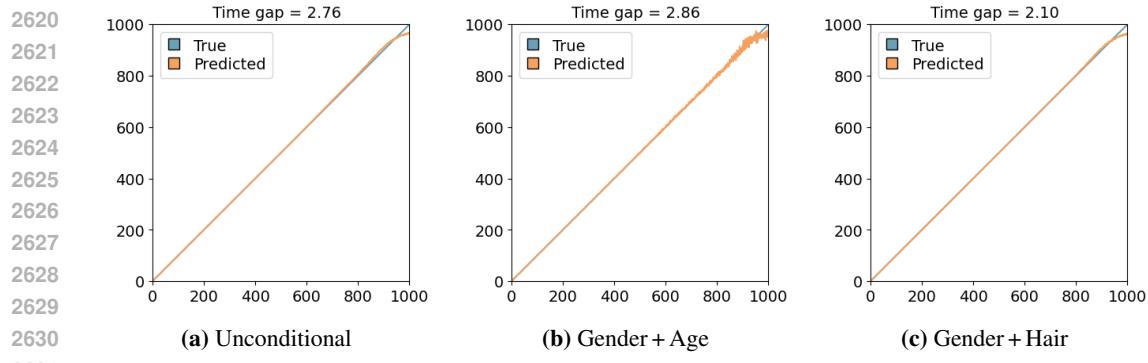


Figure 11: Time gap in CelebA.

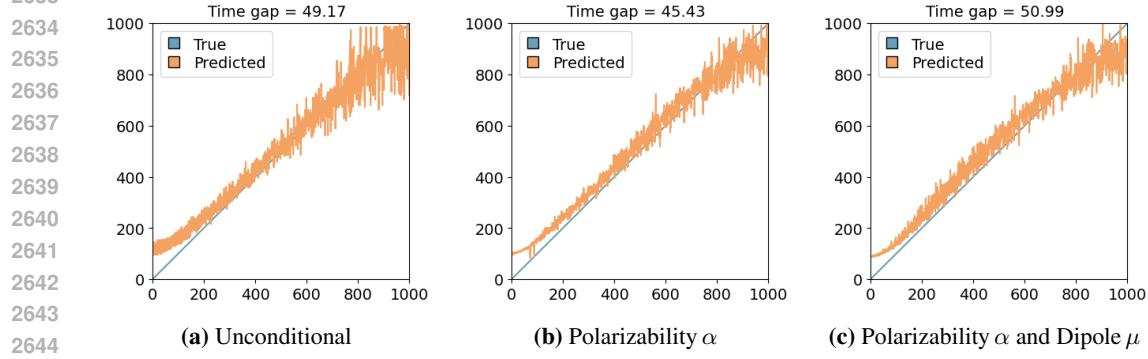


Figure 12: Time gap in Molecule.

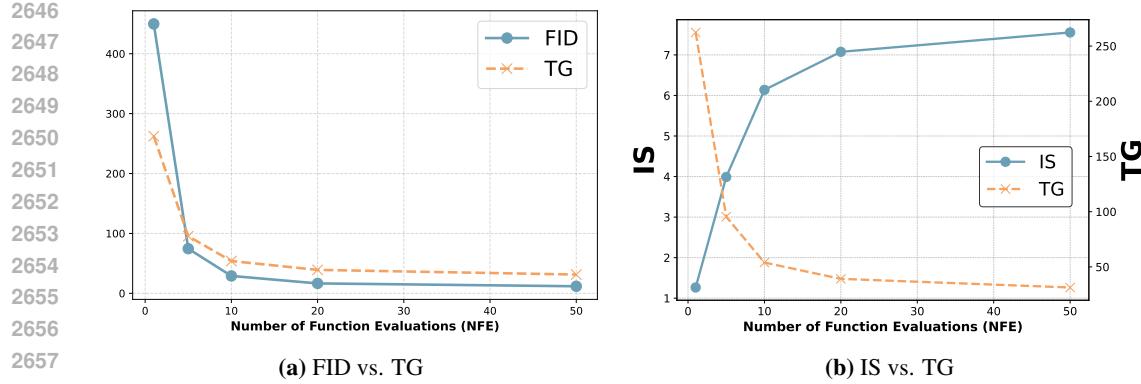


Figure 13: Correlation between time gap and standard metrics for image generation quality.

Network Architecture To assess the trade-off between model size and time-gap accuracy, we compare two backbones. Our SimpleCNN consists of four convolutional blocks with channel widths (32, 64, 128, 256). Each block uses a 3×3 convolution, ReLU activation, and 2×2 average pooling. At just 1.48 M parameters—8.5 % of the 17.38 M-parameter UNet encoder (Dhariwal & Nichol, 2021)—SimpleCNN matches its time-gap performance (Table 18). This demonstrates that a lightweight, single-path network can rival much larger UNet based classifiers.

Table 18: FID on CIFAR-10 for time predictors using SimpleCNN (1.48 M parameters) and UNet encoder (17.38 M parameters), comparing unconditional and conditional models across training checkpoints.

Checkpoint	SimpleCNN		UNet	
	Unconditional	Conditional	Unconditional	Conditional
50K	24.19	23.64	25.59	21.85
100K	23.24	27.33	22.08	19.68
200K	23.11	22.64	22.58	20.53
300K	22.93	21.11	24.40	22.49

Correlation with other standard metrics We conduct ablation study on the correlation between Time Gap and standard metrics (FID and IS). Figure 13 illustrates how time gap and standard measures for image generation quality. We vary different number of function evaluation (NFE) in unconditional diffusion models. For the experiment, we generate 50,000 samples with DDIM sampling and utilize CIFAR10-DDPM model (Nichol & Dhariwal, 2021) with the NFE of 1, 5, 10, 20, 50. The result shows that as NFE increases, time gap reduces while FID decreases and IS increases. This demonstrates that Time Gap serves as a good measure to evaluate the off-manifold phenomenon.

Limitation Once the reverse diffusion process is good enough (i.e. time gap is already small), it often loses correlation with FID measure. We believe improving the performance of the time predictor network will reduce this problem and thereby further boost the effect of the TAG.

We further note that the motivation of introducing a Time Gap in this work is not to suggest a new metric, but to quantify the amount of off-manifold phenomenon where applying TAG is intended to reduce the Time Gaps in each every timestep of the reverse diffusion process.

G VISUALIZATIONS OF GENERATED SAMPLES

Here, we present qualitative examples corresponding to the experiments presented in Section 4.1. We provide visualizations for all four experimental settings: DPS, DPS+TAG, TFG, and TFG+TAG. Below, we detail the dataset configurations used for generating these qualitative examples.

CIFAR-10 We generate images conditioned on the target class 8 (corresponding to the “Ship” category). The images are produced using 250 inference steps with an TAG strength of $\omega = 0.15$.

ImageNet We present generated samples for target classes 111 (“Worm”) and 222 (“Kuvasz”), using 100 inference steps with an TAG strength of $\omega = 0.15$.

QM9 We show qualitative results for the target molecular properties polarizability α and dipole moment μ . In this setting, we employ a 0.1 guidance strength for DPS, following the default configuration in [Ye et al. \(2024\)](#), with 100 inference steps.

CelebA-HQ We provide qualitative examples for two specific conditions: Gender+Hair and Gender+Age. The target attributes in these cases are black hair, young age, and female gender, all represented as binary variables to be satisfied in our conditional generation.

Figure 14: CIFAR10 with the target of 8 (Ship).

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778

(a) DPS

(b) DPS + TAG

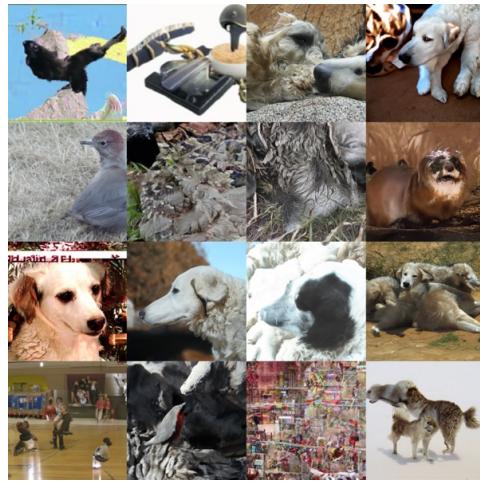
(c) TFG

(d) TFG + TAG

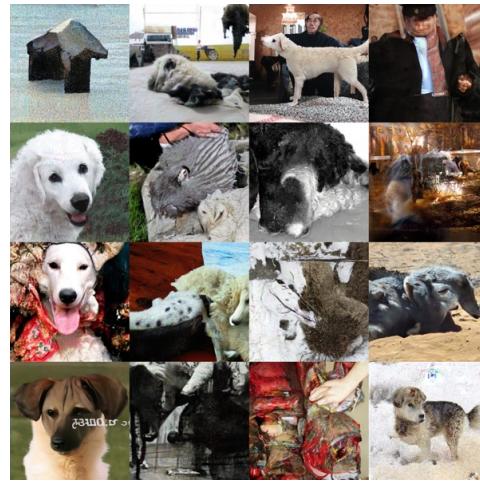
Figure 15: ImageNet with the target of 111 (Worm).

2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832

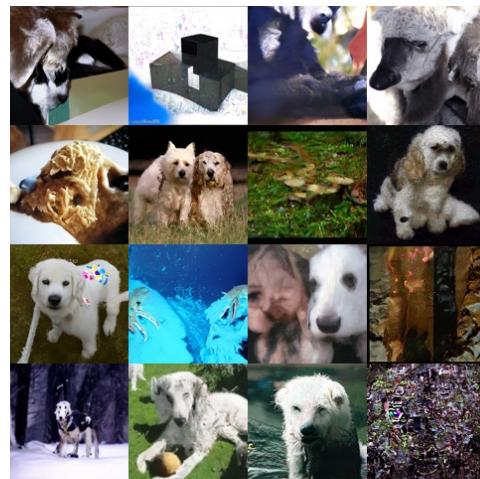


(a) DPS



(b) DPS + TAG

(c) TFG



(d) TFG + TAG

2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Figure 16: ImageNet with the target of 222 (Kuvasz).

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871

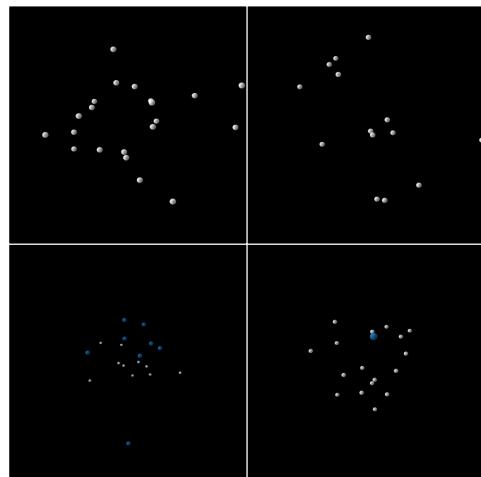
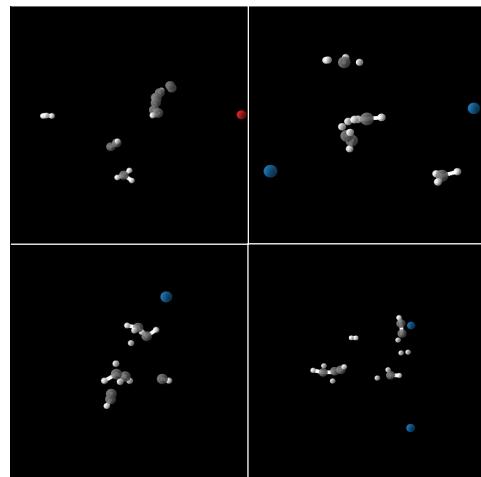
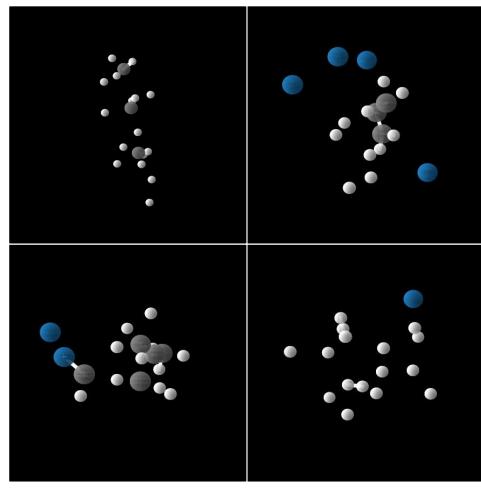
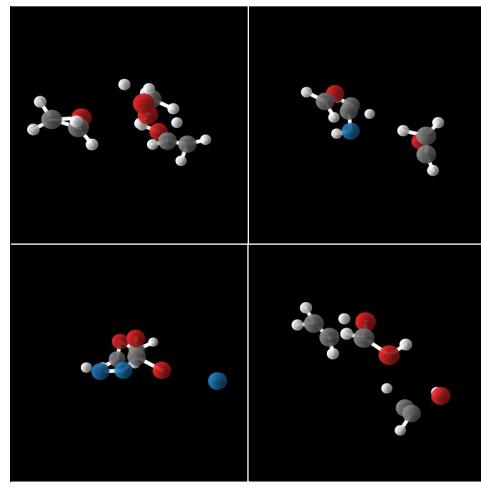


Figure 17: Molecule with condition of polarizability α .

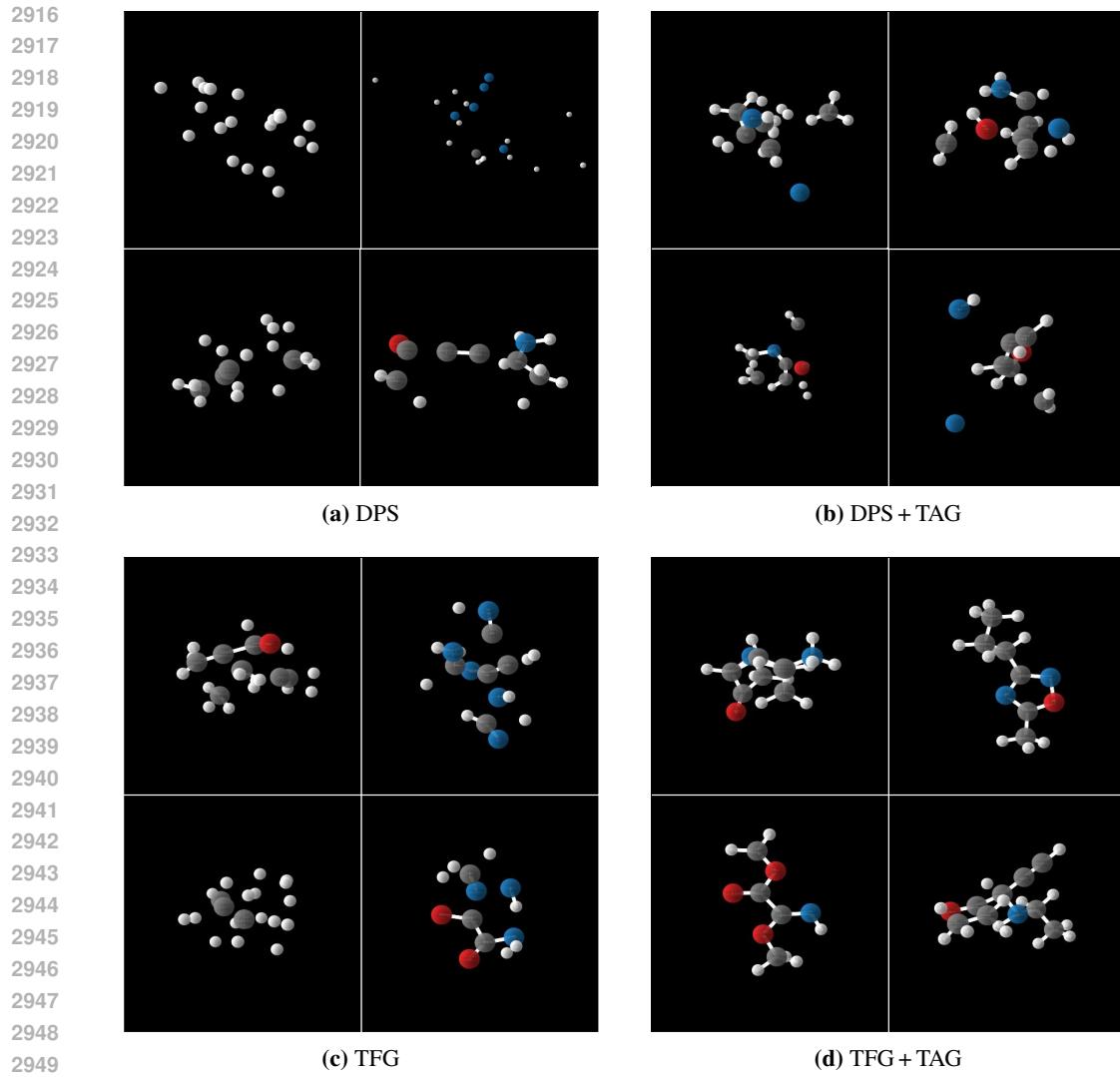
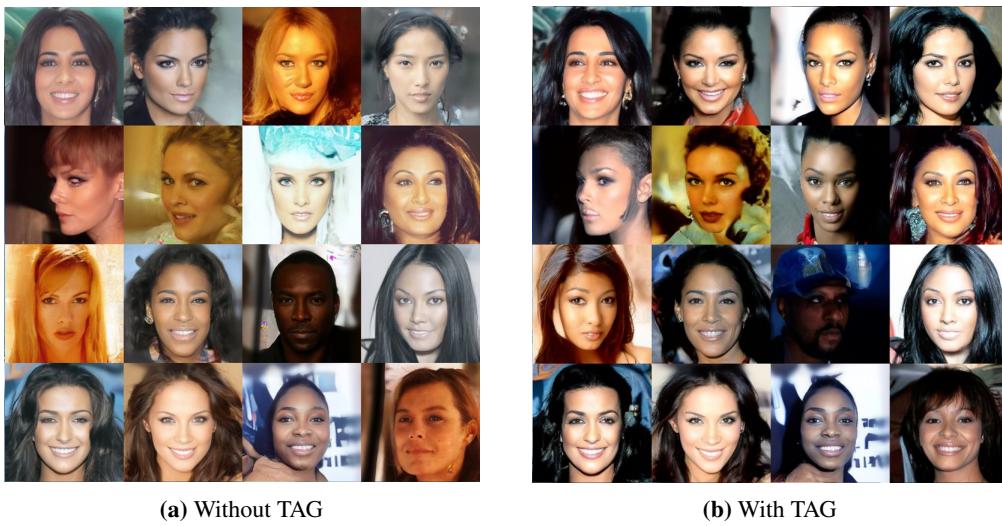
**Figure 18:** Molecule with condition of dipole μ .**Figure 19:** CelebA with condition of Gender (female) + Hair (black hair).

Figure 20: CelebA with condition of Gender (female) + Age (young).