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ABSTRACT

Diffusion models have achieved remarkable success as generative models. However,
even a well-trained model can accumulate errors throughout the generation process.
These errors become particularly problematic when arbitrary guidance is applied
to steer samples toward desired properties, which often breaks sample fidelity. In
this paper, we propose a general solution to address the off-manifold phenomenon
observed in diffusion models. Our approach leverages a time predictor to estimate
deviations from the desired data manifold at each timestep, identifying that a
larger time gap is associated with reduced generation quality. We then design a
novel guidance mechanism, ‘Temporal Alignment Guidance’ (TAG), attracting the
samples back to the desired manifold at every timestep during generation. Through
extensive experiments, we demonstrate that TAG consistently produces samples
closely aligned with the desired manifold at each timestep, leading to significant
improvements in generation quality across various downstream tasks.

1 INTRODUCTION

Diffusion models have shown remarkable performance as generative models across various domains,
including image (Dhariwal & Nichol, 2021; Rombach et al., 2022), video (Liu et al., 2024; Polyak
et al., 2024), audio Kong et al. (2021); Popov et al. (2021), language Austin et al. (2021), and
molecular generation (Hoogeboom et al., 2022). A key factor in their success is the ability to perform
guided generation, where conditions from different modalities can be effectively injected during the
generative process (Dhariwal & Nichol, 2021; Ho & Salimans, 2021).

Recently, diffusion models have been applied to a variety of real-world use cases, such as black-
box optimization (Krishnamoorthy et al., 2023), personalization (Zhang et al., 2023), and inverse
problems (Chung et al., 2023). These downstream applications often require modifications to the
standard sampling procedure, incorporating an additional guidance term during the reverse process
of the diffusion model. This guidance term steers the generated samples towards desired properties
relevant to the specific downstream task (Graikos et al., 2022; Wang et al., 2024; Wei et al., 2024).
Notably, several works have demonstrated the ability to guide samples even towards conditions
unseen during training, a technique often referred to as training-free guidance (Chung et al., 2023;
Bansal et al., 2024).

However, naively modifying the originally learned reverse process of diffusion models can catas-
trophically break other basic properties, as it may lead samples toward low density regions where
the output of diffusion model is unreliable (Song & Ermon, 2019). This score approximation errors
can accumulate over each timestep (Chen et al., 2023b; Oko et al., 2023) which contributes to the
final generated samples deviate significantly from the true data manifold, resulting in unrealistic out-
puts (Shen et al., 2024; Guo et al., 2024). In this work, we refer to this problem as the ‘off-manifold’
phenomenon in diffusion models and demonstrate that it can pose a significant challenge to their
practical applications.

To address the off-manifold problem in diffusion models, we introduce ‘Temporal Alignment Guid-
ance’ (TAG), a general solution designed to mitigate score approximation error induced by arbitrary
modifications to the reverse process. Unlike traditional approaches that rely on fixed timesteps in
the reverse process, TAG leverages the inherent uncertainty of the time variable by representing it as
a probability distribution over a range of possible values. This novel guidance term is designed to
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Figure 1: Overview of TAG algorithm. (Left) Without TAG, external guidance pushes samples off-manifold,
causing the standard diffusion step∇x log p(x) to miss the target manifoldMti−1 . TAG’s correction actively
steers the sample back to the correct manifoldMti , ensuring the diffusion step accurately reaches the desired
manifoldMti−1 . (Right) Applying TAG can greatly improve the fidelity in conditional generation tasks with
target conditions: worm for ImageNet, polarizability α for Molecule, female and black hair for CelebA.

steer samples back to the higher density region, where learned score of the model becomes reliable,
thereby improving sample quality while providing control in downstream tasks.

Our approach introduces a corrective step that steers samples back to the higher density region, where
the model’s learned score becomes reliable. This mechanism is visually summarized in Figure 1 (Left).
Through extensive experiments, we show that TAG significantly improves the quality of generated
samples across multiple domains and tasks, as demonstrated in Figure 1 (Right). Promising results
of TAG on these diverse scenarios implies that TAG could indeed serve as a universal solution for
mitigating the off-manifold phenomenon in diffusion models, a common issue that arises in numerous
downstream tasks but yet to be solved. We believe that this work represents an important stepping
stone toward achieving reliable generation for real-world applications using diffusion models.

Our main contributions can be summarized as follows:

• We identify off-manifold phenomena in diffusion models across multiple scenarios and demonstrate
that these phenomena can be significantly amplified when the learned reverse process of the original
diffusion model is arbitrarily adjusted.

• We design a novel framework, ‘Temporal Alignment Guidance’ (TAG), which pushes the samples
toward the desired manifold at each timestep during generation and provide theoretical guarantees.

• We demonstrate that TAG significantly improves sample quality through extensive experiments in
various domains and tasks, achieving state-of-the art results.

2 OFF-MANIFOLD PHENOMENON IN DIFFUSION MODELS

Off-manifold phenomenon happens in each timestep if the sample is tilted towards the low density
region of true marginal distribution pt(x), which represents the distribution of a noisy sample x at
timestep t. Below, we list typical situations where off-manifold phenomenon can occur in diffusion
models.

Controlling by external guidance Anderson (1982) shows the forward process of diffusion model
can be reversed once a score function ∇x log qt(x) of marginal distribution qt is given for each t by
the following reverse SDE:

dx =
[
f(x)− g2(t)∇x log qt(x)

]
dt+ g(t)dw̄t, (1)

where w̄t denotes a standard wiener process with backward time flows.

In many practical scenarios, diffusion model sampling needs an extra guidance term v(x, c, t) to
generate high-quality samples which modifies reverse diffusion process as follows:

dx =
[
f(x)− g(t)2 (∇x log qt(x) + v(x, c, t))

]
dt+ g(t)dw̄t, (2)

One notable approach is training-free guidance (Chung et al., 2023) where,

v(xt, c, t) = ∇xt
log p(c|x̂0), (3)

2
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and x̂0 is a target estimate approximated with Tweedie’s formula (Efron, 2011) as follows:

x̂0 =
xt + (1− ᾱt)∇xt log p(xt)√

ᾱt
. (4)

Here, ᾱt is a function determined by the forward process (Appendix B.3 for further details). Al-
though training-free guidance can approximate sampling from conditional distribution only with
unconditional model (Chung et al., 2023; Ye et al., 2024), this extra guidance in each timestep make
samples far from the original learned data manifold (Shen et al., 2024).

Multi-conditional guidance Downstream applications with diffusion models often required
fine-grained control such as multi-conditional guidance (Du et al., 2023) or constrained guid-
ance (Schramowski et al., 2023), where linear combination of more than two score functions are
used to satisfy target properties. However, as stated in (Du et al., 2023), naive combination of two
independent conditional score functions does not equal to multi-conditional score function:

∇x log p(x|c1, c2) ̸= ∇x log p(x|c1) +∇x log p(x|c2). (5)

Few-step generation The probability flow ODE formulation of diffusion models (Song et al.,
2021b) accelerates generation by reducing the number of function evaluation (NFE) for sampling.
However, discretization errors accumulate during the reverse process, resulting in off-manifold
problem. We provide further details in Appendix B.5.

Degradation of sample quality in low-density regions The score function ∇ log pt(xt) of the
diffusion model is trained to guide samples toward high density regions of the noisy data distribution
pt(xt) at each timestep t. Ideally, in a perfectly learned diffusion process, this ensures generated
outputs remain close to the original data manifold, resulting in high-fidelity samples. However, if an
external force v drives a sample to the low density region pt(xt) ≈ 0, the score function∇ log pt(xt)
estimated by the diffusion model becomes unreliable, as it is trained on noisy data that assumes
the forward process is intact at the given timestep. This, often known as a score approximation
error (Oko et al., 2023; Chen et al., 2023a), accumulates over time as generation process goes on,
causing compounding errors that degrade sample quality in the subsequent steps of the generation
process (Li & van der Schaar, 2024).

To illustrate how off-manifold phenomenon can become detrimental in diffusion sampling process,
we construct a toy example of two Gaussian mixtures where external drift term is added in every
timestep of the reverse process (details in Appendix E.1). Figure 2a shows that applying this external
drift term in every diffusion step results in samples far from the original distribution.

3 METHOD

In this section, we introduce Temporal Alignment Guidance (TAG), a novel framework designed to
maintain sample fidelity during diffusion model generation by mitigating off-manifold deviations at
each timestep. We first formally define TAG, introducing the core concept of the Time-Linked Score
(TLS) (Sec. 3.1). Subsequently, we detail how TAG integrates with practical guidance techniques
to enhance conditional generation (Sec. 3.2). Finally, we provide a theoretical analysis on how
TAG improves sample quality in the presence of off-manifold phenomenon (Sec. 3.3) along with
illustrative example (Sec. 3.4).

3.1 TEMPORAL ALIGNMENT GUIDANCE (TAG)

Projecting samples back to the On-Manifold We reinterpret timestep information as a condi-
tioning variable rather than a fixed input in the reverse diffusion process. Fixed times scheduling
suffices when samples remain on the original reverse path, it breaks down off-manifold because xt

loses its temporal identity. To project xt back onto the correct manifoldMt (formal definition in
Appendix B.4), we introduce the gradient term∇x log pt(t | x), analogous to the conditional score
in classifier guidance (Dhariwal & Nichol, 2021). Figure 2b illustrates that this vector field directs
samples toward high-probability regions of the original distribution qt, whereas the conventional
diffusion score struggles once off-manifold. Incorporating this term into each reverse step thus keeps
generated samples aligned with the data distribution (Figure 2b). In the next subsection, we formally
define and analyze this new gradient correction.

3
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Original Data
Generated Data

(a) Original model score

Original Data
Generated Data

(b) Time score

Figure 2: Generated samples with score field. (Left) Generated
outputs from reverse diffusion process with external drift, with
vector field of the diffusion model output at t = 0. (Right)
Generated outputs when applying TAG with external drift, with
vector field of the TLS at t = 0.

Algorithm 1 Temporal Alignment
Guidance (TAG)

Input: Diffusion model θ, time predictor
ϕ, guidance strength schedule ωt, num-
ber of total diffusion steps T
xT ∼ N (0, I)
for t = T, · · · , 1 do

x̃t ← xt + ωt · ∇ log pϕ(t | xt)
Obtain ∇ log p(x) from a diffusion
model θ
xt−1 ← x̃t from reverse diffusion
step following Eq. 1.

end for
Output: x0

Time-Linked Score (TLS) To further investigate the effect of this gradient term, we introduce the
following definition:

Definition 3.1. Time-Linked Score for data point x and target time t is defined as,

TLS(x, t) := ∇x log p(t |x). (6)

Combining TLS with original score function of diffusion models, we now define Temporal Alignment
Guidance:

Definition 3.2. The Temporal Alignment Guidance (TAG) at time t is defined as

TAG(x, t) = ∇x log pt(x) + ω · ∇x log pϕ
(
t | x

)
. (7)

where ω is a hyperparameter that controls the strength.

Applying TAG in the reverse diffusion provides a shortcut for a sample to the original manifold by
sending it to the tilted probability p(x|t)p(t|x)ω , just as in the classifier guidance Dhariwal & Nichol
(2021). We provide a pseudo-code of sampling with TAG in Algorithm 1.

Time classification by time predictor Accurately identifying the correct manifold for each time is
analytically impossible due to the complexity of the score function of real-world dataset Zhang &
Chen (2023); Han et al. (2024b). Instead, we utilize a time predictor Jung et al. (2024), which is an
auxiliary neural network trained with one-hot embeddings of timestep labels with following objective
function:

Ltp(ϕ) = −Et,x0
[log (p̂ϕ(xt)t)] , (8)

where p̂ denotes a logit vector of the model output. Time predictor learns to classify which timestep
a random data with forward process should belong to. By calculating gradient of the time predictor,
we can estimate TLS in Eq. 6. We use the simple cnn architecture that is substantially lightweight
compared to the diffusion backbone. Details of the designing mechanism and performance of time
predictor is in Appendix E.4.

3.2 IMPROVING GUIDANCE WITH TAG

We now present how TAG can be combined with a standard zero-shot conditional sampling framework
like training-free guidance (TFG) (Chung et al., 2023; Ye et al., 2024) to improve conditional
generation of diffusion models.

Let c ∈ Y be the target property and let A : X → Y be a off the shelf function that maps x0 ∈ X to
their predicted property values. Training-free guidance is applied as,

∇xt
log pt(c|xt)=∇xt

logEp(x0|xt)

[
exp
(
−ℓc(A(x̂0), c)

]
(9)

where ℓc : Y ×Y → R measures the discrepancy between the estimated property and target property,
and x̂0 is the denoised estimate from Eq. 4.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

One can obtain TLS with similar approach by observing

p(t|xt, c) ∝ exp
(
−ℓt(ϕ(xt, c), t)

)
, (10)

where ℓt is a penalty function for misalignment in time, and we set as a cross-entropy loss.

With the extended view of adding time information as another condition, we use Bayes’ rule to the
conditional probability as:

pt(xt | c) ∝ pt(xt) p(c|xt) p(t|xt, c). (11)

Taking gradient respect to xt for both sides, one can obtain conditional score function as follows:

∇xt
log p(xt|c) ≈ ∇xt

log p(xt) + σt∇xt
ℓc(A(x̂0), c) + ωt∇xt

ℓt(ϕ(xt, c), t).

In essence, by treating time as an additional conditioning signal, TAG act as an on-manifold anchor
at every reverse step: it pulls samples back onto the learned diffusion path, preventing off-manifold
drift and markedly improving fidelity under arbitrary guidance.

3.3 THEORETICAL ANALYSIS OF TAG

Here, we provide the theoretical justification of TAG. We rigorously show that TAG can effectively
reduce the error bound between the distribution of generated samples and the target distribution.

To start with, we first present the following theorem which states that TLS is a linear combination of
the score functions of different timesteps in the following way:
Theorem 3.3. Assuming discrete diffusion timesteps [t1, t2, . . . , tn], Time-linked Score of a random
noisy sample x to the target time ti can be represented as:

∇x log p
(
ti | x

)
=
∑
k ̸=i

ptk(x)

ptot(x)︸ ︷︷ ︸
greater when

off ti-manifold

(
∇x log pti(x)︸ ︷︷ ︸
pull to ti manifold

− ∇x log ptk(x)︸ ︷︷ ︸
repel other manifolds

)
.

(12)

Here, pti’s are marginal distributions at each timestep and ptot =
∑

j ptj (x). The proof of Theo-
rem 3.3 is in Appendix C.4.

Theorem 3.3 implies that TLS is particularly effective when pti(x) ≪ ptot(x). In this regime,
∇x log pti(x) attracts the sample toward original data manifold, while simultaneously repelling it
from competing manifolds through the negative terms −∇x log ptk(x) for k ̸= i. Moreover, if
ptj (x) dominates for some j ̸= i, the repulsive force∇x log ptj (x) in equation 12 grows, aiding the
sample to escape an incorrect manifold. The above result can be naturally extend to continuous time
(Appendix C.5).

Intuitively, at time t, score approximation errors tend to be larger in low-density regions of pt(x), since
the model rarely encounters such regions during training. Consequently, corrector sampling (Song
et al., 2021b) may become ineffective there, as the neural network’s score estimates degrade. More-
over, even an accurate score estimate can struggle to guide samples out of inherently flat probability
landscapes. Indeed, our empirical findings in Appendix D.2 show that corrector sampling becomes
ineffective, sometimes degrade the sample quality under external guidance. Applying TAG can
mitigate the aforementioned problems by increasing the chance of escape in this low density region.
This can be formalized into the following proposition.
Proposition 3.4. Applying TAG alters energy barrier map Uk(x) = − log ptk(x) at timestep tk to
Φk(x) for any k by:

Φk(x) = Uk(x)−
∑
i

γi Ui(x), (13)

where γi =
pi(x)
ptot(x)

for i ̸= k and γk = 1−
∑

i ̸=k
pi(x)
ptot(x)

.

We defer the proof to Appendix C.6. Under mild assumptions, it shows that TAG sharpens the
potential map via the negative repulsion of alternative timestep manifolds. Building on the Jordan–
Kinderlehrer–Otto (JKO) scheme (Jordan et al., 1998), one can show that the modified Langevin

5
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Table 1: Effect of TAG across strength ω of TAG
when reverse process is corrupted with noise level σ.

σ = 0.1 σ = 0.2 σ = 0.3

ω TG ↓ FID ↓ IS ↑ TG ↓ FID ↓ IS ↑ TG ↓ FID ↓ IS ↑

0.0 104.1 193.6 2.37 229.6 351.4 1.50 274.0 410.1 1.28

0.5 47.9 127.7 3.65 200.6 340.1 1.56 261.6 408.5 1.28

1.0 41.8 120.9 3.69 175.5 323.7 1.61 250.9 406.7 1.28

2.0 39.0 132.6 3.33 140.2 285.1 1.64 232.6 390.3 1.27

4.0 44.4 159.8 3.00 103.4 246.3 1.70 197.8 361.2 1.31

Without TAG
With      TAG

FI
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100

200

300

400
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Figure 3: FID values over different corruption levels for
original diffusion process without TAG and with TAG.

dynamics under this sharpened potential map accelerates correction with stronger gradient flows. In
particular, applying a single reverse diffusion step with TAG increases the chance of a sample to move
towards higher-density regions, thereby reducing expected score approximation errors. Building on
prior analyses of diffusion models (Oko et al., 2023; Chen et al., 2023b), we show that TAG can
improve the convergence guarantee by lowering the upper bound on the total variation distance dTV

between the sample distribution and the target distribution:
Theorem 3.5. (Informal) Let pt and p̃t be the probability distribution at time t in the original reverse
process in equation 1 and in the reverse process apply with TAG (Algorithm 1). Then, under mild
assumptions, the upper bound of dTV (qdata, p̃0) can be reduced compared to dTV (qdata, p0).

Theorem 3.5 demonstrates TAG’s ability to enhance sample quality, a finding that aligns with our
experimental observations. We provide a formal statement of Theorem 3.5 with corresponding proof
in Appendix C.7.

3.4 UNDERSTANDING TAG UNDER CORRUPTED REVERSE PROCESS

To analyze TAG’s corrective mechanism and evaluate its effectiveness under extreme perturbation, we
conduct an experiment where artificial noise is applied at every reverse step. To quantify the temporal
deviation during generation, we define the Time-Gap metric. Denoting the sample at timestep t as
xt and the time predictor as ϕ, the Time-Gap is defined as 1

T

∑T
t=1

∣∣argmaxϕ(xt) − t
∣∣. A lower

Time-Gap indicates that samples remain closer to their expected temporal manifold and correlates
with improved generation quality (see Appendix F.1 for a formal definition and empirical validation).

Table 1 shows the effect of applying TAG under various noise levels (σ) and guidance strengths (ω).
As ω increases, both FID and IS improve, while the Time-Gap decreases, indicating that samples
are drawn closer to the correct manifold. Figure 3 further illustrates that TAG significantly alleviates
the degradation caused by increasing σ. These findings empirically confirm that the TLS component
indeed corrects deviations and steers samples back to the appropriate temporal manifold, even under
extreme perturbations. Further details of the experiments with additional results are in Appendix E.2.

4 EXPERIMENTS

We evaluate TAG empirically across diverse scenarios including those prone to off-manifold er-
rors and practical applications mentioned in Sec. 3. First, we show that TAG improves standard
TFG benchmarks via extensive comparisons with related methods (Sec. 4.1). Next, we extend
to multi-conditional guidance, demonstrating efficient conditioning on multiple attributes without
combinatorial overhead (Sec. 4.2). Then, we assess its ability to mitigate errors in few-step gener-
ation (Sec. 4.3). Finally, we demonstrate its applicability and benefits in large-scale text-to-image
generation tasks (Sec. 4.4).

4.1 TFG BENCHMARK

Setup We follow the setup of TFG benchmark (Ye et al., 2024), a standard zero-shot conditional
sampling framework, applying TAG to DPS (Chung et al., 2023) and TFG with their reported
optimal hyperparameters. This offers a challenging comparison, since these carefully tuned base-
lines should exhibit less off-manifold drift than simpler methods. Experiments use 6 pretrained

6
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Table 2: Quantitative results of TAG on TFG benchmark. Each cell presents the guidance validity / generation
fidelity averaged across multiple targets in the task. The best result for each cell is reported in bold.

Deblur Super-resolution CIFAR10 ImageNet Audio declipping Audio inpainting
Method FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ Acc. ↑ FID ↓ Acc. ↑ FAD ↓ DTW ↓ FAD ↓ DTW ↓
DPS (Chung et al., 2023) 139.7 0.613 139.0 0.614 217.1 57.5 196.9 24.5 2.41 191 2.26 176
DPS + TAG (ours) 128.9 0.570 128.3 0.572 190.4 63.2 192.2 22.9 2.33 189 2.25 157
Rel. Improvement 7.7% 7.0% 7.7% 6.8% 12.3% 9.9% 2.4% -6.5% 3.3% 1.0% 0.4% 10.8%

TFG (Ye et al., 2024) 64.2 0.154 65.5 0.187 114.1 55.8 231.0 14.3 1.42 256 0.52 74
TFG + TAG (ours) 62.7 0.151 64.7 0.175 102.7 61.5 219.4 17.8 0.74 120 0.42 51
Rel. Improvement 2.3% 1.9% 1.2% 6.4% 10.0% 10.2% 5.0% 24.5% 47.9% 53.1% 19.3% 31.1%

Baseline Results

TCS (Jung et al., 2024) 454.7 0.751 465.1 0.748 213.4 29.4 344.9 12.0 23.89 567 21.41 558
Timestep Guidance (Sadat et al., 2024) 480.3 0.995 480.3 0.995 393.2 11.3 545.7 25.0 46.22 492 45.94 491
Self-Guidance (Li et al., 2024b) 231.8 0.709 231.0 0.710 205.4 51.6 257.4 10.8 8.90 521 6.99 463

Polarizabilityα Dipoleµ Heat capacityCv ϵHOMO ϵLUMO Gap ϵ∆

Method MAE ↓ Stab. ↑ MAE ↓ Stab. ↑ MAE ↓ Stab. ↑ MAE ↓ Stab. ↑ MAE ↓ Stab. ↑ MAE ↓ Stab. ↑
DPS (Chung et al., 2023) 13.33 28.4 4779.92 34.4 3.47 36.2 0.68 30.3 1.57 17.6 1.65 10.6
DPS + TAG (ours) 7.96 96.4 1.48 97.2 3.03 93.0 0.58 56.2 1.11 48.4 1.29 93.5
Rel. Improvement 40.3% 239.7% 99.9% 182.5% 13.1% 157.0% 6.1% 85.7% 29.6% 174.5% 21.4% 779.2%

TFG (Ye et al., 2024) 8.91 19.2 2.41 26.3 2.65 96.2 0.55 14.6 1.33 10.8 1.40 16.1
TFG + TAG (ours) 4.46 43.6 1.28 94.3 2.67 96.7 0.43 93.9 0.89 92.5 0.78 82.8
Rel. Improvement 49.9% 127.1% 46.9% 258.6% 0.3% 0.5% 21.8% 543.8% 33.1% 757.4% 44.3% 414.2%

Baseline Results

TCS (Jung et al., 2024) 11.44 15.3 1.60 6.3 3.17 19.6 0.59 50.2 1.23 28.8 1.58 13.9
Timestep Guidance (Sadat et al., 2024) 25.07 70.2 N/A N/A 4.18 82.9 N/A N/A N/A N/A 1.39 48.7
Self-Guidance (Li et al., 2024b) 16.33 65.3 62.86 70.9 3.89 79.7 N/A N/A 2.32 10.8 1.30 24.9

models—CIFAR10-DDPM (Nichol & Dhariwal, 2021), ImageNet-DDPM (Dhariwal & Nichol,
2021), Cat-DDPM (Elson et al., 2007), CelebA-DDPM (Karras et al., 2018), Molecule-EDM (Hooge-
boom et al., 2022), and Audio-Diffusion (Kong et al., 2021; Popov et al., 2021). The tasks include
image restoration (deblurring, super-resolution), conditional generation (label-guided sampling,
multi-attribute generation), molecular generation (molecular property control), and audio synthesis
(clipping, inpainting). For all tasks, we report generation fidelity and validity, with further details
provided in Appendix E.3.

External guidance scenario We evaluate TAG in a single-conditional guidance setting, where
the objective is to sample from the target distribution p(x0| c) with DPS Chung et al. (2023) and
TFG (Ye et al., 2024). We set the guidance schedule of TAG as ωt = ω0

√
(1− ᾱt). The final results

are averaged over the best-performing guidance strength w0 according to the grid search for all target
values in each task.

The results in Table 2 demonstrate that TAG significantly improves the fidelity while maintaining
conditioning effect across most tasks. We observe that TAG is particularly effective when the
adversarial effect of external guidance becomes larger (i.e, when training free guidance guidance
degrades sample fidelity). To confirm this, we compare TAG against several recent approaches
applied on top of DPS, including TCS (Jung et al., 2024), Timestep Guidance (Sadat et al., 2024),
Self-Guidance (Li et al., 2024b), and exposure-bias methods (Ning et al., 2024; Li et al., 2024a; Ning
et al., 2023). The result confirms that while these baselines degrade under external guidance drift,
TAG remains robust (see further details in Appendix D).

To further highlight this effectiveness, we conduct additional experiments by increasing the DPS
strength from 1.0 to 5.0. Table 3 shows that TAG effectively mitigates the negative influence
of stronger guidance strength, while applying only DPS results in generating mostly non-valid
samples. In contrast, applying TAG with DPS show robust performance across all evaluation metrics.
Qualitative results are in Appendix G.

4.2 MULTI-CONDITIONAL GUIDANCE

We next evaluate TAG in multi-conditional settings, where naively combining multiple guidance
terms can induce severe off-manifold errors. Extending to multiple conditions is nontrivial, as naive
approaches demand combinatorial training or multiple specialized time predictors, motivating a more
efficient approach.

7
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Table 3: Quantitative result of TAG for different val-
ues of DPS guidance strength. (DPS / DPS + TAG)

CIFAR10 ImageNet Polar.α Heat cap.Cv

Str. TAG FID ↓ Acc ↑ FID ↓ Acc ↑ MAE ↓ Stab ↑ MAE ↓ Stab ↑

1.0 ✗ 217.1 57.5 196.9 24.5 103.7 1.1 13.7 1.9
✓ 190.4 63.2 192.2 22.9 48.5 32.2 9.9 5.4

1.5 ✗ 269.5 51.4 219.3 27.0 109.8 0.9 16.2 2.1
✓ 231.9 62.3 204.1 32.7 50.3 31.8 11.1 14.0

2.5 ✗ 334.1 41.9 230.2 28.5 159.5 1.0 18.4 2.9
✓ 289.7 51.9 212.7 30.2 49.9 31.2 12.2 9.7

5.0 ✗ 384.8 29.4 246.7 24.3 112.7 1.1 N/A N/A
✓ 347.8 41.0 233.1 27.2 51.7 30.4 14.7 8.0

Table 4: Quantitative evaluation of FID for few-step
using DDPM sampling without external guidance.

Inference Steps

Dataset TAG 1 Step 3 Step 5 Step 10 Step 50 Step 100 Step

CIFAR10
✗ 460.0 234.1 158.6 106.3 71.8 67.6
✓ 271.1 160.5 118.8 93.1 70.9 66.5

ImageNet
✗ 430.3 297.6 295.2 286.7 259.6 251.1
✓ 352.8 265.1 265.0 265.1 245.7 244.7

Cat
✗ 433.7 313.5 243.9 209.9 166.4 154.9
✓ 314.8 178.8 199.5 188.1 164.2 152.2

Table 5: Quantitative results of TAG in Multi-Conditional generation on TFG benchmark. Each cell presents the
guidance validity/generation fidelity averaged across multiple targets in the task. The best result for each cell is
reported in bold.

CelebA Molecule
Gender + Age Gender + Hair α, µ Cv , µ α, µ, Cv , ϵ∆, ϵHOMO, ϵLUMO

Method TAG KID ↓ Acc ↑ KID ↓ Acc ↑ MAE ↓ Stab ↑ MAE ↓ Stab ↑ MAE ↓ Stab ↑
Baseline ✗ -2.75 80.5 -3.16 92.1 13.7 1782.8 68.9 4.97 1425.2 70.9 10.1 31.9 4.33 0.635 1.14 1.18 56.0

Multi. ✓ -2.85 87.1 -3.19 94.9 4.56 1.31 84.7 2.72 1.33 84.2 4.52 1.45 2.94 0.610 1.13 1.15 91.2
Single. ✓ -2.86 91.0 -3.27 96.1 4.65 1.33 83.9 2.63 1.40 82.9 4.58 1.39 3.05 0.577 1.05 1.11 85.9
Uncon. ✓ -2.87 89.1 -3.08 96.0 4.56 1.35 84.9 2.74 1.36 84.2 4.48 1.44 2.82 0.530 1.07 1.15 85.9

Multi-condition reparametrization For multiple conditions ci ∈ Y with corresponding predictors
Ai and losses ℓi, we write

pt(xt | c1, c2) ∝ pt(xt) p(c1 | xt) p(c2 | xt, c1) p(t | xt, c1, c2). (14)

Although a multi-condition time predictor ϕ(xt, c1, c2) is possible, it is often impractical; instead,
via single-condition reparameterization, we approximate p(t | xt, c1, c2) ≈ p(t | x′

t, c2) by

x′
t ≈ xt − η2t ∇xtℓ1(A1(x̂0), c1), (15)

) where x̂0 = E[x0 | xt]. A detailed derivation is provided in Proposition B.1. For an unconditional
time predictor, we iteratively incorporate each condition:

E[x′
t | xt, c1, c2] ≈ xt − η2t∇xt

ℓ1(A1(xt), c1)− η2t∇xt
ℓ2(A2(x

′′
t ), c2), (16)

where x′′
t reflects c1, leading to p(t | xt, c1, c2) ≈ p(t | x′

t) and naturally extending to more
conditions while remaining efficient. The formal details are provided in Proposition B.2.

Setup We consider molecule-generation tasks with (i) α, µ, (ii) Cv, µ, and (iii) all six molecular
properties (α, µ,Cv, ϵHOMO, ϵLUMO, ϵ∆), along with CelebA (Gender+Age, Gender+Hair). We follow
the TFG framework (Ye et al., 2024) to combine these conditions and compare three time-predictor
variants—multi, single, and unconditional as introduced in Sec. 3.2. (Refer to Appendix E.3 for
setting details).

Result As shown in Table 5, TAG significantly outperforms the baseline combination of independent
guidance for all tasks. Notably, single and unconditional time predictors match or exceed multi-
conditional performance, indicating that explicit training of a multi-conditional time predictor is not
strictly necessary, and TAG can achieve effective multi-conditional guidance.

4.3 FEW-STEP GENERATION

We evaluate TAG in widely-used accelerated sampling, where diffusion models skip timesteps to
reduce computation but risk larger discretization errors. We compare a standard DDIM sampler (Song
et al., 2021a) with TAG for various step counts. As shown in Table 4, TAG consistently boosts sample
quality, particularly under fewer steps. Notably, in an extreme single-step scenario on CIFAR10
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(Table 17), TAG lowers FID by 41.1%. This aligns with our theoretical analysis indicating stronger
negative guidance helps the sample escape incorrect manifolds. While one can analytically reduce
discretization error (Karras et al., 2022), our focus is on treating it as external noise and demonstrating
how TAG mitigates off-manifold drift in practice (see Appendix B.5 for further discussion).

4.4 LARGE-SCALE TEXT-TO-IMAGE GENERATION

We further evaluate TAG on large-scale text-to-image generations by integrating it into models based
on Stable Diffusion v1.5 (Rombach et al., 2022), demonstrating its effectiveness on more practical
generative tasks. Further details of the experimental setup are provided in Appendix E.5.

Enhanced Reward Alignment We integrate TAG into DAS (Kim et al., 2025)—a state-of-the-
art test-time sampler that optimizes text-to-image generation under explicit reward functions (e.g.,
Aesthetic score (Schuhmann et al., 2022) or CLIP score (Radford et al., 2021)). First, we follow Kim
et al. (2025) to evaluate reward alignment using simple animal prompts and an Aesthetic target score.
Next, we switch to a CLIP-based reward and the HPSv2 prompt set (Wu et al., 2023). Finally, we
evaluate a multi-objective scenario where the target reward is a linear combination of the Aesthetic
and CLIP scores with HPSv2 prompt dataset. In each setting, we compare the original DAS sampler
against DAS enhanced with TAG (DAS+TAG) on 256 randomly selected prompts.

As shown in Table 6, adding TAG substantially increases the final reward while reducing the
average Time-Gap (Def. F.1) which measures off-manifold deviation, confirming TAG’s stabilization
capability in practical, large-scale alignment scenario.

Table 6: TAG enhances reward alignment with signle objective DAS, multi-objective DAS and Style Transfer on
SD v1.5. Higher reward scores and lower Time-Gap (TG) are better.

Method Single-objective DAS Multi-objective DAS Method Style Transfer

Aesthetic ↑ TG ↓ CLIP ↑ TG ↓ Aesthetic↑ CLIP ↑ TG ↓ Style Score ↓ TG ↓
DAS (Kim et al., 2025) 7.948 90.04 0.389 20.73 8.107 0.439 20.73 TFG (Ye et al., 2024) 4.82 80.6
DAS + TAG 9.087 28.84 0.439 11.62 8.572 0.463 9.765 TFG + TAG 3.03 23.6

Improved Style Transfer We also apply TAG to style transfer task building on TFG (Ye et al.,
2024). Specifically, we combine text prompts (Partiprompts (Yu et al., 2022)) and reference style
images (WikiArt (Yu et al., 2022)) via a CLIP-based (Radford et al., 2021) Gram matrix alignment.
Table 6 compares TFG alone with TFG+TAG, reporting Style Score and Time-Gap. Integrating TAG
yields a sizable drop in Style Score and substantially reduces the Time-Gap, indicating more faithful
style adherence and fewer off-manifold deviations.

4.5 ABLATION STUDY

We also probe how the time predictor’s training steps influence off-manifold correction, exploring
the effect of different guidance strengths under added noise, verifying that TAG’s gains persist when
scaling to 50k samples, and analyzing how the Time-Gap metric correlates with standard image
quality scores. Detailed analyses of predictor robustness, hyperparameter sensitivity, and additional
baseline comparisons are in Appendix E–F.

5 CONCLUSION AND FUTURE WORKS

In this work, we identify when off-manifold phenomenon happen in diffusion models by measuring
Time-Gap using a time prediction mechanism. To reduce a time gap, we introduce Temporal
Alignment Guidance (TAG) as a novel guidance mechanism to force the samples to desired manifold
in each timestep. Our experimental results demonstrates TAG can significantly reduce this off-
manifold phenomenon in multiple scenarios which shows the robustness of our method. We believe
our method could be especially effective when applied to real-world downstream tasks where desired
condition can vary in real-time. For future work, it would be promising to investigate the effect
of TAG in another domains such as in reinforcement learning tasks Janner et al. (2022), discrete
diffusion models Austin et al. (2021); Chen et al. (2023c).
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A BROADER IMPACT AND LIMITATIONS

Broader impact Our algorithm improves the sample quality of diffusion models. While beneficial
for applications like image generation or drug discovery, this also carries the risk of misuse common
to generative models, potentially enabling harmful generation of images (e.g., disinformation),
molecules (e.g., unsafe compounds), or audio. Developing stronger safeguard mechanisms within
generative systems, including diffusion models, is essential to counteract such potential negative
societal impacts.

Limitations In our experiments, we noticed that once sample fidelity reaches a high level, further
narrowing the time-gap yields only marginal or no improvements in quality. Although our existing
time-predictor training procedure is sufficient to demonstrate TAG’s practical benefits (see Section 4),
we anticipate that more sophisticated predictor architectures could unlock additional gains. We leave
this exploration to future work.

Usage of Large Language Models We utilized a large language model to aid in polishing the
writing and improving the clarity of this manuscript. The model’s role was strictly limited to assistance
with grammar, phrasing, and style. All scientific ideas, methodologies, experimental results, and
conclusions presented in this paper are the original work of the authors.

B FURTHER BACKGROUND

In this section, we introduce more background of the key concepts used in this work.

B.1 DIFFUSION MODELS

Diffusion Models Diffusion models are generative models that sample from the data distribution,
denoted as x0 ∼ qdata. Following the stochastic differential equation (SDE) framework (Song et al.,
2021a), the forward diffusion process can be defined by the following SDE:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

dx = f(x, t)dt+ g(t)dwt, (17)
where wt is a standard wiener process (Øksendal, 2003). Ideally, if we denote qt(x) as the marginal
distribution of the forward process in equation 17, it becomes close to N ∼ (0, I) when t goes to
large enough T .

Then, diffusion model θ is trained to learn how to denoise a noisy data by learning a score function
which is done by minimizing the following objective function (Song & Ermon, 2019; Song et al.,
2021b):

L(θ) = Et,x0
λ(t)∥sθ(xt, t)−∇xt

log qt(xt|x0)∥22, (18)

where t is uniformly sampled from [0, T ], xt denotes x at timestep t in equation 17, and λ(t) is a
weight parameter usually set to be a constant Ho et al. (2020).

Conditional Diffusion Model The aim of conditional diffusion models is to sample from the
conditional posterior p0(x|c) with given condition c. This is achieved by learning a conditional score
function ∇x log qt(x|c). Using Bayes’ rule the conditional score can be re-expressed as:

∇x log qt(x|c) = ∇x log qt(x) +∇x log qt(c|x). (19)

One could obtain ∇x log qt(c|x) with auxiliary classifier (Dhariwal & Nichol, 2021) (classifier
guidance), or train with condition-labeled data (Ho & Salimans, 2021) (classifier-free guidance)

B.2 SCORE BASED DIFFUSION MODEL

Here, we systematically present different forms of forward and reverse diffusion model processes and
their types in the existing literature.

Denoising score matching Learning score function ∇x log p(x) perfectly for all x can ideally
guide the sample towards high density region Hyvärinen & Dayan (2005). However, Song & Ermon
(2019) suggests that neural network struggles to accurately model low density region. One alternative
is use denoising score matchng (Vincent, 2011; Song & Ermon, 2019) where a neural network instead
models a score function of perturbed dataset∇x log pt(xt) where xt ∼ N (x, σ(t)2 I).

SDE framework Song et al. (2021b) define the forward and reverse process of diffusion model by
the following form of stochastic differential equation (SDE).

dx = f(x, t)dt+ g(t)dwt, (20)
where wt is a standard wiener process. Two types of SDE is widely used in current diffusion models,
one is variance preserving SDE (VP-SDE) which has a following form:

dx =
√

σ(t)σ′(t) dwt, (21)

where σ(t) is noise schedule as in Song & Ermon (2019). The other is variance exploding SDE
(VE-SDE) which has a following form:

dxt = −
1

2
β(t)x dt+

√
β(t) dwt, (22)

where β(t) is another noise schedule.

ODE framework Reverse process of SDE in Eq. 1 has its corresponding ODE with same marginal
probability density which is called probability flow ODE Song et al. (2021b):

dx =

[
f(x)− 1

2
g2(t)∇x log qt(x)

]
dt. (23)

A discretized version of the PF-ODE sampler can be interpreted as DDIM sampling Song et al.
(2021a). This ODE formulation can be leveraged to skip network evaluation, enabling faster inference
time of diffusion models (Lu et al., 2022; Song et al., 2023).
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Connection to DDPM Here we offer the relationship between different frameworks for convenience.
Song et al. (2021b) unified denoising score matching with DDPM Ho et al. (2020) by viewing forward
process of DDPM as a discretized version of VP-SDE in Eq. 21. In DDPM Ho et al. (2020), forward
noise schedule is defined by xt =

√
ᾱtx0 +

√
1− ᾱtϵ where ϵ is a random noise fromN (0, I). This

is a discretized version of VP-SDE in Eq. 21 Song et al. (2021b), where notations have following
relations:

ᾱt = exp(−1

2

∫ t

0

β(s) ds). (24)

In DDPM, model output is denoted as ϵθ(x,t) which has following relationship with a score function
∇xt log pt(xt):

∇xt log pt(xt) = −
1√

1− ᾱt
ϵθ(xt). (25)

Unless otherwise stated, this work utilizes a VP-SDE diffusion process with DDIM sampling.

B.3 TRAINING-FREE GUIDANCE

Training free guidance leverages clean estimates x0 during the reverse process. Specifically, Tweedie’s
formula Efron (2011) is used to estimate original data during the reverse diffusion process. For
VE-SDE, this can be represented as:

x̂0 := E[x0|xt] =
xt + (1− ᾱt)∇xt log p(xt)√

ᾱt
. (26)

where ᾱt = e−
1
2

∫ t
0
β(s)ds by Eq. 24. And for VE-SDE in Eq. 22, estimation of x̂0 can be represented

as
x̂0 := E[x0|xt] = xt + σ2(t)∇xt log pt(xt). (27)

x̂0, conditional probability for the target condition c can be obtained as

p(c | x̂0) ∝ exp
(
−ℓc(A(x̂0), c)

)
, (28)

where A denotes a classifier or an analytic function that outputs a condition given the clean estimate
x̂0 and ℓc : Y × Y → R measures the discrepancy between the estimated property and the target
property which is usually heuristically chosen function. Now conditional score function in Eq. 19
can be approximated by

∇xt
log pt(c|xt) = ∇xt

logEp(x0|xt)

[
exp
(
−ℓc(A(x̂0))

]
≈ ∇xt

x̂0 · ∇x̂0
(−ℓc(A(x̂0)),

(29)

where we use chain-rule and the Tweedie’s formula.

Extended view by TAG One can view applying TAG with Training Free Guidance as an extended
framework.

Denote ϕ : X × Y → [0, T ] as a time predictor mapping noisy samples xt ∈ X and conditions c to
plausible time indices t ∈ [0, T ]. The corresponding likelihood of having a correct time t becomes,

p(t | xt, c) ∝ exp
(
−ℓt(ϕ(xt, c), t)

)
, (30)

where ℓt : R× [0, T ]→ R is a loss function that quantifies the difference between estimated time
and the desired time.

With the extended view of adding time information as another condition, we can approximate the
conditional distribution pt(xt | c) as:

pt(xt | c) ∝ pt(xt) p(c | xt) p(t | xt, c), (31)
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where pt(xt) is from the pre-trained unconditional diffusion model. However, we only have access
to p(c | x0) and p(t | xt, c). To bridge x0 and xt, we replace x0 with its denoised estimate
x̂0 = E[x0 | xt]. This gives:

p(c | xt) ∝ exp
(
−ℓc(A(x̂0), c)

)
. (32)

To further align xt to the temporal manifold, we reparameterize xt as x′
t ≈ xt − ηt∇xt

ℓc(A(x̂0), c)
and write,

p(t | xt, c) ∝ exp
(
−ℓt(ϕ(x′

t, c), t)
)
. (33)

Consequently, the approximated conditional distribution becomes,

pt(xt | c) ∝ pt(xt) exp
(
−ℓc(A(x̂0), c)

)
exp
(
−ℓt(ϕ(x′

t, c), t)
)
. (34)

If ϵθ(xt, t) ≈ −σt∇xt
log pt(xt) represents the unconditioned diffusion score, the new guided score

for single-condition TAG is given by,

ϵ̃θ(xt, c, t) = ϵθ(xt, t)− σt∇xt
ℓc(A(x̂0), c)

− σt∇xt
ℓt(ϕ(x

′
t, c), t). (35)

In practice, one updates xt → x′
t before applying ℓt, ensuring that each sampling step remains

aligned with both the property c and the correct time t, mitigating off-manifold drifting.

Muti-conditional TAG Let c1 ∈ Y1, c2 ∈ Y2 be the target property value, and letA1,A2 : X → Y
be property classifiers that map samples x0 ∈ X to their respective predicted property values. To
sample from the conditional distribution pt(xt | c1, c2), we factorize,

pt(xt | c1, c2) ∝ pt(xt)p(c1 | xt)p(c2 | xt, c1)p(t | xt, c1, c2), (36)

where p(t | xt, c1, c2) ensures ensures alignment of xt to the temporal manifold under c1 and c2.

A straightforward method is to directly model p(t |xt, c1, c2) via a multi-condition time predictor
ϕ(xt, c1, c2):

p(t | xt, c1, c2) ∝ exp
(
−ℓt(ϕ(xt, c1, c2), t)

)
. (37)

While this method fully accounts for multi-condition effects, it requires training a separate model for
every condition combination, which becomes infeasible for complex or high-dimensional conditions.

To address this challenge, we employ a single-condition time predictor ϕ(xt, c) that models p(t |
xt, c) for a single condition c. In this case, we approximate p(t | xt, c1, c2) by re-parameterizing xt

to reflect c1.

Proposition B.1. Let x′
t be a latent variable conditioned on xt and target property c1, with prior dis-

tribution p(xt | x′
t, c1) ∼ N (x′

t, η
2
t I). Given a first-order approximation of the property likelihood:

p(c1 | x′
t) ∝ exp

(
−ℓ1(A1(xt), c1)− (x′

t − xt)
⊤∇xt

ℓ1(A1(xt), c1)
)
, (38)

the posterior expectation of x′
t under p(x′

t | xt, c1) satisfies:

Ex′
t∼p(x′

t|xt,c1)[x
′
t] = xt − η2t∇xt

ℓ1(A1(xt), c1). (39)

Proof. See Appendix C.2

Practically, Using Tweedie’s formula Efron (2011); Chung et al. (2023), we replace A1(xt) with
A1(x̂0), where x̂0 = E[x0 | xt] is the denoised estimate. Thus we have an approximation:

x′
t ≈ xt − η2t∇xt

ℓ1(A1(x̂0), c1). (40)

As a result of Proposition B.1, the single-condition time predictor allows us to approximate p(t |
xt, c1, c2) by reparameterizing xt to reflect the influence of c1, yielding,

p(t|xt, c1, c2) ≈ p(t|x′
t, c2),

22
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where x′
t = xt − η2t∇xt

ℓ1(A1(xt), c1). This reparameterization ensures that x′
t partially aligns with

c1, reducing the approximation error when conditioning on c2 (see Algorithms 1 for implementation).

We could further extend this framework to the case of an unconditional time predictor ϕ(xt), which
models p(t | xt) without explicit dependence on any condition. This extension significantly reduces
the computational cost of training by requiring only a single predictor for all possible conditions,
relying on additional approximations of p(t | xt, c1, c2) to capture the influence of c1 and c2 within
the unconditional framework.
Proposition B.2. Let x′

t be a latent variable conditioned on xt and target properties c1, c2, with
priors:

p(xt | x′
t, c1, c2) ∼ N (x′

t, η
2
t I),

p(x′
t | x′′

t , c1) ∼ N (x′′
t , η̃

2
t I),

(41)

where x′′
t are intermediate samples reflecting c1 before updating c2. The posterior expectation

satisfies:
Ex′

t∼p(x′
t|xt,c1,c2)[x

′
t] = xt − η2t∇ℓ1(A1(xt), c1)− η2t∇ℓ2(A2(x

′′
t ), c2). (42)

Proof. See Appendix C.3

Again, in practical scenarios using Tweedie’s formula Efron (2011); Chung et al. (2023), we replace
A1(xt) and A2(x

′
t) with denoised estimates:

∇ℓ1(A1(xt), c1) ≈ ∇ℓ1(A1(x̂0), c1),

∇ℓ2
(
A2

(
x′
t − η̃2t∇ℓ1(A1(xt), c1)

)
, c2
)
≈ ∇ℓ2(A2(x̂

′
0), c2),

(43)

where x̂′
0 = E[x0 | xt − η̃2t∇ℓ1(A1(x̂0), c1)]. Substituting these approximations gives:

x′
t ≈ xt − η2t∇ℓ1(A1(x̂0), c1)− η2t∇ℓ2(A2(x̂

′
0), c2). (44)

The unconditional time predictor incorporates the influences of c1 and c2 by sequentially reparame-
terizing xt through iterative updates. This approach leverages reparameterization steps that align xt

to the conditions c1 and c2, reducing the approximation gap to the true conditional distribution. The
framework naturally extends to handle k > 2 conditions, iteratively integrating each condition while
maintaining computational efficiency (see Algorithms 2 for implementation).

Pseudo-Code We provide the pseudo-code for implementing multi-conditional guidance using a
single-conditional (B.1) time predictor and an unconditional time predictor (B.2) in Alg. 1 and Alg. 2,
respectively.

B.4 MANIFOLD ASSUMPTION

Ideally, even if original data manifoldM0 can be a low-dimensional object as pointed out in several
works (Bortoli, 2022; He et al., 2024), with noise added from forward process in Eq. 17, pt(xt) > 0
for all xt ∈ X where X denotes the data domain. Since our motivation of off-manifold phenomenon
happens in low-density region, we redefine the target data manifold for each timestep by the following
definition.
Definition B.3. Let ϵt > 0 be some threshold. The correct manifold at timestep t is defined as

Mt = {x ∈ X : pt(x) ≥ ϵt}, (45)
where X is domain of the data. In other words,Mt consists of all points in X whose probability
density is at least ϵt.

With above definition, we can formally define the off-manifold in diffusion models.
Definition B.4. For given timestep t in reverse diffusion process in Eq. 1, we define off-manifold
phenomenon by xt becomes out of the correct manifold Mt defined in Definition B.3. In other
words:

xt /∈Mt. (46)

We leave further theoretical understanding of off-manifold phenomenon from the above definition as
a future work.
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Algorithm 1: DDIM Sampling with Single-Conditional Time Predictor
Input :Unconditional score model∇xt log pt(xt), property classifier A1 : X → R, loss

function ℓ1 : R× R→ R, single-condition time predictor τ(xt, c), operator G, target
properties c1, c2, guidance strength ρt, temporal alignment strength ωt, time steps T .

Output :Conditional sample x0.

1 Initialize xT ∼ N (0, I);
2 for t = T, . . . , 1 do
3 Compute x̂0 ←

xt+(1−αt)∇xt log pt(xt)√
αt

;
4 Reparameterize x′

t to reflect c1: x′
t ← xt − η2t∇ℓ1(A1(x̂0), c1);

5 Compute temporal alignment term using τ(x′
t, c2): T ← −∇xt

ℓt(τ(x
′
t, c2), t);

6 Define the generalized guidance operator G(xt, c1, c2) to compute joint or independent
guidance contributions;

7 xt−1 ←
√
αt−1

(
xt−

√
1−αt∇xt log pt(xt)√

αt

)
+
√
1− αt−1 − σ2

t · ∇xt
log pt(xt) +

ρtG(xt, c1, c2) + ωtT + σtϵt.

8 return x0;

Algorithm 2: DDIM Sampling with Unconditional Time Predictor
Input :Unconditional score model∇xt

log pt(xt), property classifiers A1 : X → R,
A2 : X → R, loss functions ℓ1, ℓ2 : R× R→ R, unconditional time predictor τ(xt),
operator G, target properties c1, c2, guidance strength ρt, temporal alignment strength
ωt, time steps T .

Output :Conditional sample x0.

1 Initialize xT ∼ N (0, I);
2 for t = T, . . . , 1 do
3 Compute x̂0 ←

xt+(1−αt)∇xt log pt(xt)√
αt

;
4 Reparameterize x′

t to reflect c1: x′
t ← xt − η2t∇ℓ1(A1(x̂0), c1);

5 Compute x̂′
0 ←

x′
t+(1−αt)∇x′

t
log pt(x

′
t)√

αt
;

6 Reparameterize x′′
t to reflect c2: x′′

t ← x′
t − η̃2t∇ℓ2(A2(x̂

′
0), c2);

7 Compute temporal alignment term using τ(x′′
t ): T ← −∇xtℓt(τ(x

′′
t ), t);

8 Define the generalized guidance operator G(xt, c1, c2) to compute joint or independent
guidance contributions;

9 xt−1 ←
√
αt−1

(
xt−

√
1−αt∇xt log pt(xt)√

αt

)
+
√
1− αt−1 − σ2

t · ∇xt log pt(xt) +

ρtG(xt, c1, c2) + ωtT + σtϵt.

10 return x0;

B.5 FEW STEP GENERATION

As shown in Lu et al. (2022), PF-ODE in Eq. 23 sends xs at timestep s to xt at timestep t by solving,

xt = e
∫ t
s
f(τ)dτxs +

∫ t

s

(e
∫ t
τ
f(τ)dτ · g

2(τ)

2στ
ϵθ(xτ , τ))dτ. (47)

Here, forward SDE is defined as follows.

dxt = f(t)xt · dt+
g2(t)

2σt
ϵθ(xt, t) · dt, xt ∼ N (0, σ2

t I), (48)

which incorporates both VP-SDE and VE-SDE scenarios (Appendix B.2) and f(t), g(t) are defined
as:

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (49)

After using change of variable λ(t) := log(αt

σt
), Lu et al. (2022) show following equation holds:
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xt =
αt

αs
xs − αt

∫ λt

λs

e−λϵ̂θ(x̂λ, λ)dλ. (50)

Now, from Eq. 50, one can observe how discretization error occurs if we skip the evaluation of
the diffusion models for some of timesteps. Note that the discretization errors can be reduced by
considering higher-order term in Eq. 50 (Karras et al., 2022; Lu et al., 2022; 2023) where we leave
combining TAG with higher order diffusion solver as a future work.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

C MATHEMATICAL DERIVATIONS

C.1 UPPER BOUND BY EXTERNAL DRIFT

To analyze the error induced by the random shift, we compare how the samples follow original reverse
SDE in equation 1, and the modified SDE in equation 2 differs by the following proposition:
Proposition C.1 (Error bound by the drift). Let pt and p̃t be the probability distribution at time t in
the original reverse process in equation 1 and in the reverse process with external guidance v(x, c, t)
in equation 2, respectively. The total variation distance p0 and p̃0 can be bounded as follows:

d2TV (p0, p̃0) ≤ KL(p0, p̃0) ≤
1

2

∫ T

0

∫
x

g(t)−2pt(x)∥v(x, c, t)∥22 dx dt. (51)

Proposition C.1 provides an upper bound indicates that external guidance v can induce distributional
divergence in the worst case, even if the underlying score function for pt(x) is perfectly known.

Proof of Proposition C.1 For the ease of analysis, we first redefine the notations. Suppose Yt and
Ỹt be the random variable of backward process of original reverse diffusion process by satisfying
YT−t = xt in Eq. 1 and reverse process with external guidance by satisfying ỸT−t = xt in Eq. 2,
respectively. This can be restated with following formulations:

dYt =
[
−f(Yt, t) + g(t)2∇ log qt(Yt)

]
dt+ g(t)dwt, Y0 ∼ N (0, I)

dỸt =
[
−f(Ỹt, t) + g(t)2

(
∇ log qt(Ỹt) + v(Ỹt, c, t)

)]
dt+ g(t)dw̄t, Ỹ0 ∼ N (0, I).

(52)

Also, denote pt and p̃t be probability distributions of Yt and Ỹt, respectively and denote path
measure of two process by P, P̃, respectively. Now, the goal is to bound the distance between pT and
p̃T which are final output of two SDE processes. This can be proved by automatic consequence of
Girsanov’s Theorem (Karatzas & Shreve, 1991). To start, we first define the stochastic process

Mt = exp

(
−
∫ T

0

σ(t)−1v · dwt −
1

2

∫ T

0

∫
y

σ(t)−2∥v∥2dy dt

)
(53)

and assume Mt is a Martingale. Then, Girsanov’s Theorem states that the Radon-Nikodym derivative
of P with respect to P̃ becomes

dP = MT dP̃, (54)
and this consequently bounds the KL divergence between two path measures as follows:

KL(P, P̃) =
1

2

∫ T

0

∫
y

pt(y)σ(t)
−2∥v∥2dydt. (55)

Finally, using data processing inequality and Pinsker’s inequality together (Cover, 1999), one can
obtain:

d2TV (p0, p̃0) ≤ KL(p0, p̃0) ≤ KL(P, P̃) = EP

[
1

2

∫ T

0

∫
y

σ(t)−2∥v∥2dy dt

]
. (56)

It is known that following is a sufficient condition for for Mt to be a Martingale (Novikov’s condition):

EP

[
exp

(
1

2

∫ T

0

∫
y

σ(t)−2∥v∥2dy dt

)]
<∞, (57)

and this can be further relaxed by the following condition:∫
y

pt(y)σ(t)
−2∥v∥2dy ≤ C (58)

for all t and some constant C (Chen et al., 2023b).

Note that similar analysis has been conducted to prove the convergence rate of diffusion models
in (Chen et al., 2023b; Oko et al., 2023) while their analysis does not contain any additional guidance.
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C.2 PROOF OF PROPOSITION B.1

Proposition B.1 Let x′
t be a latent variable conditioned on xt and target property c1, with prior dis-

tribution p(xt | x′
t, c1) ∼ N (x′

t, η
2
t I). Given a first-order approximation of the property likelihood:

p(c1 | x′
t) ∝ exp

(
−ℓ1(A1(xt), c1)− (x′

t − xt)
⊤∇xtℓ1(A1(xt), c1)

)
, (59)

the posterior expectation of x′
t under p(x′

t | xt, c1) satisfies:

Ex′
t∼p(x′

t|xt,c1)[x
′
t] = xt − η2t∇xt

ℓ1(A1(xt), c1). (60)

Proof. Similar to Han et al. (2024a), which assumes a prior on the clean sample estimate given a
latent variable and applies a first-order expansion of the loss function, we assume a prior on xt at
each t. We model the temporal distribution p(t | xt, c1, c2) via a property loss function, whereas
Han et al. (2024a) models p(c2 | x̂0, c1), with x̂0 as the clean estimate.

The posterior distribution is derived via Bayes’ rule:

p(x′
t | xt, c1) ∝ p(xt | x′

t, c1)p(c1 | x′
t)p(x

′
t). (61)

Assuming a flat prior p(x′
t) ∝ 1, the posterior simplifies to:

p(x′
t | xt, c1) ∝ p(xt | x′

t, c1)p(c1 | x′
t). (62)

The Gaussian prior is given by:

p(xt | x′
t, c1) ∝ exp

(
−∥xt − x′

t∥2

2η2t

)
. (63)

The likelihood p(c1 | x′
t) is approximated using a first-order Taylor expansion of ℓ1(A1(x

′
t), c1)

around xt:
ℓ1(A1(x

′
t), c1) ≈ ℓ1(A1(xt), c1) + (x′

t − xt)
⊤∇xtℓ1(A1(xt), c1). (64)

Thus, the likelihood becomes:

p(c1 | x′
t) ∝ exp

(
−ℓ1(A1(xt), c1)− (x′

t − xt)
⊤∇xt

ℓ1(A1(xt), c1)
)
. (65)

Combining the prior and likelihood, the log-posterior is:

log p(x′
t | xt, c1) ∝ −

∥xt − x′
t∥2

2η2t
− ℓ1(A1(xt), c1)− (x′

t − xt)
⊤∇xt

ℓ1(A1(xt), c1). (66)

Differentiating the log-posterior with respect to x′
t yields:

∂

∂x′
t

log p(x′
t | xt, c1) = −

x′
t − xt

η2t
−∇xtℓ1(A1(xt), c1). (67)

Setting the gradient to zero for the MAP estimate gives:

x′
t = xt − η2t∇xtℓ1(A1(xt), c1). (68)

For Gaussian posteriors, the MAP estimate coincides with the expectation.

C.3 PROOF OF PROPOSITION B.2

Proposition B.2 Let x′
t be a latent variable conditioned on xt and target properties c1, c2, with priors:

p(xt | x′
t, c1, c2) ∼ N (x′

t, η
2
t I),

p(x′
t | x′′

t , c1) ∼ N (x′′
t , η̃

2
t I),

(69)

where x′′
t are intermediate samples reflecting c1 before updating c2. The posterior expectation

satisfies:

Ex′
t∼p(x′

t|xt,c1,c2)[x
′
t] = xt − η2t∇ℓ1(A1(xt), c1)− η2t∇ℓ2(A2(x

′′
t ), c2). (70)
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Proof. The posterior distribution is derived via hierarchical Bayesian inference:
p(x′

t | xt, c1, c2) ∝ p(xt | x′
t, c1, c2)p(c1, c2 | x′

t)p(x
′
t). (71)

Assuming flat priors p(x′
t) ∝ 1 and p(x′′

t ) ∝ 1, the model simplifies to:
p(x′

t | xt, c1, c2) ∝ p(xt | x′
t, c1, c2)p(c1 | x′

t)p(c2 | x′
t, c1). (72)

The Gaussian prior for p(xt | x′
t, c1, c2) is:

p(xt | x′
t, c1, c2) ∝ exp

(
−∥xt − x′

t∥2

2η2t

)
. (73)

The likelihood for c1 is approximated using a first-order Taylor expansion of ℓ1(A1(x
′
t), c1) around

xt:
ℓ1(A1(x

′
t), c1) ≈ ℓ1(A1(xt), c1) + (x′

t − xt)
⊤∇ℓ1(A1(xt), c1). (74)

Thus, the likelihood becomes:
p(c1 | x′

t) ∝ exp
(
−ℓ1(A1(xt), c1)− (x′

t − xt)
⊤∇ℓ1(A1(xt), c1)

)
. (75)

For p(c2 | x′
t, c1), we introduce an intermediate latent variable x′′

t conditioned on x′
t and c1:

p(x′
t | x′′

t , c1) ∝ exp

(
−∥x

′
t − x′′

t ∥2

2η̃2t

)
. (76)

The likelihood for c2 is approximated using a first-order Taylor expansion of ℓ2(A2(x
′′
t ), c2) around

x′
t:

ℓ2(A2(x
′′
t ), c2) ≈ ℓ2(A2(x

′
t), c2) + (x′′

t − x′
t)

⊤∇ℓ2(A2(x
′
t), c2). (77)

Substituting x′′
t = x′

t − η̃2t∇ℓ1(A1(xt), c1) (from Proposition C.2), the likelihood becomes:

p(c2 | x′
t, c1) ∝ exp

(
−ℓ2

(
A2

(
x′
t − η̃2t∇ℓ1(A1(xt), c1)

)
, c2
))

. (78)

Combining the Gaussian prior and the likelihood, the log-posterior is:

log p(x′
t | xt, c1, c2) ∝ −

∥xt − x′
t∥2

2η2t
−ℓ1(A1(xt), c1)−(x′

t−xt)
⊤∇ℓ1(A1(xt), c1)−ℓ2(A2(x

′′
t ), c2).

(79)

Differentiating with respect to x′
t and setting the gradient to zero for the MAP estimate gives:

x′
t = xt − η2t∇ℓ1(A1(xt), c1)− η2t∇ℓ2(A2(x

′′
t ), c2). (80)

For Gaussian posteriors, the MAP estimate coincides with the expectation, completing the proof.

C.4 PROOF OF THEOREM 3.3

For discretized diffusion timesteps [t1, t2, . . . , tn], and with denoting ptot :=
∑

j pj(x), TAG for
i-th timestep ti can be represented by rearranging the terms as follows:

∇x log p(ti|x) = ∇x log

(
p(x|ti)p(ti)∑
k p(x|tk)p(tk)

)
= ∇x log

(
pi(x)

ptot(x)

)
=
∇x pi(x)

pi(x)
− ∇x ptot(x)

ptot(x)

=
∇x pi(x)

pi(x)
−
∑

k∇xpk(x)

ptot (x)

= (1− pi(x)

ptot(x)
)∇x log pi(x)−

∑
k ̸=i

pk(x)

ptot(x)
∇x log pk(x)

=
∑
k ̸=i

pk(x)

ptot(x)
(∇x log pi(x)−∇x log pk(x)) .

(81)
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C.5 CONTINUOUS TIME LIMIT OF TAG

Theorem C.2. (Continuous time TAG decomposition) For continuous time diffusion models, TLS
score can be decomposed in the following way.

∇x log p(t|x) = ∇x log pt(x)−
∫

γs∇x log ps(x)ds, (82)

where γs =
ps(x)∫
pk(x)dk

.

Proof.

∇x log p(t|x) = ∇x log

(
p(x|t)p(t)∫
s
p(x|s)p(s)

)
= ∇x log

(
pt(x)∫

s
p(x|s)ds

)
=
∇xpt(x)

pt(x)
−
∫
∇xps(x)ds∫
ps(x)ds

= ∇x log pt(x)−
∫

ps(x)∫
pk(x)dk

∇x log ps(x)ds,

(83)

gives the result.

C.6 PROOF OF PROPOSITION 3.4

We restate Proposition 3.4 below for convenience.
Proposition C.3. Applying TAG alters energy barrier map Uk(x) = − log pk(x) at timestep tk to
Φk(x) for any k by:

Φk(x) = Uk(x)−
∑
i

γi Ui(x), (84)

where γi =
pi(x)
ptot(x)

for all i.

Proof. Denote sk as a new score term obtained by applying TAG at timestep tk. Then, from
Theorem 3.3, one can see that:

s̃k :=
∑
i̸=k

γi (sk − si)

= sk − (1−
∑
i̸=k

γi)sk −
∑
i ̸=k

γisi,
(85)

where γi =
pi(x)
ptot(x)

as before. From the definition of the potential Ui(x) = − log pk(x) gradient of
the Ui equals to the score function si for all i. Integrating both sides of the above equation and noting
that the potential Uk is defined up to additive constants, we get the result.

C.7 FORMAL VERSION OF THEOREM 3.5 WITH ITS PROOF

JKO scheme (Jordan et al., 1998) establishes the foundational argument that the Fokker-Planck
equation of the Langevin dynamic is the gradient flow of the KL divergence with respect to the
Wasserstein-2 metric. We can leverage this to analyze the convergence guarantee of the modified
correction sampling by TAG. We start by defining original and modified Langevin dynamics below.

Modified Langevin dynamics Original Langevin dynamics at timestep tk can be stated as,

dyt = sk(yt)dt+
√
2dWt. (86)

When applying TAG, from Theorem 3.3, Langevin dynamics in each step can be modified as,

dxt =

sk(xt)−
∑
i ̸=k

γisi(xt)

 dt+
√
2dWt. (87)
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Fokker-Plank equation and gradient flow
Proposition C.4. (Fokker-Plank equation) For any smoothly evolving density qt driven by the
Langevin dynamics of

dxt = v(xt, t)dt+
√
2dWt, (88)

following equation holds:
∂tqt = −∇ · (qtv) + ∆qt, (89)

where ∆ denotes Laplacian operator.

Theorem C.5. For Langevin dynamics in eq. 88, gradient flow of the KL functional has the following
form:

d

dt
KL(qt||pk) = −Eqt

[
∥∇ log

qt
pk
∥2 −∇ log

qt
pk
· (v −∇ log pk)

]
. (90)

Proof. Define the mismatch score rk(x, t) = ∇x log
qt(x)
pk(x)

. One can observe that,

d

dt
KL(qt||pk) =

∫
(∂tqt) log

qt
pk

dx

=

∫
[−∇ · (qtv) + ∆qt] log

qt
pk

dx

=

∫
qtv · ∇ log

qt
pk

dx −
∫
∇qt · ∇ log

qt
pk

dx

=

∫
qtv · ∇ log

qt
pk

dx −
∫

qt∇ log qt · ∇ log
qt
pk

dx

= Eqt [v · rk −∇ log qt · rk] ,

(91)

where second equality comes from the Proposition C.4, third equality comes from the integration-by-
parts, and the last equality comes from the definition of rk. Now, from the definition of rk, we can
rewrite,

∇ log qt = rk +∇ log pk. (92)

Putting this into the above result in Eq. 91, we get the result.

Above theorem gives exact decreasing rate of KL divergence as shown by the following corollary:

Corollary C.6. (Gradient flow of KL divergence) Applying Theorem C.5 to the original Langevin
(Eq. 86), we can observe v −∇ log pk = 0, and from this, the last term in Eq. 90 is canceled out
which gives,

d

dt
KL(qt||pk) = −Eqt∥rk∥2, (93)

Similarly, by applying Proposition C.3, we can obtain decreasing rate of modified Langevin (Eq. 87)
as follows:

d

dt
KL(q̃t||pk) = −Eq̃t

[
∥r̃k∥2 +A(t)

]
, (94)

where r̃k = ∇ log q̃t
pk

as before and A(t) =
∑

i γiEq̃t [̃rk(x, t) · si(x)] is the extra term from the
TAG.

Intuitively, if the expectation of A(t) in Eq. 94 is strictly positive, this helps escaping the low-density
region faster compared to the original Langevin dynamics. To formalize this, we first define a
low-density region in the following way.

Definition C.7. (Low density region) We say x falls into low-density region whenever,

x ∈ Dk,ϵ Dk,ϵ = {pk(x) ≤ ϵ}, (95)

for some constant ϵ > 0.
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Definition C.8. (Escape time) Define stopping times τ, τ̃ as follows:

τ = inf{t ≥ 0 : yt ̸= Dk.ϵ}, y0 ∼ q0, (96)

where qt follows from original Langevin (Eq. 86) and

τ̃ = inf{t ≥ 0 : xt ̸= Dk.ϵ}, x0 ∼ q̃0, (97)

where q̃ is from the modified Langevin by TAG (Eq. 87).

One can see that τ, τ̃ is the escaping time of the low-desnity region. Thus, lower τ, τ̃ implies a faster
convergence toward high-density region, meaning accelerated initial convergence speed. This is
captured by the following theorem.
Theorem C.9. Assume the support of initial distribution q0(x) is inside Dk,ϵ and for all t < τ̃ ,
following equation holds:

Eqt

∑
j

γj r̃k(xt) · sj(xt)
∣∣ x ∈ Dk,ϵ

 ≥ β , β > 0. (98)

Moreover, assume the mixture score satisfies
∑

i γiEqt [si] ≤ η for t ≤ τ̃ .

Then, the expectation of the stopping time τ̃ is bounded as,

E[τ̃ ] ≤ KL(q0||pk)
(β + β

η2 )
, (99)

and consequently, tail bound of the escaping probability becomes:

Pr(τ̃ ≥ t) ≤ KL(q0||pk)
t(β + β

η2 )
. (100)

Proof. First, from Cauchy-Schwarz inequality, one can observe:

Eqt ∥r̃k(x)∥
2 ≥

Eqt

∑
i γir̃k(x) · si(x)

Eqt∥
∑

i γisi(x)∥2
≥ β

η2
. (101)

As a result, gradient flow of KL divergence in Eq. 94 can be upper bounded by,

d

dt
KL(q̃t||pk) = −Eq̃t

[
∥r̃k∥2 +A(t)

]
= −Eq̃t∥r̃k∥2 −

∑
i

γiEq̃t [r̃k · si]

≤ −(β +
β

η2
).

(102)

Now, it is straightforward to see that for t⋆ = t ∧ τ̃ and δ := β + β
η2 ,

KL(qt⋆ ||pk) ≤ KL(q0||pK)− δt⋆. (103)

From the positiveness of the KL,
δt⋆ ≤ KL(q0||pk). (104)

Now, taking expectation and sends t→∞ gives

E[τ̃ ] =
KL(q0||pk)

δ
, (105)

which recovers Eq. 99. Now, form Markov’s inequality, Eq. 100 holds.

Corollary C.10. Applying TAG can accelerate convergence speed in a sense that upper bound of
E[τ̃ ] is reduced compared to the upper bound of E[τ ] by the factor of 1 + η2. Moreover, continuous
flow of the modified Langevin dynamics until time t reduces KL divergence to the target measure by,

KL(q0||pk)−KL(qt||pk) ≥ tβ(1 +
1

η2
) (106)
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The improvement factor 1 + η2 grows over increasing η which implies that if the expectation of the
mixture score increases, faster convergence can be guaranteed. This agrees with our intuition that
even the x ∼ qt mostly resides in the low density region of the single timestep distribution pk, pj(x)
can be high for some j ̸= k and thereby contribute to the term η.
Assumption C.11. Score approximation error is monotonically decreasing function of the density
function pt(x). Specifically, assume for all t in the diffusion process, there exist a monotonic
increasing function ht : R≥0 → R≥0 with ∥∇ht∥ ≥ m > 0 such that following relation holds:

Ex∼qt∥∇x log pk(x)− sθ(x, tk)∥22 = ht (KL (qt||pk)) (107)

The above assumption implies that if a particle deviates far from the true distribution pk, score
approximation error increases. This is reasonable to assume in a sense that a neural network is trained
only with the sample from pk and rarely sees the sample from pk(x) ≈ 0.

With above assumptions, we provide the formal version of the Theorem 3.5.
Theorem C.12. (Formal version of Theorem 3.5) Denote p̃t is reverse process of diffusion in Eq. 2.
Given, Assumption C.11 and assumptions in Theorem C.5, the convergence guarantee for small
t0 > 0 can be improved by simulating modified Langevin correction in Eq. 87 until time s in the
following way.

dTV (p̃t0 , q0) ≤ dTV (pt0 , q0)−
G

4
√
F
, (108)

where

F = (T − t0)

√√√√Ex∼pt

[
1

2

∫ T

t0

g(t)−2∥sθ(x)−∇x log pt(x)∥22 dt

]
, (109)

is the original score approximation error and

G = mβ(1 +
1

η2
)s ·
∫ T

t0

g(t)−2dt. (110)

Proof. For path measure of forward process Q defined from t0 to T and the path measure of the
corresponding reverse process P, estimation error is decomposed as

E[TV(x0,xt0)] + E[TV(xT ,N (0, I)] + TV(P,Q) (111)

where first term is the truncation error, second term is initial noise mismatch between forward and
reverse process, and the third term is KL divergence between path measures score approximation
errors(for discrete sampling, additional discretization error is added as in (Chen et al., 2023b)). Chen
et al. (2023b); Oko et al. (2023) show that the third term can be bounded by score approximation
errors (please refer to Appendix C.1 and Section 5.2 of (Chen et al., 2023b) for details). Specifically,
it can be shown from the Proposition C.1 and triangle inequality,

TV(P,Q) ≤

√√√√Ex∼pt

[
1

2

∫ T

t0

g(t)−2∥sθ(x)−∇x log pt(x)∥22 dt

]

+

√√√√Ex∼pt

[
1

2

∫ T

t0

g(t)−2∥v(x, c, t)∥22 dt

]
.

(112)

Now, one can observe from Corollary C.10, reduced score approximation error by simulating modified
Langevin (Eq. 87) until time s gives,

Ex∼qs∥∇x log pk(x)− sθ(x, tk)∥22 ≤ Ex∼q0∥∇x log pk(x)− sθ(x, tk)∥22 −mβ(1 +
1

η2
)s. (113)

Now, observing that for two constants f, g > 0 and f > g,√
f −

√
f − g =

g√
f +
√
f − g

≥ g

2
√
f
. (114)

Putting f = Ex∼q0∥∇x log pk(x)− sθ(x, tk)∥22, g = mβ(1 + 1
η2 )s into above and combining with

Eq. 112 by applying Cauchy-Schwarz inequality gives the result.
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Note that for the single discretized Langevin step can be also analyzed similarly for small step-size h
from the Girasonov theorem.

D RELATION TO PRIOR WORKS

D.1 RELATED WORKS

External Guidance in Diffusion Models Diffusion models can be leveraged in downstream
applications by combining an unconditional diffusion process with external guidance—without any
additional training. Graikos et al. (2022) use off-the-shelf diffusion models to generate samples
constrained to specific conditions, demonstrating applications in combinatorial optimization, while
Chung et al. (2023) apply similar guidance to solve inverse problems. Bansal et al. (2024) extend this
approach to user-specific conditioning in the image domain. TFG (Ye et al., 2024) provide a unified
training-free guidance framework by consolidating the design space of prior methods, searching for
optimal hyperparameter combinations, and establishing benchmarks for training-free guidance. For
scenarios involving multiple constraints, MultiDiffusion (Bar-Tal et al., 2023) achieves spatial control
by fusing diffusion paths from different prompts.

Off-Manifold Phenomenon Diffusion models exhibit exposure bias (Ning et al., 2024), as the
reverse process does not match the learned forward process. Ning et al. (2023) reduce exposure bias
by randomly perturbing the training data in diffusion models. Ning et al. (2024) show that scaling
the vector norm of the diffusion model outputs can alleviate errors, while Li et al. (2024a) identify
variance across sample batches to correct the time information in diffusion models. Song & Ermon
(2019) explore Langevin dynamics–based steps that utilize the learned score function for iterative
refinement. Li & van der Schaar (2024) theoretically analyze how errors accumulate during the
reverse process of diffusion models.

Timestep in Diffusion Models Several studies have investigated the impact of timestep information
in diffusion models. Xia et al. (2024) optimize timestep embeddings to correct the sampling direction,
and San-Roman et al. (2021) demonstrate the effectiveness of adjusting the noise schedule. Kim &
Ye (2023) and Kahouli et al. (2024) train neural networks to estimate accurate timestep information,
while Jung et al. (2024) leverage a time predictor to modify the reverse diffusion schedule and correct
the reverse process. Sadat et al. (2024) and Li et al. (2024b) perturb time inputs in the primary score
model to derive contrastive signals. Yadin et al. (2024) utilize time classifiers for score function
approximation. In contrast, our TAG framework learns a dedicated time predictor for p(t | xt) and
directly leverages its score ∇x log p(t | x) to provably pull samples back onto their true temporal
manifold—yielding both convergence guarantees and empirical gains for the first time. A formal
proof and discussion are provided in Appendix D.

Comparison with other regularization techniques Recent works (Fan et al., 2023; Wallace
et al., 2024) show fine-tune diffusion model using the reinforcement learning algorithm can boost
the performance of diffusion models. To not diverge from the original diffusion process, they
utilize KL regularization technique. However, fine-tuning diffusion models for practical downstream
tasks is highly costly where target condition vary in real-time. Another option is to utilize control
theory (Berner et al., 2024; Uehara et al., 2025) where the objective is to refine the sample trajectory
to the desired reward weighted distribution with the KL regularization term added. However, this
usually rely on generating multiple sample trajectories. In contrast to above techniques, our method
does not require offline history nor multiple iterations, readily applicable even when target condition
changes for every generation.

D.2 COMPARISON WITH BASELINE METHODS

Here, we elaborate on the detailed discussions of TAG with other relevant literatures that were briefly
introduced in Sec. D.1.

Early timestep and schedule optimizations Early works exploring the role of time include Xia
et al. (2024) optimizing timestep embeddings, and San-Roman et al. (2021) focusing adjusting noise
schedules. These approaches typically aim to find globally or locally optimal fixed schedules or input
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representations for time and generally do not offer sample-adaptive corrections at each step based
on the evolving state of x. TAG, in contrast, provides such a dynamic, sample-specific correction
via its TLS (Eq. 12). This helps the sample adhere to the manifold implied by the schedule at each
current timestep t by considering the full posterior pϕ(·|x), thus acting as a more flexible and adaptive
generalized constraint than pre-defined temporal strategies.

Time Correction Sampler TCS (Jung et al., 2024) also employs a time predictor. However, TCS
uses the predictor’s output, t̃ = argmaxϕ(xt), to directly modify the perceived timestep of the
sample xt, subsequently altering the solver step to use sθ(xt, t̃) and adjusting the noise schedule.
This constitutes a "hard" temporal reassignment. TAG differs significantly by maintaining the solver’s
current timestep t for sθ(xt, t) and instead adding the TLS as an additive correction to the sample
itself. The TLS decomposition (Eq. 12) suggests TAG’s correction is a generalized constraint, as it
considers attractive and repulsive forces from all potential timesteps based on pϕ(·|x), rather than
a singular reassignment, offering a robust means to maintain manifold fidelity; our comparative
experiments (Table 2) demonstrate TAG’s superior performance over TCS.

Time perturbation methods TSG (Sadat et al., 2024) and SG (Li et al., 2024b) leverage the score
model’s (sθ) local sensitivity to time by perturbing its time input τ (e.g., τ ± δτ ) to derive contrastive
guidance. In contrast, TAG employs its distinct TLS (Eq. 12) as an additive corrective term, without
altering sθ’s time input. Theorem 3.3 shows that applying TAG has effect of getting negative guidance
from all timesteps except the target timestep (i.e, current timestep) which potentially renders TAG
more robust than the typically symmetric or single-perturbation strategies of TSG and SG, especially
for significantly off-manifold scenarios.

Exposure bias While methods like Epsilon Scaling (Ning et al., 2024) and the Time-Shift Sam-
pler (Li et al., 2024a) act during inference, similar to TAG, they typically apply heuristic adjustments
(e.g., scaling model outputs or shifting time inputs) to mitigate train-inference mismatch. Other
approaches, such as that by Ning et al. (2023), modify the training data itself. TAG differs fundamen-
tally by introducing a learned score term – the adaptive TLS,∇x log pϕ(t|x) – which provides active,
sample-specific correction based on learned temporal consistency, rather than relying on pre-defined
heuristics or training data alterations. We compare TAG against (Ning et al., 2023) (Table 7), (Ning
et al., 2024) and (Li et al., 2024a) (in Table 8). TAG demonstrate consistent improvements against all
baselines.

Classification Diffusion Models While both TAG and CDM (Yadin et al., 2024) uses a timestep
classifier, the primary purpose of CDM is to estimate the log density of the generative output and
approximate the score function in each timestep. Contrary to this, TAG leverages the gradient of
a time classifier whose purpose is to attract the sample to the desired timestep for reducing off-
manifold phenomenon. We notice that Theorem 3.1 in CDM (Yadin et al., 2024) can be deduced
from rearranging term in Theorem 3.3 of ours as follows:

We begin by noting that in Theorem 3.3, ti is an arbitrary label in {t1, . . . , tn}. In CDM (Yadin et al.,
2024) setting, we simply identify ti = t and tT+1 = T + 1.

We now show that

∇x log
(
pτ |x̃(t | x)

)
− ∇x log

(
pτ |x̃(T + 1 | x)

)
= ∇x log p

(
ti | x

)
− ∇x log p

(
tT+1 | x

)
= ∇ log pi(x) − ∇ log pT+1(x).

Let γk = pk(x)
ptot(x)

. Then

∇x log
(
pτ |x̃(t | x)

)
=
∑
k ̸=i

γk

(
∇ log pi(x) − ∇ log pk(x)

)
=
(
1− γi

)
∇ log pi(x)︸ ︷︷ ︸∑

k ̸=i γk∇ log pi(x)

−
∑
k

γk∇ log pk(x)︸ ︷︷ ︸
(⋆)

+ γi∇ log pi(x),
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because
∑

k ̸=i γk = 1− γi. Similarly,

−∇x log
(
pτ |x̃(T + 1 | x)

)
= −

∑
k ̸=T+1

γk

(
∇ log pT+1(x) − ∇ log pk(x)

)
= −

(
1− γT+1

)
∇ log pT+1(x) +

∑
k

γk∇ log pk(x)︸ ︷︷ ︸
(⋆)

− γT+1∇ log pT+1(x).

The terms
∑

k γk∇ log pk(x), labeled (⋆), cancel out. What remains is∇ log pi(x)−∇ log pT+1(x).

Thus,

∇x log
(
pτ |x̃(t | x)

)
− ∇x log

(
pτ |x̃(T + 1 | x)

)
= ∇ log pi(x) − ∇ log pT+1(x)

= ∇x log
(
pxt(x)

)
− ∇x log

(
pxT+1

(x)
)
.

As shown in Appendix B.1, Eq. (15) of (Yadin et al., 2024), combining this with the Gaussian prior
argument and Tweedie’s formula Efron (2011) yields

E
[
εt | xt = x

]
=
√

1− αt

[
∇x log

(
pτ |x̃(T + 1 | x)

)
− ∇x log

(
pτ |x̃(t | x)

)
+ x

]
,

which completes the derivation.

Predictor-Corrector (PC) sampling Energy Diffusion (Du et al., 2024) and NCSN (Song &
Ermon, 2019) rely on the score ∇x log pt(x) for generation and refinement. TAG, however, adds
a separate correction using the distinct TLS gradient,∇x log pϕ(t|x). Theorem 3.3 implies TAG’s
correction is uniquely adaptive—strengthening when samples are far from the manifold based on
relative time probabilities. This adaptiveness may offer greater robustness than relying solely on
∇x log pt(x), which can be error-prone when off-manifold phenomena are present. Our direct
experimental comparisons support this distinction; for instance, while some score-based correction
sampling approaches (e.g., (Song et al., 2021b)) can degrade sampling quality under external guidance
(such as with DPS), Table 8 demonstrates TAG outperforms over such baselines.

Multi-condition generation MultiDiffusion (Bar-Tal et al., 2023) achieves spatial multi-condition
control by fusing diffusion paths from multiple prompts, primarily targeting different image regions.
Our approach to handling multiple conditions with TAG differs: we focus on combining multiple
standard guidance terms and mitigating any resulting off-manifold drift by applying TAG. For
efficiency in such scenarios, TAG’s corrective temporal gradient, the TLS (∇x log pϕ(t|x)), can be
approximated using time predictors conditioned on single conditions or even an unconditional time
predictor, as detailed in Sec. 3.2 and Appendix B.3. Thus, while MultiDiffusion employs path fusion
mainly for spatial control objectives, TAG utilizes approximated temporal alignment to maintain
manifold adherence when faced with combined guidance from multiple standard conditional inputs.

Fine-tuning vs. TAG Standard approaches to adapt diffusion models for downstream tasks—such
as adding spatial conditioning modules in ControlNet (Zhang et al., 2023), text-compatible prompt
adapters in IP-Adapter (Ye et al., 2023), or rl–based reward tuning (Fan et al., 2023; Clark et al.,
2024)—require collecting task-specific labeled data, modifying model architectures, and performing
hours of gradient-based optimization. In contrast, TAG trains only a lightweight time predictor on
noisy vs. clean timestep labels, completing in minutes on a mimal computational resources (Jung et al.,
2024). At inference, TAG injects a temporally driven corrective gradient that steers samples back onto
the appropriate diffusion manifold without altering the base model’s weights. This inference-time,
training-free correction avoids fine-tuning’s cost and overfitting risks while supporting new guidance
objectives such as reward alignment with DAS (Kim et al., 2025), multi-condition steering (Uehara
et al., 2025), and style control via RB-Modulation (Rout et al., 2025). Moreover, by leveraging
fundamental temporal consistency, TAG improves out-of-distribution robustness in tasks ranging
from image and audio restoration to molecular generation (Ye et al., 2024; Bar-Tal et al., 2023). Thus,
TAG offers a general, low-overhead alternative to fine-tuning for mitigating off-manifold drift in
guided diffusion.
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Table 7: Effect of Input perturbation on DPS, CIFAR-10. For fair comparison, we train diffusion models
with different η from scratch following the official implementation code in [9]. No improvement over original
diffusion model (η = 0) is observed in the presence of off-manifold phenomenon. We report the average value
for 512 samples per each conditioning labels.

Method FID ↓ Acc. ↑
η = 0 332.0 28.5
η = 0.05 409.9 23.3
η = 0.10 376.6 25.4
η = 0.15 326.7 29.2

Table 8: Additional baselines when applying DPS on CIFAR-10. TAG improves the performance of DPS while
other method struggles.

Method FID ↓ Acc. ↑
DPS 217.1 57.5

TAG (ours) 190.4 63.2
TCS [15] 213.4 29.4
Timestep Guidance [16] 393.2 9.4
Self-Guidance [17] 205.4 51.6

Epsilon Scaling [10] 186.0 53.0
Time Shift Sampler [11] 237.0 60.8

Langevin Dynamics [13] 226.8 58.2

Baseline experiments Here, we present experimental results comparing TAG against the baselines
and prior works discussed throughout the section.

E IMPLEMENTATION DETAILS

E.1 TOY EXPERIMENT

Setup We construct the dataset from randomly generate 40,000 samples from the mixtures of
two Gaussians as q0 ∼ 1

2 N ((10, 10), I) + 1
2 N ((−10,−10), I). DDPM (VP-SDE) is utilized for

diffusion process with total 100 diffusion timesteps. v(x, t) = −0.01x is applied as an external drift
for every timestep.

Training details For diffusion models, we use 3-layer MLP with 5000 training epochs with full-
batch size. For time predictor, 5-layer MLP is utilized with 5000 training epochs with full-batch size.
We utilize a single RTX 3090 GPU for the experiment.

The predictor size in the toy experiment was not critical; TAG performed well even with a predictor
smaller than the score network, as shown in our ablation study Table 9. Importantly, in our main
experiments (Table 2), the effective SimpleCNN predictor is significantly smaller than the UNet
diffusion backbone, demonstrating TAG’s efficiency and lack of dependence on a large predictor
relative to the main model. See Appendix E.4 for further discussion on classifier robustness.

E.2 CORRUPTED REVERSE PROCESS

Setup We use the CIFAR-10 dataset and intentionally add random noise zt ∼ N (0, σ2I) to the
sample xt at each reverse timestep t. This simulates a strong, non-physical perturbation pushing
samples off-manifold. We generate 50,000 samples and evaluate using FID (Karras et al., 2018),
IS (Salimans et al., 2016), and the Time-gap (Def. F.1). We utilize the pre-trained model CIFAR10-
DDPM Nichol & Dhariwal (2021) and use DDIM sampling with 50 diffusion timesteps. We run our
our experiment on a single A6000 GPU for the inference.
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Layers W1 distance ↓
0 (No TAG) 6.458

1 1.716
2 1.681
3 1.975
4 1.714
5 1.713
6 1.788

Table 9: Robustness of time classifier network on toy experiment. We measure Wasserstein distance (W1) for
10,000 samples. Consistent improvement compared to original reverse process when applying TAG independent
of layer numbers.

Algorithm In Algorithm 2, we provide a pseudo-code of the corrupted reverse process setting
conducted in Section 3.4.

Algorithm 2 Corrupted reverse process with TAG

Input: Diffusion model θ, time predictor ϕ, guidance strength schedule ω(t), number of total diffusion steps
T , Noise level σ.
xT ∼ N (0, I)
for t = T, · · · , 1 do

xt ← xt + σ · ϵt where ϵt ∼ N (0, I) ▷ Random noise with strength σ is added at each reverse diffusion
timestep
Obtain∇ log p(x) from a diffusion model θ
x̃t−1 ← xt from reverse diffusion step ▷ following Eq. 1
Calculate∇ log pϕ(x̃t−1) ▷ Calculating TLS score from the time predictor ϕ
xt−1 ← x̃t−1 + ω(t) · ∇ log pϕ(x̃t−1). ▷ Applying TAG

end for
Output: x0

Guidance schedule For the experiment, we use guidance schedule of wt = w · (1− ᾱt) and where
we refer ω as the guidance strength unless stated otherwise.

Additional experimental results Here, to illustrate the correlation between TAG strength ω and
performance metrics, we provide a grid search results on the effect of guidance strength weight ω.

For the experiment, we fix the noise schedule σ = 0.2 and follow the same setting in Section 3.4.
The result is in Table 10 and one can observe that applying strong time guidance consistently increase
the generation quality until performance is saturated.

Table 10: Grid search result on the effects of TAG strength ω with σ = 0.2.

ω 0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

TG ↓ 273.9 261.6 250.9 232.6 213.3 197.8 185.1 175.1 167.9 162.7 158.9
FID ↓ 410.1 408.5 406.7 390.3 376.2 361.2 350.6 344.3 339.1 335.6 334.6
IS ↑ 1.27 1.28 1.28 1.27 1.29 1.31 1.35 1.38 1.41 1.43 1.45

ω 10.0 15.0 20.0 25.0 30.0 40.0 50.0 75.0 100.0 150.0 200.0

TG ↓ 156.0 143.2 129.1 116.2 107.5 98.8 108.6 140.0 153.7 160.0 158.9
FID ↓ 345.6 318.8 291.4 277.1 270.7 257.6 247.1 240.8 236.7 229.5 223.2
IS ↑ 1.43 1.52 1.57 1.60 1.63 1.72 1.78 1.90 2.01 2.14 2.17

We also provide quantitative results of Figure 3 in Table 11. We measure FID (Karras et al., 2018),
IS (Salimans et al., 2016), with time gap F.1 for the experiment and the best values for each noise
strength σ where the guidance strength w with the lowest FID value is reported. We find w =
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0.2, 1.25, 4.5, 200.0 shows the lowest FID value for the noise strength level of σ = 0.05, 0.1, 0.2, 0.3
respectively. In Table 12, we compare FID values when applying TAG with original diffusion
process which demonstrates applying TAG with right guidance strength can significantly improve the
generation quality.

Table 11: Comparison between original diffusion process and diffusion process with TAG across different noise
strengths.

σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.3

TAG TG ↓ FID ↓ IS ↑ TG ↓ FID ↓ IS ↑ TG ↓ FID ↓ IS ↑ TG ↓ FID ↓ IS ↑
✗ 43.0 78.9 5.29 104.1 193.6 2.37 229.6 351.4 1.50 274.0 410.1 1.28
✓ 42.1 62.5 5.73 41.6 115.6 3.80 97.3 230.9 1.67 158.9 223.2 2.17

Table 12: Comparison of FID values before and after applying TAG at different noise levels.

Noise Level σ FID (before TAG) FID (after TAG)

0 11.799 11.799
0.05 78.882 62.463
0.1 193.653 115.578
0.2 351.318 230.899
0.3 410.127 223.227

E.3 TRAINING-FREE GUIDANCE BENCHMARK

Here, we provide experimental details that we follow in Section 4.1. We mainly follow TFG
benchmark (Ye et al., 2024) for the fair comparison. All of the experiments in this subsection utilize
training-free guidance as a conditional guidance as stated in B.3.

E.3.1 LABEL GUIDANCE

Task description Label guidance target to generate designated label condition with only uncondi-
tional diffusion models.

Dataset Two experiments are conducted using two image dataset: CIFAR10 (Krizhevsky et al.,
2009) and ImageNet (Russakovsky et al., 2015).

Evaluation Following the image generation literature, we measure FID (Heusel et al., 2017) to
assess fidelity and use accuracy to evaluate generation validity, defined as the proportion of generated
samples classified as the target label. In other words, we measure:

p(argmax ρ(x) = ctarget), (115)

where ρ denotes a classifier and ctarget refers to the target label.

For CIFAR 10, we average the result across all 10 targets. For ImageNet, following (Ye et al., 2024),
we randomly take different target values and report the average value across the selected target. We
set the sample sizes to 512 for CIFAR10 and 256 for ImageNet in Table 2, while using 128 samples
for ImageNet in the rest of the experiments. We note that the use of fewer evaluation samples is the
primary reason for initially higher FIDs, which might consequently lag CFG SOTA. In Table 13,
we present standard comparisons on CIFAR-10 using 50,000 samples that yielded improved and
benchmark-consistent scores.

Models For backbone diffusion models, DDPM in Nichol & Dhariwal (2021) is utilized for both
CIFAR-10 and ImageNet.
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Table 13: Originally, 512 samples were used for rapid, extensive experiments across various tasks. For a more
rigorous evaluation, we used 50,000 samples on CIFAR-10 with 100 inference steps. As expected, increasing
the number of samples to match standard benchmark protocols led to improved FID scores.

Method FID ↓ Acc. ↑
512 samples

TFG 114.1 55.8
TFG + TAG (ours) 102.7 61.5

50000 samples

TFG 77.5 54.3
TFG + TAG (ours) 47.1 84.4

E.3.2 GUASSIAN DEBLURRING

Task description Gaussian deblurring task aims to restore the noisy images which are blurred by
a Guassian process. This inverse problem has been extensively studied with diffusion models and
notably, DPS (Chung et al., 2023) utilize training free guidance when given the blurring operator:

y = Ablur(x). (116)

We set the loss objective function ℓc in Eq. 29 as l2 norm between the blurred estimates and the target,

ℓc = ∥Ablur(x)− y∥2. (117)

Dataset Cat images (Elson et al., 2007) is utilized for the diffusion model training with resolution
256×256.

Evaluation We measure FID score for the sample fidelity and LPIPIS (Zhang et al., 2018) for
evaluating conditioning effects.

E.3.3 SUPER-RESOLUTION

Task description Super-resolution targets to upscale the originally lower-resolution images to
the higher resolution images. Previous works (Saharia et al., 2022; Ho et al., 2022) show one can
leverage diffusion models for this task. In super-resolution case, we assume having an downgrade
operator Adown. With the operator we suppose low-resolution images y is obtained from a higher
resolution image x by

Adown : R256×256×3 → R64×64×3, y = Adown(x). (118)

Now, by setting following loss objective function in Eq. 29:

ℓc = ∥Adown(x− y)∥2, (119)

we leverage training free guidance to restore the target high-resolution image.

Dataset Cat images Elson et al. (2007) is utilized for the diffusion model training with resolution
256×256.

Evaluation FID is used for the sample fidelity and LIPIPS is used for evaluating conditioning
effects. We set the sample size as 256 for the result in the Table 2 and 128 for all the other experiments.

E.3.4 MULTI-CONDITIONAL GUIDANCE

Task Description Multi-conditional guidance leverages multiple target functions to guide a single
sample towards multiple attribute-based targets. We explore two scenarios: (gender, hair color) and
(gender, age). Each attribute has two labels: Gender: {male, female}, Age: {young, old}, Hair color:
{black, blonde}.
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Following Ye et al. (2024), we sampled images that maximize the marginal probability:
max
x0

pcombined(x0) = max
x0

ptarget1(x0)ptarget2(x0), (120)

where ptarget(x0) is estimated using label guidance. However such a naive approach of summing
score functions for each condition, as in Eq. 5, can lead to off-manifold artifacts.

Dataset Experiments are conducted on CelebA-HQ (Karras et al., 2018) at a resolution of 256×256.

Evaluation We assess sample fidelity using Kernel Inception Distance (KID) (Bińkowski et al.,
2018), with 1,000 randomly sampled CelebA-HQ images as references. The KID(log) scores are
reported in Section 4.

For validity, we compute classification accuracy using three independent attribute classifiers, evaluat-
ing the conjunction of target attributes:

Accuracy =
#
∧

target label(classified as target label)

#generated samples
. (121)

We set the sample size as 256 across all experiments.

Models We use the CelebA-DDPM model, trained on CelebA-HQ, as the base diffusion model.
Binary classifiers are employed for attribute validation.

E.3.5 MOLECULAR GENERATION

Task description The goal of molecular generation in this work is to guide 3D molecules generated
from unconditional diffusion models to the deisred quantum chemical properties (Hoogeboom et al.,
2022). Utilizing the property predictor Aproperty is trained for each quantum chemical property,

Aproperty : Rd → R, Aproperty(x) = c. (122)
Then, we set the training-free guidance objective function ℓc as a square of l2 norm of the property
gap as follows:

ℓc = ∥Aproperty(x̂0)− c∥22, (123)
where x̂0 is obtained from the Tweedie’s formula (Appendix B.3).

Dataset We use QM-9 dataset (Ramakrishnan et al., 2014), which consists of 134k molecules with
molecules having maximum 9 heavy atoms (C, N, O, F) labeled with 12 quantum chemical properties.
The dataset is split into 130k / 18k / 13k molecules of training, valid, test data following (Hoogeboom
et al., 2022). Following previous works (Hoogeboom et al., 2022; Bao et al., 2023; Xu et al., 2023),
we take 6 quantum chemical properties as a target property where we describe detils in the following.

• Polarizability (α): The extent to which a molecule’s electron cloud can be distorted by an
external electric field.

• HOMO-LUMO gap (∆ϵ): The energy difference between the highest occupied and lowest
unoccupied molecular orbitals, signifying possible electronic transitions.

• HOMO energy (ϵHOMO): The energy of the highest occupied orbital, often linked to how
easily a molecule donates electrons.

• LUMO energy (ϵLUMO): The energy of the lowest unoccupied orbital, often linked to how
readily a molecule can accept electrons.

• Dipole moment (µ): A numerical measure of charge separation within a molecule, reflecting
its polarity.

• Heat capacity (Cv): The amount of heat required to change the temperature of a molecule
by a given amount.

Models We utilize unconditional EDM from Hoogeboom et al. (2022) for the backbone diffusion
model which consists of EGNN (Satorras et al., 2021). For the property prediction, we utilize EGNN
backbone architecture as in (Bao et al., 2023) where each specialized prediction model which outputs
scalar value is used.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Evaluation We evaluate Atom Stability (AS) which measures percentage of atoms within generated
molecules that have right valencies. An atom is stable if its total bond count matches the expected
valency for its atomic number (Hoogeboom et al., 2022). To measure conditioning effect, we calculate
Mean Absolute Error (MAE) values between the target condition and predicted condition. We set the
sample size as 4096 for the result in the Table 2 and 1024 for all the other experiments.

E.3.6 AUDIO GENERATION

Task description We conduct experiments for two types of tasks with audio diffusion models:
Audio declipping and Audio inpainitng (Moliner & Välimäki, 2024; Moliner et al., 2023). Audio
declipping is a process that repairs distorted audio signals, specifically addressing the issue of
clipping. Clipping occurs when the audio signal’s intensity surpasses the limits of the recording
system, resulting in a distorted sound with missing portions of the waveform. Audio inpainting is a
technique used to reconstruct missing or damaged parts of an audio signal.

For the declipping test, we assume having clipping operator Ablur which corrupts mel spectro-
grams (Shen et al., 2018) as follows.

Aclip : R256×256 → R256×256, Aclip(x) = y, (124)

where clipping operator is operated by zeroing out the 40 highest dimensions and zeroing out the
lowest 40 dimensions in terms of the frequency values.

For inpainting task, we assume we have blurring operator Ablur as

Ablur : R256×256 → R256×256, Ablur(x) = y, (125)

where deblurring is conducted by zeroing out the values of middle 80 dimensions in the mel sepctro-
grams.

For both tasks, we set the training-free guidance objective function ℓc with l2 norm.

ℓc = ∥Aclip(x̂0)− y∥2, ℓc = ∥Ablur(x̂0)− y∥2. (126)

Dataset We borrow open-source training data of Audio-DDPM 1 following Ye et al. (2024).

Evaluation For both tasks, we use Frechet Audio Distance (FAD) (Kilgour et al., 2018) for
measure how close the generated data is from the original distribution and Dynamic Time Warping
(DTW) (Müller, 2007) for evaluating how generated samples are derived into the desired conditions.
We set the sample size as 256 across all experiments.

1https://huggingface.co/teticio/audio-diffusion-256
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E.3.7 HYPER-PARAMETERS

In Table 14, we provide hyper-parameter settings for the DPS and TFG where we follow the optimal
reported values in Ye et al. (2024).

Table 14: Parameter table (ρ̄, µ̄, γ̄) DPS, TFG for all methods, tasks, and targets.

DPS TFG

Target ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄

CIFAR-10 label guidance
0 1 0 0 1 2 0.001
1 8 0 0 0.25 2 0.001
2 1 0 0 2 0.25 1
3 4 0 0 4 0.25 0.01
4 0.5 0 0 1 0.5 0.001
5 4 0 0 2 0.25 0.001
6 1 0 0 0.25 0.5 1
7 2 0 0 1 0.5 0.001
8 2 0 0 1 0.25 0.001
9 4 0 0 0.5 2 0.001

ImageNet label guidance
111 2 0 0 2 0.5 0.1
222 2 0 0 0.5 1 0.1
333 2 0 0 1 4 1
444 4 0 0 0.5 2 0.1

Fine-grained guidance
111 0.25 0 0 0.5 0.5 0.01
222 0.25 0 0 0.5 0.5 0.01
333 0.25 0 0 0.5 0.5 0.01
444 0.25 0 0 0.5 0.5 0.01

Combined Guidance (gender & hair)
(0,0) 4 0 0 1 2 0.01
(0,1) 4 0 0 2 8 0.01
(1,0) 4 0 0 1 1 0.01
(1,1) 2 0 0 0.5 1 0.1

DPS TFG

Target ρ̄ µ̄ γ̄ ρ̄ µ̄ γ̄

Combined Guidance (gender & age)
(0,0) 8 0 0 1 2 0.01
(0,1) 1 0 0 0.5 8 1
(1,0) 4 0 0 0.5 2 0.01
(1,1) 2 0 0 1 0.5 0.1

Super-resolution
16 0 0 4 2 0.01

Gaussian Deblur
16 0 0 1 8 0.01

Molecule Property
α 0.005 0 0 0.016 0.001 0.0001
µ 0.02 0 0 0.001 0.002 0.1
Cv 0.005 0 0 0.004 0.001 0.001
ϵHOMO 0.005 0 0 0.002 0.004 0.001
ϵLUMO 0.005 0 0 0.016 0.002 0.0001
∆ 0.005 0 0 0.032 0.001 0.001

Audio Declipping
1 0 0 1 1 0.1

Audio Inpainting
16 0 0 0.25 2 0.1

E.4 TIME PREDICTOR

Architecture Time Predictor is a foundational component of our TAG framework, designed to
estimate p(t|xt) or p(t|xt, c) for guiding noisy samples back to the desired data manifold. Its
architecture is tailored to the input modality.

For image and audio data, a SimpleCNN is employed, comprising four convolutional layers with
channel sizes (32, 64, 128, 256), each followed by ReLU activation and average pooling. This design
is significantly lighter than the diffusion backbone. A final linear layer produces logits for all
timesteps. In conditional settings, learned embedding vectors for conditions are concatenated before
the linear layer to model p(t|xt, c).

For molecular data, a modified Equivariant Graph Neural Network (EGNN) Satorras et al. (2021)
processes node and edge features along with spatial coordinates. The concatenated node and spatial
features are passed through a feed-forward network to output logits representing the time distribution.

These architectures are lightweight compared to the diffusion model backbone yet expressive enough
to capture temporal and conditional relationships, involving minimal computational cost during
sample generation. We present the performance analysis in next subsection.

Following Jung et al. (2024), training involves minimizing a cross-entropy loss between the true time
step t and the predicted distribution over timesteps. For each sample x0 from the data distribution, a
noisy version xt is generated at a random t using the forward process. The objective is:

Ltime-predictor(ϕ) = −Et,x0 [log (p̂ϕ(xt)t)] , (127)
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where p̂ϕ(xt)t is the predicted probability for t. Cross-entropy is chosen over regression due to
overlapping supports of pt(x) and ps(x), ensuring ambiguity is handled probabilistically. The model
is trained using the Adam optimizer (learning rate 1× 10−4) for 300K iterations on most datasets,
except for ImageNet, which uses 600K iterations. The batch sizes and GPU configurations for each
dataset are summarized in Table 15.

Table 15: Training Details for the Time Predictor

Dataset Batch Size Training Iterations A100 GPUs
ImageNet 1024 600K 4
CIFAR10 256 300K 1

CelebAHQ 256 300K 1
Cat 128 300K 1

Molecule 128 300K 2
Audio 128 300K 1

Performance We compare the performance of time predictors across diverse datasets and tasks.
The time gap (Def. F.1) is presented in the Appendix F.2, where we evaluate its behavior across
different datasets and tasks. Given true forward noise samples xt ∼ q(xt|x0), we measure the time
gap, where a lower value indicates higher prediction accuracy.

The results presented in Figure F.2 demonstrate that the time predictor achieves strong performance
across most datasets and tasks, despite employing a relatively simple CNN architecture. Notably,
for timesteps t < 600, nearly all models accurately predict the true timestep. However, for lower-
dimensional datasets such as CIFAR-10 and molecular data, the prediction error increases as t
approaches the final timestep T of the diffusion process, indicating degraded performance. This
observation aligns with the findings of Kahouli et al. (2024), reported that higher data dimensionality
enhances predictability, whereas overlapping distributions near T impede accurate predictions.
Consistent with these observations, our results indicate that the some model struggles in this regime,
which we leave as an avenue for future work.

The performance of TAG improves with a better classifier, as it provides a more accurate estimate of
the true TLS. We conducted experiments using different training checkpoints (10K and 30K).Table 16
shows that performance on all metrics improved at the 30K checkpoint, correlating with the better
performance of the more trained classifier.

Table 16: Quantitative evaluation of TFG+TAG across varying training steps on CIFAR-10 confirms the
relationship between classifier robustness and TAG performance.

Training Steps

10 K 30 K

FID ↓ 116.0 102.7
Acc. ↑ 55.3 61.5

E.5 LARGE-SCALE TEXT-TO-IMAGE GENERATION

Enhanced Reward Alignment All reward alignment experiments build on the DAS test-time
sampler (Kim et al., 2025) with Stable Diffusion v1.5 (Rombach et al., 2022) as the base model.
Unless stated otherwise, we follow the hyperparmeter setting in DAS (Kim et al., 2025). We evaluate
with two settings:

Single-objective alignment: We optimize two separate reward functions: the LAION Aesthetic
predictor (Schuhmann et al., 2022) using 256 simple animal prompts from ImageNet (Russakovsky
et al., 2015), and CLIPScore (Radford et al., 2021) using the HPSv2 prompt set (Wu et al., 2023).

Multi-objective alignment: We combine aesthetic and CLIP rewards via

rtotal(x) = w rAesthetic(x) + (1− w) rCLIP(x), w = 0.5.
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In all experiments we use T = 100 diffusion steps, single particle setting, and the tempering schedule
λt = (1 + γ)t−1 with γ = 0.008 following original setting for the fair comparison. Resampling is
triggered when the effective sample size ESS < 0.5. We set the KL coefficient α = 0.01 for aesthetic
alignment and α = 0.001 for CLIP alignment (single-objective), and α = 0.005 for multi-objective
trials. For each prompt set, we sample 256 images and report the mean reward and mean Time-Gap
(Def. F.1) over three independent runs.

Improved Style Transfer We adopt the setup of (Ye et al., 2024). Our goal is to steer the latent
diffusion model Stable-Diffusion-v-1-5 (Rombach et al., 2022) so that the generated images both
match the input text prompts and reflect the style of given reference images. We achieve this by
matching the Gram matrices (Johnson et al., 2016) of intermediate features from a CLIP image
encoder for the generated and reference images.

Specifically, let xref be a reference style image and D(z0|t) be the decoded image obtained from
the estimated latent z0|t. We extract features from the third layer of the CLIP image encoder and
compute their Gram matrices

G(xref), G
(
D(z0|t)

)
following the methodology of MPGD (He et al., 2024) and FreeDoM (Yu et al., 2023). The style-
guidance objective maximizes

exp
(
−∥G(xref)−G(D(z0|t))∥2F

)
,

where ∥ · ∥F denotes the Frobenius norm.

We measure style transfer quality using the Style Score and CLIP Score. As reference styles, we use
the same four WikiArt images employed by MPGD (He et al., 2024), and for text prompts we select
64 samples from Partiprompts (Yu et al., 2022). For each style, we generate 64 images. To prevent
inflated CLIP scores, we compute guidance and evaluation with two different CLIP models from the
Hugging Face Hub, Guidance2 and Evaluation3. Throughout our experiments, we fix the guidance
strength at ωt = 1. We leave exploring hyperparameter tuning to improve results as a future work.

F ABLATION STUDIES

F.1 FEW STEP UNCONDITIONAL GENERATION

In few step generation experiments in Section 4.3, we study on the effect of TAG in unconditional
generation scenario where no extra guidance is applied in reverse diffusion process. Specifically,
we focus on few step generation scenario where discretization error happens as introduced in
Appendix B.5.

We further report the evaluation results with 50,000 samples in Table 17 where number of function
evaluation (NFE) refers to how many times we evaluate with diffusion models during the reverse
process. The result shows that TAG significantly improves FID and IS scores when less evaluation
steps are used which alings with our intuition that fewer NFE induces more severe off-manifold
phenomenon in reverse diffusion process. For the experiment, we utilize CIFAR-10 DDPM Song &
Dhariwal (2024) as in Section 4.3 and use DDPM sampling.

Table 17: Comparison of FID values before and after applying TAG in unconditional generation scenario.

NFE 1 NFE 3 NFE 5

TAG FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑
✗ 449.8 1.26 194.5 2.04 116.5 3.08
✓ 232.9 2.26 124.2 3.55 97.4 3.66

2Guidance: openai/clip-vit-base-patch16
3Evaluation: openai/clip-vit-base-patch32
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F.2 TIME GAP

Time-Gap (TG) To quantify the temporal deviation during generation, we define the Time-Gap
metric. Denoting the sample at timestep t as xt and the time predictor as ϕ, the Time-Gap is the
average absolute difference between the predicted timestep index and the true index:
Definition F.1 (Time-Gap).

Time-gap :=
1

T

T∑
t=1

| argmaxϕ(xt)− t|. (128)

A lower Time-gap indicates samples are closer to their expected temporal manifold.

Time Gap across different timesteps To further identify how time gap varies across different
diffusion timesteps, we conduct an ablation study where we measure time gap for every timestep in
diffusion models. For each step, average time gap value over 512 samples are reported.

(a) Unconditional (b) Conditional

Figure 4: Time gap in CIFAR10.

(a) Unconditional (b) Conditional

Figure 5: Time gap in ImageNet.
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(a) Unconditional (b) Deblur (c) Super-resolution

Figure 6: Time gap in Cat.

(a) Unconditional (b) Declipping (c) Inpainting

Figure 7: Time gap in Audio.

(a) Unconditional (b) Gender + Age (c) Gender + Hair

Figure 8: Time gap in CelebA.

(a) Unconditional (b) Polarizabilityα (c) Polarizabilityα and Dipoleµ

Figure 9: Time gap in Molecule.
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Figure 10: Correlation between time gap and standard metrics for image generation quality.

Network Architecture To assess the trade-off between model size and time-gap accuracy, we
compare two backbones. Our SimpleCNN consists of four convolutional blocks with channel
widths (32, 64, 128, 256). Each block uses a 3× 3 convolution, ReLU activation, and 2× 2 average
pooling. At just 1.48 M parameters—8.5 % of the 17.38 M-parameter UNet encoder (Dhariwal &
Nichol, 2021)—SimpleCNN matches its time-gap performance (Table 18). This demonstrates that a
lightweight, single-path network can rival much larger UNet based classifiers.

Table 18: FID on CIFAR-10 for time predictors using SimpleCNN (1.48 M parameters) and UNet encoder
(17.38 M parameters), comparing unconditional and conditional models across training checkpoints.

Checkpoint SimpleCNN UNet
Unconditional Conditional Unconditional Conditional

50K 24.19 23.64 25.59 21.85
100K 23.24 27.33 22.08 19.68
200K 23.11 22.64 22.58 20.53
300K 22.93 21.11 24.40 22.49

Correlation with other standard metrics We conduct ablation study on the correlation between
Time Gap and standard metrics (FID and IS). Figure 10 illustrates how time gap and standard
measures for image generation quality. We vary different number of function evaluation (NFE)
in unconditional diffusion models. For the experiment, we generate 50,000 samples with DDIM
sampling and utilize CIFAR10-DDPM model (Nichol & Dhariwal, 2021) with the NFE of 1, 5, 10, 20,
50. The result shows that as NFE increases, time gap reduces while FID decreases and IS increases.
This demonstrates that Time Gap serves as a good measure to evaluate the off-manifold phenomenon.

Limitation Once the reverse diffusion process is good enough (i.e, time gap is already small), it
often loses correlation with FID measure. We believe improving the performance of the time predictor
network will reduce this problem and thereby further boost the effect of the TAG.

We further note that the motivation of introducing a Time Gap in this work is not to suggest a new
metric, but to quantify the amount of off-manifold phenomenon where applying TAG is intended to
reduce the Time Gaps in each every timestep of the reverse diffusion process.

G VISUALIZATIONS OF GENERATED SAMPLES

Here, we present qualitative examples corresponding to the experiments presented in Section 4.1.
We provide visualizations for all four experimental settings: DPS, DPS+TAG, TFG, and TFG+TAG.
Below, we detail the dataset configurations used for generating these qualitative examples.
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CIFAR-10 We generate images conditioned on the target class 8 (corresponding to the “Ship”
category). The images are produced using 250 inference steps with an TAG strength of ω = 0.15.

ImageNet We present generated samples for target classes 111 (“Worm”) and 222 (“Kuvasz”),
using 100 inference steps with an TAG strength of ω = 0.15.

QM9 We show qualitative results for the target molecular properties polarizability α and dipole
moment µ. In this setting, we employ a 0.1 guidance strength for DPS, following the default
configuration in Ye et al. (2024), with 100 inference steps.

CelebA-HQ We provide qualitative examples for two specific conditions: Gender+Hair and
Gender+Age. The target attributes in these cases are black hair, young age, and female
gender, all represented as binary variables to be satisfied in our conditional generation.

(a) DPS (b) DPS + TAG

(c) TFG (d) TFG + TAG

Figure 11: CIFAR10 with the target of 8 (Ship).
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(a) DPS (b) DPS + TAG

(c) TFG (d) TFG + TAG

Figure 12: ImageNet with the target of 111 (Worm).
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(a) DPS (b) DPS + TAG

(c) TFG (d) TFG + TAG

Figure 13: ImageNet with the target of 222 (Kuvasz).
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(a) DPS (b) DPS + TAG

(c) TFG (d) TFG + TAG

Figure 14: Molecule with condition of polarizability α.
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(a) DPS (b) DPS + TAG

(c) TFG (d) TFG + TAG

Figure 15: Molecule with condition of dipole µ.

(a) Without TAG (b) With TAG

Figure 16: CelebA with condition of Gender (female) + Hair (black hair).
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(a) Without TAG (b) With TAG

Figure 17: CelebA with condition of Gender (female) + Age (young).
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