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Abstract

Variational autoencoders model high-dimensional data by positing low-dimensional
latent variables that are mapped through a flexible distribution parametrized by a
neural network. Unfortunately, variational autoencoders often suffer from posterior
collapse: the posterior of the latent variables is equal to its prior, rendering the
variational autoencoder useless as a means to produce meaningful representations.
Existing approaches to posterior collapse often attribute it to the use of neural
networks or optimization issues due to variational approximation. In this paper,
we consider posterior collapse as a problem of latent variable non-identifiability.
We prove that the posterior collapses if and only if the latent variables are non-
identifiable in the generative model. This fact implies that posterior collapse is
not a phenomenon specific to the use of flexible distributions or approximate
inference. Rather, it can occur in classical probabilistic models even with exact
inference, which we also demonstrate. Based on these results, we propose a
class of latent-identifiable variational autoencoders, deep generative models which
enforce identifiability without sacrificing flexibility. This model class resolves
the problem of latent variable non-identifiability by leveraging bijective Brenier
maps and parameterizing them with input convex neural networks, without special
variational inference objectives or optimization tricks. Across synthetic and real
datasets, latent-identifiable variational autoencoders outperform existing methods in
mitigating posterior collapse and providing meaningful representations of the data.

1 Introduction

Variational autoencoders (VAE) are powerful generative models for high-dimensional data [28, 46].
Their key idea is to combine the inference principles of probabilistic modeling with the flexibility of
neural networks. In a VAE, each datapoint is independently generated by a low-dimensional latent
variable drawn from a prior, then mapped to a flexible distribution parametrized by a neural network.

Unfortunately, VAE often suffer from posterior collapse, an important and widely studied phe-
nomenon where the posterior of the latent variables is equal to prior [6, 8, 38, 62]. This phenomenon
is also known as latent variable collapse, KL vanishing, and over-pruning. Posterior collapse ren-
ders the VAE useless to produce meaningful representations, in so much as its per-datapoint latent
variables all have the exact same posterior.

Posterior collapse is commonly observed in the VAE whose generative model is highly flexible,
leading to the common speculation that posterior collapse occurs because VAE involve flexible neural
networks in the generative model [11], or because it uses variational inference [59]. Based on these
hypotheses, many of the proposed strategies for mitigating posterior collapse thus focus on modifying
the variational inference objective (e.g. [44]), designing special optimization schemes for variational
inference in VAE (e.g. [18, 25, 32]), or limiting the capacity of the generative model (e.g. [6, 16, 60].)
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In this paper, we consider posterior collapse as a problem of latent variable non-identifiability.
We prove that posterior collapse occurs if and only if the latent variable is non-identifiable in
the generative model, which loosely means the likelihood function does not depend on the latent
variable [40, 42, 56]. Below, we formally establish this equivalence by appealing to recent results in
Bayesian non-identifiability [40, 42, 43, 49, 58].

More broadly, the relationship between posterior collapse and latent variable non-identifiability
implies that posterior collapse is not a phenomenon specific to the use of neural networks or variational
inference. Rather, it can also occur in classical probabilistic models fitted with exact inference
methods, such as Gaussian mixture models and probabilistic principal component analysis (PPCA).
This relationship also leads to a new perspective on existing methods for avoiding posterior collapse,
such as the delta-VAE [44] or the -VAE [19]. These methods heuristically adjust the approximate
inference procedure embedded in the optimization of the model parameters. Though originally
motivated by the goal of patching the variational objective, the results here suggest that these
adjustments are useful because they help avoid parameters at which the latent variable is non-
identifiable and, consequently, avoid posterior collapse.

The relationship between posterior collapse and non-identifiability points to a direct solution to the
problem: we must make the latent variable identifiable. To this end, we propose latent-identifiable
VAE, a class of VAE that is as flexible as classical VAE while also being identifiable. Latent-
identifiable VAE resolves the latent variable non-identifiability by leveraging Brenier maps [36, 39]
and parameterizing them with input-convex neural networks [2, 35]. Inference on identifiable VAE
uses the standard variational inference objective, without special modifications or optimization tricks.
Across synthetic and real datasets, we show that identifiable VAE mitigates posterior collapse without
sacrificing fidelity to the data.

Related work. Existing approaches to avoiding posterior collapse often modify the variational
inference objective, design new initialization or optimization schemes for VAE, or add neural network
links between each data point and their latent variables [1, 3, 6, 8, 12, 15, 16, 17, 18, 21, 25, 27, 32,
34, 38, 44, 50, 51, 52, 55, 61, 62, 63]. Several recent papers also attempt to provide explanations for
posterior collapse. Chen et al. [8] explains how the inexact variational approximation can lead to
inefficiency of coding in VAE, which could lead to posterior collapse due to a form of information
preference. Dai et al. [11] argues that posterior collapse can be partially attributed to the local optima
in training VAE with deep neural networks. Lucas et al. [33] shows that posterior collapse is not
specific to the variational inference training objective; absent a variational approximation, the log
marginal likelihood of PPCA has bad local optima that can lead to posterior collapse. Yacoby et al.
[59] discusses how variational approximation can select an undesirable generative model when the
generative model parameters are non-identifiable. In contrast to these works, we consider posterior
collapse solely as a problem of latent variable non-identifiability, and not of optimization, variational
approximations, or neural networks per se. We use this result to propose the identifiable VAE as a
way to directly avoid posterior collapse.

Outside VAE, latent variable identifiability in probabilistic models has long been studied in the
statistics literature [40, 42, 42, 43, 49, 56, 58]. More recently, Betancourt [5] studies the effect
of latent variable identifiability on Bayesian computation for Gaussian mixtures. Khemakhem
et al. [23, 24] propose to resolve the non-identifiability in deep generative models by appealing
to auxiliary data. Kumar & Poole [29] study how the variational family can help resolve the non-
identifiability of VAE. These works address the identifiability issue for a different goal: they develop
identifiability conditions for different subsets of VAE, aiming for recovering true causal factors of
the data and improving disentanglement or out-of-distribution generalization. Related to these papers,
we demonstrate posterior collapse as an additional way that the concept of identifiability, though
classical, can be instrumental in modern probabilistic modeling. Considering identifiability leads to
new solutions to posterior collapse.

Contributions. We prove that posterior collapse occurs if and only if the latent variable in the
generative model is non-identifiable. We then propose latent-identifiable VAE, a class of VAE
that are as flexible as classical VAE but have latent variables that are provably identifiable. Across
synthetic and real datasets, we demonstrate that latent-identifiable VAE mitigates posterior collapse
without modifying VAE objectives or applying special optimization tricks.



2 Posterior collapse and latent variable non-identifiability

Consider a dataset x = (x1,...,x,); each datapoint is m-dimensional. Positing n latent variables
2z =(z1,...,2), a variational autoencoder (VAE) assumes that each datapoint x; is generated by a
K-dimensional latent variable z;:

z; ~ p(z;), xilz; ~ plx;|2;;0) = EF(x; | fo(2;)), )

where x; follows an exponential family distribution with parameters fyp(z;); fp parameterizes the
conditional likelihood. In a deep generative model fp is a parameterized neural network. Classical
probabilistic models like Gaussian mixture model [45] and probabilistic PCA [10, 47, 48, 54] are
also special cases of Eq. 1.

To fit the model, VAE optimizes the parameters 6 by maximizing a variational approximation of the
log marginal likelihood. After finding an optimal 6, we can form a representation of the data using
the approximate posterior g 4(z |x) with variational parameters ¢ or its expectation [Eq(;(z| olzlx].

Note that here we abstract away computational considerations and consider the ideal case where the
variational approximation is exact. This choice is sensible: if the exact posterior suffers from poste-
rior collapse then so will the approximate posterior (a variational approximation cannot “uncollapse”
a collapsed posterior). That said we also note that there exist in practice situations where variational
inference alone can lead to posterior collapse. A notable example is when the variational approx-
imating family is overly restrictive: it is then possible to have non-collapsing exact posteriors but
collapsing approximate posteriors.

2.1 Posterior collapse < Latent variable non-identifiability

We first define posterior collapse and latent variable non-identifiability, then proving their connection.

Deﬁnitioq 1 (Posterior collapse [6, 8, 38, 62]). Given a probability model p(x,z;0), a parameter
value 8 =0, and a dataset x = (x1,...,%x,), the posterior of the latent variables z collapses if

p(zl|x;0) = p(2). 2)

The posterior collapse phenomenon can occur in a variety of probabilistic models and with different
latent variables. When the probability model is a VAE, it only has local latent variables z =
(21,...,25), and Eq. 2 is equivalent to the common definition of posterior collapse p(z;|x;; 0) = p(z;)
forall i [12, 17, 33, 44]. Posterior collapse has also been observed in Gaussian mixture models [5]; the
posterior of the latent mixture weights resembles their prior when the number of mixture components
in the model is larger than that of the data generating process. Regardless of the model, when posterior
collapse occurs, it prevents the latent variable from providing meaningful summary of the dataset.

Definition 2 (Latent variable non-identifiability [42, 56]). Given a likelihood function p(x|z;0), a
parameter value 0 = 0, and a dataset x = (x1,...,%xy), the latent variable z is non-identifiable if

plxlz=2";0)=px|z=2;0) Vv, zeZ, 3)

where Z denotes the domain of z, and 2', 2 refer to two arbitrary values the latent variable z can
take. As a consequence, for any prior p(z) on z, we have the conditional likelihood equal to the
marginal p(x|1z2=2;0)= [ p(x|z;0)p(z)dz = p(x;0) VzeZ.

Definition 2 says a latent variable z is non-identifiable when the likelihood of the dataset x does
not depend on z. It is also known as practical non-identifiability [42, 56] and is closely related to
the definition of z being conditionally non-identifiable (or conditionally uninformative) given 0 [40,
42,43, 49, 58]. To enforce latent variable identifiability, it is sufficient to ensure that the likelihood
p(x|z,0) is an injective (a.k.a. one-to-one) function of z for all 8. If this condition holds then

2 £ = pxlz=%";0)#px|z=3;0). 4)
Note that latent variable non-identifiability only requires Eq. 3 be true for a given dataset x and

parameter value 6. Thus a latent variable may be identifiable in a model given one dataset but not
another, and at one 6 but not another. See examples in Appendix A.

Latent variable identifiability (Definition 2) [42, 56] differs from model identifiability [41], a related
notion that has also been cited as a contributing factor to posterior collapse [59]. Latent variable



identifiability is a weaker requirement: it only requires the latent variable z be identifiable at a
particular parameter value 6 = 8, while model identifiability requires both z and 6 be identifiable.

We now establish the equivalence between posterior collapse and latent variable non-identifiability.

Theorem 1 (Latent variable non-identifiability < Posterior collapse). Consider a probability model
p(sg,z ; 0), a dataset x, and a parameter value 0 = 6. The local latent variables z are non-identifiable
at 0 if and only if the posterior of the latent variable z collapses, p(z|x) = p(2).

Proof. To prove that non-identifiability implies posterior collapse, note that, by Bayes rule,
p(zlx;0) o p(2)p(xlz;0) = p(2)pla; 0) o p(2), )

where the middle equality is due to the definition of latent variable non-identifiability. It implies
p(z|x;0) = p(2) as both are densities. To prove that posterior collapse implies latent variable non-
identifiability, we again invoke Bayes rule. Posterior collapse implies that p(2) = p(z|x; )
p(2)- p(x|z;0), which further implies that p(x|z;0) is constant in z. If p(x|z;6) nontrivially
depends on z, then p(z) must be different from p(2)p(x|z; 6) as a function of z. O]

The proof of Theorem 1 is straightforward, but Theorem 1 has an important implication. It shows
that the problem of posterior collapse mainly arises from the model and the data, rather than from
inference or optimization. If the maximum likelihood parameters 6 of the VAE renders the latent
variable z non-identifiable, then we will observe posterior collapse. Theorem 1 also clarifies why
posteriors may change from non-collapsed to collapsed (and back) while fitting a VAE. When fitting
a VAE, Some parameter iterates may lead to posterior collapse; others may not.

Theorem 1 points to why existing approaches can help mitigate posterior collapse. Consider the -
VAE [19], the VAE lagging encoder [18], and the semi-amortized VAE [25]. Though motivated by
other perspectives, these methods modify the optimization objectives or algorithms of VAE to avoid
parameter values 6 at which the latent variable is non-identifiable. The resulting posterior may not
collapse, though the optimal parameters for these algorithms no longer approximates the maximum
likelihood estimate.

Theorem 1 can also help us understand posterior collapse observed in practice, which manifests
as the phenomenon that the posterior is approximately (as opposed to exactly) equal to the prior,
p(zlx; 0) ~ p(2). In several empirical studies of VAE (e.g. [12, 18, 25]), we observe that the
Kullback-Leibler (KL) divergence between the prior and posterior is close to zero but not exactly
zero, a property that stems from the likelihood p(x|z) being nearly constant in the latents z. In
these cases, Theorem 1 provides the intuition that the latent variable is nearly non-identifiable ,
plx|2") ~ p(x|2),Y2,2" and so Eq. 2 holds approximately.

2.2 Examples of latent variable non-identifiability and posterior collapse

We illustrate Theorem 1 with three examples. Here we discuss the example of Gaussian mixture VAE
(GMVAE). See Appendix A for probabilistic principal component analysis (PPCA) and Gaussian
mixture model (GMM).

The GMVAE [13, 51] is the following model:
p(z;) = Categorical(VK), p(w;lzi; i1,2) = N (4z;,22),  plxilwis f,0) =N (Fw;),0% Ip),

where p,’s are d-dimensional, X, are d x d-dimensional, and the parameters are 6 = (i, Z, f,02).
Suppose the function f is fully flexible; thus f(w;) can capture any distribution of the data. The latent
variable of interest is the categorical z = (z1,...,2,). If its posterior collapses, then p(z; = k|x) = /K
forallk=1,...,K.

Consider fitting a GMVAE model with K = 2 to a dataset of 5,000 samples. This dataset is drawn
from a GMVAE also with K = 2 well-separated clusters; there is no model misspecification. A
GMVAE is typically fit by optimizing the maximum log marginal likelihood = argmax, log p(x|6).
Note there may be multiple values of 8 that achieve the global optimum of this function.

We focus on two likelihood maximizers. One provides latent variable identifiability and the posterior
of z; does not collapse. The other does not provide identifiablity; the posterior collapses.



1. The first likelihood-maximizing parameter 8 is the truth; the distribution of the K fitted clusters
correspond to the K data-generating clusters. Given this parameter, the latent variable z; is
identifiable because the K data-generating clusters are different; different cluster memberships z;
must result in different likelihoods p(x;|z;; 61). The posterior of z; does not collapse.

2. In the second likelihood-maximizing parameter 92, however, all K fitted clusters share the
same distribution, each of which is equal to the marginal distribution of the data. Specifically,
(u,,Z;) =(0,14) for all &, and each fitted cluster is a mixture of the K original data generating
clusters, i.e., the marginal. At this parameter value, the model is still able to fully capture the
mixture distribution of the data. However, all the K mixture components are the same, and thus
the latent variable z; is non-identifiable; different cluster membership z; do not result in different
likelihoods p(x;|z;; #5), and hence the posterior of z; collapses. Figure la illustrates a fit of
this (non-identifiable) GM VAE to the pinwheel data [22]. In Section 3, we construct an latent-
identifiable VAE (LIDVAE) that avoids this collapse.

Latent variable identifiability is a function of the both the model and the true data-generating
distribution. Consider fitting the same GMVAE with K = 2 but to a different dataset of 5,000
samples, this one drawn from a GM VAE with only one cluster. (There is model misspecification.)
One maximizing parameter value 63 is where both of the fitted clusters correspond to the true data
generating cluster. While this parameter value resembles that of the first maximizer §; above—both
correspond to the true data generating cluster—this dataset leads to a different situation for latent
variable identifiability. The two fitted clusters are the same and so different cluster memberships do
not result in different likelihoods of p(x;|z;; 93). The latent variable z; is not identifiable and its
posterior collapses.

Takeaways. The GMVAE example in this section (and the PPCA and GMM examples in
Appendix A) illustrate different ways that a latent variable can be non-identifiable in a model
and suffer from posterior collapse. They show that even the true posterio—without variational
inference—can collapse in non-identifiable models. They also illustrate that whether a latent variable
is identifiable can depend on both the model and the data. Posterior collapse is an intrinsic problem
of the model and the data, rather than specific to the use of neural networks or variational inference.

The equivalence between posterior collapse and latent variable non-identifiability in Theorem 1 also
implies that, to mitigate posterior collapse, we should try to resolve latent variable non-identifiability.
In the next section, we develop such a class of latent-identifiable VAE.

3 Latent-identifiable VAE via Brenier maps

We now construct latent-identifiable VAE, a class of VAE whose latent variables are guaranteed to
be identifiable, and thus the posteriors cannot collapse.

3.1 The latent-identifiable VAE

To construct the latent-identifiable VAE, we rely on a key observation that, to guarantee latent
variable identifiability, it is sufficient to make the likelihood function P(x; |z;; 8) injective for all
values of 6. If the likelihood is injective, then, for any 6, each value of z; will lead to a different
distribution P(x; | z; ; 0). In particular, this fact will be true for any optimized 6 and so the latent z;
must be identifiable, regardless of the data. By Theorem 1, its posterior cannot collapse.

Constructing latent-identifiable VAE thus amounts to constructing an injective likelihood function for
VAE. The construction is based on a few building blocks of linear and nonlinear injective functions,
then composed into an injective likelihood p(x; | z; ; 8) mapping from Z¢ to L™, where Z and &
indicate the set of values z; and x; can take. For example, if x; is an m-dimensional binary vector,
then & = {0, 1}™; if z; is a K-dimensional real-valued vector, then Z = RY.

The building blocks of LIDVAE: Injective functions. For linear mappings from R?! to R?2
(d2 = d1), we consider matrix multiplication by a d1 x dg-dimensional matrix 8. For a d1-dimensional
variable z, left multiplication by a matrix ' is injective when B has full column rank [53]. For
example, a matrix with all ones in the diagonal and all other entries being zero has full column rank.

For nonlinear injective functions, we focus on Brenier maps [4, 37]. A d-dimensional Brenier map is
is the gradient of a convex function from R? to R. That is, a Brenier map satisfies g = VT for some



convex function T : R¢ — R. Brenier maps are also known as a monotone transport map. They are
guaranteed to be bijective [4, 37] because their derivative is the Hessian of a convex T, which must
be positive semidefinite and has a nonnegative determinant [4].

To build a VAE with Brenier maps, we require a neural network parametrization of the Brenier map.
As Brenier maps are gradients of convex functions, we begin with the neural network parametrizaton
of convex functions, namely the input convex neural network (ICNN) [2, 35]. This parameterization
of convex functions will enable Brenier maps to be paramterized as the gradient of ICNN.

An L-layer ICNN is a neural network mapping from R? to R. Given an input u € R?, its /th layer is
zZo=1u, 2141 =h;(W;z; +Aju+by), (l=0,...,L-1), (6)

where the last layer z7, must be a scalar, {W;} are non-negative weight matrices with Wo = 0. The
functions {h; : R — R} are convex and non-decreasing entry-wise activation functions for layer /; they
are applied element-wise to the vector (W;z; + Aju+b;). A common choice of ~g : R — R is the
square of a leaky RELU, A ¢(x) = (max(a-x,x))? with @ = 0.2; the remaining %;’s are set to be a leaky
RELU, A;(x) = max(a - x,x). This neural network is called “input convex” because it is guaranteed to
be a convex function.

Input convex neural networks can approximate any convex function on a compact domain in sup norm
(Theorem 1 of Chen et al. [9].) Given the neural network parameterization of convex functions, we can
parametrize the Brenier map g¢(-) as its gradient with respect to the input gg(u) = 0z./0u. This neural
network parameterization of Brenier map is a universal approxiamtor of all Brenier maps on a compact
domain, because input convex neural networks are universal approximators of convex functions [9].

The latent-identifiable VAE (LIDVAE). We construct injective likelihoods for LIDVAE by
composing two bijective Brenier maps with an injective matrix multiplication. As the composition
of injective and bijective mappings must be injective, the resulting composition must be injective.
Suppose g1 :RE — RK and 82,0 :RP — R are two Brenier maps, and f is a K x D-dimensional
matrix (D = K) with all the main diagonal entries being one and all other entries being zero. The matrix
B has full column rank, so multiplication by BT is injective. Thus the composition g29(8" g1,9(-)

must be an injective function from a low-dimensional space RX to a high-dimensional space RP.

Definition 3 (Latent-identifiable VAE (LIDVAE) via Brenier maps). An LIDVAE via Brenier maps
generates a D-dimensional datapoint x;,€{1,...,n} by:

z; ~ p(z;), xilzi ~EF(x; 1 g20(B" g1,0(2:)), @)

where EF stands for exponential family distributions; z; is a K-dimensional latent variable, discrete
or continuous. The parameters of the model are 0 = (g10,820), where g19 : RE — RK and
820 : RP — RP are two continuous Brenier maps. The matrix B is a K x D-dimensional matrix
(D = K) with all the main diagonal entries being one and all other entries being zero.

Contrastir}? LIDVAE (Eq. 7) with the classical VAE (Eq. 1), the LIDVAE replaces the function fjp :
ZK - 2P with the injective mapping 82,0( B &1,0(*)), composed by bijective Brenier maps g1,0,82,0
and a zero-one matrix 8 with full column rank. As the likelihood functions of exponential family are
injective, the likelihood function p(x;|z;;60) = EF(ggyg(,BT g1,6(2;))) of LIDVAE must be injective.
Therefore, replacing an arbitrary function fp : ZX — 2P with the injective mapping g29(8" g1.6(-)
plays a crucial role in enforcing identifiability for latent variable z; and avoiding posterior collapse in
LIDVAE. As the latent z; must be identifiable in LIDVAE, its posterior does not collapse.

Despite its injective likelihood, LIDVAE are as flexible as VAE; the use of Brenier maps and ICNN
does not limit the capacity of the generative model. Loosely, LIDVAE can model any distributions
in RP because Brenier maps can map any given non-atomic distribution in R¢ to any other one in
R? [37]. Moreover, the ICNN parametrization is a universal approximator of Brenier maps [2]. We
summarize the key properties of LIDVAE in the following proposition.

Proposition 2. The latent variable z; is identifiable in LIDVAE, i.e. for all i € {1,...,n}, we have

plxilzi=2";0)=plxilz;i =%;0) = =z, vZ',2,0. (®)

Moreover, for any VAE-generated data distribution, there exists an LIDVAE that can generate the
same distribution. (The proof is in Appendix B.)
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Figure 1: (a)-(b): The posterior of the classical GMVAE [13, 26, 51] collapses when fit to the
pinwheel dataset; the latents predict the same value for all datapoints. The posteriors of latent-
identifiable Gaussian mixture VAE (LIDGM VAE), however, do not collapse and provide meaningful
representations. (c)-(d) The latent-identifiable GM VAE produces posteriors that are substantially
more informative than GM VAE when fit to fashion MNIST. It also achieves higher test log likelihood.

3.2 Inference in LIDVAE

Performing inference in LIDVAE is identical to the classical VAE, as the two VAE differ only in
their parameter constraints. To fit an LIDVAE, we use the classical amortized inference algorithm of
VAE; we maximize the evidence lower bound (ELBO) of the log marginal likelihood [28].

In general, LIDVAE are a drop-in replacement for VAE. Both have the same capacity (Proposition 2)
and share the same inference algorithm, but LIDVAE is identifiable and does not suffer from posterior
collapse. The price we pay for LIDVAE is computational: the generative model (i.e. decoder)
is parametrized using the gradient of a neural network; its optimization thus requires calculating
gradients of the gradient of a neural network, which increases the computational complexity of VAE
inference and can sometimes challenge optimization. While fitting classical VAE using stochastic
gradient descent has O(k-p) computational complexity, where % is the number of iterations and p is the
number of parameters, fitting latent-identifiable VAE may require O(% - p?) computational complexity.

3.3 Extensions of LIDVAE

The construction of LIDVAE reveals a general strategy to make the latent variables of generative
models identifiable: replacing nonlinear mappings with injective nonlinear mappings. We can employ
this strategy to make the latent variables of many other VAE variants identifiable. Below we give two
examples, mixture VAE and sequential VAE.

The mixture VAE, with GMVAE as a special case, models the data with an exponential family
mixture and mapped through a flexible neural network to generate the data. We develop its latent-
identifiable counterpart using Brenier maps.

Example 1 (Latent-identifiable mixture VAE (LIDMVAE)). An LIDMVAE generates a D-
dimensional datapoint x;,i € {1,...,n} by

z; ~ Categorical(1/K), w;|z; ~EFw;|f] 2;), xilw;~EF(x;|g20(By g10wi)), (9)

where W; is a K-dimensional one-hot vector that indicates the cluster assignment. The parameters
of the model are 0 = (g1,9,82,9), Where the functions g1,9 : RM — RM gnd 820 RP — RD gre two
continuous Brenier maps. The matrices B1 and Bg are a K x M -dimensional matrix (M = K) and a
M x D-dimensional matrix (D = M) respectively, both having all the main diagonal entries being one
and all other entries being zero.

The LIDMVAE differs from the classical mixture VAE in p(x;|z;), where we replace its neural
network mapping with its injective counterpart, i.e. a composition of two Brenier maps and a matrix
multiplication gz,g(ﬁ;g 1,6(-)). As a special case, setting both exponential families in Example 1 as
Gaussian gives us LIDGMVAE, which we will use to model images in Section 4.

Next we derive the identifiable counterpart of sequential VAE, which models the data with an
autoregressive model conditional on the latents.

Example 2 (Latent-identifiable sequential VAE (LIDSVAE)). An LIDSVAE generates a D-
dimensional datapoint x;,i € {1,...,n} by

2i~p(),  x%ilzi,x<; ~EF(go0(By 102, folx<))D)),



Fashion-MNIST Omniglot

AU KL MI LL AU KL MI LL
VAE [28] 0.1 02 09 -2588 002 0.0 01 -862.1
SA-VAE [25] 02 03 13 -2522 01 02 10 -8534
Lagging VAE [18] 04 06 16 -2485 05 1.0 36 -8494
B-VAE [19] (8=0.2) 06 1.2 24 -2453 07 14 59 -8426
LIDGMVAE (this work) 1.0 1.6 2.6 -242.3 1.0 17 75 -820.3
Synthetic Yahoo Yelp
AU KL MI LL AU KL MI LL AU KL MI LL
VAE [28] 00 00 00 -465 00 00 00 -5197 00 00 00 -6359
SA-VAE [25] 04 01 01 -402 02 10 02 -5202 01 19 02 -6315

Lagging VAE [18] 05 01 01 -400 03 16 04 -5186 02 36 0.1 -631.0
B-VAE [19](B=0.2) 1.0 0.1 01 -399 05 47 09 -5244 03 100 0.1 -6373
LIDSVAE 1.0 05 06 -403 08 72 11 -5195 07 91 09 -6342

Table 1: Across image and text datasets, LIDVAE outperforms existing VAE variants in preventing
posterior collapse while achieving similar goodness-of-fit to the data.

where x<; = (x1,...,%;—1) represents the history of x before the ith dimension. The function fy :
X —RH maps the history X <; into an H-dimensional vector. Finally, [z;, fo(x<i)lis an (K +H)x 1
vector that represents a row-stack of the vectors (z;)xx1 and (fo(x<i))E=1-

Similar with mixture VAE, the LIDSVAE also differs from sequential VAE only in its use of
gz,e(ﬁzTgLe(')) function in p(x;|z;,%x<;). We will use LIDSVAE to model text in Section 4.

4 Empirical studies

We study LIDVAE on images and text datasets, finding that LIDVAE do not suffer from posterior
collapse as we increase the capacity of the generative model, while achieving similar fits to the data.
We further study PPCA, showing how likelihood functions nearly constant in latent variables lead to
collapsing posterior even with Markov chain Monte Carlo M CMC).

4.1 LIDVAE onimages and text

We consider three metrics for evaluating posterior collapse: (1) KL divergence between
the posterior and the prior, KL(g(z|x)||p(2)); (2) Percentange of active units (AU):AU =
Zfi):l HCoVp()(Eg(zx) [24]) = €}, Where 24 = (214, . ..,2nq) is the dth dimension of the latent variable
z for all the n data points. In calculating AU, we follow Burda et al. [7] to calculate the posterior mean,
(E[z14|%1],...,E[2z,q |2, D] for all data points, and calculate the sample variance of E[z;4 | x;] across
i’s from this vector. The threshold ¢ is chosen to be 0.01 [7]; the theoretical maximum of % AU is one;
(3) Approximate Mutual information (MI) between x; and z;, I(x,2) =E, [[Eq(z 10 [log(g(z|x)]] -
Ex [Eq(z 1) [10g(g(2))]]. We also evaluate the model fit using the importance weighted estimate of log-
likelihood on a held-out test set [7]. For mixture VAE, we also evaluate the predictive accuracy of
the categorical latents against ground truth labels to quantify their informativeness.

Competing methods. We compare LIDVAE with the classical VAE [28], the 8-VAE (8=0.2) [19],
the semi-amortized VAE [25], and the lagging VAE [18]. Throughout the empirical studies, we use
flexible variational approximating families (RealNVPs [14] for image and LSTMs [20] for text).

Results: Images. We first study LIDGMVAE on four subsampled image datasets drawn from
pinwheel [22], MNIST [31], Fashion MNIST [57], and Omniglot [30]. Figures 1a and 1b illustrate a
fit of the GMVAE and the LIDGM VAE to the pinwheel data [22]. The posterior of the GMVAE
latents collapse, attributing all datapoints to the same latent cluster. In contrast, LIDGMVAE
produces categorical latents faithful to the clustering structure. Figure 1 examines the LIDGMVAE
as we increase the flexibility of the generative model. Figure 1c shows that the categorical latents of
the LIDGMVAE are substantially more predictive of the true labels than their classical counterparts.
Moreover, its performance does not degrade as the generative model becomes more flexible. Figure 1d
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Figure 2: As the noise level increases in PPCA, the latent variable becomes closer to non-identifiable
because the likelihood and more susceptible to posterior collapse. Its likelihood surface becomes
flatter and its posterior becomes closer to the prior. Top panel: Likelihood surface of PPCA as a
function of the two latents z1,z9. When o increase, the likelihood surface becomes flatter and the
latent variables z1,z9 are closer to non-identifiable. Bottom panel: Posterior of z; under different o
values. When ¢ increase, the posterior becomes closer to the prior.

shows that the LIDGMVAE consistently achieve higher test log-likelihood. Table 1 compares
different variants of VAE in a 9-layer generative model. Across four datasets, LIDGM VAE mitigates
posterior collapse. It achieves higher AU, KL and MI than other variants of VAE. It also achieves a
higher test log-likelihood.

Results: Text. We apply LIDSVAE to three subsampled text datasets drawn from a synthetic
text dataset, the Yahoo dataset, and the Yelp dataset [60]. The synthetic dataset is generated from a
classical two-layer sequential VAE with a five-dimensional latent. Table 1 compares the LIDSVAE
with the sequential VAE. Across the three text datasets, the LIDS VAE outperforms other variants of
VAE in mitigating posterior collapse, generally achieving a higher AU, KL, and MI.

4.2 Latent variable non-identifiability and posterior collapse in PPCA

Here we show that the PPCA posterior becomes close to the prior when the latent variable becomes
close to be non-identifiable. We perform inference using Hamiltonian Monte Carlo (HMC), avoiding
the effect of variational approximation on posterior collapse.

Consider a PPCA with two latent dimensions, p(z;) = A (z;;0,19), p(x;|z;;0) = N (x;; ziTw,cr2 .

I5), where the value of o2 is known, z;’s are the latent variables of interest, and w is the only
parameter of interest. When the noise o2 is set to a large value, the latent variable z; may become
nearly non-identifiable. The reason is that the likelihood function p(x;|z;) becomes slower-varying
as o? increases. For example, Figure 2 shows that the likelihood surface becomes flatter as o
increases. Accordingly, the posterior becomes closer to the prior as 2 increases. When o = 1.5, the
posterior collapses. This non-identifiability argument provides an explanation to the closely related
phenomenon described in Section 6.2 of [33].

5 Discussion

In this work, we show that the posterior collapse phenomenon is a problem of latent variable non-
identifiability. It is not specific to the use of neural networks or particular inference algorithms in
VAE. Rather, it is an intrinsic issue of the model and the dataset. To this end, we propose a class
of LIDVAE via Brenier maps to resolve latent variable non-identifiability and mitigate posterior
collapse. Across empirical studies, we find that LIDVAE outperforms existing methods in mitigating
posterior collapse.



The latent variables of LIDVAE are guaranteed to be identifiable. However, it does not guarantee
that the latent variables and the parameters of LIDVAE are jointly identifiable. In other words, the
LIDVAE model may not be identifiable even though its latents are identifiable. This difference
between latent variable identifiability and model identifiability may appear minor. But the tractability
of resolving latent variable identifiability plays a key role in making non-identifiability a fruitful one
perspective of posterior collapse. To enforce latent variable identifiability, it is sufficient to ensure that
the likelihood p(x|z,0) is an injective function of z. In contrast, resolving model identifiability for
the general class of VAE remains a long standing open problem, with some recent progress relying
on auxiliary variables [23, 24]. The tractability of resolving latent variable identifiability is a key
catalyst of a principled solution to mitigating posterior collapse.

There are a few limitations of this work. One is that the theoretical argument focuses on the collapse
of the exact posterior. The rationale is that, if the exact posterior collapses, then its variational
approximation must also collapse because variational approximation of posteriors cannot “uncollapse”
a posterior. That said, variational approximation may “collapse” a posterior, i.e. the exact posterior
does not collapse but the variational approximate posterior collapses. The theoretical argument and
algorithmic approaches developed in this work does not apply to this setting, which remains an
interesting venue of future work.

A second limitation is that the latent-identifiable VAE developed in this work bear a higher computa-
tional cost than classical VAE. While the latent-identifiable VAE ensures the identifiability of its
latent variables and mitigates posterior collapse, it does come with a price in computation because
its generative model (i.e. decoder) is parametrized using gradients of a neural network. Fitting the
latent-identifiable VAE thus requires calculating gradients of gradients of a neural network, leading
to much higher computational complexity than fitting the classifical VAE. Developing computation-
ally efficient variants of the latent-identifiable VAE is another interesting direction for future work.
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