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ABSTRACT

Explainable molecular property prediction is essential for various scientific fields,
such as drug discovery and material science. Despite delivering intrinsic explain-
ability, linear models struggle with capturing complex, non-linear patterns. Large
language models (LLMs), on the other hand, yield accurate predictions through
powerful inference capabilities yet fail to provide chemically meaningful explana-
tions for their predictions. This work proposes a novel framework, called MoleX,
which leverages LLM knowledge to build a simple yet powerful linear model for
accurate molecular property prediction with faithful explanations. The core of
MoleX is to model complicated molecular structure-property relationships using
a simple linear model, augmented by LLM knowledge and a crafted calibration
strategy. Specifically, to extract the maximum amount of task-relevant knowledge
from LLM embeddings, we employ information bottleneck-inspired fine-tuning
and sparsity-inducing dimensionality reduction. These informative embeddings
are then used to fit a linear model for explainable inference. Moreover, we intro-
duce residual calibration to address prediction errors stemming from linear mod-
els’ insufficient expressiveness of complex LLM embeddings, thus recovering the
LLM’s predictive power and boosting overall accuracy. Theoretically, we provide
a mathematical foundation to justify MoleX’s explainability. Extensive experi-
ments demonstrate that MoleX outperforms existing methods in molecular prop-
erty prediction, establishing a new milestone in predictive performance, explain-
ability, and efficiency. In particular, MoleX enables CPU inference and accelerates
large-scale dataset processing, achieving comparable performance 300× faster
with 100,000 fewer parameters than LLMs. Additionally, the calibration improves
model performance by up to 12.7% without compromising explainability. The
source code is available at https://github.com/MoleX2024/MoleX.

1 INTRODUCTION

Molecular property prediction, aiming to analyze the relationship between molecular structures
and properties, is crucial in various scientific domains, such as computational chemistry and bi-
ology (Xia et al., 2024; Yang et al., 2019). Deep learning advancements have significantly improved
this field, showcasing the success of AI-driven problem-solving in science. Representative deep
models for predicting molecular properties include graph neural networks (GNNs) (Lin et al., 2022;
Wu et al., 2023b) and LLMs (Chithrananda et al., 2020; Ahmad et al., 2022). In particular, re-
cently developed LLMs have exhibited remarkable performance by learning chemical semantics
from text-based molecular representations, e.g., Simplified Molecular Input Line Entry Systems
(SMILES) (Weininger, 1988). By capturing the chemical semantics and long-range dependencies
in text-based molecules, LLMs show promising capabilities in providing accurate molecular prop-
erty predictions (Ahmad et al., 2022). Nevertheless, the black-box nature of LLMs hinders the
understanding of their decision-making mechanisms. Inevitably, this opacity prevents people from
deriving reliable predictions and insights from these models (Wu et al., 2023a).
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Figure 1: The workflow of MoleX includes: (1) using pre-trained ChemBERTa-2, (2) fine-tune it on
Group SELFIES (functional group-based molecular representation) with an information bottleneck-
inspired objective to produce embeddings with maximum task-relevant information, (3) extract high-
dimensional LLM embeddings and apply sparsity-inducing dimensionality reduction to remove re-
dundancy, (4) train a linear model using the preserved task-relevant information, (5) integrate the
linear model with a residual calibrator that corrects prediction errors for explainable inference.

Algorithm 1 Training and Inference of MoleX

Input: Dataset SD = {(x(i), y(i))} where x(i) are input
Group SELFIES, y(i) are molecular properties.

1: Split dataset: SD = Strain ∪ Seval ∪ Stest

2: for each x(i) in SD do
3: Extract n-gram feature x(i),ngram = N-gram(x(i))
4: Obtain embeddings e(i) = Extract(x(i),ngram)
5: Reduce dimension x̃(i) = EFPCA(e(i))
6: end for
7: Decompose x̃(i) into fH(x̃(i)) and fR(x̃

(i)):
8: fH(x̃(i)): explainable features used by h
9: fR(x̃

(i)): residual features used by r
10: Train explainable model h by minimizing:

h = argmin
h

∑
i∈Strain

L
(
h
(
fH

(
x̃(i)

))
, y(i)

)
11: for each i ∈ Seval do
12: Compute residual y(i)

r = y(i) − h(fH(x̃(i)))
13: end for
14: Train residual calibrator r by minimizing:

r = argmin
r

∑
i∈Seval

L
(
r
(
fR

(
x̃(i)

))
, y(i)

r

)
15: for each i ∈ Stest do
16: Compute the overall prediction:

ŷ(i) = Aggregate
(
h(fH(x̃(i))), r(fR(x̃

(i)))
)

17: end for

To narrow this gap, numerous explainable
GNN and LLM methods have been pro-
posed to identify molecular substructures
that contribute to specific properties (Xi-
ang et al., 2023; Proietti et al., 2024; Wang
et al., 2024). Among these, Lamole (Wang
et al., 2024) represents the state-of-the-
art LLM-based approach attempting to pro-
vide both accurate predictions and chem-
ically meaningful explanations—chemical
concepts-aligned substructures along with
their interactions. However, it still suf-
fers from several flaws: first, the atten-
tion weights used for explanations do not
correlate directly with feature importance
(Jain and Wallace, 2019); second, it is
model-specific due to varying implementa-
tions and interpretations of attention mecha-
nisms across models (Voita et al., 2019); and
third, the provided explanations are local,
struggling to approximate global model de-
cisions using established chemical concepts
(Liu et al., 2022). Therefore, it is imperative
to design a globally explainable method that
delivers accurate predictions and identifies
contributing substructures with their interac-
tions for molecular property predictions.

We propose a novel framework (illustrated
in Figure 1), dubbed MoleX, that leverages a
linear model augmented with LLM knowl-
edge for explaining complex, non-linear
molecular structure-property relationships, motivated by its simplicity and global explainability.
To capture these complex relationships, MoleX extracts informative knowledge from the LLM,
which serve as inputs fit to a linear model. Moreover, we design information bottleneck-inspired
fine-tuning and sparsity-inducing dimensionality reduction to maximize task-relevant information
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in LLM embeddings. Following prior work (Wang et al., 2024), we use Group SELFIES (Cheng
et al., 2023)—a text-based representation that partitions molecules into functional groups—as the
LLM’s input (as shown in appendix A.14). Group SELFIES enables LLMs to tokenize molecules
into units of functional groups, aligning with chemical concepts at the substructure level. To quan-
tify functional groups’ contributions, we extract n-grams from Group SELFIES and feed them into
the LLM, generating embeddings with semantically distinct functional groups for nuanced analysis.
Notably, MoleX’s simplicity enables global explanations by approximating model behavior across
the entire input space, rather than interpreting specific samples.

Although augmented with LLM knowledge, linear models still underfit complex non-linear rela-
tionships. To address this, we propose a residual calibration strategy that learns and corrects the
linear model’s residuals, iteratively bridging the gap between high-dimensional LLM embeddings
and linear model’s limited expressiveness by calibrating predictions. By iteratively driving residuals
toward target values, the residual calibrator calibrates errors and restores the original LLM’s pre-
dictive power. The linear model, augmented by LLM knowledge and a residual calibrator, achieves
excellent predictive performance while retaining the explainability of linear models. In molecular
context, the residual calibrator enables MoleX to iteratively correct mispredicted functional groups
and interactions, aligning predictions with domain expertise and leveraging chemically accurate
substructures as explanations. Our contributions are summarized as

1. We propose MoleX, which extracts LLM knowledge to build a simple yet powerful lin-
ear model that identifies chemically meaningful substructures with their interactions for
explainable molecular property predictions.

2. We develop optimization-based methods to maximize and preserve task-relevant informa-
tion in LLM embeddings and theoretically demonstrate their explainability and validity.

3. We design a residual calibration strategy to correct linear model’s prediction errors, im-
proving both predictive and explanation performance.

4. We introduce n-gram coefficients, with a theoretical justification, to assess individual func-
tional group contributions to molecular property predictions.

Experiments across 7 datasets demonstrate that MoleX achieves state-of-the-art classification and
explanation accuracy while being 300× faster with 100,000 fewer parameters than alternative base-
lines, highlighting its superiority in predictive performance, explainability, and efficiency.

2 RELATED WORK

Explainable Molecular Property Prediction. Given that molecules can be naturally represented
as graphs, a collection of explainable GNNs have been proposed to explain the relationship between
molecular structures and properties (Lin et al., 2021; Pope et al., 2019). However, these atom or
bond-level explanations are not chemically meaningful to interpret their sophisticated relationships.
Besides, through learning chemical semantics, the transformer-based LLMs can effectively capture
interactions among substructures (Wang et al., 2024) and thus demonstrated their potential in under-
standing text-based molecules (Ross et al., 2022; Chithrananda et al., 2020). However, the opaque
decision-making process of LLMs obscures their operating principles, risking unfaithful predictions
with severe consequences, especially in high-stakes domains like drug discovery (Chen et al., 2024).

Explainability Methods for LLMs. To obtain trustworthy output, various techniques were in-
troduced to unveil the LLM’s explainability. The gradient-based explanations analyze the feature
importance by computing output partial derivatives with respect to input (Sundararajan et al., 2017).
These methods, nevertheless, lack robustness in their explanations due to sensitivity to data per-
turbations (Kindermans et al., 2019; Adebayo et al., 2018). The attention-based explanations use
attention weights to interpret outputs (Hoover et al., 2020). Yet, recent studies challenge their reli-
ability as attention weights may not consistently reflect true feature importance (Jain and Wallace,
2019; Serrano and Smith, 2019). The perturbation-based explanations elucidate model behaviors by
observing output changes in response to input alterations (Ribeiro et al., 2016). However, these ex-
planations are unstable due to the randomness of the perturbations (Agarwal et al., 2021). To resolve
these issues, we extract informative embeddings from the LLM to fit a linear model for inference.
This approach leverages both the LLM’s knowledge and the linear model’s explainability, offering
reliable substructure-level explanations.
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3 PRELIMINARIES

Let G = {(g(i), y(i))} be the dataset consisting of molecular graphs g(i) and their corresponding
properties y(i). Our goal is to train a model f to map a molecule g to its property y, denoted as
f : g 7→ y. We first convert each g(i) into Group SELFIES, denoted as x(i) = {x(i)

1 , . . . , x
(i)

j(i)
},

where x
(i)
j is the j-th functional group. Specifically, f includes two modules: an explainable model

h and a residual calibrator r. We decompose f(x), dimensionality reduced LLM embeddings, into
fH(x) and fR(x), as features used by h and r, respectively. Specifically, fH(x) represents explain-
able features, capturing variance linked to the property y, while residual feature fR(x) captures the
remaining variance. These are projections of f(x) onto orthogonal subspaces, ensuring the contri-
butions of h and r are additive and independent. After h predicts, its residuals are fed into r, which
boosts performance without incurring any explainability impairment. To learn h and r, we freeze
the parameters of h and sequentially calibrate its mispredicted samples with the loss L:

min
h,r

E(x,y)∼D [L (h (fH(x)) + r (fR(x)) , y)] , (3.1)

where D is the training dataset. Adapting the approach by Sebastiani (2002), we use n-gram coeffi-
cients in the linear model to measure the contributions of decoupled functional groups to molecular
properties. Let the functional group xj takes the coefficient wj in the linear model; then its contribu-
tion score cj is computed as cj = wj · Embedding(xj). This allows us to quantify the contribution
of the j-th functional group to the property y (see our proof of the validity in appendix A.1). For
simplicity, we omit the superscript (i) in the following descriptions.

4 OUR FRAMEWORK: MoleX

As outlined in algorithm 1, MoleX operates in two stages: LLM knowledge extraction and LLM-
augmented linear model fitting. It extracts n-gram features, generates LLM embeddings, and applies
explainable dimensionality reduction. An explainable model h is trained, with a residual calibrator
r correcting its prediction errors. During inference, h’s predictions are calibrated by r, with both
models updating their parameters simultaneously to ensure accurate and explainable results.

4.1 LLM KNOWLEDGE EXTRACTION WITH IMPROVED INFORMATIVENESS

Fine-tuning. To enhance the pre-trained LLM’s understanding of functional group-based molecules,
we fine-tune it on Group SELFIES data. However, extracting maximally informative LLM embed-
dings to augment the linear model’s expressiveness is still challenging. We address this by inte-
grating the Variational Information Bottleneck (Alemi et al., 2022) into fine-tuning, encouraging the
LLM to generate embeddings with maximum task-relevant information, fully leveraging its knowl-
edge. Particularly, given Group SELFIES input x, properties y, and LLM embeddings e, we define
p0(e) as the prior distribution over e, and qθ(y | e) as the variational approximation to the condi-
tional distribution of properties given e. The mutual information between e and y is defined as:

I(e; y) = Ep(e,y)

[
log

p(e, y)

p(e)p(y)

]
= Ep(e,y)

[
log

p(y | e)
p(y)

]
,

and the mutual information between e and x is defined as:

I(e;x) = Ep(e,x)

[
log

p(e | x)
p(e)

]
= Ep(x)

[
DKL

(
pθ(e | x)

∥∥ p(e))] .
Since the marginal distribution p(e) is intractable, we approximate it with the prior p0(e). Under
this approximation, we use DKL

(
pθ(e | x)

∥∥ p0(e)) as a tractable surrogate for I(e;x), allowing
us to minimize the mutual information between e and x. Inspired by Kingma et al. (2015), we
approximate encoder pθ(e | x) by a Gaussian distribution. Let fµ

e (x) and fΣ
e (x) be neural networks

that output the mean and covariance matrix of latent variable e. Then, the encoder is given as:

pθ(e | x) = N
(
e
∣∣ fµ

e (x), f
Σ
e (x)

)
.
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Applying the reparameterization trick, we sample e as:

e = fµ
e (x) + fΣ

e (x)1/2 · ϵ, where ϵ ∼ N (0, I).

Putting all these together, we design our training loss as:

L(θ) =
∑

(x,y)∈SF

(
Epθ(e|x) [− log qθ(y | e)] + β ·DKL

(
pθ(e | x)

∥∥ p0(e))) , (4.1)

where β is the tuning parameter between compression and performance, qθ is the decoder, and
SF is the dataset used for fine-tuning. In particular, the first component, Epθ(e|x) [− log qθ(y | e)],
encourages the embeddings e to be informative about y by maximizing their predictive power. The
second component, β ·DKL (pθ(e | x) ∥ p0(e)), regularizes the embeddings to minimize redundant
information from x, effectively promoting compression.

In essence, this objective ensures the fine-tuned LLM generates embeddings e that capture property-
relevant information from y while compressing redundancy in x. Grounded in the information
bottleneck principle, it produces informative embeddings (see our proof in appendix A.2.)
Theorem 4.1. Let L(θ) be the loss defined in eq. (4.1). Under the assumptions of the reparame-
terization trick and the use of gradient descent, the optimization converges to a local minimum that
yields an informative representation e while retaining only relevant information from the task.

Embedding Extraction. To capture individual functional group contributions and contextual in-
formation, we extract n-grams from Group SELFIES. To ensure explainability, each n-gram is pro-
cessed individually by a functional group-level tokenizer, generating fixed-size embeddings. These
embeddings are aggregated into a single embedding that encodes the chemical semantics of all n-
grams and reflects the knowledge learned by the LLM during training and fine-tuning.

4.2 DIMENSIONALITY-REDUCED EMBEDDINGS FOR LINEAR MODEL FITTING

Dimensionality Reduction. As the aggregated n-gram embeddings are high-dimensional and noisy,
eliminating the redundancy in them becomes our new problem. Drawing inspiration from Lin et al.
(2016), we design an explainable functional principal component analysis (EFPCA) that leads to
effective dimensionality reduction. Accordingly, this preserves a compact yet informative feature
set for the linear model. We formulate this dimensionality reduction as an optimization problem
with a sparsity-inducing penalty, defined as:
Definition 4.1 (EFPCA). Let X(t) be a stochastic process defined on a compact interval [a, b]
with mean function µ(t) = E[X(t)]. Assume that X(t) has a covariance operator Ĉ derived from
the centered process X(t) − µ(t). The EFPCA seeks functions ξk(t) that maximize the variance
explained by the projections of X(t) while promoting sparsity for explainability. Specifically, for
each principal component indexed by k, the EFPCA solves:

max
ξk

{
⟨ξk, Ĉ ξk⟩ − ρk S(ξk)

}
subject to ∥ξk∥2γ = ∥ξk∥2 + γ∥D2ξk∥2 = 1 and ⟨ξk, ξj⟩γ = 0 for all j < k.

Here, ∥ξk∥2 =
∫ b

a
ξk(t)

2 dt is the squared L2 norm, D2 denotes the second derivative operator, so

D2ξk(t) =
d2ξk(t)

dt2
. The standard L2 inner product is ⟨f, g⟩ =

∫ b

a
f(t)g(t) dt, and the roughness-

penalized inner product is ⟨f, g⟩γ = ⟨f, g⟩ + γ⟨D2f,D2g⟩, where γ > 0 balances fit and smooth-
ness. The parameter ρk > 0 controls sparsity. The function S(ξk) =

∫ b

a
1{ξk(t)̸=0} dt measures the

support length of ξk(t). The index k specifies the principal components, with k = 1, 2, . . ..

Since ξk(t) is a linear combination of basis functions, we expand it using basis functions {ϕj(t)}pj=1

with local support on sub-intervals Sj ⊂ [a, b] as ξk(t) =
∑p

j=1 akjϕj(t), where ak =

(ak1, . . . , akp)
⊤ are coefficients to be determined. In this finite-dimensional setting, the support

length S(ξk) approximates to S(ξk) ≈
∑p

j=1 1{akj ̸=0}|Sj |, which is proportional to the ℓ0 ”norm”
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of ak, ∥ak∥0 =
∑p

j=1 1{akj ̸=0}, assuming equal |Sj |. The ℓ0 penalty ρk∥ak∥0 thus promotes spar-
sity by encouraging many coefficients akj to be zero when ρk is large, forcing ξk(t) to be zero
over extensive portions of [a, b]. Zero coefficients mean zero contributions from corresponding ba-
sis functions, so the optimization balances maximizing variance while minimizing the number of
nonzero coefficients, preserving significant components. As ϕj(t) have local support, nonzero akj
correspond to specific intervals Sj , resulting in ξk(t) being nonzero only over certain intervals.
Thus, EFPCA produces sparse, explainable principal components due to their localized structure,
highlighting regions where the data exhibits significant variation.

In summary, EFPCA offers a framework for explainable principal components, enabling effective
dimensionality reduction. By combining a sparsity-inducing penalty with the local support of ba-
sis functions, the resulting principal components are sparse and capable of capturing informative
features. Therefore, MoleX excludes irrelevant functional groups and identifies principal ones from
high-dimensional embeddings. We thus formulate the theorem as (see our proof in appendix A.3):
Theorem 4.2. The EFPCA produces sparse FPCs ξk(t) that are exactly zero in intervals where the
sample curves exhibit minimal variation. Consequently, the FPCs ξk(t) are statistically explanatory,
facilitating effective dimensionality reduction.

Linear Model Fitting. Applying dimensionality-reduced n-gram embeddings as features, we train
a logistic regression model for our classification tasks, which takes the form:

h(fH(x)) = σ
(
w⊤fH(x) + b

)
=

1

1 + e−(w⊤fH(x)+b)
, (4.2)

where σ is the sigmoid function, w ∈ Rn is the weight vector, b ∈ R is the bias term, and fH(x)
is the explainable features defined in eq. (3.1). The logistic regression is explainable since the
log-odds transformation establishes a linear relationship between the features and the target vari-
able, shown as log

(
h(fH(x))

1−h(fH(x))

)
= w⊤fH(x) + b. Differentiating with respect to a feature com-

ponent [fH(x)]j shows that each coefficient wj quantifies the impact of that feature on the log-

odds, shown as ∂
∂[fH(x)]j

log
(

h(fH(x))
1−h(fH(x))

)
= wj . Moreover, as fH is a linear transformation,

the chain rule relates changes in the original features to the log-odds, which can be expressed as
∂

∂xj
log

(
h(fH(x))

1−h(fH(x))

)
=

∑n
k=1 wkCkj . Thus, the linearity allows straightforward interpretation of

feature impact on the predictions, making logistic regression highly explainable (Hastie et al., 2009).

Residual Calibration. The final step of MoleX involves training a residual calibrator r. With the
parameters of the explainable model h frozen, the calibrator corrects mispredicted samples from h.
By optimizing the objective in eq. (3.1), prediction errors are iteratively fixed, progressively aligning
overall predictions with target values. Besides, to maintain explainability, the residual calibrator is
designed as a linear model. Specifically, we define the residual calibrator r with weights wr ∈ Rdr

corresponding to each residual feature and bias br:

r(fR(x)) = w⊤
r fR(x) + br.

Here, fR(x) represents the residual features obtained from the decomposition of the feature space
Rd into orthogonal subspaces such that f(x) = fH(x) + fR(x) with fH(x), fR(x) ∈ Rd. The
vector fH(x) contains the explainable features used by h and has non-zero components only in the
index set IH ⊆ {1, 2, . . . , d}, while fR(x) contains the residual features used by r and has non-zero
components only in the index set IR ⊆ {1, 2, . . . , d}, with IH∩IR = ∅ and IH∪IR = {1, 2, . . . , d}.
The orthogonality condition is given by ⟨fH(x), fR(x)⟩ = 0, which holds because the supports of
fH(x) and fR(x) are disjoint. Then, the overall prediction from h and r is given by:

ŷ(x) = w⊤
h fH(x) + bh︸ ︷︷ ︸

Explainable Model Contribution

+ w⊤
r fR(x) + br︸ ︷︷ ︸

Residual Calibrator Contribution

,

where wh, wr ∈ Rd are the weight vectors for h and r, respectively, with wh and wr having non-
zero components only in IH and IR, respectively. The orthogonality and linearity between fH(x)
and fR(x) guarantee that the contributions from h and r are additive and independent, making the r
explainable. Moreover, each feature’s impact on the prediction can be directly understood through

6
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the corresponding weights in wh and wr. Since fH(x) and fR(x) are orthogonal, the inner products
w⊤

h fR(x) = 0 and w⊤
r fH(x) = 0 vanish. This ensures that h and r do not influence each other’s

feature contributions, thus preserving the explainability of both models in the combined prediction.
Empirically, both h and r update their parameters during prediction error calibration to enhance
overall model performance. We formalize the following theorem (see our proof in appendix A.4):

Theorem 4.3. Let X and Y be the input and output spaces, respectively. Let f : X → Rd be a
pre-trained feature mapping, and let h : Rdc → Y be an explainable linear model operating on the
explainable features fH(x). The residual calibrator r : Rdr → Y , defined on the residual features
fR(x), captures the variance not explained by h in an explainable manner, thereby preserving the
overall model’s explainability.

Quantifiable Functional Group Contributions. As described in section 3, we measure the func-
tional group xj’s contributions to molecular property y using n-gram coefficients. The molecular
property y distributes its entire semantic information into individual functional groups xj . Due to the
linearity and additivity between xj and y, the scalar coefficient wj corresponding to xj in the linear
model weighs xj’s contributions to y in terms of chemical semantics. By taking the dot product of
wj and the embedding of xj , we obtain a projection length of the functional group in the direction
of weight vector, thus quantifying the impact of that functional group on the molecular property.
Quantitatively, the larger the absolute value of an n-gram coefficient, the greater the contribution
of the corresponding functional group to property. This metric provides a rigorous interpretation of
feature contributions, ensuring unbiasedness and significance through OLS estimation (see our proof
in appendix A.1). Using this method, we identify important functional groups from the LLM’s com-
plex embedding space. Furthermore, by incorporating n-gram coefficients and identified functional
groups into the molecular graph, we can determine whether identified functional groups bond with
each other and infer interactions among them. Based on this, MoleX reveals chemically meaningful
substructures along with their interactions to faithfully explain molecular property predictions.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets. We empirically evaluate MoleX’s performance on six mutagenicity datasets and one hepa-
totoxicity dataset. The mutagenicity datasets include Mutag (Debnath et al., 1991), Mutagen (Morris
et al., 2020), PTC family (i.e., PTC-FM, PTC-FR, PTC-MM, and PTC-MR) (Toivonen et al., 2003)
and the hepatotoxicity dataset includes Liver (Liu et al., 2015). To demonstrate that MoleX can
explain molecular properties using chemically meaningful substructures, we introduce the concept
of ground truth: substructures verified by domain experts to have significant impacts on molecular
properties. The ground truth substructures for six mutagenicity datasets are provided by Lin et al.
(2022); Debnath et al. (1991), while those for the hepatotoxicity dataset are provided by Cheng et al.
(2023). Further details are available in appendix A.5.

Evaluation Metrics. In this study, we evaluate the predictive performance, explainability perfor-
mance, and computational efficiency of MoleX. Particularly, we apply a specific metric to assess each
aspect of the model performance. For predictive performance, we define 1

I

∑I
i=1 I(y(i) = ŷ(i)) to

compute the classification accuracy. For explainability performance, we follow GNNExplainer

(Ying et al., 2019), treating explanations as binary edge classification and using AUC to measure
their accuracy. Noteworthily, as LLMs’ probabilistic distributions over large vocabularies are in-
compatible with AUC’s binary classification framework, we thus can not offer explanation accuracy
for LLMs. For computational efficiency, we evaluate the execution time for each method.

Baselines. To extensively compare MoleX with different methods, we utilize (1) GNN baselines,
including GCN (Kipf and Welling, 2016), DGCNN (Zhang et al., 2018), edGNN (Jaume et al.,
2019), GIN (Xu et al., 2018), RW-GNN (Nikolentzos and Vazirgiannis, 2020), DropGNN (Papp
et al., 2021), and IEGN (Maron et al., 2018); (2) LLM baselines, including Llama 3.1-8b (Dubey
et al., 2024), GPT-4o (Achiam et al., 2023), and ChemBERTa-2 (Ahmad et al., 2022); (3) explainable
model baselines, including logistic regression, decision tree (Quinlan, 1986), XGBoost (Chen and
Guestrin, 2016), and random forest (Breiman, 2001).
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Table 1: Classification accuracy over seven datasets (%). The best results are highlighted in bold.

Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

GCN (Kipf and Welling, 2016) 83.4± 0.4 77.2± 0.7 56.5± 0.3 62.7± 0.5 58.3± 0.2 52.1± 0.6 40.6± 0.3
DGCNN (Zhang et al., 2018) 86.2± 0.2 73.7± 0.5 56.1± 0.4 64.0± 0.8 61.8± 0.7 57.1± 0.6 45.4± 0.9
edGNN (Jaume et al., 2019) 85.4± 0.6 76.5± 0.3 58.7± 0.4 66.3± 0.7 65.2± 0.6 55.1± 0.8 43.7± 0.4
GIN (Xu et al., 2018) 86.1± 0.3 81.0± 0.5 63.4± 0.8 67.8± 0.6 66.5± 0.4 65.5± 0.4 45.2± 0.9
RW-GNN (Nikolentzos and Vazirgiannis, 2020) 88.2± 0.6 79.6± 0.2 60.5± 0.7 63.2± 0.5 61.1± 0.4 58.2± 0.6 42.9± 0.3
DropGNN (Papp et al., 2021) 90.3± 0.5 82.2± 0.3 61.4± 0.8 65.3± 0.6 62.9± 0.2 63.5± 0.7 46.1± 0.6
IEGN (Maron et al., 2018) 83.9± 0.4 79.3± 0.5 61.9± 0.4 60.1± 0.3 62.1± 0.4 60.7± 0.5 44.8± 0.8

LLAMA3.1-8b (Dubey et al., 2024) 67.6± 3.4 50.7± 3.6 49.6± 2.6 46.2± 3.8 42.0± 2.8 47.5± 2.8 42.2± 2.2
GPT-4o (Achiam et al., 2023) 73.5± 3.6 51.2± 0.5 52.7± 2.3 53.8± 2.9 48.8± 2.4 53.7± 1.8 44.5± 2.5
ChemBERTa-2 (Ahmad et al., 2022) 87.3± 2.7 77.6± 2.2 59.2± 1.9 64.8± 2.2 59.7± 2.8 59.8± 2.4 46.3± 2.3

Logistic Regression 58.3± 1.2 55.4± 0.8 48.4± 1.1 48.3± 1.0 48.7± 1.1 44.9± 1.0 32.5± 0.5
Decision Tree (Quinlan, 1986) 60.8± 1.7 58.6± 1.5 43.3± 1.0 46.1± 0.7 47.2± 0.7 43.5± 0.5 36.9± 0.8
Random Forest (Breiman, 2001) 64.6± 1.9 60.6± 1.5 46.9± 1.2 51.4± 1.5 51.3± 1.8 46.4± 1.1 34.8± 1.9
XGBoost (Chen and Guestrin, 2016) 66.9± 1.2 67.6± 1.4 51.4± 1.3 53.1± 1.4 55.8± 1.2 49.3± 2.1 38.5± 1.8

w/o Calibration 86.1± 2.2 74.4± 1.0 59.7± 2.1 68.9± 1.9 69.3± 2.7 61.2± 2.4 45.0± 2.0
w/ Calibration (Ours) 91.6± 2.0 83.7± 0.9 64.2± 1.4 74.4± 1.9 76.4± 1.8 68.4± 2.3 54.9± 2.4

Table 2: Explanation accuracy over seven datasets (%). The best results are highlighted in bold.

Methods Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

GCN (Kipf and Welling, 2016) 81.1± 0.2 76.4± 0.2 65.3± 0.4 67.8± 0.7 70.8± 0.8 65.1± 0.2 62.8± 0.2
DGCNN (Zhang et al., 2018) 86.3± 1.2 87.1± 0.5 63.0± 1.3 57.0± 1.2 63.0± 1.3 62.3± 0.8 67.5± 1.6
edGNN (Jaume et al., 2019) 94.7± 0.9 74.4± 0.7 65.9± 0.5 64.1± 0.5 66.6± 0.7 61.4± 0.7 63.2± 0.3
GIN (Xu et al., 2018) 92.1± 0.2 75.6± 0.3 67.5± 0.6 69.2± 0.5 68.5± 0.8 61.3± 0.5 68.3± 0.9
RW-GNN (Nikolentzos and Vazirgiannis, 2020) 89.9± 0.6 76.7± 0.2 65.8± 0.3 55.5± 0.3 66.9± 0.1 59.3± 0.2 64.7± 0.5
DropGNN (Papp et al., 2021) 83.4± 0.2 77.4± 0.3 68.4± 0.2 64.7± 0.4 63.2± 0.2 57.4± 0.7 64.5± 0.8
IEGN (Maron et al., 2018) 82.0± 0.2 77.5± 0.2 61.6± 0.6 62.6± 0.9 69.3± 0.7 59.1± 0.7 66.6± 0.6

Logistic Regression 59.2± 0.4 50.6± 0.9 54.4± 0.3 47.7± 0.8 49.9± 0.7 44.3± 0.7 53.8± 0.7
Decision Tree (Quinlan, 1986) 61.2± 0.2 55.7± 1.0 56.7± 0.8 46.4± 1.1 48.1± 0.9 39.9± 0.8 56.4± 1.0
Random Forest (Breiman, 2001) 66.7± 1.2 57.2± 1.2 59.9± 1.7 50.9± 1.2 55.0± 0.8 46.6± 1.1 60.7± 1.4
XGBoost (Chen and Guestrin, 2016) 65.2± 1.2 61.3± 1.1 58.5± 1.8 49.4± 1.8 51.6± 1.3 50.2± 0.8 69.0± 1.4

w/o Calibration 90.0± 0.9 77.7± 1.0 68.0± 1.7 66.6± 1.1 62.0± 1.5 67.5± 1.5 72.0± 2.0
w/ Calibration (Ours) 92.6± 1.7 89.0± 1.2 77.9± 1.5 79.3± 1.4 72.3± 1.7 73.4± 1.3 80.3± 1.4

Implementations. Our model is pre-trained on the full ZINC dataset (Irwin et al., 2012) using
ChemBERTa-2, with 15% of tokens in each input randomly masked. We then fine-tune this model
on the Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, PTC-MR, and Liver datasets (in Group
SELFIES). To evaluate model performance, we compute the average and standard deviation of each
metric for each method after 20 rounds of execution. Further details are provided in appendix A.6.

5.2 RESULTS

Predictive Performance. Table 1 presents a comparison of predictive performance across different
methods. MoleX outperforms all baselines, showing robustness and generalizability. By combining
LLMs with explainable models, it achieves 16.9% and 23.1% higher average accuracy than LLM
and explainable model baselines, proving the effectiveness of augmenting explainable models with
LLM knowledge. Moreover, by integrating residual calibration, MoleX raises the average classi-
fication accuracy by 7.0% across seven datasets. Notably, the classification accuracy of our base
model, logistic regression, improves by 27.8% after LLM knowledge augmentation and then by an
additional 5.5% after residual calibration on the Mutag dataset. Therefore, by maximizing task-
relevant semantic information in the LLM knowledge and employing a residual calibration strategy,
we enable a simple linear model to achieve predictive performance even superior to that of GNNs
and LLMs in molecular property predictions.

Explainability Performance. Table 2 summarizes the explanation accuracy of different methods.
Be encoding functional group-based molecules, MoleX achieves significantly better explainability
than baselines. Residual calibration further enhances explainability, improving average accuracy
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(1) Ground truth (2) OrphicX (3) GNNExplainer

(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

Benzene_1
Nitro_1

Nitro_0

Benzene_0

Figure 2: Explanation visualization of a molecule from the Mutag dataset (left), and
the contribution scores of the identified functional groups offered by MoleX (right).

by 8.8%. It achieves this by iteratively correcting mispredicted functional groups and leveraging
chemically accurate ones with their interactions to explain molecular properties. On the Mutag, the
explanation accuracy of logistic regression is boosted by 33.4% via LLM knowledge augmentation
and residual calibration. Interestingly, while others excel on simpler datasets like Mutag but falter on
complex ones, MoleX achieves 13.2% higher classification and 16.9% higher explanation accuracy
on Liver. It highlights MoleX’s capability of representing the complexity of molecular data.

Figure 2 visualizes the explanation for a randomly selected molecule from the Mutag dataset. The
ground truth, verified by domain experts, attributes mutagenicity to an aromatic functional group
(e.g., benzene ring) bonded with a group like nitro or carbonyl. MoleX accurately identifies this
substructure, faithfully explaining structure-property relationships. In contrast, other methods iden-
tify only individual atoms and bonds, failing to capture chemically meaningful substructures. For
example, PGExplainer highlights single atoms from multiple benzene rings, which cannot fully ex-
plain molecular properties. Notably, MoleX without calibration identifies extra elements beyond the
ground truth, emphasizing the importance of residual calibration for explanation accuracy. Contribu-
tion scores further highlight interactions among functional groups, with the benzene-nitro substruc-
ture receiving a high score, demonstrating its role in mutagenicity as an interacting entity. Additional
visualizations are provided in appendix A.11.

Computational Efficiency. Figure 3 displays the inference time of different methods. Unlike ap-
proaches relying on iterative neural network optimization, MoleX enables considerably faster infer-
ence. It outperforms GNNs (at least 15× faster) and LLMs (at least 120× faster) while achieving
higher classification and explanation accuracy. MoleX consistently has the lowest inference time
across all datasets, highlighting its scalability for real-world applications and large-scale molecular
data computations. Furthermore, it reduces GPU memory usage by avoiding iterative parameter
updates and storage required in optimization algorithms. This demonstrates how LLM knowledge
and residual calibration enhance the linear model’s inference power while maintaining explainability
and computational efficiency.

5.3 ABLATION STUDIES

In this section, we introduce ablation studies on the number of n in n-gram, principal components
in EFPCA, training iterations of the residual calibrator, and the selection of the base model.

Number of n in N-grams. We empirically evaluate the choice of n for n-grams. As shown in fig. 6,
model performance improves as n increases from 1 to 3, then declines for n between 4 and 9. Three
out of four datasets show optimal performance at n = 3. While larger n captures more contextual
semantics, including functional group interactions, excessive n introduces irrelevant information,
reducing utility. Further details are in appendix A.10.

Dimensionality Reduction via EFPCA. We use EFPCA to reduce the dimensionality of LLM em-
beddings, producing explainable and compact representations. As shown in fig. 5, cross-validation
across four datasets determines the optimal number of principal components, with components be-
yond 20 contributing minimally to molecular property prediction. Additional components increase
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Figure 3: Execution time across different methods over seven datasets. Ours achieves
the best inference efficiency.

complexity and reduce explainability. Further details are in appendix A.8. We also evaluate the
impact of dimensionality reduction. As shown in table 5, models using only 20 principal com-
ponents perform within 5% of models using all components, preserving task-relevant information
while eliminating redundancy. Additional details are provided in appendix A.9.

Training Iterations of the Residual Calibrator. Using the training objective in 3.1, we train a
residual calibrator to iteratively correct prediction errors. As shown in fig. 4, model performance
improves with more training iterations but declines past a threshold due to overfitting. This high-
lights the need for an appropriate stopping criterion to balance performance and prevent overfitting.
Empirically, the optimal number of iterations is 5. Further details and theoretical justification are
provided in appendix A.7.

Selection of the Base Model. Other than the logistic regression, we also assess the impact of LLM
augmentation using other statistical learning models as base models. Classification and explana-
tion accuracy are presented in table 6 and table 7, respectively. All models augmented with LLM
knowledge and residual calibration outperform GNNs and LLMs. More complex models, such as
XGBoost and random forest, achieve higher classification and explanation accuracy than simpler
models like LASSO. This demonstrates the effectiveness and robustness of LLM augmentation in
enhancing model performance. However, increased model complexity often reduces explainability.
To balance performance and explainability, we select logistic regression as our base model. Further
details are provided in appendix A.12.

6 CONCLUSION

This work presents MoleX, a framework leveraging LLM knowledge to train a linear model for ac-
curate molecular property predictions with chemically meaningful explanations. Using information
bottleneck-inspired fine-tuning and sparsity-based dimensionality reduction, MoleX extracts task-
relevant knowledge for explainable inference. Furthermore, a residual calibration module further
boosts performance by correcting prediction errors. During its inference, MoleX precisely reveals
crucial substructures with their interactions as explanations. Notably, MoleX enjoys the advantage
of LLM’s predictive power while preserving the linear model’s intrinsic explainability. Extensive
theoretical and empirical justification demonstrate MoleX’s exceptional predictive performance, ex-
plainability, and efficiency.
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A APPENDIX

A.1 PROOF OF N-GRAM COEFFICIENTS AS VALID CONTRIBUTION SCORES FOR
DECOUPLED N-GRAM FEATURES

In this section, we demonstrate that n-gram coefficients in the linear model can be interpreted as
feature contribution scores based on the statistical properties of the linear model.

Proof. Suppose E ∈ Rn×d is the matrix of n-gram embeddings, where each row e⊤i is the embed-
ding of the i-th n-gram. Let vij ∈ Rd be the embedding of the j-th feature in the i-th n-gram, and
suppose that each n-gram consists of m features (we assume m is a constant across all n-grams for
simplicity). Let cij denote the contribution score of the j-th feature in the i-th n-gram.

We formulate the following linearity assumptions to ensure the validity of using n-gram coefficients
as contribution scores:

• Linearity. The relationship between the input embeddings and the output is linear. Namely,
for all i,

yi = e⊤i w
∗ + ϵi,

where w∗ ∈ Rd is the true coefficient vector, and ϵi is the error term.

• N-gram Embedding Decomposition. Each n-gram embedding ei is the average of its
constituent feature embeddings:

ei =
1

m

m∑
j=1

vij .

• Ordinary Least Squares (OLS). The linear model is estimated using OLS by minimizing
the residual sum of squares:

ŵ = argmin
w

n∑
i=1

(yi − e⊤i w)2.

• Error Properties.

(a) Zero Mean Errors. The errors ϵi have zero mean given the embeddings:

E[ϵi | E] = 0.

(b) Homoscedasticity. The errors have constant variance given the embeddings:

Var[ϵi | E] = σ2,

where σ2 > 0 is a constant.
(c) No Autocorrelation. The errors are uncorrelated with each other:

Cov[ϵi, ϵj | E] = 0 for i ̸= j.

• Full Rank. The matrix E⊤E is invertible (i.e., E has full column rank).

We define the contribution score of each decoupled n-gram feature as follows:

Definition A.1. The feature contribution score cij for the j-th feature in the i-th n-gram is defined
as

cij = v⊤
ijŵ,

where ŵ is the estimated coefficient vector from the linear model.

Lemma A.1 (Prediction as Sum of Feature Contributions). Under Assumption A.1, the predicted
output for the i-th n-gram is

ŷi = e⊤i ŵ =
1

m

m∑
j=1

cij .
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Proof. Using the embedding decomposition and the definition of the contribution scores, we have

ŷi = e⊤i ŵ

=

 1

m

m∑
j=1

vij

⊤

ŵ

=
1

m

m∑
j=1

v⊤
ijŵ

=
1

m

m∑
j=1

cij .

This completes the proof.

Theorem A.2 (Contribution Scores Quantify Individual Feature Contributions). Under the Linear-
ity assumption (Assumption A.1), the feature contribution scores cij quantify the contributions of
individual features to the prediction ŷi.

Proof. From Lemma A.1, the predicted value ŷi is given as the average of the feature contribution
scores cij :

ŷi =
1

m

m∑
j=1

cij .

This equation shows that each feature’s contribution score cij directly influences the prediction ŷi.
Therefore, cij quantifies the contribution of the j-th feature in the i-th n-gram to the prediction.

This completes the proof.

Due to the statistical properties of the OLS estimator, we formulate the following theorem:

Theorem A.3 (Properties of the OLS Estimator). Under Assumptions A.1–A.1, the OLS estimator
ŵ satisfies:

1. Unbiasedness. E[ŵ | E] = w∗.

2. Variance-Covariance Matrix. Var[ŵ | E] = σ2(E⊤E)−1.

3. Consistency. As n→∞, ŵ P−→ w∗.

Proof. We prove each property as follows.

(1) Unbiasedness: The OLS estimator is given by

ŵ = (E⊤E)−1E⊤y.

Substituting y = Ew∗ + ϵ, we have

ŵ = w∗ + (E⊤E)−1E⊤ϵ.

Taking expectations conditional on E and using Assumption A.1(a),

E[ŵ | E] = w∗ + (E⊤E)−1E⊤E[ϵ | E] = w∗.

(2) Variance-Covariance Matrix: The variance conditional on E is

Var[ŵ | E] = Var
(
(E⊤E)−1E⊤ϵ | E

)
= (E⊤E)−1E⊤ Var[ϵ | E]E(E⊤E)−1

= σ2(E⊤E)−1,

using Assumptions A.1(b) and (c).
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(3) Consistency: As n→∞, under the Law of Large Numbers,

1

n
E⊤E

P−→ Q,

where Q is positive definite due to Assumption A.1. Additionally,

1

n
E⊤ϵ

P−→ 0,

since ϵ has zero mean and finite variance. Therefore,

ŵ = w∗ + (E⊤E)−1E⊤ϵ
P−→ w∗.

This completes the proof.

To validate the convergence of the contribution scores, we introduce the asymptotic normality of the
OLS estimator.

Corollary A.1 (Asymptotic Normality). If the error terms ϵ are independently and identically nor-
mally distributed with mean zero and variance σ2, then we have

√
n(ŵ −w∗)

d−→ N
(
0, σ2Q−1

)
,

where Q = limn→∞
1
nE

⊤E.

Proof. Under the given conditions, the Central Limit Theorem applies to E⊤ϵ. Specifically,

√
n(ŵ −w∗) = (E⊤E)−1E⊤ϵ =

(
1

n
E⊤E

)−1 (
1√
n
E⊤ϵ

)
.

As n→∞, 1
nE

⊤E
P−→ Q and 1√

n
E⊤ϵ

d−→ N (0, σ2Q). Therefore,

√
n(ŵ −w∗)

d−→ N
(
0, σ2Q−1

)
.

This completes the proof.

Lemma A.4 (Variance of ĉij). The variance of the estimated feature contribution score ĉij = v⊤
ijŵ

is
Var[ĉij | E] = σ2v⊤

ij(E
⊤E)−1vij .

Proof. Since ĉij is a linear function of ŵ, its variance conditional on E is

Var[ĉij | E] = Var
(
v⊤
ijŵ | E

)
= v⊤

ij Var[ŵ | E]vij

= σ2v⊤
ij(E

⊤E)−1vij ,

using the result from Theorem A.3(2).

This completes the proof.

Finally, we demonstrate the statistical significance of the feature contribution scores based on the
n-gram coefficients.

Theorem A.5 (t-Statistic for Feature Contribution Scores). Under the above assumptions, the t-
statistic for testing H0 : cij = 0 is given by

tij =
ĉij

SE[ĉij ]
=

v⊤
ijŵ

σ
√
v⊤
ij(E

⊤E)−1vij

.
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Proof. The standard error of ĉij is

SE[ĉij ] =
√
Var[ĉij | E] = σ

√
v⊤
ij(E

⊤E)−1vij .

Therefore, the t-statistic is

tij =
ĉij

SE[ĉij ]
.

Under the null hypothesis H0 : cij = 0 and assuming normality of the errors, tij follows a t-
distribution with n− d degrees of freedom.

This completes the proof.

From Theorem A.2, we have shown that the feature contribution scores cij represent the contribu-
tions of individual features to the predictions ŷi. The statistical properties outlined in Theorem A.3
and Lemma A.4 guarantee that these estimates are reliable and that their statistical significance can
be assessed.

Therefore, we conclude that each feature’s contribution to the prediction can be quantified by its
corresponding coefficient in the linear model, enabling us to assess the importance of individual
features. By mathematically linking the model coefficients to the feature contributions, we validate
the use of these coefficients as measures of feature importance. We also establish that using n-gram
coefficients derived from feature embeddings and model coefficients as contribution scores for input
features is valid and grounded in the statistical properties of the linear model.

By expressing the predicted output as the sum of individual feature contributions, we effectively
decouple the influence of each feature or functional group on the output or molecular property.
This decoupling allows us to isolate the effect of each n-gram feature or functional group x on the
molecular property y. Consequently, the contribution scores cij provide a quantitative measure of
how each functional group impacts the molecular property.

This completes the proof.

A.2 PROOF OF THEOREM 4.1 (DEMONSTRATION OF VIB-BASED TRAINING OBJECTIVES)

Proof. We demonstrate the Variational Information Bottleneck (VIB) framework, which aims to
learn a compressed representation Z of the input variable X that preserves maximal information
about the target variable Y while being minimally informative about X itself. This is achieved by
optimizing the objective function as follows:

LIB(θ) = I(Z;X)− βI(Z;Y )

where I(·; ·) is mutual information, β ≥ 0 is a tuning parameter, and θ represents the parameters of
the encoder. Our goal is to derive a tractable variational lower bound of this objective function that
can be optimized using stochastic gradient descent.

Definition A.2 (Mutual Information). For random variables X and Z with joint distribution
p(X,Z), the mutual information I(X;Z) is defined as

I(X;Z) = Ep(X,Z)

[
log

p(X,Z)

p(X)p(Z)

]
Alternatively, it can be expressed as

I(X;Z) = Ep(X) [DKL(p(Z | X)∥p(Z))]
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Definition A.3 (Kullback-Leibler Divergence). For probability distributions P and Q over the same
probability space, the KL divergence from Q to P is defined as

DKL(P∥Q) =

∫
p(x) log

p(x)

q(x)
dx = Ep(x)

[
log

p(x)

q(x)

]
Definition A.4 (Conditional Entropy). The conditional entropy H(Y | Z) is defined as

H(Y | Z) = −Ep(Z,Y ) [log p(Y | Z)]

We then formulate the problem. Let D = {(Xi, Yi)}Ni=1 be a dataset of input-output pairs sampled
from an unknown distribution p(X,Y ). The encoder pθ(Z | X) parameterizes the conditional
distribution of Z given X , and the decoder qϕ(Y | Z) parameterizes the conditional distribution
of Y given Z. Our objective is to optimize the parameters θ and ϕ by maximizing the Information
Bottleneck Lagrangian as follows:

LIB(θ, ϕ) = I(Z;Y )− βI(Z;X)

However, direct computation of I(Z;Y ) and I(Z;X) is intractable. Therefore, we derive variational
bounds to make the optimization objective tractable. We start by applying the following lemma:

Lemma A.6 (Variational Upper Bound on I(Z;X)). The mutual information I(Z;X) can be upper-
bounded as

I(Z;X) ≤ Ep(X) [DKL(pθ(Z | X)∥r(Z))]

where r(Z) is an arbitrary prior distribution over Z.

Proof. We start by expressing I(Z;X) as

I(Z;X) = Ep(X) [DKL(pθ(Z | X)∥p(Z))]

Since p(Z) =
∫
pθ(Z | X)p(X) dX is intractable, we introduce an arbitrary prior r(Z) and con-

sider:

I(Z;X) = Ep(X) [DKL(pθ(Z | X)∥r(Z))−DKL(p(Z)∥r(Z))]

Here, we utilize the identity:

DKL(pθ(Z | X)∥p(Z)) = DKL(pθ(Z | X)∥r(Z))−DKL(p(Z)∥r(Z))

since

Ep(X) [DKL(pθ(Z | X)∥p(Z))] = Ep(X) [DKL(pθ(Z | X)∥r(Z))]−DKL(p(Z)∥r(Z))

Since DKL(p(Z)∥r(Z)) ≥ 0, it follows that:

I(Z;X) ≤ Ep(X) [DKL(pθ(Z | X)∥r(Z))]

This completes the proof.

Lemma A.7 (Variational Lower Bound on I(Z;Y )). The mutual information I(Z;Y ) can be lower-
bounded as

I(Z;Y ) ≥ Ep(X,Y )

[
Epθ(Z|X) [log qϕ(Y | Z)]

]
−H(Y )
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Proof. By the definition of mutual information:

I(Z;Y ) = H(Y )−H(Y | Z) = H(Y ) + Ep(Z,Y ) [log p(Y | Z)]

Since p(Y | Z) is generally intractable, we introduce a variational approximation qϕ(Y | Z) and
leverage Jensen’s inequality:

Ep(Z,Y ) [log p(Y | Z)] ≥ Ep(Z,Y ) [log qϕ(Y | Z)]

Therefore:

I(Z;Y ) ≥ H(Y ) + Ep(Z,Y ) [log qϕ(Y | Z)]

Rewriting the expectation over p(Z, Y ) as an expectation over p(X,Y ) and pθ(Z | X), we have:

I(Z;Y ) ≥ H(Y ) + Ep(X,Y )

[
Epθ(Z|X) [log qϕ(Y | Z)]

]
Thus:

I(Z;Y ) ≥ Ep(X,Y )

[
Epθ(Z|X) [log qϕ(Y | Z)]

]
−H(Y )

This completes the proof.

Now we can formulate the Variational Information Bottleneck (VIB) objective. By combining Lem-
mas A.6 and A.7, we obtain a tractable objective function.

Proposition A.8 (Variational Upper Bound on the Information Bottleneck Objective). The Informa-
tion Bottleneck Lagrangian can be upper-bounded by the variational objective function:

L(θ, ϕ) = Ep(X,Y )

[
Epθ(Z|X) [− log qϕ(Y | Z)] + β DKL(pθ(Z | X)∥r(Z))

]
Proof. Starting from the original objective:

LIB(θ, ϕ) = I(Z;X)− βI(Z;Y )

Applying the upper bound of I(Z;X) from Lemma A.6 and the lower bound of I(Z;Y ) from
Lemma A.7, we get:

LIB(θ, ϕ) ≤ Ep(X) [DKL(pθ(Z | X)∥r(Z))]− β
(
Ep(X,Y )

[
Epθ(Z|X) [log qϕ(Y | Z)]

]
−H(Y )

)
= Ep(X) [DKL(pθ(Z | X)∥r(Z))] + βH(Y )− β Ep(X,Y )

[
Epθ(Z|X) [log qϕ(Y | Z)]

]
Since H(Y ) is constant with respect to θ and ϕ, we can ignore it for optimization purposes. Thus,
we define the variational objective function as:

L(θ, ϕ) = Ep(X,Y )

[
Epθ(Z|X) [− log qϕ(Y | Z)] + β DKL(pθ(Z | X)∥r(Z))

]
By minimizing L(θ, ϕ), we effectively minimize an upper bound on LIB(θ, ϕ), satisfying our opti-
mization goal.

This completes the proof.
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In our fine-tuning stage, since the expectation over p(X,Y ) is approximated by empirical samples
from the datasetD, and the expectations over pθ(Z | X) are approximated by Monte Carlo sampling
using the reparameterization trick. Thus, the loss function is expressed as (this is a generalized form
of our designed loss function shown in (4.1)):

L̂(θ, ϕ) = 1

N

N∑
i=1

(
−Epθ(Z|Xi) [log qϕ(Yi | Z)] + β DKL(pθ(Z | Xi)∥r(Z))

)
To demonstrate convergence, we formulate the following theorem:

Theorem A.9 (Convergence of Stochastic Gradient Descent). Under standard assumptions of
stochastic optimization (e.g., bounded gradients, appropriate learning rates, smoothness condi-
tions), stochastic gradient descent (SGD) converges to a local minimum of L̂(θ, ϕ).

Proof. While neural network training is non-convex, empirical and theoretical results in optimiza-
tion suggest that SGD can converge to critical points (which may be local minima, maxima, or saddle
points) provided the loss function is smooth (i.e., continuously differentiable) and the gradients are
Lipschitz continuous. Given that L̂(θ, ϕ) is composed of differentiable functions, and the gradients
with respect to θ and ϕ can be computed via backpropagation, convergence to a local minimum is
attainable under proper settings of the learning rate and optimization parameters.

This completes the proof.

We express the following corollary regarding our learned molecular representation after fine-tuning:

Corollary A.2 (Informative and Compressed Molecular Representation). At convergence, the
learned representation Z satisfies:

I(Z;Y ) is maximized, and I(Z;X) is minimized (subject to the tuning parameter β)

Proof. By optimizing the variational objective function L̂(θ, ϕ), we are effectively minimizing an
upper bound on I(Z;X) (Lemma A.6) and maximizing a lower bound on I(Z;Y ) (Lemma A.7).
The trade-off between the two objectives is controlled by β.

As β increases, more emphasis is placed on minimizing I(Z;X), leading to a more compressed
representation Z that preserves only the most task-relevant information about Y .

This completes the proof.

Specifically, as the first term in the loss function encourages the embeddings t to be highly predictive
of y, it intrinsically captures the task-relevant information. Meanwhile, the second term penalizes
the complexity of t by forcing it to be close to the prior p0(t), thereby excluding unnecessary in-
formation from x. These objectives ensure that the embeddings are both task-relevant and compact,
containing minimal spurious data. Additionally, through the derivation of variational bounds and
the construction of a tractable objective function, we have shown that minimizing L(θ, ϕ) allows
us to learn a molecular representation Z that captures maximal information about Y while being
minimally informative about X , in accordance with the Information Bottleneck principle. The op-
timization of L via SGD converges to a local minimum under standard optimization assumptions.
Therefore, we learn an informative embedding after fine-tuning the pre-trained LLM, and we thus
can extract the embedding with improved informativeness.

In conclusion, by framing the fine-tuning within the VIB framework, we derive this approach that
balances the essential information for property prediction y with the elimination of irrelevant details
from the input molecular representation x. This theoretical foundation ensures that our method
effectively focuses on extracting the most relevant features needed for accurate predictions.

This completes the proof.
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A.3 PROOF OF THEOREM 4.2 (EXPLAINABILITY OF EFPCA)

Proof. To demonstrate the explainability of the EFPCA method, we will show how the incorporation
of a sparsity-inducing penalty and the use of basis functions with local support lead to functional
principal components (FPCs) that are both sparse and localized, enhancing interpretability.

First, we formulate the EFPCA as an optimization problem. The EFPCA seeks to find FPCs ξk(t)
that maximize the variance of the projections of the centered stochastic process X(t) − µ(t) onto
ξk(t), while promoting sparsity for explainability. Specifically, for each principal component in-
dexed by k, we solve:

max
ξk

{
⟨ξk, Ĉ ξk⟩ − ρk S(ξk)

}
(A.1)

subject to the normalization constraint:

∥ξk∥2γ = ∥ξk∥2 + γ
∥∥D2ξk

∥∥2 = 1, (A.2)

and the orthogonality constraints:

⟨ξk, ξj⟩γ = 0 for all j < k. (A.3)

Here Ĉ is the empirical covariance operator of the centered process X(t) − µ(t), defined by Ĉf =∫ b

a
ĉ(t, s)f(s) ds, where ĉ(t, s) is the empirical covariance function. ⟨f, g⟩ =

∫ b

a
f(t) g(t) dt is the

standard L2 inner product. ∥f∥2 = ⟨f, f⟩ is the squared L2 norm. D2f =
d2f(t)

dt2
denotes the sec-

ond derivative of f(t). ∥D2f∥2 = ⟨D2f,D2f⟩ penalizes the roughness of f(t). γ > 0 is a smooth-
ing parameter balancing variance explanation and smoothness. ⟨f, g⟩γ = ⟨f, g⟩ + γ⟨D2f,D2g⟩ is
the roughness-penalized inner product. S(ξk) =

∫ b

a
1{ξk(t) ̸=0} dt measures the length of the support

of ξk(t), promoting sparsity. ρk > 0 controls the sparsity of ξk(t). k is the index of the principal
component, with k = 1, 2, . . ..

Then, we construct an expansion of ξk(t) using basis functions with local support. Let {ϕj(t)}pj=1 be
a set of basis functions that have local support on the interval [a, b], such as B-spline basis functions.
Each ϕj(t) is nonzero only over a subinterval Sj ⊂ [a, b]. We express ξk(t) as a linear combination
of these basis functions:

ξk(t) =

p∑
j=1

akjϕj(t), (A.4)

where ak = (ak1, ak2, . . . , akp)
⊤ is the coefficient vector for the k-th principal component. We

substitute the expansion (A.4) into the optimization problem (A.1). To express the objective function
and constraints in terms of ak, we compute the variance explained by ξk(t):

⟨ξk, Ĉ ξk⟩ =

〈
p∑

i=1

akiϕi, Ĉ
p∑

j=1

akjϕj

〉
=

p∑
i=1

p∑
j=1

akiakj⟨ϕi, Ĉϕj⟩.

We define the matrix Q ∈ Rp×p with entries Qij = ⟨ϕi, Ĉϕj⟩, so the variance term becomes
a⊤k Qak. The sparsity-inducing term S(ξk) approximates to:

S(ξk) ≈
p∑

j=1

1{akj ̸=0}|Sj |,
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assuming negligible overlap between the supports of different ϕj(t), where |Sj | is the length of the
support of ϕj(t). If the supports are of equal length or normalized, we can consider S(ξk) ∝ ∥ak∥0,
where ∥ak∥0 =

∑p
j=1 1{akj ̸=0} counts the number of nonzero coefficients.

Therefore, the objective function becomes:

Objective: a⊤k Qak − ρk∥ak∥0. (A.5)

We have the roughness-penalized norm is:

∥ξk∥2γ = ⟨ξk, ξk⟩+ γ⟨D2ξk,D2ξk⟩ = a⊤k Gak,

where G = G0+γG2, with G0 having entries (G0)ij = ⟨ϕi, ϕj⟩, and G2 having entries (G2)ij =
⟨D2ϕi,D2ϕj⟩. Thus, the normalization constraint becomes:

a⊤k Gak = 1. (A.6)

Additionally, the orthogonality constraints with respect to the roughness-penalized inner product are
given as:

⟨ξk, ξj⟩γ = a⊤k Gaj = 0, for all j < k.

Combining these, the optimization problem becomes:

max
ak

{
a⊤k Qak − ρk∥ak∥0

}
(A.7)

subject to:

a⊤k Gak = 1, and a⊤k Gaj = 0 for all j < k. (A.8)

The term ρk∥ak∥0 in the objective function is an ℓ0 penalty that promotes sparsity in the coefficient
vector ak. When ρk is large, the optimization favors solutions with fewer nonzero coefficients,
effectively selecting only the most significant basis functions. We define the index set of nonzero
coefficients:

Ik = {j | akj ̸= 0}. (A.9)

The principal component ξk(t) then simplifies to:

ξk(t) =
∑
j∈Ik

akjϕj(t). (A.10)

Since each ϕj(t) has support only on Sj , the support of ξk(t) is given by:

supp(ξk) =
⋃
j∈Ik

Sj . (A.11)

Thus, ξk(t) is exactly zero outside these intervals, and nonzero only over regions where significant
variation is captured by the selected basis functions. The localization of ξk(t) enhances explainabil-
ity in several ways:

• Identification of Significant Intervals. The nonzero coefficients akj correspond to basis
functions whose supports Sj cover intervals where the data exhibits important features.
This directly highlights regions of interest in the functional data.
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• Simplification of Interpretation. By reducing the number of nonzero coefficients, ξk(t)
becomes simpler and easier to interpret, focusing on key patterns in the data.

• Exclusion of Irrelevant Information. The sparsity induced by the ℓ0 penalty effectively
filters out noise and redundant information, ensuring that only meaningful variations are
considered.

Moreover, the roughness penalty γ∥D2ξk∥2 ensures that ξk(t) remains smooth within its support,
avoiding overfitting and maintaining the functional integrity of the principal components. The pa-
rameter γ balances the trade-off between fitting the data closely and keeping the principal compo-
nents smooth.

In the context of high-dimensional embeddings from LLMs, the EFPCA method effectively reduces
dimensionality while enhancing explainability. By promoting sparsity, it preserves only the most
informative features associated with the task, filtering out task-irrelevant information present in the
embeddings. The localized structure of ξk(t) allows for direct interpretation of the components in
terms of specific intervals or features in the data.

In conclusion, the incorporation of a sparsity-inducing ℓ0 penalty and the use of basis functions
with local support in the EFPCA framework lead to principal components that are both sparse and
localized. This results in FPCs ξk(t) that are nonzero only over intervals where the data contains
significant variation, making them intrinsically explainable. The optimization framework balances
variance maximization, sparsity, and smoothness, yielding components that facilitate effective di-
mensionality reduction while providing clear insights into the underlying functional data. In our
implementation, we maintain statistically significant features in an explainable manner, ensuring
that the dimensionality reduction aids in both performance and interpretability.

This completes the proof.

A.4 PROOF OF THEOREM A.10 (EXPLAINABILITY OF RESIDUAL CALIBRATION)

Proof. We demonstrate that the residual calibrator r is explainable when combined with the explain-
able linear model h, under the conditions of linearity and orthogonality.

Let X and Y be the input and output spaces, respectively. Let f : X → Rd be a pre-trained feature
mapping that extracts features from the inputs x ∈ X . We decompose the feature vector f(x) into
two components:

f(x) = fH(x) + fR(x),

where fH(x), fR(x) ∈ Rd are the explainable and residual features, respectively. The vector fH(x)
contains the explainable features used by the explainable model h, and has non-zero components
only in the index set IH ⊆ {1, 2, . . . , d}. Similarly, fR(x) contains the residual features used by the
residual calibrator r, and has non-zero components only in the index set IR ⊆ {1, 2, . . . , d}, with
IH ∩ IR = ∅ and IH ∪ IR = {1, 2, . . . , d}. To ensure orthogonality between fH(x) and fR(x), we
observe that their supports are disjoint, implying that their inner product is zero:

⟨fH(x), fR(x)⟩ =
d∑

i=1

[fH(x)]i · [fR(x)]i = 0,

since for each i, at least one of [fH(x)]i or [fR(x)]i is zero. The explainable model h : Rd → Y is
defined as a linear model operating on fH(x):

h(fH(x)) = w⊤
h fH(x) + bh,
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where wh ∈ Rd is the weight vector with non-zero components only in IH , and bh ∈ R is the bias
term. Similarly, the residual calibrator r : Rd → Y is defined as a linear model operating on fR(x):

r(fR(x)) = w⊤
r fR(x) + br,

where wr ∈ Rd is the weight vector with non-zero components only in IR, and br ∈ R is the bias
term. The overall prediction from h and r is given by:

ŷ(x) = h(fH(x)) + r(fR(x)) = w⊤
h fH(x) + bh + w⊤

r fR(x) + br.

We define the combined weight vector w = wh + wr ∈ Rd and combined bias b = bh + br, so the
prediction simplifies to:

ŷ(x) = w⊤f(x) + b.

Due to the orthogonality of fH(x) and fR(x), and the disjoint supports of wh and wr, the cross
terms vanish:

w⊤
h fR(x) =

∑
i∈IH

[wh]i[fR(x)]i = 0, w⊤
r fH(x) =

∑
i∈IR

[wr]i[fH(x)]i = 0,

since [wh]i = 0 for i /∈ IH and [fR(x)]i = 0 for i ∈ IH , and similarly for wr and fH(x). This
ensures that h and r do not influence each other’s feature contributions, thus preserving the ex-
plainability of both models in the combined prediction. To illustrate how r captures the variance not
explained by h in an explainable manner, consider that the residual calibrator r corrects mispredicted
samples from h by fitting to the residuals y − h(fH(x)). By optimizing the objective:

min
r

E(x,y)∼D [L (h(fH(x)) + r(fR(x)), y)] ,

where D is the data distribution and L is a suitable loss function (e.g., mean squared error), the
residual calibrator r learns to model the remaining variance in y that h does not capture. The
linearity of r ensures that its contribution to the prediction is transparent and explainable. Each
residual feature [fR(x)]i contributes to ŷ(x) proportionally to its corresponding weight [wr]i:

∂ŷ(x)

∂[fR(x)]i
= [wr]i.

Similarly, for the explainable features, we have:

∂ŷ(x)

∂[fH(x)]i
= [wh]i.

This allows us to directly understand each feature’s impact on the prediction. Furthermore, during
training, both h and r can update their parameters to enhance overall model performance. The
orthogonality condition allows us to optimize wh and wr separately. Considering a convex and
differentiable loss function ℓ(ŷ, y), the gradients with respect to wh and wr are:

∇wh
L = E(x,y) [ℓ

′ (ŷ(x), y) fH(x)] , ∇wrL = E(x,y) [ℓ
′ (ŷ(x), y) fR(x)] ,

where ℓ′ denotes the derivative of ℓ with respect to its first argument. Since fH(x) and fR(x) have
disjoint supports, the inner product fH(x)⊤fR(x) = 0, and thus the updates to wh and wr do not
interfere with each other. We formalize these observations in the following theorem:
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Theorem A.10. Let X and Y be the input and output spaces, respectively. Let f : X → Rd be a
pre-trained feature mapping, and let h : Rd → Y be an explainable linear model operating on the
explainable features fH(x). The residual calibrator r : Rd → Y , defined on the residual features
fR(x), captures the variance not explained by h in an explainable manner, thereby preserving the
overall model’s explainability.

Proof of Theorem A.10. As established, the combined model’s prediction is:

ŷ(x) = h(fH(x)) + r(fR(x)) = w⊤
h fH(x) + bh + w⊤

r fR(x) + br.

The orthogonality of fH(x) and fR(x), along with the disjoint supports of wh and wr, ensures
that the cross terms vanish, shown as w⊤

h fR(x) = 0, w⊤
r fH(x) = 0. Therefore, the combined

prediction simplifies to sum of individual contributions from h and r. To understand how r captures
the unexplained variance, consider the total variance of y decomposed into the variance explained
by h and the residual variance:

Var(y) = Var (h(fH(x))) + Var (y − h(fH(x))) + 2 Cov (h(fH(x)), y − h(fH(x))) .

However, since y−h(fH(x)) is uncorrelated with h(fH(x)) under certain conditions, the covariance
term becomes zero, leading to:

Var(y) = Var (h(fH(x))) + Var (y − h(fH(x))) .

The residual calibrator r models the residual y − h(fH(x)), aiming to minimize
Var (y − h(fH(x))− r(fR(x))). Since r is linear and operates on fR(x), and given that
fH(x) and fR(x) are orthogonal, the variance captured by r(fR(x)) does not overlap with that
captured by h(fH(x)). This additive property ensures that the total variance explained by the
combined model is:

Var (h(fH(x)) + r(fR(x))) = Var (h(fH(x))) + Var (r(fR(x))) ,

due to the independence arising from orthogonality. The explainability of r is preserved because:

• Transparency: The linearity of r allows us to interpret the contribution of each residual
feature directly through its weight in wr.

• Non-Interference: Orthogonality guarantees that r does not affect the interpretability of
h, as they operate on separate feature subsets.

• Predictive Enhancement: r enhances the predictive performance by capturing additional
patterns in the data that h alone cannot explain.

Moreover, from a functional analysis perspective, the projection operators PH and PR associated
with fH(x) and fR(x) satisfy PH + PR = Id, where Id is the identity matrix in Rd. This confirms
that the entire feature space is covered by the combined subspaces, and there is no loss of information
in the decomposition. Furthermore, considering the operator norms of h and r:

∥h∥op = sup
∥fH(x)∥=1

|h(fH(x))|, ∥r∥op = sup
∥fR(x)∥=1

|r(fR(x))|,

we can analyze the stability and boundedness of both models. The boundedness of h and r ensures
that small changes in the input features lead to proportionally small changes in the predictions, which
is desirable for model robustness and interpretability. Thus, r captures the variance not explained
by h in an explainable manner, preserving the overall model’s explainability. This completes the
proof of Theorem A.10. The final step of MoleX involves training the residual calibrator r. With
the parameters of the explainable model h frozen (or updated separately due to orthogonality), the
calibrator corrects mispredicted samples from h. By optimizing the objective:
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min
r

E(x,y)∼D [L (h(fH(x)) + r(fR(x)), y)] ,

prediction errors are iteratively fixed, progressively aligning overall predictions with target values.
The design of r as a linear model and its orthogonality with h ensure that explainability is maintained
while enhancing model performance. Moreover, each feature’s impact on the prediction can be
directly understood through the corresponding weights in wh and wr. Since fH(x) and fR(x) are
orthogonal, and their weight vectors wh and wr have disjoint supports, we have:

∂ŷ(x)

∂[f(x)]i
=

{
[wh]i, if i ∈ IH ,

[wr]i, if i ∈ IR.

This explicit form provides clear interpretability of the model’s predictions, allowing practitioners to
understand and trust the contributions of individual features. Thus, under the conditions of linearity
and orthogonality, the residual calibrator r preserves explainability when combined with h. The
combined model benefits from improved predictive accuracy while retaining transparency, satisfying
both performance and interpretability objectives.

This completes the proof.

A.5 DATASET DETAILS

We use six mutagenicity datasets and one hepatotoxicity dataset. The mutagenicity datasets are:
Mutag (Debnath et al., 1991), Mutagen (Morris et al., 2020), PTC-FM (Toivonen et al., 2003), PTC-
FR (Toivonen et al., 2003), PTC-MM (Toivonen et al., 2003), PTC-MR (Toivonen et al., 2003), and
the hepatotoxicity dataset is the Liver (Liu et al., 2015). Followed by Morris et al. (2020), we list
the summary statistics of these datasets as

Table 3: Summary statistics of seven datasets

Dataset Mutag Mutagen PTC-FM PTC-FR PTC-MM PTC-MR Liver

Samples 188 4337 349 351 336 344 587
Classes 2 2 2 2 2 2 3
Ground truth 120 724 58 49 51 61 187

Note: Ground truth refers to the number of annotated samples in each dataset.

The ground truth indicates the true molecular substructures that impact molecular properties. As ver-
ified by Lin et al. (2022); Debnath et al. (1991), the ground truth substructures for six mutagenicity
datasets consist of an aromatic group, such as a benzene ring, bonded with another functional group,
such as methoxy, oxhydryl, nitro, or carboxyl groups (note that ground truth exists only for the
mutagenic class). For the Liver dataset, the ground truth annotated by chemists are: fused tricyclic
saturated hydrocarbon moiety, hydrazines, arylacetic acid, sulfonamide moiety, aniline moiety, a
class of proton pump inhibitor drugs, acyclic bivalent sulfur moiety, acyclic di-aryl ketone moiety,
para oxygen and nitrogen di-substituted benzene ring, a relatively small number of com- pounds in
the expanded LiverTox dataset, halogen atom bonded to a sp3 carbon, and fused tricyclic structural
moiety. A detailed illustration of Liver’s ground truth are provided by Liu et al. (2015).

A.6 IMPLEMENTATION DETAILS

Our model is pre-trained on all data in the ZINC dataset (over 230 million compounds) using
ChemBERTa-2, with 15% (default setting) of tokens in each input randomly masked. We extract
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all functional groups in the ZINC dataset as the vocabulary to expand the LLM’s tokenizer so that
the fine-tuned LLM can better encode functional group-level inputs. We then fine-tune this model
on Mutag, Mutagen, PTC-FM, PTC-FR, PTC-MM, PTC-MR, and Liver datasets. The fine-tuning
is conducted on 1× NVIDIA RTX3090 GPU for about 3 hours. The detailed hyperparameters with
their values are given in table 4. For experiments on model performance, we employ chain-of-
thought prompting for the molecular property prediction tasks on LLMs.

Hyperparameter Value
learning rate 1e-5
batch size 128
epochs 30
weight decay 0.01
gradient clipping 1.0
warmup proportion 0.06
max sequence length 1024
optimizer AdamW
dropout rate 0.1
gradient accumulation steps 1
mixed precision training True

Table 4: Hyperparameters and their values we used for fine-tuning

We offer the pseudo code to explain our fine-tuning procedure as shown in algorithm 2.

A.7 DOES THE RESIDUAL CALIBRATOR IMPROVES MODEL PERFORMANCE BY TRAINING
WITH MORE ITERATIONS?

We employ the training objective in 3.1 to learn a residual calibrator that iteratively corrects samples
the linear model fails to predict accurately. We empirically study how training iterations influence
the overall model predictions. As shown in fig. 4, we visualize the model performance on the Mutag,
Mutagen, PTC-MR, and Liver datasets under different numbers of training iterations. As training
iterations increase, model performance improves significantly until reaching a threshold. This sug-
gests that more iterations on our designed loss lead to better performance. After the threshold, the
model overfits the data, resulting in performance degradation. Therefore, increasing the number
of training iterations helps improve model performance. Empirically, we found that 5 iterations
yield optimal performance. A theoretical demonstration shows that training with multiple iterations
increases model performance until a threshold, after which it declines, as follows.
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Figure 4: The model performance with different training iterations of the residual calibrator

Problem Setup. Given the objective the residual calibrator minimized during training:
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Algorithm 2 Fine-tuning LLM with Group SELFIES

Input: Fine-tuning dataset SF = {(xi, yi)} where xi are Group SELFIES, yi are molecular prop-
erties.

Input: Initialize ChemBERTa-2 model parameters θ.
Input: Prior distribution p0(t) = N (0, I).
Input: Learning rate η and trade-off parameter β.

1: while not converged do
2: for each mini-batch B ⊂ SF do
3: for each (xi, yi) ∈ B do
4: Compute encoder mean and covariance:

µi = fµ
e (xi), Σi = fΣ

e (xi)

5: Sample ϵi ∼ N (0, I)
6: Generate embedding using reparameterization trick:

ti = µi +Σ
1/2
i · ϵi

7: Compute decoder loss:

Ldec(i) = − log qθ(yi|ti)

8: Compute KL divergence:

LKL(i) = DKL (pθ(ti|xi) ∥ p0(t))

9: Compute total loss:

Li = Ldec(i) + β · LKL(i)

10: end for
11: Compute batch loss:

LB =
1

|B|
∑
i∈B
Li

12: Update model parameters:

θ ← θ − η · ∇θLB

13: end for
14: end while
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min
h,r

E(x,y)∼Strain [L (h(fH(x)) + r(fR(x)), y)] , (A.12)

where Strain is the empirical distribution of the training data and L : R × R → R≥0 is a convex,
differentiable loss function, e.g., the squared loss L(ŷ, y) = 1

2 (ŷ − y)2. We demonstrate that:
initially, as the residual calibrator r is trained, the model’s performance on unseen data improves, i.e.,
the generalization loss decreases. Beyond a certain threshold, further minimization of the training
loss leads to overfitting, where the generalization loss starts to increase, and prediction accuracy on
unseen data degrades.

Proof. We aim to demonstrate that learning the residual calibrator r with multiple training iterations
initially improves the model accuracy, but after a certain training threshold, continued minimization
of the training loss leads to overfitting, leading to the predictive accuracy on unseen data decline.

Let X and Y be the input and output spaces, respectively. Consider a feature extraction function f :
X → Rd that maps inputs to a d-dimensional feature space. We assume that f can be decomposed
into two components:

f(x) = fH(x) + fR(x),

where fH(x) ∈ Rdc represents the explainable features used by the explainable model h, and
fR(x) ∈ Rdr represents the residual features used by the residual calibrator r, with d = dc + dr.
We assume that the feature components fH(x) and fR(x) are orthogonal, which means:

⟨fH(x), fR(x)⟩ = 0 for all x ∈ X .

The explainable model h : Rdc → R is defined as a linear model:

h(fH(x)) = W⊤
h fH(x) + bh,

where Wh ∈ Rdc and bh ∈ R are the weights and bias of h. The residual calibrator r : Rdr → R is
also defined as a linear model:

r(fR(x)) = W⊤
r fR(x) + br,

where Wr ∈ Rdr and br ∈ R are the weights and bias of r. Due to the orthogonality of fH(x) and
fR(x), the overall prediction model becomes:

ŷ(x) = h(fH(x)) + r(fR(x)) = W⊤
h fH(x) +W⊤

r fR(x) + bh + br.

Our objective is to minimize the expected loss:

L(Wh,Wr, bh, br) = E(x,y)∼D [ℓ (ŷ(x), y)] ,

where ℓ (ŷ(x), y) is a convex and differentiable loss function, such as the squared loss ℓ(ŷ, y) =
1
2 (ŷ − y)2, and D is the data distribution. We begin by considering the training loss over a finite
training dataset {(xi, yi)}ni=1:

Ltrain(Wh,Wr, bh, br) =
1

n

n∑
i=1

ℓ (ŷ(xi), yi) .

Initially, when r is untrained or minimally trained, the model may be underfitting, and both the
training loss Ltrain and generalization loss Lgen are high. By updating Wr and br via gradient descent
to minimize Ltrain, we have the updates:
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W (t+1)
r = W (t)

r − η∇Wr
Ltrain(Wh,W

(t)
r , bh, b

(t)
r ),

b(t+1)
r = b(t)r − η∇brLtrain(Wh,W

(t)
r , bh, b

(t)
r ),

where η > 0 is the learning rate, and t denotes the iteration number. Since ℓ is convex and differen-
tiable, these updates ensure that the training loss decreases:

L(t+1)
train ≤ L(t)

train.

During this phase, r captures genuine patterns in the residual features fR(x) that are not explained
by h. Consequently, the generalization loss decreases as well:

L(t+1)
gen ≤ L(t)

gen,

where Lgen(Wh,Wr, bh, br) = E(x,y)∼D [ℓ (ŷ(x), y)] .

However, as training continues, Wr and br may begin to fit the noise or idiosyncrasies specific to the
training data, especially if the model has a high capacity (i.e., dr is large relative to n). The fitting
capacity of r allows it to minimize Ltrain further, but this comes at the cost of increasing complexity.

To formalize this, we consider the concept of Rademacher complexity Rn(H) for the hypothesis
classH associated with r. The Rademacher complexity provides a measure of the model’s ability to
fit random noise in the data. The generalization error can be bounded as:

Lgen(Wh,Wr, bh, br) ≤ Ltrain(Wh,Wr, bh, br) + 2Rn(H) + δ,

where δ is a constant dependent on the loss function and confidence level. As ∥Wr∥ increases
due to continued training, Rn(H) increases, reflecting the higher complexity of r. This leads to
circumstances that:

L(t+1)
train < L(t)

train but L(t+1)
gen > L(t)

gen for t ≥ t∗,

where t∗ is the iteration threshold beyond which overfitting occurs.

For linear models, the Rademacher complexity can be bounded by:

Rn(H) ≤
B∥Wr∥√

n
,

where B = supx∈X ∥fR(x)∥. As ∥Wr∥ increases, Rn(H) increases, leading to a wider general-
ization gap. This increase in model complexity without a corresponding increase in true predictive
power causes the model to generalize poorly on unseen data, despite the training loss decreasing.
This phenomenon is a bias-variance trade-off: the variance increases significantly due to overfitting,
outweighing any small reductions in bias achieved by further minimizing the training loss.

In conclusion, while initial training of the residual calibrator r improves model accuracy by reduc-
ing both the training loss and the generalization loss, continued training beyond a certain threshold
leads to overfitting. The residual calibrator begins to model noise in the training data, increasing its
complexity and causing the generalization loss to increase. This results in a decline in prediction
accuracy on unseen data, suggesting the importance of strategies such as early stopping or regular-
ization to prevent overfitting.

This completes the proof.
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A.8 HOW TO CHOOSE THE OPTIMAL NUMBER OF PRINCIPAL COMPONENTS?

To empirically determine the optimal number of principal components for our implementation, we
compare model performance metrics (classification accuracy and explanation accuracy) across four
datasets under different numbers of principal components. As shown in fig. 5, both metrics tend to
converge as the number of principal components exceeds 20. This indicates that when the number of
components surpasses 20, the contribution of additional components to molecular property predic-
tion becomes trivial. In this scenario, adding more components produces diminishing marginal bene-
fits while significantly increasing model complexity, which in turn reduces explainability. Therefore,
we choose the top 20 principal components to explain the variance in molecular properties, seeking
for a balance between performance and explainability.
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Figure 5: Optimal number of principal components

A.9 DOES EFPCA EFFECTIVELY WORKS?

In addition to the analysis in appendix A.8, we demonstrate that the dimensionality reduction by
EFPCA effectively preserves the most explanatory components. We compare the model perfor-
mance across seven datasets with and without dimensionality reduction. As shown in table 5, when
using only 20 PCs, the model performance improves by no more than 5% compared to using all
384 components (i.e., no dimensionality reduction). This indicates that EFPCA effectively pre-
serves the most task-relevant and important information in LLM embeddings while excluding noisy
components. These preserved components achieve comparable performance to the models with all
components while being significantly simpler and more explainable. This showcases the success of
our dimensionality reduction in maintaining model performance while enhancing explainability.

Dataset Classification Accuracy (%) Explanation Accuracy (%)

Mutag 94.9±1.6 96.1±3.0
Mutagen 86.4±1.4 91.2±1.6
PTC-FR 78.7±1.2 82.7±1.7
PTC-FM 68.1±1.5 81.1±2.0
PTC-MR 70.5±1.7 76.5±2.6
PTC-MM 80.9±2.7 75.3±2.2
Liver 57.3±1.6 83.8±1.9

Table 5: Model performance without EFPCA over seven datasets
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A.10 DOES THE CHOICE OF n IN N-GRAM MAKES A DIFFERENCE?

We compare the different values of n in n-gram via cross-validation based on our two evaluation
metrics, classification accuracy and explanation accuracy. The results in fig. 6 suggest an overall
trend that as n goes from 1 to 3, both classification accuracy and explanation accuracy improve; as
n goes from 4 to 9, both classification accuracy and explanation accuracy drop. On the four datasets
we used for experiments, three of them show that good model performance can be achieved when
n is taken to be 3. As n grows from small to large, it encourages the model to capture more con-
textual semantics, including interactions between functional groups, which allows for a significant
improvement in prediction. When n exceeds a certain threshold, irrelevant or even toxic information
emerges from the captured contextual information (i.e., irrelevant long-range dependencies), making
the overall model utility gradually decreases.
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Figure 6: The choice of n in n-gram on the Mutag, Mutagen, PTC-MR, and Liver datasets

A.11 MORE EXPLANATION VISUALIZATIONS

We randomly select one sample from each of the six remaining datasets and provide explanation
visualizations based on MoleX. Specifically, fig. 7, fig. 8, fig. 9, fig. 10, fig. 11, and fig. 12 display
the samples selected from the Mutagen, PTC-FM, PTC-MM, PTC-FR, PTC-MR, and Liver datasets,
respectively. On the left, we compare molecular substructures identified by different methods, with
ground truth showing expert-validated substructures influencing molecular properties. Red marks
on the molecular graph highlight key components identified by each method. We compare with
three baselines: OrphicX (Lin et al., 2022), GNNExplainer (Ying et al., 2019), and PGExplainer
(Luo et al., 2020), as well as MoleX with and without residual calibration (w/ denotes with and w/o
denotes without). On the right, we show MoleX’s n-gram contribution scores (0–100) for functional
groups, with higher scores indicating greater influence on molecular properties.

Taking fig. 7 as an example, MoleX precisely identifies the ground truth substructures for the sample
from the Mutagen dataset. Specifically, MoleX highlights the benzene ring bonded with an amino
group on the upper left as vital substructures to explain the molecule’s mutagenicity. The contri-
bution scores computed by MoleX indicate that the benzene ring has the highest contribution to
molecular properties, followed by the amino group. This aligns with the ground truth that a benzene
ring bonded with an amino group leads to mutagenicity (Lin et al., 2022; Debnath et al., 1991).
Therefore, MoleX accurately captures the important functional groups (i.e., the benzene ring and
the amino group) and the interaction between them, revealing their precise bonding. As the ground
truth indicates, only the bonded benzene and amino group together impact the molecular properties.
In contrast, other methods provide only atom or bond-level explanations and fail to discover im-
portant functional groups as a whole. They identify only a few atoms and bonds in the benzene or
amino group and fail to capture the interaction between these two functional groups. Consequently,
these atom or bond-level explanations are insufficiently faithful in explaining molecular properties,
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as individual atoms or bonds have limited impact on overall molecular properties (Mirghaffari et al.,
2021). The explanation visualizations for samples from other datasets also demonstrate MoleX’s
effectiveness in identifying important substructures and their interactions, aligning with chemical
concepts to explain molecular property predictions.

(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

(1) Ground truth (2) OrphicX (3) GNNExplainer

Benzene

Amino Chlorine_0

Figure 7: Explanation visualization of a molecule from the Mutagen dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).

(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

(1) Ground truth (2) OrphicX (3) GNNExplainer

Benzene_0
Nitro

Ether linkage

Figure 8: Explanation visualization of a molecule from the PTC-FM dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).

(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

(1) Ground truth (2) OrphicX (3) GNNExplainer

Benzene_0

Secondary
amine

Imino

Figure 9: Explanation visualization of a molecule from the PTC-MM dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).

A.12 CAN OTHER STATISTICAL LEARNING MODELS BE AUGMENTED WITH THE LLM
KNOWLEDGE?

In addition to the linear model, we augment various statistical learning models with the LLM knowl-
edge and test them on seven datasets. The classification accuracy and explanation accuracy are
shown in table 6 and table 7, respectively. Other linear models, such as ridge regression, LASSO,
and linear discriminant analysis, achieve comparable performance to MoleX and showcase the gen-
eralizability of LLM knowledge augmentation on linear models. Additionally, the polynomial re-
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(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

(1) Ground truth (2) OrphicX (3) GNNExplainer

Benzene_0Benzene_1

Tetramethy
-lammonium

Figure 10: Explanation visualization of a molecule from the PTC-FR dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).

(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

(1) Ground truth (2) OrphicX (3) GNNExplainer

Benzene_0
Amino

Vinyl

Figure 11: Explanation visualization of a molecule from the PTC-MR dataset (left),
and contribution scores of the identified functional groups offered by MoleX (right).

(4) PGExplainer (5) w/o Calibration (6) w/ Calibration (Ours)

(1) Ground truth (2) OrphicX (3) GNNExplainer

Hydrazino Benzene

Figure 12: Explanation visualization of a molecule from the Liver dataset (left), and
contribution scores of the identified functional groups offered by MoleX (right).

gression, as a more complicated linear model, achieves better performance compared to the simpler
ones shown above. For more complex models, such as tree-based and ensemble learning models, the
performance is even better, achieving incredible results across all seven datasets. These empirical
studies suggest that augmenting statistical machine learning models with LLM knowledge signif-
icantly improves performance. Moreover, compared to simple models, the models exhibit more
powerful data fitting capabilities become more predictive after the LLM augmentation. However,
model complexity generally trades off with explainability. Considering this, we select the logistic
regression as our base model due to its optimal balance between explainability and performance.

A.13 CLASSIFICATION ANALYSIS VIA CONFUSION MATRIX

As shown in fig. 13, we visualize the classification result via confusion matrix at a random round on
the Mutag and PTC-MR datasets. For Mutag, we achieve high precision in predicting the positive
class due to fewer false positives and high recall for the positive class, reflecting the model’s effec-
tiveness in identifying positive instances. Furthermore, the model shows a good balance between
precision and recall, with a low number of false positives and false negatives. For PTC-MR, the
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Table 6: Classification Accuracy across different machine learning models over seven datasets (%)

Method Mutag Mutagen PTC-FR PTC-FM PTC-MR PTC-MM Liver

Ridge Regression 90.7±1.2 84.1±1.3 72.4±2.0 65.2±2.0 69.8±1.4 77.5±1.5 58.1±1.6
LASSO 91.9±1.7 84.4±0.7 75.1±2.1 65.8±1.7 65.2±0.9 74.2±1.2 58.7±1.8
Linear Discriminant Analysis 89.9±1.9 83.6±1.2 75.2±1.9 65.7±1.9 69.3±1.8 76.8±2.0 57.7±1.3
Polynomial Regression 93.9±2.4 87.2±2.0 77.1±2.1 67.3±1.8 70.2±2.3 79.5±1.8 60.2±2.4
Support Vector Machine 93.9±1.6 86.6±1.5 73.4±1.9 69.3±2.6 69.5±2.0 78.6±1.3 61.5±2.9
Decision Tree 89.7±2.1 79.5±1.2 72.4±1.8 64.3±2.1 68.5±1.5 74.4±1.4 59.5±2.2
Random Forest 92.8±2.7 84.4±1.7 77.3±2.1 68.6±2.5 71.0±2.2 77.2±2.1 62.7±2.7
Gradient Boosting Machine 94.8±2.1 85.3±1.9 78.9±1.9 69.4±2.8 72.2±2.1 79.2±1.9 63.9±2.6
XGBoost 94.6±2.3 85.0±2.0 78.7±2.2 70.1±2.3 73.4±2.9 78.1±2.1 63.0±2.3
MoleX (Ours) 91.6±2.0 83.7±0.9 74.4±1.9 64.2±1.4 68.4±2.3 76.4±1.8 54.9±2.4

Table 7: Explanation Accuracy across different machine learning models over seven datasets (%)

Method Mutag Mutagen PTC-FR PTC-FM PTC-MR PTC-MM Liver

Ridge Regression 92.8±1.1 89.5±1.3 79.0±1.2 78.1±1.6 72.5±2.5 69.7±2.3 82.4±1.7
LASSO 92.3±1.5 89.6±0.9 76.9±1.8 81.2±1.9 70.4±2.3 70.7±2.1 81.3±1.8
Linear Discriminant Analysis 92.9±1.8 88.5±1.9 80.7±2.3 80.1±2.2 71.7±2.8 71.3±1.6 87.8±1.6
Polynomial Regression 94.3±2.1 91.9±1.6 80.1±1.9 82.9±1.9 79.3±2.3 75.4±1.7 81.0±2.2
Support Vector Machine 92.0±1.7 92.0±1.6 84.7±2.2 86.3±2.0 80.1±2.3 76.0±2.3 81.9±2.1
Decision Tree 87.6±1.9 89.1±1.5 78.6±2.0 80.7±1.6 73.1±2.1 74.2±1.8 76.0±1.8
Random Forest 93.2±1.9 90.5±1.8 82.1±2.1 84.2±2.2 74.2±2.0 74.5±2.1 81.2±2.0
Gradient Boosting Machine 92.7±2.2 92.4±1.5 82.9±2.3 85.2±2.4 73.9±2.9 77.7±2.6 84.5±2.4
XGBoost 95.6±1.8 90.7±1.7 84.0±2.2 82.0±2.3 74.4±2.7 77.4±2.2 86.2±2.5
MoleX (Ours) 92.6±1.7 89.0±0.9 79.3±2.6 77.9±2.6 73.4±2.8 72.3±3.0 80.3±2.5

model achieves lower precision compared to the Mutag due to a higher number of false positives.
The confusion matrix also suggests that the model struggles with false negatives and false posi-
tives, indicating areas for improvement. This analysis highlights the strengths and weaknesses of
the model, providing insight for further model refinement.
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Figure 13: The confusion matrix of classification results on the Mutag and PTC-MR datasets

A.14 AN ILLUSTRATION OF GROUP SELFIES

As illustrated in fig. 14, the 4-Nitroanisole (C7H7NO3) can be represented by Group SELFIES with
three functional groups separated by square brackets: a benzene ring, a nitro group, and a methoxy
group (different functional groups are displayed in different colors).

A.15 MORE EMPIRICAL EVALUATION ON THE ROBUSTNESS OF MoleX

As the molecular data is diverse, complex, and intrinsically noisy, we offer experiments on another
three datasets, covering more extensive domains/tasks in molecular property prediction to demon-
strate MoleX’s robustness. MoleX performs consistently excellent across all datasets and baselines,
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SMILES: C1=CC(=C(C=C1N)C(=O)O)O

Group SELFIES: [:0benzene][Ring2]
[:0methoxy][pop][Branch][:1nitro][pop]

Figure 14: Molecular representation of 4-Nitroanisole (C7H7NO3)

Table 8: Classification accuracy over three datasets (%). The best results are highlighted in bold.

Methods BBBP ClinTox HIV

GCN (Kipf and Welling, 2016) 78.5±0.8 78.2±1.0 72.1±0.8
DGCNN (Zhang et al., 2018) 80.0±0.9 79.0±1.1 73.2±1.4
edGNN (Jaume et al., 2019) 79.0±0.9 77.5±1.0 69.5±0.7
GIN (Xu et al., 2018) 82.0±0.7 80.9±0.9 74.0±1.3
RW-GNN (Nikolentzos and Vazirgiannis, 2020) 81.0±1.0 78.5±1.0 75.5±0.4
DropGNN (Papp et al., 2021) 83.0±0.9 81.0±0.8 64.5±0.6
IEGN (Maron et al., 2018) 85.5±1.0 80.1±0.5 76.0±0.9
LLAMA3.1-8b (Dubey et al., 2024) 69.0±2.5 52.0±2.7 56.0±1.5
GPT-4o (Achiam et al., 2023) 74.5±2.3 56.4±2.5 64.5±1.8
ChemBERTa-2 (Ahmad et al., 2022) 78.0±1.5 71.5±1.4 73.0±0.6
Logistic Regression 66.5±0.8 60.2±0.6 60.1±0.7
Decision Tree (Quinlan, 1986) 70.3±0.8 62.8±0.6 66.2±0.8
Random Forest (Breiman, 2001) 73.5±0.9 68.5±0.7 69.8±1.9
XGBoost (Chen and Guestrin, 2016) 74.2±0.8 67.8±0.8 70.2±1.2
w/o Calibration 80.6±1.3 85.9±0.7 75.6±1.3
w/ Calibration (Ours) 93.1±0.6 94.1±0.8 81.3±1.4

showcasing its effective generalizability. The results of classification and explanation accuracy are
shown in table 8 and table 9, respectively.

A.16 BROADER IMPACT

This study on explainable molecular property prediction using an LLM-augmented linear model of-
fers significant real-world applications. The efficiency of linear models enables fast inference on
large-scale molecular data, potentially accelerating drug discovery and materials design. Enhanced
by LLM-derived features, our method combines predictive accuracy, cost-effectiveness, and com-
putational efficiency, addressing critical needs in fields like healthcare and materials science. Its
high explanation accuracy provides faithful insights into structure-property relationships, fostering
adoption in high-stakes domains and supporting scientific discovery. Additionally, this balance of
accuracy, explainability, and efficiency serves as a template for developing trustworthy AI in other
fields, with potential impacts on personalized medicine and sustainable chemistry. However, respon-
sible implementation is crucial to mitigate risks, such as over-reliance on predictions or misuse in
harmful molecule design, emphasizing the need for expert validation and research into limitations.

A.17 LIMITATIONS AND FUTURE WORKS

The proposed explainable molecular property prediction method has some limitations and needs
further studies.

• Generalizability: Enhancing the generalizability of explainable models to deal with dif-
ferent molecular datasets across various chemical domains while preserving explainability
to structure-property relationships remains a persistent challenge.

• Impact of LLM choices: Though our empirical studies discuss the model performance of
Llama3.1 and GPT-4o on molecular property prediction, LLM quality is still a topic that
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Table 9: Explanation accuracy over three datasets (%). The best results are highlighted in bold.

Methods BBBP ClinTox HIV

GCN (Kipf and Welling, 2016) 75.1±0.4 74.6±0.6 67.6±0.6
DGCNN (Zhang et al., 2018) 77.6±1.1 79.2±0.5 73.8±1.1
edGNN (Jaume et al., 2019) 78.9±0.2 74.8±0.2 71.6±0.6
GIN (Xu et al., 2018) 80.4±0.7 77.1±0.8 70.3±0.8
RW-GNN (Nikolentzos and Vazirgiannis, 2020) 79.5±0.4 69.4±0.6 69.5±0.7
DropGNN (Papp et al., 2021) 72.6±0.6 76.7±0.2 74.4±0.3
IEGN (Maron et al., 2018) 80.8±0.7 79.1±0.4 69.5±1.2
Logistic Regression 67.9±0.3 61.9±0.2 61.8±0.6
Decision Tree (Quinlan, 1986) 68.4±1.5 66.8±0.8 64.0±1.2
Random Forest (Breiman, 2001) 73.3±1.1 68.3±1.7 65.7±1.3
XGBoost (Chen and Guestrin, 2016) 73.5±1.4 65.5±1.6 67.8±0.9
w/o Calibration 81.1±1.8 78.6±1.5 71.2±1.1
w/ Calibration (Ours) 90.8±1.6 92.8±1.9 82.4±1.2

deserves to be explored in-depth. Future studies may discuss how LLM choices impact
the augmented linear model, e.g., model performance change using weak LLMs or LLMs
without fine-tuning.

• Trade-off between complexity and performance: In pursuit of explainability, we employ
a linear model, which inherently risks underfitting when faced with complex data patterns.
Our preliminary experiments comparing MoleX with more sophisticated statistical learning
models show marginally better performance from these complex models. Future research
could explore the trade-off between model complexity and performance in the context of
LLM knowledge augmentation and investigate optimal balances between explainability and
performance.
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