
Under review as a conference paper at ICLR 2022

ANALYZING THE IMPLICIT POSITION ENCODING ABIL-
ITY OF TRANSFORMER DECODER

Anonymous authors
Paper under double-blind review

ABSTRACT

A common limitation of Transformer Encoder’s self-attention mechanism is that
it cannot automatically capture the information of word order, so one needs to
feed the explicit position encodings into the target model. On the other hand,
Transformer Decoder with the auto-regressive attention masks is naturally sensitive
to the word order information. In this work, based on the analysis of implicit
position encoding power of Transformer Decoder, we obtain the conditions that
at least two or more layers are required for the Decoder to encode word positions.
To examine the correlations between the implicit and explicit position encodings
respectively from the Transformer Encoder and Decoder, extensive experiments
conducted on two large Wikipedia datasets demonstrate that all kinds of explicit
position encoding mechanisms improve the performance of Decoder, but the gap
of learnable position embeddings is smaller than the others. To make use of the
power of implicit position encoding, we propose a new model, called DecBERT,
and fine-tune it on GLUE benchmarks. Experimental results show that (1) the
implicit position encoding ability is strong enough to enhance language modeling
and perform well on downstream tasks; and (2) our model accelerates the pre-
training process and achieves superior performances than the baseline systems
when pre-training with the same amount of computational resource.

1 INTRODUCTION

In recent years, Transformer model proposed by Vaswani et al. (2017) has supplanted the widely-used
LSTM (Hochreiter & Schmidhuber, 1997) as an indispensable component of many NLP systems.
There are two branches of model variant: Transformer Encoder and Transformer Decoder. The
Encoder-based Masked Language Models, e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and DeBERTa (He et al., 2020), achieve great success on many natural language understanding
benchmarks (e.g. GLUE (Wang et al., 2019b) and SuperGLUE (Wang et al., 2019a)). The Decoder-
based Auto-regressive Language Models such as GPT-family (Radford & Narasimhan, 2018; Radford
et al., 2019; Brown et al., 2020) have shown superior performances on natural language generation.
All of them utilize Multi-Head Self-Attention (MHA) mechanism (Vaswani et al., 2017). Since MHA
is designed as an order-invariant mechanism (Lee et al., 2019), Transformer Encoder without the help
of position encodings should share the same intuitions with the bag-of-word model. On the other
hand, in Transformer Decoder, the auto-regressive attention masks make the MHA different from that
of the Transformer Encoder. Specifically, Tsai et al. (2019) have proved that MHA with such attention
masks is not permutation equivalent, which indicates that Transformer Decoder is not a bag-of-word
model. Irie et al. (2019) find that the Transformer-based Language Models have lower perplexity
scores without position embeddings. Both of them suggest that compared with Transformer Encoder,
Transformer Decoder has implicit position encoding ability.

In this work, we present an analysis of Transformer Decoder’s implicit position encoding ability.
For brevity, we denote Transformer Encoder as Encoder and Transformer Decoder as Decoder. We
first conduct a theoretical analysis to provide the conditions that allow Decoder capable of encoding
the order of a word sequence. Then we draw a conclusion that two or more Decoder layers are
required to capture the order information. Compared with conventional Transformer model that
is generally associated with explicit position embeddings to trace word order, such as sinusoidal
position embeddings (Vaswani et al., 2017) and learnable position embeddings (Devlin et al., 2019),
we thus design extensive experiments to confirm that whether Decoder can perform well without

1



Under review as a conference paper at ICLR 2022

explicit position encodings. In consistent with Irie et al. (2019), our experimental results on language
modeling tasks confirm the implicit position encoding power of Decoder due to the comparable
performance achieved without explicit position encoding, and all kinds of explicit position encodings
can further improve the performance. We also notice that the improvement in terms of PPL is small
(about 0.2) when using the learnable position embeddings.

On the basis of the implicit position encoding and the associated conditions, we assume that the
position encoding of multi-layer Encoders could be further enhanced accordingly. To this end, we
propose a new model DecBERT by adding the auto-regressive attention masks into the multi-layer
Encoders, and we pre-train DecBERT as a masked language model. Experimental results show
that DecBERT without explicit position encodings have 77 times (353.97 vs. 4.59) lower valid
PPL than the baselines without position embeddings, indicating that our model retains the power
of position encoding. These experiments provide a thorough understanding of the strength of the
implicit position encoding ability. To further evaluate the influence of our proposed model in the
large-scale pre-training scenario, we pre-train our models with the same amount of data (160 GiB)
as RoBERTa. The experimental results demonstrate that our proposed DecBERT can accelerate the
pre-training process. Moreover, when pre-training with the same amount of computational footprint,
our model achieves superior performance on GLUE benchmarks.

The contributions of this paper are summarised as follows in four folds:

• We firstly make an analysis for the conditions of Decoder capable of encoding word positions.
Our analysis justifies that at least two or more embedding layers are required.

• We examine the close correlations between the implicit and explicit position encodings.
Experimental results confirm the implicit position encoding of Decoder which can be further
enhanced by all kinds of explicit position encodings.

• We provide a thorough understanding of the strength of the implicit position encoding. Ex-
perimental results indicate that such position encoding could enhance Encoder on language
modeling and also show comparable performance on downstream tasks.

• We propose a new model DecBERT utilizing the implicit position encoding. Our proposed
model can accelerate the pre-training process. When pre-training with the same amount
of resources, DecBERT achieves lower validation PPL and superior performances on most
GLUE tasks than the baseline systems.

2 BACKGROUND

Transformer is a neural network model proposed by Vaswani et al. (2017). It relies on the multi-head
self-attention (MHA) mechanism.

Multi-head Self-attention (MHA). MHA takes a sequence of vectors h = [h1, h2, ..., hn] as input.
Then they are transformed into three different vectors, query (Q), key (K) and value (V), by three
linear transformations and passed to the multi-head self-attention (MHA). The computation process
of a single head is:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (1)

where dk is the dimension of a single head. MHA repeats the same process for h heads. The outputs
of all heads are concatenated together and passed through a linear projection.

Position Embedding. Due to the order-invariance of MHA, a token embedding is added with a
position embedding as the input of Transformer Encoder or Decoder. In the paper of Vaswani et al.
(2017), they use a fixed sinusoidal PE. In the later work, Devlin et al. (2019) choose to use a
learnable PE matrix.

Transformer Encoder and Decoder. An Encoder layer consists of multi-head attention following
with a feed-forward network (FFN). The outputs of MHA and FFN are passed through a LayerNorm
(Ba et al., 2016) with residual connections (He et al., 2016). Then we stack multi-layer to form
a Transformer Encoder. The difference1 between Decoder and Encoder is that Decoder uses the

1We do not consider the Encoder-Decoder Seq2seq structure with cross attention here. Encoder and Decoder
are used independently.

2



Under review as a conference paper at ICLR 2022

auto-regressive attention masks to mask the attention values of the subsequent tokens so that Decoder
can only decode tokens relying on the tokens in the past.

3 CONDITIONS OF IMPLICIT POSITION ENCODING

Tsai et al. (2019) have proved that MHA with auto-regressive attention masks is not permutation
equivalent, but they do not provide the conditions that allow Transformer Decoder to encode word
order. Is a Decoder layer like an RNN? In this section, we fill such gap. We first present the definition
of permutation equivalence function by Lee et al. (2019):

Definition 1 Denote Π as the set of all permutations over [n] = {1, ..., n}. A function func : Xn →
Yn is permutation equivalent iff for any permutation π ∈ Π, func(πx) = πfunc(x).

Tsai et al. (2019) have proved that Decoder’s self-attention with the masks is not permutation
equivalent. However, this is not enough to prove that Decoder has position encoding ability. Here, we
need to give a definition of such ability of Decoder:

Definition 2 Suppose that we have a sequence of tokens: S = x1x2 · · ·xn,2 ∀n ∈ N∗, and a function
func(·) that takes a sequence as input and outputs the hidden state of each token. The output of xi is
denoted as func(S)i,∀i ∈ {1, ..., n}. We hypothesis that:

(i) func(·) has position encoding ability iff for any permutation π ∈ Π, func(x1, ..., xn)n 6=
func(π(x1, ..., xn−1), xn)n.3

(ii) func(·) has partial position encoding ability iff for any permutation π ∈ Π, func(x1, ..., xn)n
= func(π(x1, ..., xn−1), xn)n and func(x1, ..., xn) 6= func(π(x1, ..., xn−1), xn).

To verify the implicit position encoding ability, we then present the following proposition on the
Decoder:

Proposition 1 Transformer Decoder with two or more layers has position encoding ability.

Since the linear transformations in the self-attention mechanism, the feed-forward network (FFN)
layer, the residual connection and the layer normalization do not make any changes to our conclusions,
we omit all of them in our proof process.

Proof for Proposition 1. Suppose that the model input is a sequence of tokens: S = x1, ..., xn,∀n ∈
N∗. The Lth layer’s self-attention of Decoder is denoted as a function func(L), which is similar to
the above discussions. We first input these tokens into the static token embeddings layer.4 Then we
can get a sequence of vectors: W = w1, ..., wn which is the input of func(1). Since the static token
embeddings layer is order-invariant, for any permutation π ∈ Π over w1:n−1 = (w1, ..., wn−1), the
attention scorewT

i wn will not change. Then we have: func(1)(W )n = func(1)(π(w1:n−1), wn)n ∝∑n
i=1(wT

i wn)wi. However, for any permutation π ∈ Π, at least two vectors wi and wj of w1:n−1

are swapped. Since the Decoder uses the auto-regressive attention masks, the output hidden states
only rely on the vectors in the past. The past vectors lists of wi and wj are changed, which change the
output hidden states of vectors within wi:j . Then we have: func(1)(W ) 6= func(1)(π(w1:n−1), wn).
Following this, the first layer of Decoder has partial position encoding ability.

The input of the second Decoder layer is the output of the first layer. For any permutation
π ∈ Π over w1:n−1, the outputs of the first layer, func(1)(π(w1:n−1), wn)1:n−1, are not the
same, which leads to different attention score distributions between func(1)(π(w1:n−1), wn)i and
func(1)(π(w1:n−1), wn)n. Second layer’s output hidden states of wn will be different, too. Then we
have: func(2)(func(1)(W ))n 6= func(2)(func(1)(π(w1:n−1), wn))n. Thus we can conclude that
Decoder with two layers has position encoding ability.

For the case of decoder with more than two layers, the input hidden states now are order-variant.
These layers naturally have position encoding ability.

2In this and the following discussions, we assume that all the tokens are different.
3Since Decoder uses auto-regressive attention masks, we omit the tokens on the right of xn.
4We do not use the position embeddings.

3



Under review as a conference paper at ICLR 2022

4 IMPLICIT AND EXPLICIT POSITION ENCODINGS

Based on the obtained conditions of Decoder’s implicit position encodings ability, we further analyze
the correlations between implicit and explicit position encodings. Previous studies Irie et al. (2019)
find that Transformer Decoder on Language Modeling achieve lower perplexity scores without
position embeddings. In this section, we design extensive experiments to confirm that whether
Decoder can perform well without explicit position encodings. If not, is the performance gap
large? To this end, we specifically focus on the task of language modeling for English and Chinese,
respectively.

4.1 EXPLICIT POSITION ENCODINGS MEHOTDS

To compare the effects of different explicit position encodings methods, we follow the same settings
proposed in Dufter et al. (2021) that divide all methods into three approaches:

Adding Position Embeddings. Add position embeddings to the input before it is fed into the model.
We use two commonplace methods in our experiments: the learnable position embeddings (Devlin
et al., 2019), denoted by Learnable-PE and the sinusoidal position embeddings (Vaswani et al., 2017),
denoted by Sinusoidal-PE.

Modifying Attention Matrix. Directly modify the attention matrix with position information. We
use a simple method proposed by Dufter et al. (2020). They use a bias term to model the interaction
between every two positions and use this term to adjust the raw attention score arawij :

aij = arawij + βAdd
ij . (2)

We call their methods as additive position interaction encodings (Add-PIE). The reason why we
choose this method is that it only contains partial position information. For two positions i and j,
the bias term βij only models the relation between these two positions. If we shuffle the word order
between these two positions, βij will not change. If Decoder with this method still performs well, it
will further reveal the strength of the implicit position encoding. In addition, we also modify their
method to replace the addition with multiplication:

aij = arawij βMul
ij . (3)

We call this as multiplication position interaction encodings (Mul-PIE). Though one can find that
they are interchangeable:

arawij + βij = arawij

(
1 +

βij
arawij

)
, (4)

their optimization processes are different. The gradient of Mul-PIE is arawij . It is controlled by the
raw attention weight, which means that the optimization process of Mul-PIE is adaptive. However,
the gradient of Add-PIE is a fixed value 1 which is independent with arawij . We believe that this will
make it harder to find a suitable value to adjust the raw attention weight. In different layers, we use
different PIE. For Mul-PIE, all the bias terms are initialized as 1. For Add-PIE, all the terms are
initialized as 0, so these two methods have the same effects in the early training stage.

Integration. Combine the former two approaches together. (1) Learn+Mul: Decoder uses learn-
able position embeddings and Mul-PIE together. (2) Sin+Mul: Decoder uses sinusoidal position
embeddings and Mul-PIE together. (3) Learn+Add: Decoder uses learnable position embeddings and
Add-PIE together. (4) Sin+Add: Decoder uses sinusoidal position embeddings and Add-PIE together.

4.2 EXPERIMENTS SETUP

Data. We use two datasets in our experiments. The first one is the WikiText-103 (Merity et al.,
2017). We train and evaluate our language models on the standard splits of the WikiText-103, which
contains 1.8M sentences for training and 3.76k sentences for evaluation. The second one is the
Chinese Wikipedia which contains about 9.28M sentences. We randomly select 34k sentences for
evaluation and 9.25M for training. We use Fairseq (Ott et al., 2019) to pre-process all the data into
the binary files. All the English data is tokenized by SentencePiece tokenizer (Kudo & Richardson,
2018), which is the same as RoBERTa. All Chinese data is tokenized by character.

4



Under review as a conference paper at ICLR 2022

Basic Model. Our basic model is an 8-layer Transformer Decoder with 768 embedding size, 3072
feedforward layer hidden size, 12 attention heads and GELU activation function (Hendrycks &
Gimpel, 2020), which is a smaller version of GPT and has 95M trainable parameters for English
model and 77.5M for Chinese model.5 We find that if we use a standard 12-layer GPT, the number
of trainable parameters will be higher than the number of tokens in the WikiText-103 dataset. This
has a risk to cause over-fitting, so we choose to use an 8-layer model. We do not use any position
encodings in this model and denote it as No-PE. All variants in our experiments are based on it.

Training. All models are trained with Fairseq. The training objective is the Auto-regressive Language
Modeling objective. We use a batch size of 128 and train for 100k steps, optimized by Adam (Kingma
& Ba, 2015). We also use the polynomial learning rate decay with 10k warmup steps. All models use
the same hyper-parameters. We list the details in the Appendix A. We use two NVIDIA A100 40GB
GPUs to train each model. For the WikiText-103, it costs about 10 hours per model. For the Chinese
Wikipedia, it costs about 8.5 hours per model.

4.3 RESULTS AND ANALYSIS

Models WikiText-103 Chinese Wiki
W/o any position encodings
No-PE 23.52 12.96
Adding position embeddings
Learnable-PE 23.37 12.75
Sinusoidal-PE 22.95 12.46
Modifying Attention Matrix
Add-PIE 23.36 12.71
Mul-PIE 22.92 12.33
Integration
Learn+Add 23.23 12.58
Sin+Add 22.83 12.35
Learn+Mul 22.99 12.29
Sin+Mul 22.58 12.12

Table 1: Transformer Decoders perplexity (PPL) on
WikiText-103 and Chinese Wikipedia validation sets.
Bold indicates the lowest PPL of each task.

Table 1 shows the perplexity (PPL) scores
of Transformer Decoders with different posi-
tion encodings on WikiText-103 and Chinese
Wikipedia validation sets.

With or Without Position Encodings. From
Table 1, we find that No-PE still can per-
form well, which is only about 0.2 higher
than Learnable-PE. This from the side reveals
the strength of the implicit position encod-
ing. Besides, we still can find that all kinds of
explicit position encodings can improve the
performance of Decoder.

PIE vs. Position Embeddings. Though PIE
only contains partial position information, we
can still find that the Mul-PIE outperforms
the Sinusoidal-PE and the Add-PIE outper-
forms the Learnable-PE. This partial position
information is more helpful for Decoder than
the position embeddings, which also from the
side proves the strength of the implicit posi-
tion encoding.

Additive vs. Multiplicative PIE. Table 1 indicates that the Mul-PIE outperforms the Add-PIE,
which corroborates our hypothesis that the adaptive optimization process can help Mul-PIE find
more suitable bias terms to adjust the raw attention weights. When the training step is less than
20k, the valid PPL scores of Mul-PIE are much lower than Add-PIE. This reveals that the adaptive
optimization process makes Mul-PIE faster and easier to find suitable values to adjust arawij in the
early training stage. Though the differences become smaller after 20k steps, the PPL scores of
Mul-PIE are still lower than Add-PIE in the whole training process.

Combining PIE and Position Embeddings. We use PIE and position embeddings together to see
whether this can further improve Decoder’s performance. Table 1 shows that combining these two
techniques, Decoder performs better than only using position embeddings. Sin+Mul achieves the
lowest PPL among all models.

5 STRENGTH OF IMPLICIT POSITION ENCODING

In Section 3–4, we have learned about the conditions of implicit position encoding and the relations
with explicit position encodings. However. whether such results can help us create better pre-trained

5The Chinese vocabulary size is smaller than English, so the Chinese model has fewer parameters.

5



Under review as a conference paper at ICLR 2022

language models remains unexplored. In this section, we introduce a new model modification, called
DecBERT to make use of the implicit position encoding ability of the Decoder layers.

5.1 OUR PROPOSED APPROACH

We introduce two new models to make use of the power of the implicit position encoding. Since
we have proved that Decoder with two or more layers has position encoding ability in section 3, we
choose to use two Decoder layers to design our models:

DecBERT-Same: This model has a similar structure as RoBERTa-base, but we use the auto-regressive
attention masks to change the first two Encoder layers to two Decoder layers with the same direction
(from left to right). Then model has 10 Encoder layers and 2 Decoder layers. As a result, its first two
layers are sensitive to word order by design;

DecBERT-Diff: This model has a similar structure as DecBERT-Same, but the second Decoder layer
has the opposite direction (from right to left) as the first one. As a result, this design can help the
model gain more information from both directions.

In Section 4, we show that the explicit position encodings are helpful for Decoder, so both of our
models have two versions, with or without learnable position embeddings.6 One would think that
DecBERT is similar to Transformer with RNN layer (Neishi & Yoshinaga, 2019). We make it clear
that DecBERT has the same structure as RoBERTa and both of them require the same amount of
computational time, which is much faster than Transformer+RNN.

The baseline model has the same structure as RoBERTa-base which is a 12-layer Encoder with 768
embedding size and 12 attention heads. We denote it as RoBERTa-reImp. To analyze the importance
of position information, we also add another baseline model, which is the same as the former one, but
without any position encodings.

5.2 EXPERIMENTS SETUP

Models W/ PE Valid PPL
Baseline
RoBERTa-reImp False 353.97
RoBERTa-reImp True 4.28
Ours (w/o position embeddings)
DecBERT-Same False 4.59
DecBERT-Diff False 4.59
Ours (w/ position embeddings)
DecBERT-Same True 4.12
DecBERT-Diff True 4.07

Table 2: The validation set perplexity of all models.
(W/ PE = with position embeddings)

We pre-train all models from scratch similar to
RoBERTa-base with Fairseq. The pre-training
data is the English Wikipedia Corpus. We ran-
domly select 158.4M sentences for training and
50k sentences for validation. We tokenize it
with the same method as RoBERTa-base. The
pre-training objective is the Masked Language
Modeling objective. We use a batch size of 256
and train for 200k steps, optimized by Adam.
All models use the same hyper-parameters. We
list the details in the Appendix A. We use four
NVIDIA A100 40GB GPUs to pre-train each
model, costing about 34.5 hours per model.

We fine-tune our models with seven tasks of
GLUE benchmark (Wang et al., 2019b), includ-
ing SST-2 (Socher et al., 2013), QNLI (Rajpurkar et al., 2016), MNLI (Williams et al., 2018),
QQP,7 MRPC (Dolan & Brockett, 2005), RTE8 and STS-B (Cer et al., 2017). All fine-tuning
hyper-parameters details are listed in the Appendix A.

5.3 RESULTS AND ANALYSIS

Table 2 shows the perplexity of all the systems on the validation set. We observe that our proposed
models not only reveal the strength of implicit position encoding, but achieves superior performances.

6We also try to use position interaction encodings (PIE), but we find that PIE’s parameters keep unchanged.
We give the reasons in the Appendix C.

7https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
8https://aclweb.org/aclwiki/Recognizing Textual Entailment

6



Under review as a conference paper at ICLR 2022

Models SST-2 QNLI QQP RTE MNLI-m/mm MRPC STS-B Avg.
Baseline (w/ position embeddings)
RoBERTa-reImp 89.56 89.24 90.14 64.40 80.14/80.62 86.60 86.22 83.37
Ours (w/o position embeddings)
DecBERT-Same 89.58 89.50 90.16 62.68 79.56/80.42 85.88 86.58 83.05
DecBERT-Diff 90.30 88.86 90.28 59.28 79.78/80.78 86.08 86.06 82.68
Ours (w/ position embeddings)
DecBERT-Same 90.12 89.18 90.32 64.78 80.48/80.64 86.24 86.34 83.51
DecBERT-Diff 90.78 89.56 90.08 65.98 80.92/81.26 85.86 86.24 83.84

Table 3: Different models’ performance on the dev sets of GLUE benchmark. All results are averaged
over five different random seeds (1, 2, 3, 4 and 5). MNLI-m is the matched version and MNLI-mm is
the mismatched version. All tasks except STS-B use accuracy as their evaluation metrics. STS-B
uses the Spearman rank correlation. The results are reported as r× 100. Bold indicates the best score
for each task.

0 2000 4000 6000 8000 10000 12000 14000 16000
step

4

6

8

10

12

14

16

tra
in

in
g 

lo
ss

Training loss of the first 16k steps
RoBERTa-reImp w/o PE
RoBERTa-reImp w/ PE
DecBERT-Diff w/ PE

(a) The pre-training loss of the first 16k steps.

80000 100000 120000 140000 160000 180000 200000
step

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

tra
in

in
g 

lo
ss

Training loss of the last 120k steps
RoBERTa-reImp w/ PE
DecBERT-Diff w/ PE

(b) The pre-training loss of the last 120k steps.

Figure 1: The pre-training loss of our models.

Comparing All Models w/o PE. Since the self-attention of Encoder is order-invariant, the extra
position information is inevitable for it to model language. Otherwise, it just becomes a bag-of-word
model. From Table 2, we can find that the valid PPL score of RoBERTa-reImp w/o PE is up to 353.97,
which is about 82 times higher than its counterpart with position embeddings (4.28), revealing that
this bag-of-word model cannot model language well. Comparing DecBERT-Same/Diff w/o PE and
RoBERTa-reImp w/o PE, Table 2 shows that changing the first two Encoder layers with two Decoder
layers can decrease the valid PPL scores by a large margin (from 353.97 to 4.59), which is only
0.31 higher than RoBERTa-reImp w/ PE. This reveals that Decoder layers can help Encoder model
language and corroborates our theoretical analysis in section 3 that Decoder with two layers has
implicit position encoding ability. Comparing our models on downstream tasks, Table 3 shows that
our models w/o PE retain the same level performance as the baseline w/ PE.

Comparing All Models w/ PE. Table 2 shows that the explicit position embeddings further boosts
the performances of our models. The valid PPL scores of DecBERT-Same/Diff w/ PE are lower
than RoBERTa-reImp w/ PE. With the help of different directional Decoder layers, DecBERT-Diff
w/ PE achieves the lowest PPL score. After fine-tuning on the downstream tasks, Table 3 reveals
that they have better performance on most tasks. Comparing DecBERT-same and DecBERT-diff, the
information from both directions is more useful for model to achieve better performance.

Why Models can Benefit from Decoder Layers? Jawahar et al. (2019) perform a series of experi-
ments to analyze the language structure information learned by BERT. Their results reveal that the
lower layers tend to capture the surface-level structure information. Since the multi-head attention
of BERT is a “balance” structure without any inductive bias, the model needs to learn to be aware
of word order during pre-training. Our models’ pre-training loss curves in Figure 1 corroborate our
analysis. We can find that the pre-training process of RoBERTa-reImp w/ PE can be divided into three
stages: 1. plateau stage (0-8000 steps), 2. “diving” stage (8000-10000 steps), 3. convergence stage
(10000-final steps). In the plateau stage, RoBERTa-reImp w/ PE has almost the same training loss as
its counterpart without PE, which indicates that it is still a bag-of-word model and does not learn

7



Under review as a conference paper at ICLR 2022

Models SST-2 QNLI QQP RTE MNLI-m/mm CoLA MRPC STS-B Avg.
Original PLMs
BERT-base 93.5 90.5 89.2 66.4 84.6/83.4 52.1 84.8 85.8 81.1
BERT-large 94.9 92.7 89.3 70.1 86.7/85.9 60.5 85.4 86.5 83.6
RoBERTa-base 95.3 93.2 89.3 71.5 87.4/86.5 55.2 86.5 89.3 83.8
Our Models
RoBERTa-300k 94.7 91.5 89.4 66.5 85.9/85.1 56.3 85.4 86.8 82.4
DecBERT-300k 94.5 92.0 89.3 72.0 86.8/85.5 59.6 86.0 86.8 83.6

Table 4: Different models’ performance on the test sets of GLUE benchmark. MNLI-m is the
matched version and MNLI-mm is the mismatched version. All tasks except STS-B and CoLA use
accuracy as their evaluation metrics. STS-B uses the Spearman rank correlation. CoLA (Warstadt
et al., 2019) uses the Matthews correlation coefficient. The results are reported as r × 100. The
scores of BERT-base and BERT-large are from Devlin et al. (2019). The scores of RoBERTa-base are
fine-tuned by ourselves. Bold indicates the best score of our models for each task.

to make use of the position information. In the diving stage, the training loss of RoBERTa-reImp
w/ PE decreases rapidly, while RoBERTa-reImp w/o PE starts to converge. This reveals that the
word order information becomes more useful for a model to understand language. Why are Decoder
layers helpful? The first two Decoder layers can break the “balance” of the multi-head attention by
design. The inductive bias from the auto-regressive attention masks makes the first two layers easier
capture the surface-level structure information, like word order. From Figure 1a, we can find that the
plateau stage is shortened. Though the gap between RoBERTa-reImp w/ PE and DecBERT-Diff w/
PE become smaller in the convergence stage, Figure 1b indicates that DecBERT-Diff w/ PE still has
lower training loss in the whole pre-training process.

The analysis and results reveal that the implicit position encoding of Decoder layers is powerful
enough to help models understand language and have better performance on downstream tasks. One
should notice that the Decoder layers only consider one-side information flow, which is weaker than
the Encoder layers. This also proves the strength of the implicit position encoding.

5.4 LARGE-SCALE PRE-TRAINING SCENARIO

6 8 10 12 14
Training Epoch

3.50

3.55

3.60

3.65

3.70

3.75

Va
lid

 P
PL

Pre-training Valid PPL
RoBERTa-300k
DecBERT-300k

Figure 2: The PPL scores on validation set from
epoch 5 to epoch 15 of our models.

The results in Table 3 indicate that Decoder
layers are helpful for models. However, lim-
ited by computational resources, our models
are pre-trained with less data, fewer steps and
smaller batch size than the original RoBERTa-
base model. It is necessary for us to figure out
whether such modification can benefit the pre-
trained language models in the large-scale pre-
training scenario. It is impossible for us to pre-
train all 6 models in Table 2 from scratch with
the same amount of computational footprint as
RoBERTa-base. Thus, we decide to pre-train
our best model DecBERT-Diff w/ PE and the
baseline model RoBERTa-reImp w/ PE with the
same amount of data (160GiB9) as RoBERTa-
base. The batch size is set to 4096 and the pre-
training steps are 300k. Though these settings
are still smaller than the original RoBERTa-base (8k batch size, 500k pre-training steps), we believe
that the results of our experiments are enough to understand the influence of our modification in the
large-scale pre-training scenario. We pre-train each model with 8 NVIDIA A100 40GB GPUs, costing
about 15 days per model. The hyper-parameters details can be seen in the Appendix A. For brevity,
we denote DecBERT-Diff w/ PE as DecBERT-300k and RoBERTa-reImp w/ PE as RoBERTa-300k.

Results and Analysis in the Large-scale Pre-training Scenario. The experimental results are
similar to the small-scale pre-training. Figure 2 indicates that DecBERT-300k has lower valid PPL

9The details of our pre-training corpus can be seen in the Appendix B.

8



Under review as a conference paper at ICLR 2022

scores in the whole pre-training process. At the 13th epoch (265k steps), the valid PPL score of
DecBERT-300k is 3.48, which is the same as RoBERTa-300k at the 15th epoch (300k steps). This
suggests that the pre-training process of DecBERT-300k is about 2 epochs faster than RoBERTa-
300k. In the large-scale pre-training scenario, our modification still can accelerate the pre-training
process. Comparing on the downstream tasks, Table 4 shows that the gap between DecBERT-300k
and RoBERTa-300k even becomes larger. The average score is 1.2 points higher. To better analyzing
the performances of our models, we also include the results of BERT-base, BERT-large and RoBERTa-
base in Table 4. We surprisingly find that the average score of DecBERT-300k is only 0.2 lower than
RoBERTa-base, which only costs around 1/3 computational footprint of the original RoBERTa-base.

All results in this part indicate that our modification is more helpful in the large-scale pre-training
scenario. It can accelerate the pre-training process. When pre-training with the same amount of
computational resources, our modification can achieve superior performance on language modeling
and downstream tasks.

6 RELATED WORKS

In the previous works (Vaswani et al., 2017; Shaw et al., 2018; Huang et al., 2019; Dai et al.,
2019; Child et al., 2019), they indicate that the self-attention mechanism of Transformer Encoder is
permutation equivalent, so it needs to use the position embedding. Tsai et al. (2019) have proved that
Decoder’s self-attention is not permutation equivalent, indicating that Decoder is not a bag-of-word
model as Encoder, but they do not conduct further analysis on Decoder’s implicit position encoding
ability. In section 3, we show that only if Decoder has two or more layers, it has such ability. Apart
from the theoretical analysis, Irie et al. (2019) train the Transformer Language Models with speech
dataset. They find that models without position embeddings have lower perplexity scores. Schlag
et al. (2021a) introduce a new Linear Transformer Language Model with fast weight memories
(Schmidhuber, 1992; Schlag et al., 2021b), which has lower perplexity without position encodings on
the WikiText-103 dataset.

Furthermore, an explosion of work focuses on proposing a better method to add the position infor-
mation into the pre-trained language model. Dufter et al. (2021) give a comprehensive introduction
of different position encodings methods of Transformer. They divide position encodings into three
approaches. One line of such work is to add position embeddings to the input before it is fed to the
actual Transformer model (Vaswani et al., 2017; Shaw et al., 2018; Devlin et al., 2019; Kitaev et al.,
2020; Liu et al., 2020; Press et al., 2020; Wang et al., 2020). The second line of work directly modify
the attention matrix (Dai et al., 2019; Dufter et al., 2020; He et al., 2020; Wu et al., 2021a; Ke et al.,
2021; Su et al., 2021). The last one combine the first two approaches together. However, all of them
focus on finding a better method to use an extra set of parameters to trace the word order. Our work
provide a better understanding of Decoder’s implicit position encoding ability.

Most similar to our modification in Section 5, Im & Cho (2017) propose a self-attention based model
which achieve better performance on SNLI task (Bowman et al., 2015) without the help of explicit
position encodings. However, their models are different from the standard Transformer and use extra
local attention masks to control the information flow. With the popularity of the Transformer model
in the Computer Vision field, some works propose different methods to make Vision Transformer
know word order implicitly (Chu et al., 2021; Yuan et al., 2021; Wu et al., 2021b), but all of them
modify the models with convolution neural network (Lecun et al., 1998).

7 CONCLUSION

In this paper, we analyze the implicit position encoding ability of Transformer Decoder. We justify
that at least two layers are needed for Decoder to encode word order. Furthermore, we provide a
better understanding between the implicit and explicit position encodings. Decoder can benefit from
all kinds of explicit position encodings, but the improvement is small from the learnable position
embeddings. To make use of the strength of the implicit position encoding ability, we introduce a
model, called DecBERT. Our models retain the same level of performance as the baseline without
using extra parameters to trace position. In the large-scale pre-training scenario, our modification
converges faster and has lower valid PPL. When pre-training with the same amount of resources, our
model achieves better performance on most downstream tasks.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 632–642, Lisbon, Portugal, 2015. Association for
Computational Linguistics. doi: 10.18653/v1/D15-1075. URL https://www.aclweb.org/
anthology/D15-1075.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. SemEval-2017 task 1:
Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEval-2017), pp. 1–14, Vancouver,
Canada, 2017. Association for Computational Linguistics. doi: 10.18653/v1/S17-2001. URL
https://www.aclweb.org/anthology/S17-2001.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019.

Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Conditional positional encodings for vision transformers, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988,
Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285.
URL https://www.aclweb.org/anthology/P19-1285.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, 2019.
Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://www.
aclweb.org/anthology/N19-1423.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005. URL
https://www.aclweb.org/anthology/I05-5002.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Increasing learning efficiency of self-attention
networks through direct position interactions, learnable temperature, and convoluted attention.
In Proceedings of the 28th International Conference on Computational Linguistics, pp. 3630–
3636, Barcelona, Spain (Online), 2020. International Committee on Computational Linguistics.
doi: 10.18653/v1/2020.coling-main.324. URL https://www.aclweb.org/anthology/
2020.coling-main.324.

Philipp Dufter, Martin Schmitt, and Hinrich Schütze. Position information in transformers: An
overview, 2021.

10

https://www.aclweb.org/anthology/D15-1075
https://www.aclweb.org/anthology/D15-1075
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.aclweb.org/anthology/S17-2001
https://www.aclweb.org/anthology/P19-1285
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/2020.coling-main.324
https://www.aclweb.org/anthology/2020.coling-main.324


Under review as a conference paper at ICLR 2022

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention, 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):
1735–1780, 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.
org/10.1162/neco.1997.9.8.1735.

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Ian Simon, Curtis Hawthorne, Noam
Shazeer, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck. Music
transformer. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJe4ShAcF7.

Jinbae Im and Sungzoon Cho. Distance-based self-attention network for natural language inference,
2017.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney. Language modeling with deep
transformers. Interspeech 2019, 2019. doi: 10.21437/interspeech.2019-2225. URL http:
//dx.doi.org/10.21437/Interspeech.2019-2225.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah. What does BERT learn about the structure of
language? In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 3651–3657, Florence, Italy, 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1356. URL https://www.aclweb.org/anthology/P19-1356.

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=09-528y2Fgf.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB.

Taku Kudo and John Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing: System Demonstrations, pp. 66–71, Brussels,
Belgium, November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-2012.
URL https://aclanthology.org/D18-2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-invariant neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 3744–3753.
PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/lee19d.html.

11

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=rJe4ShAcF7
https://openreview.net/forum?id=rJe4ShAcF7
http://dx.doi.org/10.21437/Interspeech.2019-2225
http://dx.doi.org/10.21437/Interspeech.2019-2225
https://www.aclweb.org/anthology/P19-1356
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://aclanthology.org/D18-2012
http://proceedings.mlr.press/v97/lee19d.html


Under review as a conference paper at ICLR 2022

Xuanqing Liu, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui Hsieh. Learning to encode position
for transformer with continuous dynamical model. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 6327–6335. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/liu20n.html.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Masato Neishi and Naoki Yoshinaga. On the relation between position information and sen-
tence length in neural machine translation. In Proceedings of the 23rd Conference on Com-
putational Natural Language Learning (CoNLL), pp. 328–338, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/K19-1031. URL
https://aclanthology.org/K19-1031.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics
(Demonstrations), pp. 48–53, Minneapolis, Minnesota, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/N19-4009. URL https://www.aclweb.org/anthology/
N19-4009.

Ofir Press, Noah A. Smith, and Mike Lewis. Shortformer: Better language modeling using shorter
inputs, 2020.

A. Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, Austin, Texas, 2016. Association for Computational
Linguistics. doi: 10.18653/v1/D16-1264. URL https://www.aclweb.org/anthology/
D16-1264.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
memory systems, 2021a.

Imanol Schlag, Tsendsuren Munkhdalai, and Jürgen Schmidhuber. Learning associative inference
using fast weight memory. In International Conference on Learning Representations, 2021b. URL
https://openreview.net/forum?id=TuK6agbdt27.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992. doi: 10.1162/neco.1992.4.1.131.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp. 464–468,
New Orleans, Louisiana, 2018. Association for Computational Linguistics. doi: 10.18653/v1/
N18-2074. URL https://www.aclweb.org/anthology/N18-2074.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 1631–1642, Seattle, Washington, USA, 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D13-1170.

12

http://proceedings.mlr.press/v119/liu20n.html
http://proceedings.mlr.press/v119/liu20n.html
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://aclanthology.org/K19-1031
https://www.aclweb.org/anthology/N19-4009
https://www.aclweb.org/anthology/N19-4009
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://openreview.net/forum?id=TuK6agbdt27
https://www.aclweb.org/anthology/N18-2074
https://www.aclweb.org/anthology/D13-1170


Under review as a conference paper at ICLR 2022

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2021.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: An unified understanding for transformer’s attention via the lens
of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4344–4353, Hong Kong, China, 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1443. URL https://www.aclweb.org/anthology/D19-1443.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
3261–3275, 2019a. URL https://proceedings.neurips.cc/paper/2019/hash/
4496bf24afe7fab6f046bf4923da8de6-Abstract.html.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019b. URL https://openreview.net/forum?id=
rJ4km2R5t7.

Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, and Jakob Grue Simonsen.
Encoding word order in complex embeddings. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=Hke-WTVtwr.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019. doi: 10.1162/
tacl a 00290. URL https://www.aclweb.org/anthology/Q19-1040.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pp. 1112–1122, New Orleans, Louisiana, 2018. Association for
Computational Linguistics. doi: 10.18653/v1/N18-1101. URL https://www.aclweb.org/
anthology/N18-1101.

Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. Da-transformer: Distance-aware transformer,
2021a.

Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt:
Introducing convolutions to vision transformers, 2021b.

Kun Yuan, Shaopeng Guo, Ziwei Liu, Aojun Zhou, Fengwei Yu, and Wei Wu. Incorporating
convolution designs into visual transformers, 2021.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books, 2015.

13

https://www.aclweb.org/anthology/D19-1443
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=Hke-WTVtwr
https://www.aclweb.org/anthology/Q19-1040
https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/N18-1101


Under review as a conference paper at ICLR 2022

A HYPER-PARAMETERS DETAILS

Hyper-parameter No-PE
Number of Layers 8
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Warmup Steps 10k
Max Steps 100k
Learning Rates 5e-5
Batch Size 128
Weight Decay 0.001
Learning Rate Decay Polynomial
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.998
Gradient Clipping 0.1
Random Seed 1

Table 5: Hyper-parameters for pre-training the multi-layer Decoder Models. Since all models share
the same hyper-parameters, we only report the parameters of No-PE.

Hyper-parameter RoBERTa-reImp
Number of Layers 12
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Warmup Steps 10k
Max Steps 200k
Learning Rates 1e-4
Batch Size 256
Weight Decay 0.01
Learning Rate Decay Polynomial
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 0.5
Random Seed 1

Table 6: Hyper-parameters for pre-training the multi-layer Encoder Models (small-scale pre-training).
Since all models share the same hyper-parameters, we only report the parameters of RoBERTa-reImp.

14



Under review as a conference paper at ICLR 2022

Hyper-parameter RoBERTa-300k and DecBERT-300k
Number of Layers 12
Hidden size 768
FNN inner hidden size 3072
Attention Heads 12
Attention Head size 64
Dropout 0.1
Warmup Steps 24k
Max Steps 500k
Learning Rates 3e-4
Batch Size 4096
Weight Decay 0.01
Learning Rate Decay Tri stage
Adam ε 1e-6
Adam β1 0.9
Adam β2 0.98
Gradient Clipping 2.0

Table 7: Hyper-parameters for pre-training the multi-layer Encoder Models (large-scale pre-training).

Hyper-parameter MNLI QNLI QQP RTE SST-2 MRPC STS-B CoLA
Learning Rates 1e-5 1e-5 1e-5 2e-5 1e-5 {1e-5, 2e-5} 2e-5 1e-5
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 32 32 32 16 32 16 16 16
Warmup Steps 7432 1986 28318 122 1256 137 214 320
Max Steps 123873 33112 113272 2036 20935 2296 3598 5336
Adam ε 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Gradient Clipping 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 8: Hyper-parameters for fine-tuning all models on downstream tasks. All models use the
polynomial learning rate decay. Most of the hyper-parameters are recommended by Fairseq
https://github.com/pytorch/fairseq/tree/main/examples/roberta/
config/finetuning.

B THE DETAILS OF THE LARGE-SCALE PRE-TRAINING CORPUS

Due to the licensing issues, the RoEBRTa team does not share their 160 GiB pre-training corpus.10

We build the pre-training corpus by ourselves. The first part is the same as BERT. We use the English
wikipedia dump (about 17 GiB) and the bookcorpus (Zhu et al., 2015) (about 4 GiB). The second
part is based on the Pile dataset (Gao et al., 2020), which is a large datasets with 800 GiB diverse text
data. We randomly extract 64 GiB data from the Pile-cc block, 35 GiB data from the OpenWebText2
block and 43 GiB data from the Books3 block. The overall size of all data is about 163 GiB, which is
the same as RoBERTa-base.

C WHY DO WE NOT USE PIE?

We have conducted two extra experiments to examine whether PIE is useful for Masked Language
Models. We pre-train a 12-layer GPT+PIE model and a RoBERTa-base+PIE model with the Masked
Language Modeling objective. We surprisingly find that the values of PIE do not change. This
indicates that PIE learns nothing. However, when we pre-train a GPT+PIE model with the Auto-
regressive Language modeling objective, the values of PIE will change. This indicates that it is the
objective function that causes this problem. Further analysis remains for future work.

10https://github.com/pytorch/fairseq/issues/2947

15

https://github.com/pytorch/fairseq/tree/main/examples/roberta/config/finetuning
https://github.com/pytorch/fairseq/tree/main/examples/roberta/config/finetuning
https://github.com/pytorch/fairseq/issues/2947

	Introduction
	Background
	Conditions of Implicit Position Encoding
	Implicit and Explicit Position Encodings
	Explicit Position Encodings Mehotds
	Experiments Setup
	Results and Analysis

	Strength of Implicit Position Encoding
	Our Proposed Approach
	Experiments Setup
	Results and Analysis
	Large-scale Pre-training Scenario

	Related Works
	Conclusion
	Hyper-parameters Details
	The details of the large-scale pre-training corpus
	Why Do We Not Use PIE?

