
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WORLDSIMBENCH: TOWARDS VIDEO GENERATION
MODELS AS WORLD SIMULATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in predictive models have demonstrated exceptional capa-
bilities in predicting the future state of objects and scenes. However, the lack of
categorization based on inherent characteristics continues to hinder the progress
of predictive model development. Additionally, existing benchmarks are unable
to effectively evaluate higher-capability, highly embodied predictive models from
an embodied perspective. In this work, we classify the functionalities of predic-
tive models into a hierarchy and take the first step in evaluating World Simula-
tors by proposing a dual evaluation framework called WorldSimBench. World-
SimBench includes Explicit Perceptual Evaluation and Implicit Manipulative
Evaluation, encompassing human preference assessments from the visual per-
spective and action-level evaluations in embodied tasks, covering three represen-
tative embodied scenarios: Open-Ended Embodied Environment, Autonomous
Driving, and Robot Manipulation. In the Explicit Perceptual Evaluation, we intro-
duce the HF-Embodied Dataset, a video assessment dataset based on fine-grained
human feedback, which we use to train a Human Preference Evaluator that aligns
with human perception and explicitly assesses the visual fidelity of World Simu-
lators. In the Implicit Manipulative Evaluation, we assess the video-action con-
sistency of World Simulators by evaluating whether the generated situation-aware
video can be accurately translated into the correct control signals in dynamic envi-
ronments. Our comprehensive evaluation offers key insights that can drive further
innovation in video generation models, positioning World Simulators as a pivotal
advancement toward embodied artificial intelligence.
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Figure 1: Overview of the hierarchical capabilities of the Predictive Models. Models at higher
stages demonstrate more advanced capabilities. We take the initial step in evaluating Predictive Gen-
erative Models up to the S3 stage, known as World Simulators, by introducing a parallel evaluation
framework, WorldSimBench. WorldSimBench assesses the models both Explicit Perceptual Evalu-
ation and Implicit Manipulative Evaluation, focusing on video generation and action transformation
across three critical embodied scenarios.
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Table 1: Comparisons between existing Predictive Model benchmarks. Interactive Environment
refers to the interaction with the simulation environment during the prediction phase. Task-Level
Interaction denotes that each task interacts once, whereas Action-Level Interaction represents the
frequency of interactions that occur through the generation of actions for control purposes.
Benchmark Input Modality Output Modality Based Method Stage Interactive Env. Evaluation Strategy

AgentBench (Liu et al., 2023b) Text Text LLM S0 Task-Level Human Judgement
EgoPlan-Bench (Chen et al., 2023) Text & Images Text MLLM S0 N/A Multi-choice
MMWorld (He et al., 2024) Text & Images Text MLLM S0 N/A GPT Judgement
VAB (Liu et al., 2024a) Text & Images Text MLLM S0 Task-Level Human Judgement
LEGO (Lai et al., 2023) Text & Images Image IGM S1 Task-Level Feature Similarity
VBench (Huang et al., 2024) Text Video VGM S2 N/A Feature Similarity
EvalCrafter (Liu et al., 2024b) Text & Images Video VGM S2 N/A Feature Similarity

WorldSimBench Text & Images Actionable Video VGM S3 Action-Level Human Preference Evaluator
Embodied Metric

1 INTRODUCTION

Before taking action, humans make predictions based on their objectives and observations of the
current environment. These predictions manifest in various forms, e.g., textual planning, visual
imagination of future scene changes, or even subconscious planning at the action level. With the
development of generative models, agents driven by these models are exhibiting predictive capabili-
ties that enable them to complete embodied tasks by making human-like predictions, e.g., high-level
planning (Driess et al., 2023; Li et al., 2024), image-based guidance (Lai et al., 2023; Black et al.,
2023), or future video prediction to drive actions (Du et al., 2023; 2024)). We refer to these mod-
els as Predictive Models. Recently, these models have been widely applied across various domains
spanning from developing agents to solve inference tasks to leveraging predictions for driving robots
to perform specific actions.

Nevertheless, the rich application scenarios and diverse model designs make predictive models a
broad family. However, without categorizing them based on their inherent characteristics, the ad-
vancement of predictive model development remains limited. This leads to our first question: Can
we establish a reasonable hierarchical system for Predictive Models based on their output modality?
With a well-defined categorization, we can better target the evaluation of Predictive Models from
different perspectives in diverse embodied environments, ensuring that their strengths and weak-
nesses are adequately assessed. In the literature, existing evaluations have typically focused on task
planning capabilities by assessing text outputs or evaluating visual outputs from an aesthetic per-
spective. However, such approaches significantly limit the evaluation of highly embodied Predictive
Models, as embodied scenarios are more concerned with physical properties (e.g., perspective con-
sistency, object breakability), which these methods fail to effectively assess. This brings us to our
second question: Can we conduct a more detailed evaluation of highly embodied Predictive Models
from an embodied perspective?

To answer the first question, we categorize the functionalities of Predictive Models into a hierarchy
from S0 to S3, defined by the model’s capabilities and output modality, accompanied by corre-
sponding evaluation benchmarks as illustrated in Fig. 1. Models are classified based on the output
modality in their output modalities. From lower to higher stages, the models are capable of generat-
ing: text, images, videos, and actionable videos (i.e., the videos that can be translated into actions).
It is worth noting that Predictive Models at S3 capable of generating actionable videos integrate
robust 3D scene understanding and physical rule priors to provide precise guidance for generating
executable actions. These models are closely aligned with the recently proposed concept of World
Simulators (Yang et al., 2023).

To answer the second question, we review the related benchmarks, as listed in Tab. 1. Evaluations on
models in S0 that generate text primarily focus on assessing task planning capabilities, while S1 and
S2 assessments on visual output measure aesthetic quality through feature similarity analyses with
ground truth data. With clearly defined evaluation dimensions and extensive annotated datasets,
both types of assessments can be effectively conducted. However, evaluating World Simulators
introduces complexities due to the intricate physical definitions involved. Additionally, conventional
evaluation methods are inadequate for assessing the actionablilty of the generated videos, as there is
no definite ground truth for actionable videos towards completing a specific embodied task. These
factors pose significant challenges to the evaluation of World Simulators.
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We argue that an evaluation aligned with human perception could provide a more intuitive and
accurate reflection of the characteristics of the synthesized videos, including their adherence to
physical rules. Besides, the actionability can be assessed through a closed-loop manner in simu-
lations deployed with a unified video-to-action policy network. Considering these aspects, we take
the very first step in evaluating World Simulators by proposing a dual evaluation framework called
WorldSimBench. As shown in Fig. 1, WorldSimBench assesses World Simulators through two
complementary approaches: Explicit Perceptual Evaluation, which focuses on the Visual Qual-
ity, Condition consistency, and Embodiment of the generated content, and Implicit Manipulative
Evaluation, which measures the World Simulator’s performance through the conversion of video
into control signals. We present three representative embodied scenarios: Open-Ended Embodied
Environment (OE), Autonomous Driving (AD), and Robot Manipulation (RM), to thoroughly eval-
uate the capability of World Simulators in generating and representing scenario-specific attributes.

In the Explicit Perceptual Evaluation, we first define evaluation criteria which is used to construct a
comprehensive set of prompts specific to each scenario. The prompt lists are then used by various
video generation models to produce a large number of video clips. Following extensive human feed-
back and annotation, these video clips are compiled into the HF-Embodied dataset which consists of
a total of 35,701 tuples with multi-dimensional scores and fine-grained human feedback. Addition-
ally, we train Human Preference Evaluator, using the HF-Embodied dataset to assess World Simu-
lators at the perceptual level, offering a robust evaluation of both their visual fidelity and contextual
accuracy. For the Implicit Manipulative Evaluation, we deploy three simulation environments for
the three embodied scenarios respectively. These environments are used to collect data and train
inverse dynamic or goal-based video-to-action models capable of mapping future videos to actions.
In each of these embodied scenarios, the World Simulator is tasked with generating situation-aware
videos in real-time, based on current observations and provided text instructions. These generated
videos are then converted into actions using the pre-trained video-to-action models. The effective-
ness of the World Simulator is implicitly evaluated by measuring the performance of the tasks, using
relevant metrics to reflect the quality and accuracy of the generated video.

In summary, the main contributions are as follows: (1)We categorize the functionalities of Predic-
tive Models into a hierarchy, defined by the model’s capabilities and output modality, to advance
research and development in the field and take the very first step in evaluating World Simulators.
(2)We propose a dual evaluation framework called WorldSimBench, through Explicit Perceptual
Evaluation and Implicit Manipulative Evaluation, we conducted a comprehensive evaluation of the
World Simulator’s capabilities from an embodied perspective, focusing on both the visual and ac-
tion levels. (3)We conducted extensive testing across multiple models and performed a thorough
analysis of the experimental results. Our findings highlight the strengths and limitations of current
World Simulators and provide actionable insights for improving future video generation models.
(4)We developed HF-Embodied Dataset, which includes fine-grained human feedback across three
scenarios and 20 dimensions, with a total of 35,701entries. This dataset, containing both human
ratings and the reasons behind them, not only enables the evaluation of World Simulators but also
provides broader applications (e.g.,alignment) for future video generation models.

2 RELATED WORK

Predictive Models. Predictive models are capable of generating process representations that map
the current state to future states by incorporating current state representations and control over future
trends. Predictive Text Model, built on LLMs (Radford et al., 2019; Touvron et al., 2023; Chiang
et al., 2023) and MLLMs (Achiam et al., 2023; Team et al., 2023; Liu et al., 2023a; Yin et al., 2023),
generate future predictions in the text modality by accepting current state representations and text
instructions. These models have demonstrated impressive performance in high-level planning tasks
for embodied agents (Driess et al., 2023; Li et al., 2024; Qin et al., 2024; Chen et al., 2024; Zhang
et al., 2024b; Lu et al., 2024). Similarly, image generation models (Brooks et al., 2023; Fu et al.,
2023) as Predictive Image Model (Lai et al., 2023; Black et al., 2023; Zhou et al., 2024) can produce
future goal images, showcasing strong capabilities during the decision-making phase of embodied
agents. Predictive Video Model (Du et al., 2024; 2023), based on video generation models (Janner
et al., 2022), have made some progress in embodied control. However, due to limitations in data or
models, the generated videos often lack essential physical representations and logical consistency,
restricting their applicability to fixed scenarios and single tasks.
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With the advancement of diffusion transformer (Peebles & Xie, 2023) and the extensive utiliza-
tion of large-scale internet video datasets (Bain et al., 2021; Ebert et al., 2021; Goyal et al., 2017;
Grauman et al., 2022), certain Predictive Actionable Video Model (Yang et al., 2023) models, also
known as World Simulators, have achieved more precise representations of physical laws and 3D
environments.

Evaluation of Predictive Models. With the advancement of predictive models, research has also
expanded to evaluate the capabilities of models at different stages. Liu et al. (2023b); Chen et al.
(2023); Shi et al. (2024); Liu et al. (2024a) conducted text-level and task completion evaluations
for Predictive Text Model at the S0 stage. Lai et al. (2023) performed score-based evaluations from
an aesthetic perspective for Predictive Image Model at the S1 stage. Huang et al. (2024); Liu et al.
(2024b) also assessed the aesthetic quality of videos generated by Predictive Video Model at the S2

stage. We take the first step in evaluating World Simulators through an embodied perspective.

3 PREDICTIVE MODEL CATEGORY DEFINITION

In this section, we concretely categorize predictive models based on the model’s capabilities and
output modality. The detailed categorization stage of Fig. 1 is illustrated below,

• Stage S0: At this stage, predictive models can generate corresponding predictions based on in-
structions and observations but are limited to textual modality. Benchmarks at this stage conduct
text-level and task-completion evaluations through output text planning.

• Stage S1: At this stage, predictive models can generate visual predictions based on instructions
and observations, but without incorporating temporal information. Benchmarks at this stage conduct
aesthetic evaluation for generated images.

• Stage S2: At this stage, predictive models can generate corresponding video predictions based on
both instructions and observations. Yet, due to limited model capabilities, the evaluation at this level
focuses solely on the aesthetic quality of the generated outputs.

• Stage S3: At this stage, predictive models can generate corresponding video predictions based on
instructions and observations, with the predicted video content adhering to physical rules and align-
ing with the executed actions. These models are known as World Simulators (Ha & Schmidhuber,
2018; Yang et al., 2023), and WorldSimBench is a benchmark specifically designed to evaluate these
World Simulators.

The rapidly evolving field of World Simulators offers exciting opportunities for advancing Artifi-
cial General Intelligence, with significant potential to enhance human productivity and creativity,
especially in embodied intelligence. Therefore, conducting a comprehensive embodied evaluation
of World Simulators is crucial.

4 WORLDSIMBENCH CONSTRUCTION

WorldSimBench evaluates the embodied capabilities of World Simulators across two distinct lev-
els. The Explicit Perceptual Evaluation assesses the simulators based on human-perceived qual-
ity across different embodied scenarios, while the Implicit Manipulative Evaluation implicitly
evaluates the simulators’ capabilities by converting the generated videos into control signals and
observing their performance in various closed-loop embodied tasks.

The evaluation of World Simulators encompasses three critical embodied scenarios: Open-Ended
Embodied Environment (OE), Autonomous Driving (AD), and Robot Manipulation (RM). Minecraft
serves as a popular testbed for OE, providing a challenging platform for agents to handle complex,
unstructured tasks. In the context of AD, especially in outdoor settings, ensuring the stability and
robustness of the agent’s actions is crucial, making it an essential domain for assessing a World
Simulator’s capability in dynamic and uncertain environments. RM, a core task in embodied in-
telligence, demands precise and adaptive control, testing the world simulator’s ability to generate
actionable predictions that align with physical interactions. Together, these scenarios provide a
comprehensive benchmark for evaluating the effectiveness of World Simulators across a range of
real-world tasks.
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Figure 2: Overview of Explicit Perceptual Evaluation. (Top) Instruction Prompt Generation.
We use a large collection of video captions from the internet and our predefined embodied evaluation
dimensions. These are expanded using GPT and manually verified to create a corresponding Task
Instruction Prompt List for data generation and evaluation. (Bottom) HF-Embodied Dataset Gen-
eration. Massive internet-sourced embodied videos with captions are used to train data generation
models. Fine-grained Human Feedback Annotation is then applied to the embodied videos accord-
ing to the corresponding Task Instruction Prompt List, covering multiple embodied dimensions.

4.1 EXPLICIT PERCEPTUAL EVALUATION

In Explicit Perceptual Evaluation, we propose Hierarchical Evaluation Dimensions, based on which
we build a video assessment dataset annotated through fine-grained human feedback, named HF-
Embodied Dataset. The dataset is constructed based on three key resources, each corresponding to
a specific embodied scenario: a curated dataset of Minecraft videos from the internet for OE (Baker
et al., 2022), real-world driving data for AD (Caesar et al., 2020), and real-world robot manipulation
videos annotated with text instructions for RM (Chen et al., 2024). Using HF-Embodied Dataset,
we train a Human Preference Evaluator to perform perceptual evaluations of World Simulators.

4.1.1 HIERARCHICAL EVALUATION DIMENSION

We develop a hierarchical evaluation dimension checklist for the three embodied scenarios, as il-
lustrated in Tab. 2, which can be categorized into three main aspects: Visual Quality, Condition
Consistency, and Embodiment. (1) Visual Quality primarily assesses the overall quality of video
generation, including Aesthetics, Background and Foreground Consistency. (2) Condition Consis-
tency focuses on the alignment with the input instruction. For tasks in OE that involve distinct
scenarios, we additionally define Scenario Alignment to assess the alignment to the specific scenar-
ios outlined in the instruction. (3) Embodiment has different definitions depending on the scenario.
As all tasks require movement along a certain trajectory, we uniformly define Trajectory to evaluate
the rationality of object movement in the video (e.g., whether a robotic arm avoids obstacles during
motion). In AD and RM, we define Perspectivity to assess whether the video exhibits a clear sense
of depth. In OE and RM, we define Embodied Interaction to evaluate the plausibility of interactions
with objects. We also define Velocity in OE to determine whether speed varies appropriately across
different environments (e.g., slower movement in water). In AD, we define Key Element to evaluate
the rendering quality and consistency of crucial embodied elements, e.g., pedestrians. We also in-
troduce Safety in AD to assess whether the embodied actions comply with traffic rules. More details
in Sup. A.

4.1.2 INSTRUCTION PROMPT GENERATION

Using the Hierarchical Evaluation Dimension and massive video captions from the key resources,
we create a foundational but comprehensive prompt list. We utilize the knowledge of LLMs, i.e.
ChatGPT, to extend the meta-prompts across a wide range. After manual screening for relevance, di-
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Table 2: Hierarchical Evaluation Dimension. The dimensions are categorized into three main
aspects: Visual Quality for evaluating the overall quality, Condition Consistency for evaluating the
alignment to the input instruction, and Embodiment for evaluating embodied related factors like
physical rules.

Embodied Scenarios Visual Quality Condition Consistency Embodiment

Open-Ended Embodied Environment (OE) Background Consistency (BC)
Foreground Consistency (FC)

Instruction Alignment (IA)
Scenario Alignment (SA)

Velocity (VC)
Trajectory (TJ)

Embodied Interaction (EI)

Autonomous Driving (AD) Aesthetics (AE) Instruction Alignment (IA)

Perspectivity (PV)
Trajectory (TJ)

Key Element (KE)
Safety (SF)

Robot Manipulation (RM)
Aesthetics (AE)

Background Consistency (BC)
Foreground Consistency (FC)

Instruction Alignment (IA)
Perspectivity (PV)

Trajectory (TJ)
Embodied Interaction (EI)

versity, and data distribution, we compile the Task Instruction Prompt List, which separates prompts
for each content-embodied scenario and each evaluation dimension, as shown in Fig. 2.

4.1.3 HF-EMBODIED DATASET GENERATION

Data Preparation. We select multiple video generation models and train them using a large corpus
of videos and corresponding captions from the key resources. Due to the capabilities of the open-
source video generation model, we conduct targeted training for each of the three distinct embodied
scenarios individually, thereby developing several data generation models for different embodied
scenarios. These models are then used to produce a substantial amount of instruction-following em-
bodied videos, based on the corresponding captions, and the initial image condition where applicable
(first frame conditioned text-to-video to generate situation-aware videos).

Human Annotation. We use human annotation to label the generated videos. Based on the Hierar-
chical Evaluation Dimension, we establish specific annotation guidelines and numerous in-conttext
examples for the annotators. For each dimension, annotators are instructed to score the video solely
based on its performance within that particular dimension and provide corresponding reasoning.
For instance in RM, as illustrated in Fig. 2, under the dimension of Trajectory, annotators are re-
quired to evaluate the video exclusively on the generation quality of the motion trajectory. They
are instructed not to consider other elements (e.g., the rendering quality of the robot arm) or other
dimensions (e.g., consistency with instructions). Additionally, annotators are asked to provide fine-
grained feedback on any deficiencies, e.g., “inconsistent trajectory”. As a result, we construct the
HF-Embodied Dataset, which consists of a total of 35,701 tuples, each comprising a video, text
instruction, multi-dimensional scores, and the potential reasons. More details in Sup. B.1.

4.1.4 HUMAN PREFERENCE EVALUATOR

The objective is to develop a video scoring model that assesses videos across multiple dimensions
aligning with human perception. The model takes a generated video and a prompt as input and
outputs a score ranging from 1 to n (n is defined specifically for each embodied scenario). The
prompt includes both the video generation instructions and an explanation of the evaluation criteria.
Leveraging the strong video understanding capabilities of multimodal large language models, we
fine-tune Flash-VStream (Zhang et al., 2024a), a VideoLLM, aligning it with human perception on
HF-Embodied Dataset. Only LoRA (Hu et al., 2021) parameters are trained. This enables the model
to effectively grasp the evaluation metrics for embodied tasks and produce accurate scores, while
maintaining its video perception and reasoning ability. We prove the effectiveness and generaliz-
ability of our Human Preference Evaluator in Sec. 5.2.

4.1.5 EVALUATION METRICS.

The evaluation of a video generation model is based on the scores assigned by the evaluator across
various dimensions. For each dimension, the video generation model generates videos guided by
several carefully selected instructions sourced from Task Instruction Prompt List that are strongly
aligned with the specific evaluation criteria, e.g., “explore on the beach” for Embodied Scenario in
OE. The final metric for each model is computed as the average score across all dimensions. The
evaluated dimensions for each embodied scenario are listed in Tab. 2.
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Figure 3: Overview of Implicit Manipulative Evaluation. Embodied tasks in different scenarios
are decomposed into executable sub-tasks. The video generation model generates corresponding
predicted videos based on the current instructions and real-time observations. Using a pre-trained
IDM or a goal-based policy, the agent executes the generated sequence of actions. After a fixed
timestep, the predicted video is refreshed by sampling again from the video generation model, and
this process repeats. Finally, the success rates of various embodied tasks are obtained through mon-
itors in the simulation environment.

4.2 IMPLICIT MANIPULATIVE EVALUATION

The Implicit Manipulative Evaluation assesses the capabilities of World Simulators across various
embodied scenarios by treating the simulator as a low-level decision maker for situational contexts.
Using pre-trained video-to-action models, we implicitly evaluate the performance of the World Sim-
ulators by observing their effectiveness in closed-loop embodied task tests.

4.2.1 SIMULATION CONSTRUCTION

The Implicit Manipulative Evaluation is conducted using the following three simulation platforms,
for specific settings, please refer to the Supplementary Material.

OE We employ MineRL as the Minecraft simulator, with the observation space limited to RGB
images and the action space confined to keyboard and mouse controls. We adopt the Steve-1 bench-
marks (Lifshitz et al., 2024), with task descriptions e.g., ”chop a tree.”

AD We conduct standard closed-loop evaluations using the CARLA (Dosovitskiy et al., 2017) sim-
ulator on the LangAuto Benchmark (Shao et al., 2024). Task descriptions include instructions like
”do not deviate from this route.”

RM We employ CALVIN (Mees et al., 2022) as the robot manipulation simulator, using only RGB
images for the observation space and limiting the action space to the 7-DOF (degrees of freedom)
of the robot arm. Task descriptions include commands e.g., ”pull the handle to open the drawer.”

4.2.2 EMBODIED TASK EVALUATION

Evaluation Pipeline. As illustrated in Fig. 3, we first leverage existing or custom-trained video-to-
action models as intermediaries between the World Simulator and the agent performing closed-loop
tasks, for the selected benchmarks across three simulation environments. This approach enables
the transformation of the predicted future videos from the World Simulator into executable control
signals in real-time, thereby indirectly evaluating the World Simulator’s capability through the suc-
cessful completion of embodied tasks. The evaluation process is tailored to the specific nature of
the models under consideration, establishing distinct protocols for closed-loop task evaluation. We
fine-tune the models on simulation datasets tailored to each task. These datasets, derived from the
three aforementioned benchmarks, include task instructions and corresponding videos, ensuring the
models are well-adapted to the specific embodied scenarios. Finally, the evaluated World Simulator
is integrated with the video-to-action model to jointly form an embodied agent that performs the
given tasks. The agent’s performance across various tasks serves as a direct measure of the World
Simulator’s effectiveness.
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Table 3: The overall performance comparison between Human Preference Evaluator and GPT-
4o. HPE indicates Human Preference Evaluator. HPE@Lavie means that HPE is trained on videos
except those generated by Lavie. The validation is conducted on videos generated by Laive under
zero-shot setting.

Embodied Scenario GPT-4o HPE GPT-4o@OpenSora HPE@OpenSora GPT-4o@Lavie HPE@Lavie

OE@Acc(↑) 72.8 89.4 66.5 71.6 78.5 87.9
AD@PLCC(↑) 0.28 0.60 0.03 0.34 -0.04 0.49
RM@PLCC(↑) 0.07 0.43 -0.06 0.47 0.17 0.44

Evaluation Metrics. In OE, we track the MineRL (Guss et al., 2019) environment state to calculate
metrics e.g., travel distance and early-game item collection. Travel distance is the agent’s maximum
horizontal displacement (X-Z plane) from the spawn point, while dig depth is its maximum verti-
cal displacement (Y axis). We record the maximum number of logs, seeds, and dirt items in the
agent’s inventory during the episode. In AD, we employ eight widely used evaluation metrics in
Carla (Dosovitskiy et al., 2017), including Route Completion (RC), Infraction Score (IS), Driving
Score (DS), Vehicle Collisions (VC), Pedestrian Collisions (PC), Layout Collisions (LC), Red Light
Violations (RV), and Offroad Infractions (OI). In RM, we evaluate the video generation model in
the CALVIN (Mees et al., 2022) setting (train on A, B, C → test on D) by running 20 trials and
calculating the average success rate.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate 8 popular video generation models, including Open-Sora-Plan(T2V) (Lab & etc., 2024),
Lavie (Wang et al., 2023c), ModelScope (Wang et al., 2023b), OpenSora (Zheng et al., 2024),
AnimateDiff (Guo et al., 2023), Open-Sora-Plan(TI2V) (Lab & etc., 2024), Dynamicrafter (Xing
et al., 2023), EasyAnimate (Xu et al., 2024) through both Explicit Perceptual Evaluation and Im-
plicit Manipulative Evaluation, across three distinct scenarios: Open-Ended Embodied Environment
(OE), Autonomous Driving (AD), and Robot Manipulation (RM). All models finetuned on specific
datasets corresponding to three embodied scenarios in Explicit Perceptual Evaluation and Implicit
Manipulative Evaluation. Detailed information on the datasets, training, and testing configurations
can be found in the Supplementary Material.

For Explicit Perceptual Evaluation, we extract five instructions from the Task Instruction Prompt
List for each dimension across the three embodied scenarios, ensuring they strongly align with the
specific evaluation criteria, as discussed in Sec. 4.1.5. The selected instruction prompts each model
to generate five videos, which are then scored by the Human Preference Evaluator to obtain an
average score for the model’s performance. For the scoring range 1-n, n is set 2 for OE, and set 5
for both AD and RM. We indicate that the generation quality in OE is perceived as binary from a
human perspective, while the other two scenarios exhibit a more diverse range of video quality.

For Implicit Manipulative Evaluation, we constructed three video-to-action models for embodied
simulation environments, following the designs of Steve-1 (Lifshitz et al., 2024), Susie (Black et al.,
2023), and LMdrive (Shao et al., 2024). For the evaluated models, we used the following datasets
for fine-tuning: (1) VPT (Baker et al., 2022) and our own collected videos along with corresponding
task descriptions as the training set for the OE; (2) the full Calvin(ABC D) (Mees et al., 2022) video
dataset and corresponding robot arm control instructions as the training set for RM; and (3) the full
Carla (Dosovitskiy et al., 2017) video dataset and corresponding autonomous driving navigation
commands as the training set for AD. Since the video-to-action model in our OE setup utilizes a
goal-based policy, which interprets the goal from the input video and generates actions based on the
current observations and the goal, it allows us to additionally evaluate text-to-video models.

5.2 EXPERIMENTS ON HUMAN PREFERENCE EVALUATOR

We demonstrate the strong capabilities and generalization of Human Preference Evaluator by com-
paring it with GPT-4o (OpenAI, 2024), showcasing its applicability for Explicit Perceptual Evalu-
ation, as shown in Tab. 3. We use accuracy (Acc) in OE to assess the alignment of the model with

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

OE AD RM

Figure 4: Result of Explicit Perceptual Evaluation aross three embodied scenarios. Scores in
each embodied scenario are normalized to 0-1. The abbreviations are listed in Tab. 2.

human preferences, given the scoring range of 1-2. In contrast, we employ Pearson linear correlation
coefficient (PLCC) for AD and RM as their scores range from 1-5.

After fine-tuning on HF-Embodied Dataset, our evaluator consistently surpasses the performance
of GPT-4o in terms of alignment with human preferences across all scenarios. Additionally, we
conducted zero-shot experiments with two challenging models, i.e. OpenSora and Lavie. GPT-4o
exhibits a negative correlation with human preferences in evaluating OpenSora in AD under zero-
shot setting, as well as evaluating Lavie in RM under zero-shot setting. Our evaluator’s zero-shot
performance shows a high correlation with human preferences, further demonstrating its robust gen-
eralization capabilities. Human Preference Evaluator is suitable for Explicit Perceptual Evaluation,
and the HF-Embodied Dataset can be leveraged to train even more aligned models for assessing
video generation models towards World Simulators. More details in Sup. B.3.

5.3 DESIGN FEATURES AND DISCUSSIONS

In this section, we discuss the Design features and corresponding observations we draw from our
comprehensive evaluation experiments. More details can be found in the Supplementary Material.

Human Prefrence with Feedback. Given the complexity and diversity in the representation of
physical rules in videos, even a specific dimension may manifest in various ways (for example, both
illogical and discontinuous object motion fall under trajectory-related issues). This makes it chal-
lenging to evaluate using score-based models or a single fixed set of evaluation criteria. WorldSim-
Bench addresses this challenge effectively by employing a human preference scoring mechanism
and a fine-grained feedback system. Fig. 4 illustrates the evaluation results of Explicit Perceptual
Evaluation, more detail analyze could be found in Sup. C. In OE, most models struggle with Em-
bodied Interaction, particularly in generating plausible object deformations, e.g., block shattering,
due to the complexity of physical rules. In AD, the variation between models is minimal, with high-
performing models excelling across all dimensions. The simpler instructions, like moving forward
or turning, lead to high Instruction Alignment, but many generated videos suffer from poor 3D depth
(Perspectivity) and fail to depict realistic embodied elements like pedestrians and vehicles, affecting
the overall Aesthetic. In RM, models perform uniformly well in static scene depiction, excelling
in Perspectivity and Foreground/Background Consistency. However, they struggle with Instruction
Alignment, often generating aimless actions. Despite this, the lack of unreasonable trajectories
results in relatively high Trajectory scores, though robotic manipulation remains a significant chal-
lenge for current models.

Close-loop Interactive Evaluation. Given the dynamic nature and real-time requirements of inter-
active environments, evaluating World Simulators through static benchmarks often fails to capture
the full spectrum of their capabilities. Close-loop Interactive Evaluation addresses this by enabling
continuous feedback and adaptation, ensuring that the model’s predictions and actions evolve in re-
sponse to the changing environment, thus providing a more accurate and realistic assessment of its
performance. Fig. 5 presents the Implicit Manipulative Evaluationevaluation results, showing signif-
icant variation in the performance of video generation models across different tasks. In the OE, video
generation models conditioned on the first frame have a significantly lower success rate compared
to those without image conditioning. This suggests that models with image conditioning struggle to
generate physical laws and 3D scene representations accurately. Tasks like travel, requiring high-
quality trajectories and 3D representation, show the greatest variation in model performance, while
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(a)

(b) (c)

Figure 5: Result of Implicit Manipulative Evaluation aross three embodied scenarios.The ab-
breviations are listed in Sec. 4.2.2.

simpler tasks like collecting wood see similar performance across models, indicating effective han-
dling of minimal background variation. In the AD, models with better trajectory(Open-Sora-Plan)
generation perform better. In the RM, where background variation is minimal, models perform sim-
ilarly on simple tasks, but as complexity increases, more robust models achieve higher success rates.
Despite some success across scenarios, video generation models still need significant improvements
in generating physically consistent content to be reliable for training agents or guiding actions.

Alignment of Physical Rules and Actions. Ensuring that World Simulators adhere to physical laws
while generating predictions is crucial for practical application. The alignment of physical rules and
actions is essential as it guarantees that the model’s outputs are not only visually plausible but also
executable in real-world scenarios. This approach allows for the seamless integration of predicted
actions with their physical environment, ensuring reliability and effectiveness in real-world tasks.
Based on our experimental findings, we observe that most conclusions from the Explicit Perceptual
Evaluationand Implicit Manipulative Evaluationevaluations are consistent. Specifically, the visual
quality across most dimensions aligns with the results from the closed-loop experiments. e.g., Dy-
namicrafter, which performs well in trajectory generation in Explicit Perceptual Evaluation, also
excels in trajectory-focused scenarios like AD and RM. However, in other cases—such as the OE,
which requires more frequent interactions, and long-sequence tasks (4, 5) in RM—Dynamicrafter
underperforms compared to Open-Sora-Plan. This differs from the Explicit Perceptual Evaluation
results, likely because these tasks demand stable, high-quality video generation for guidance, where
Open-Sora-Plan shows higher robustness. Therefore, a comprehensive evaluation of video gener-
ation models requires a combination of Explicit Perceptual Evaluation and Implicit Manipulative
Evaluation assessments to provide the most fair and accurate judgment. Finally, based on the overall
Explicit Perceptual Evaluationand Implicit Manipulative Evaluationresults, we conclude that current
video generation models still fail to effectively capture many physical rules, indicating significant
improvements are needed before they can function as true World Simulators.

6 CONCLUSION

In this work, we classify the functionalities of predictive models into a hierarchy and take the first
step in evaluating World Simulators by proposing a dual evaluation framework called WorldSim-
Bench. We conducted a comprehensive evaluation and analysis of multiple video generation models
as World Simulators through both Explicit Perceptual Evaluation and Implicit Manipulative Evalua-
tion processes. We summarize key findings from the evaluation and hope these insights will inspire
and guide future research on World Simulators.

Limitations. Although we evaluate physical rules and 3D content from the perspective of embodied
intelligence, the World Simulator can be applied to more scenarios than just robots, and different
scenarios have more physical representations, so how to effectively evaluate the World Simulator in
other scenarios requires more exploration.
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A TAXONOMY IN EXPLICIT PERCEPTUAL EVALUATION

We outline the evaluation dimensions for each embodied scenario below, along with their corre-
sponding explanations. These explanations are used for detailed human annotation documentation
and also serve as the explanation of the evaluation criteria in instructions for the Human Preference
Evaluator.

A.1 OPEN-ENDED EMBODIED ENVIRONMENT

Visual Quality. Background Consistency ensures the background remains consistent throughout
the video. Foreground Consistency verifies the consistency of the foreground elements.

Condition Consistency. Instruction Alignment assesses whether the video aligns with the provided
input instruction. Scenario Alignment checks if the input instruction defines an embodied scenario
and whether the video accurately reflects this scenario.

Embodiment. Velocity evaluates if the velocity of the observed object is appropriate. Embodied
Interaction evaluates the embodied interaction’s appropriateness based on the interaction process
and target. Trajectory evaluates whether the motion trajectory in the video is logical.

A.2 AUTONOMOUS DRIVING

Visual Quality. Aesthetics evaluates whether the composition, color, lighting, and scene in the
video align with human aesthetics.

Condition Consistency. Instruction Alignment assesses whether the video aligns with the provided
input instruction.

Embodiment. Perspectivity evaluates the video’s perspective, specifically assessing the 3D scene
relationships. This includes evaluating whether the video has a strong sense of depth and realism
(i.e., whether it feels three-dimensional). Additionally, assess the logic of lighting and shadows,
including whether the shadow positions are consistent with the light sources. Trajectory evaluates
whether the movement and the trajectory of elements in the video is logical. Key Element assesses
the generated quality of embodied elements e.g., roads, vehicles, pedestrians, bicycles, lane mark-
ings, sidewalks, traffic signs, and traffic lights. Safety evaluates whether the behavior of the vehicles
comply with traffic rules. Are there any instances of running red lights, speeding, or driving outside
of permissible areas.

A.3 ROBOT MANIPULATION

Visual Quality. Aesthetics evaluates whether the composition, color, lighting, and scene in the video
align with human aesthetics. Background Consistency ensures the background remains consistent
throughout the video, include the manipulation table and the environment. Foreground Consistency
verifies the consistency of the foreground elements, including the robotic arm and the object on the
manipulation table.

Condition Consistency. Instruction Alignment assesses whether the action of the robot arm in the
generated video aligns with the provided input instruction.

Embodiment. Perspectivity evaluates the video’s perspective, specifically assessing the 3D scene
relationships. This includes evaluating whether the video has a strong sense of depth and realism
(i.e.., whether it feels three-dimensional). Additionally, assess the logic of lighting and shadows,
including whether the shadow positions are consistent with the light sources. Embodied Interaction
judges whether the object’s shape and posture conform to the rules during the collision of objects and
the interaction between the robotic arm and the object. Trajectory evaluates whether the trajectory
of the robotic arm is reasonable and in line with human cognition.
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Table 4: Analysis of HF-Embodied Dataset. Samples scored higher than 3 in AD and RM are
considered positive.

Embodied Scenario #instructions #videos #dims #actions #positive #negative
Open-Ended Embodied Environment 270 8401 7 11 121249 79965
Autonomous Driving 5 15870 6 5 56768 35044
Robot Manipulation 2556 11430 7 26 70672 9338

B DETAILD IMPLEMENTATION OF EXPLICIT PERCEPTUAL EVALUATION

B.1 HF-EMBODIED DATASET

Tab. 4 provides an analysis of the HF-Embodied Dataset. In Autonomous Driving scenario, there are
only five instructions: move forward, move backward, turn left, turn right, and stop. The other two
scenarios include a variety of instructions that combine actions with target objects. Given the diverse
instructions, different video generation models generate multiple videos after finetuning on specific
datasets. To enhance the Human Preference Evaluator understanding of the autonomous driving
context, we also supplement the AD scenario with videos from real-world scenes. Additionally,
we list the quantities of positive and negative samples across all dimensions. Samples with human
annotated scores of 3 or higher in AD and RM are considered positive. Leveraging HF-Embodied
Dataset with comprehensive embodied dimensions, we train the Human Preference Evaluator to
enable efficient assessment in Explicit Perceptual Evaluation.

Discussion of Future Work. Human Preference Evaluator (HPE) and HF-Embodied Dataset have
been effective in aligning generated content with human preferences and evaluating video generation
models, and we could explore more about its potential applications. Here are some future work
directions to leverage the capabilities of HPE and HF-Embodied Dataset:

Interactive Training for Generative Models Utilize HPE as a real-time feedback mechanism dur-
ing the training of generative models. By integrating HPE and HF-Embodied Dataset into a rein-
forcement learning framework, it could dynamically guide the model to improve alignment with
human preferences across various scenarios, and can even make the world simulator perform better
in downstream tasks.

B.2 VIDEO GENERATION MODEL FINETUNING

Table 5: Training Frames of Generation Models.

Model Open-Sora-Plan Lavie ModelScope OpenSora AnimateDiff DynamicCrafter EasyAnimate
Short Videos(frames) 16 16 16 16 16 16 16
Long Videos(frames) 64 48 60 48 64 60 64

We evaluate 8 popular video generation model, including Open-Sora-Plan(T2V) (Lab & etc., 2024),
Lavie (Wang et al., 2023c), ModelScope (Wang et al., 2023b), OpenSora (Zheng et al., 2024), Ani-
mateDiff (Guo et al., 2023), Open-Sora-Plan(TI2V) (Lab & etc., 2024), DynamicCrafter (Xing et al.,
2023), EasyAnimate (Xu et al., 2024) through both Explicit Perceptual Evaluation and Implicit Ma-
nipulative Evaluation, across three distinct scenarios: Open-Ended Embodied Environment (OE),
Autonomous Driving (AD), and Robot Manipulation (RM).

In Open-Ended Embodied Environment, we use OpenAI Contractor Gameplay Dataset (Baker
et al., 2022) which is created by hiring human contractors to play Minecraft and complete tasks
like house building. Keypresses and mouse movements are recorded during gameplay. We apply
the same preprocessing steps as VPT, including filtering out null actions. Additionally, we create
a supplementary dataset for the task ”Explore” by generating trajectories using various pre-trained
Steve-1 agents. The distribution of this dataset is enhanced by randomly switching between mod-
els during trajectories, resetting the agent’s memory, and adjusting the agent’s orientation to face
new directions at random intervals. For specific in-game events, e.g., “mine block”, the type of
block broken is logged alongside precise timestamps. These timestamps allow for accurate progress
tracking and are aligned with the completion of event-related instructions.
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OE@Acc(↑) BC FC IA SA VC TJ EI Overall

GPT-4o 60.5 70.4 70.9 67.3 79.6 83.7 85.9 72.8
HPE 81.2 87.5 87.5 96.4 94.5 93.8 88.8 89.4

GPT-4o@OpenSora 60 80 80 50 0.0 100 88.8 66.5
HPE@OpenSora 70 90 60 100 100 22.2 80 71.6

GPT-4o@Lavie 50 66.7 75 88.8 87.5 100 87.5 78.5
HPE@Lavie 80 80 80 100 100 75 100 87.9

AD@PLCC(↑) AE IA PV TJ KE SF Overall

GPT-4o 0.37 0.22 0.23 0.28 0.37 0.18 0.28
HPE 0.71 0.57 0.50 0.58 0.65 0.58 0.60

GPT-4o@OpenSora 0.22 -0.39 0.32 0.15 -0.03 -0.12 0.03
HPE@OpenSora 0.37 0.55 0.34 0.06 0.28 0.41 0.34

GPT-4o@Lavie 0.17 0.13 -0.34 0.06 -0.09 -0.15 -0.04
HPE@Lavie 0.28 1.0 0.49 0.37 0.12 0.69 0.49

RM@PLCC(↑) AE BC FC IA PV TJ EI Overall

GPT-4o 0.07 0.18 0.20 0.32 -0.14 -0.01 -0.14 0.07
HPE 0.52 0.43 0.43 0.43 0.20 0.56 0.44 0.43

GPT-4o@OpenSora -0.45 -0.03 0.08 0.0 0.04 -0.23 0.14 -0.06
HPE@OpenSora 0.25 0.35 0.05 0.42 0.89 0.89 0.44 0.47

GPT-4o@Lavie 0.11 -0.07 0.42 0.42 0.21 0.31 -0.21 0.17
HPE@Lavie 0.33 0.04 0.69 0.40 0.89 0.67 0.06 0.44

Table 6: Performance comparison between Human Preference Evaluatorand GPT-4o. HPE
indicates Human Preference Evaluator. The other abbreviations are listed in Tab. 2.

In Autonomous Driving, we fine-tune using the nuScenes training set (Caesar et al., 2020), and
following the approach in Vista (Gao et al., 2024), we sample video clips consisting of 25 frames at a
frequency of 10 Hz. To classify actions into textual commands, we adhere to established conventions
in planning and define ego-vehicle commands as “turn right”, “turn left”, “go straight”, and “stop”,
consistent with the definitions in Vista.

In Robot Manipulation, we use RH20T-P (Chen et al., 2024), a dataset based on RH20T (Fang
et al., 2023) and designed for primitive-level robotic manipulation that features meticulously de-
fined primitive skills and diverse primitive-level spatial knowledge of multiple forms. We use each
primitive-level robotic manipulation instruction along with the corresponding video as input for
training. Additionally, since this dataset is designed for downstream tasks in specific scenarios,
some textual instructions include explicit coordinate information. To enhance the generalization
ability of the video model, we excluded these coordinate-specific instructions during training.

At the model architecture level, we followed Dynamicrafter (Xing et al., 2023) to modify the text-to-
video model of Open-Sora-Plan(T2V) (Lab & etc., 2024) by replacing the first frame and expanding
the channel dimensions, enabling the model to take the first frame as a condition. This resulted in
the Open-Sora-Plan (TI2V) model. No structural adjustments were made to other models. During
training, we preprocessed the data according to each model’s default input format and performed
fine-tuning following the official implementation without changing the training settings. We fine-
tuned each model using two different video lengths to enhance the diversity of the video evaluation
set: short videos with approximately 20 frames and long videos with around 60 frames, depending
on the model’s default training video length. The specific lengths are detailed in the Tab. 5.

B.3 HUMAN PREFERENCE EVALUATOR TRAING

The Human Preference Evaluator is trained based on Flash-VStream (Zhang et al., 2024a), where
only LoRA (Hu et al., 2021) parameters are trained. The model’s input consists of a sampled video,
represented as multiple frames, along with a prompt. The prompt includes the current scenario,
the instruction input for video generation, the dimension being evaluated, and the definition of that
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<Video>\nThe given autonomous driving video is generated by a generative model based on 
the input instruction: {instruction}. Please rate the video based on the following criteria:
{Dimension}: {Dimension Explanation}

Figure 6: Prompt template for Autonomous Driving. The {item} is replaced with specific content.

Table 7: Evaluation results in OE. The abbreviations are listed in Tab. 2.

Model BC FC IA SA VC TJ EI Overall

Open-Sora-Plan 1.4 1.9 1.7 1.7 2.0 1.5 1.6 1.69
Lavie 1.3 2.0 1.7 1.7 2.0 2.0 1.8 1.79
ModelScope 1.9 2.0 2.0 1.7 2.0 2.0 1.75 1.91
OpenSora 1.6 1.9 1.6 1.8 2.0 2.0 1.6 1.79
AnimateDiff 1.3 1.3 1.2 1.7 1.4 1.38 1.55 1.40
DynamicCrafter 1.9 2.0 1.5 2.0 2.0 2.0 1.45 1.84
EasyAnimate 1.4 1.8 1.5 2.0 2.0 1.22 1.45 1.62

dimension. An example of such a prompt is illustrated in Fig. 6, while the details of the explana-
tion are discussed in Section 2. We don’t use the annotated reason during training for CoT of the
evaluator, as the reason labeled by different human varies a lot, hard for model to learn.

We maintain consistent training settings in all three scenarios, with a video sampling frequency of 4.
The LoRA settings aligned with those in Flash-VStream. We use AdamW as the optimizer, employ
cosine decay for the learning rate scheduler. We train for 4 epochs with a learning rate of 2e-5
and a warmup ratio of 0.03. The training is conducted on 4 A100 80 GPUs. To avoid over-fitting
to specific prompts or videos generated by particular models, we carefully filter the HF-Embodied
Dataset to ensure balanced distribution across various generation models and evaluation dimensions.

We prove the effectiveness and generalizability of through comparison with GPT-4o arcoss the
three embodied scenarios, under both finetuned and zero-shot setting, as shown in Tab. 6. After
fine-tuning, the Human Preference Evaluator surpasses GPT4-o in aligning with human preferences
across all dimensions in every scenario. This is particularly evident in challenging dimensions, e.g.,
Embodied Interaction and Trajectory in RM, where GPT4-o shows a negative correlation, while the
Human Preference Evaluator exhibits a strong positive correlation. These results demonstrate the its
robust performance, making it suitable for Explicit Perceptual Evaluation. In zero-shot settings, the
Human Preference Evaluator also outperforms GPT4-o in nearly all dimensions, further proving our
model’s aility to understand videos generated by different models.

C DETAILED RESULT OF EXPLICIT PERCEPTUAL EVALUATION

C.1 QUANTITATIVE RESULTS

Tabs. 7-9 present the comprehensive evaluation results for 7 video generation models across three
scenarios, including the scores for each dimension and the mean scores representing the overall
performance of the models. In OE, although our scoring is binary, we display scores on a scale of
1-2 for consistent comparison. In addition to the conclusions mentioned in the main text, we can
observe the following findings.

In OE, most models achieve high scores in Velocity, largely due to the limited occurrences of object
movement in the generated videos. Generating dynamic embodied environments with moving ob-
jects presents a significant challenge for current models. Additionally, the consistency between the
generated videos and the scenarios specified in the instructions is higher than the alignment with the
task-oriented instructions. This indicates that while the models can generate corresponding scenes,
they struggle to reason about the temporal actions necessary for task completion.

In AD, the quality of the generated videos significantly declines due to the complexity of outdoor
driving scenarios. The models must understand and generate various traffic elements, e.g., roads,
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Table 8: Evaluation results in AD. The abbreviations are listed in Tab. 2.

Model AE IA PV TJ KE SF Overall

Open-Sora-Plan 1.6 5.0 1.55 1.4 1.45 3.2 2.37
Lavie 2.15 5.0 2.2 2.8 2.1 5.0 3.21
ModelScope 2.8 5.0 3.35 4.0 3.0 5.0 3.86
OpenSora 3.55 5.0 4.4 4.8 3.65 5.0 4.40
AnimateDiff 1.55 5.0 1.55 1.0 1.3 3.8 2.37
DynamicCrafter 2.6 4.0 3.4 3.8 2.65 5.0 3.57
EasyAnimate 1.5 3.4 1.4 1.4 1.3 2.6 1.93

Table 9: Evaluation results in RM. The abbreviations are listed in Tab. 2.

Model AE BC FC IA PV TJ EI Overall

Open-Sora-Plan 4.0 4.0 4.0 1.0 4.9 5.0 4.0 3.84
Lavie 3.8 3.9 4.0 1.8 4.95 5.0 4.1 3.94
ModelScope 3.63 4.1 4.0 1.18 4.9 5.0 4.0 3.83
OpenSora 3.85 4.0 3.95 1.3 4.75 5.0 4.1 3.85
AnimateDiff 3.8 3.9 4.0 1.0 4.95 5.0 4.1 3.82
DynamicCrafter 3.97 4.08 4.0 2.6 5.0 5.0 4.31 4.14
EasyAnimate 3.55 3.45 3.65 1.2 4.8 4.3 3.45 3.49

background buildings, pedestrians, and vehicles, while also producing dynamic content, with each
element requiring reasonable speed. This presents substantial challenges. However, top-performing
models, e.g., OpenSora, manage to achieve the highest scores across all metrics.

In RM, the primary issue lies in Instruction Alignment. The video generation models struggle to
comprehend the input instructions and generate appropriate actions to complete the tasks, instead
moving aimlessly without clear objectives. This lack of targeted movement reduces potential errors
related to object interaction or penetration, resulting in artificially inflated scores in Embodied In-
teraction and Trajectory. Current video generation models struggle in effectively addressing robotic
manipulation tasks.

Place the brown square.

PV: 5
TJ: 5
EI: 4
IA: 1

Place the sponge.

PV: 5
TJ: 3
EI: 3
IA: 1

EI: 5
IA: 5

EI: 3
IA: 5

Place torch on the stone. Place torch on the stone.

KE: 1
SF: 1
PV: 1

KE: 4
SF: 5
PV: 5

Go straight. Go straight.

Figure 7: Qualitative Results in Explicit Perceptual Evaluation.
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C.2 QUALITATIVE RESULTS

We include a qualitative analysis of generated videos under the three embodied scenarios. Each
video is represented by three evenly sampled frames, with the corresponding generation instructions
listed above the video. To the left of the videos, we provide the scores of the key embodied attributes
labeled by the human preference evaluator.

Open-Ended Embodiment Scenario. For the open-ended embodiment scenario, the left video
demonstrates successful completion of the instructed task, with proper interaction with the stone. In
contrast, the right video encounters issues during interaction, specifically crushing the stone when
placing the torch, indicating a problematic interaction.

Autonomous Driving Scenario. In the autonomous driving context, the left video suffers from sig-
nificant distortion and light pollution. Additionally, it exhibits unsafe behavior, such as maintaining
excessive speed despite the presence of a car ahead. On the other hand, the right video maintains
high-quality generation and demonstrates proper adherence to traffic rules, including slowing down
at a red light.

Robotic Manipulation Scenario. For robotic manipulation, the left video displays that the robotic
arm interacts with a rigid object (wooden block), which appropriately does not deform during the
grasping process. However, minor, physically implausible rotations occur during the grasp, resulting
in a score of 4 for EI. Additionally, the generated wooden block does not match the specified color
in the instruction, leading to an instruction alignment score of 1. In contrast, the flexible object
(sponge) in the right video, unrealistically stretched, violating physical rules. Furthermore, the video
depicts the robotic arm moving away from the table, which contradicts the ”place” instruction. This
mismatch leads to low scores in both trajectory and instruction alignment. Despite these issues, both
videos effectively display light reflections and shadows, with a clear sense of depth, earning a PV
score of 5.

These qualitative results provide an illustration of ”what is a good embodied video”, and reveal the
limitations of the video generation models.

D IMPLICIT MANIPULATIVE EVALUATION-OE

In this section, we provide additional details about Implicit Manipulative Evaluation-Open-Ended
Embodied Environment that are not covered in the main paper due to space limitations. Minecraft
has emerged as a popular open-world environment for developing generalist embodied agents (Lif-
shitz et al., 2024; Qin et al., 2024; Zhou et al., 2024) due to its diverse tasks (e.g., survival, harvest-
ing, crafting, combat, and creative tasks), varied environments, and interactive mobs, all of which
require generalized agent capabilities. Previous works (Qin et al., 2024; Wang et al., 2023d;a) have
primarily focused on exploring the capabilities of LLMs or MLLMs as Predictive Text Modelat the
S1 stage. However, no prior research has conducted closed-loop evaluations of World Simulators at
the S3 stage within Minecraft. To address this gap, we leverage the Steve-1 pipeline to assess the
performance of Video Generation Models as World Simulators in Open-Ended Embodied Environ-
ment.

D.1 DETAILED DESCRIPTION

In Implicit Manipulative Evaluation-Open-Ended Embodied Environment, we adapt the action space
of Steve-1 (Lifshitz et al., 2024) to develop a pipeline for the Video Generation Model, enabling it
to function as a low-level embodied controller. Additionally, we employ Programmatic Evaluation
to benchmark the low-level embodied control capabilities of the Video Generation Model as World
Simulators. These tasks are comprehensive, requiring the combination of multiple atomic actions
and smooth scene transitions. Each aspect rigorously tests the coherence of the generated content,
the consistency with given instructions, and the model’s ability to interact effectively with the envi-
ronment.

Testing. We evaluated performance in OE using five tasks: collecting wood, collecting dirt, collect-
ing seeds, exploring the area, and vertical digging. To reduce evaluation randomness, we selected
the most suitable initialization environments for each task (e.g., the agent is initialized in a forest
for the wood collection task). During testing, for each task, we randomly select one description
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from various task instructions and input it into the World Simulator to generate the corresponding
video. The video is then continuously translated into actions by a pre-trained goal-based video-to-
action model, which executes until the test time expires. Each task runs for 10 trials with distinct
environment seeds, with a limit of 3,000 frames (i.e., 2.5 minutes of gameplay).

Training. Due to the low video quality produced by the open-source video generation model based
on the provided instructions, we applied additional fine-tuning using data from the OE simula-
tion environment. For Video Generation Model fine-tuning, we use OpenAI Contractor Gameplay
Dataset (Baker et al., 2022) which is the same as OE in Explicit Perceptual Evaluation. The train-
ing setting could be found in Sup. B.2. For pre-trained goal-based video-to-action model, we use
pre-trained Steve-1(visual) model without extra fine-tuning.

Metrics. We calculate programmatic evaluation metrics by tracking the MineRL environment state
throughout each evaluation episode. Several metrics are measured, including travel distance and
early-game item collection. Travel distance is defined as the agent’s maximum displacement on the
horizontal (X-Z) plane from its initial spawn point. Dig depth is defined as the agent’s maximum
displacement on the vertical (Y) axis from its initial spawn point. For an early-game inventory, we
record the maximum count of logs, seeds, and dirt items observed in the agent’s inventory during
the episode.

D.2 ACTIONS

We use the part of the action space of (Baker et al., 2022) which encompasses nearly all actions
available to human players, including keypresses, mouse movements, and clicks. The specific binary
actions used in our setup are listed in Tab 10.

Table 10: Action Space of OE.

Behavior Action
forward W key
back S key
left A key
right D key
jump space key
inventory E key
sneak shift key
sprint ctrl key
attack left mouse button

D.3 FULL RESULT

Tab. 11 presents the evaluation results of several models across five specific tasks (collect wood,
collect dirt, collect seeds, travel distance, and dig depth), along with the average (AVG) score for
each model. The models are evaluated under two different conditions: Text and Text & Image.
Notably, to ensure that each task falls within a similar score range, we divided the score for the
travel distance task by 10 to calculate the AVG score.

Performance of Models Under Text Condition. Open-Sora-Plan and Lavie demonstrate strong
performance under the text-only condition, especially in the collect dirt and travel distance tasks.
Their average scores (26.38 and 26.06, respectively) are very close, indicating consistent and robust
performance across tasks. ModelScope shows an excellent score in the collect dirt task (52.20),
but it performs poorly in tasks like collect wood (14.00) and travel distance (240.72), resulting in
an overall lower average score (21.050) compared to other text-based models. OpenSora stands out
with the highest overall average score (27.80), excelling particularly in collect dirt (70.20) and travel
distance (339.87). This suggests that it is well-adapted to a variety of tasks and exhibits strong task
performance. AnimateDiff shows the weakest performance across all tasks, especially in collect
wood (7.40) and collect seeds (3.30), indicating challenges in handling such tasks.
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Performance of Models Under Text & Image Condition. Open-Sora-Plan shows a significant
drop in average score under the ”Text & Image” condition, demonstrating that adding image input
reduces its performance compared to the text-only condition. In particular, its travel distance score
drops from 342.91 to 195.14, suggesting that incorporating image data might interfere with certain
tasks. DynamICrafter and EasyAnimate exhibit poor performance across all tasks, especially in
collect wood and collect seeds, where they barely complete the tasks (with scores of 0.40 and 0.20,
respectively). This may indicate a lack of generalization ability in these models when combining
image input with text. Comparing the ”Text” and ”Text & Image” conditions, we observe that adding
image input does not consistently improve task performance and, in some cases, even degrades it.
We also observed that the success rates of various tasks significantly decrease when an image is
added as an additional condition. This indicates that the current video generation models need
improvement in handling multiple conditional inputs.

Table 11: Detail Result of Open-Ended Embodied Environment in Implicit Manipulative Evaluation.

Model Condition AVG Specific Tasks

Collect Wood Collect Dirt Collect Seed Travel Dis. Dig Depth

Open-Sora-Plan

Text

26.38 19.90 50.20 7.30 342.91 20.20
Lavie 26.06 23.50 56.00 11.60 270.20 12.20
ModelScope 21.050 14.00 52.20 6.30 240.72 8.70
OpenSora 27.80 21.20 70.20 10.40 339.87 3.20
AnimateDiff 13.10 7.40 22.90 3.30 274.19 4.50

Open-Sora-Plan
Text & Image

10.28 11.10 12.50 2.60 195.14 5.70
DynamiCrafter 4.06 0.40 0.30 1.30 130.04 5.30
EasyAnimate 4.84 0.20 0.70 1.70 157.12 5.90

D.4 ROLL OUT

Fig. 8 illustrates the downstream execution process in the Open-Ended Embodied Environment,
along with the corresponding textual instructions.

Insturction: Collect wood in the forest.

Figure 8: Rollout of Open-Ended Embodied Environment in Implicit Manipulative Evaluation.

E IMPLICIT MANIPULATIVE EVALUATION-AD

In this section, we provide additional details about Implicit Manipulative Evaluation-Autonomous
Driving that are not covered in the main paper due to space limitations.
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E.1 DETAILED DESCRIPTION

In Implicit Manipulative Evaluation-Autonomous Driving, we adapt the action space of LM-
Drive (Shao et al., 2024) to develop a pipeline for the Video Generation Model, enabling it to
function as a low-level embodied controller. Additionally, we employ LangAuto (Language-guided
Autonomous Driving) CARLA benchmark, to evaluate the low-level embodied control capabilities
of the Video Generation Model as World Simulators. These tasks are designed to be comprehen-
sive, spanning all 8 publicly available towns in CARLA, covering a diverse range of scenarios e.g.,
highways, intersections, and roundabouts. Additionally, they account for 16 different environmen-
tal conditions, combining 7 distinct weather settings (Clear, Cloudy, Wet, MidRain, WetCloudy,
HardRain, SoftRain) with 3 daylight conditions (Night, Noon, Sunset). Each aspect rigorously tests
the coherence of the generated content, the consistency with given instructions, and the model’s
ability to interact effectively with the environment.

Testing. We evaluated performance in Autonomous Driving using the LangAuto-Tiny benchmark
setting where the route length is shorter than 150 meters. We posit that shorter driving distances pro-
vide a more effective test of the low-level control capabilities of World Simulators. Longer routes
typically involve more instructions, which are prone to misalignment with the real-time simulation
environment. Therefore, we opt to evaluate performance on shorter routes to minimize these dis-
crepancies. During testing, we randomly select one description from various task instructions and
input it into the World Simulator to generate the corresponding video. The video is then continu-
ously translated into actions by a pre-trained goal-based video-to-action model, which executes un-
til the test time expires. We use the corresponding LangAuto-Tiny instructions and the first-person
view rendered by the real-time CARLA simulation environment as input to the video generation
model. The generated video is then continuously transformed into downstream control signals using
a pre-trained video-to-action model until the agent reaches a predefined success zone or the task is
terminated due to factors e.g., timeouts or collisions.

Training. Due to the low video quality produced by the open-source video generation model based
on the provided instructions, we applied additional fine-tuning using data from the AD simulation
environment. For Video Generation Model training, we use LMDrive Training Dataset (Shao et al.,
2024). We preprocessed the training data according to each model’s default input format and per-
formed fine-tuning following the official implementation without changing the training settings. We
fine-tuned each model using a short video generation setting with approximately 20 frames. For the
video-to-action model, we use pre-trained LMdrive model. Additional fine-tuning was conducted
based on the test requirements. We provided the model with arbitrary text instructions and replaced
the visual input with the future frame while keeping all other training settings consistent with LM-
Drive.

Metrics. We consider eight key metrics introduced by the CARLA Leaderboard (Dosovitskiy et al.,
2017): Route Completion (RC), Infraction Score (IS), Driving Score (DS), Vehicle Collisions (VC),
Pedestrian Collisions (PC), Layout Collisions (LC), Red Light Violations (RV), and Offroad In-
fractions (OI). Route Completion refers to the percentage of the total route length that the agent has
completed. This metric only accounts for the distance traveled along the predetermined route, where
each segment corresponds to a navigation instruction. If the agent strays too far from the route, it
is considered to have violated the instruction, resulting in the episode being marked as a failure and
terminated. The Infraction Score tracks any infractions caused by the agent, with penalties applied
for collisions or traffic violations through a corresponding discount factor. The Driving Score is the
product of the route completion ratio and the infraction score, reflecting both driving progress and
safety, and is widely regarded as the primary ranking metric. The precise definitions of the residual
metrics can be found in the CARLA documentation (Dosovitskiy et al., 2017).

E.2 ACTIONS

The video generated by the World Simulator is continuously fed into the video-to-action model to
obtain the corresponding waypoints. The agent then generates control signals based on the generated
waypoints and the conversion strategy used in CARLA.
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E.3 FULL RESULT

Tab. 12 presents the evaluation results of several models across eight metrics. The evaluation results
highlight significant differences in how video generation models perform in autonomous driving
tasks. Open-Sora-Plan stands out in trajectory generation, instruction following, and environment
perception, producing high-quality videos that effectively support task execution. In contrast, Dy-
namiCrafter and EasyAnimate struggle with generating detailed and consistent video content, par-
ticularly when handling complex or dynamic scenes. These models require improvements in video
generation quality, scene understanding, and task alignment to enhance their performance.

From a video generation perspective, several key areas for future development are identified: Im-
proved Trajectory Generation: High-quality trajectory generation is essential for accurate control
signals. Models must focus on generating more coherent and precise trajectories, especially in
dynamic environments, to ensure vehicles follow instructions and avoid collisions. Enhanced In-
struction Following: Generated videos should closely align with task instructions, particularly in
changing environments, enabling vehicles to adapt quickly while maintaining task accuracy. Better
Environment Perception: Future models need to generate videos that accurately represent complex
scenes, e.g., interactions with pedestrians, other vehicles, and varied terrains. More detailed and
realistic video generation will provide stronger input for real-time decision-making in the control
system.

In summary, advancing trajectory accuracy, instruction alignment, and environment representation
will be crucial for improving the overall performance of these video generation models in au-
tonomous driving tasks.

Table 12: Detail Result of Autonomous Driving in Implicit Manipulative Evaluation.

Model DS(↑) RC(↑) IS(↑) VC(↓) PC(↓) LC(↓) RV(↓) OI(↓)

Open-Sora-Plan 31.054 38.249 0.767 2.400 0.000 4.401 1.133 3.514
DynamiCrafter 24.491 37.189 0.599 5.030 0.000 4.896 0.937 3.221
EasyAnimate 17.414 28.475 0.607 0.000 0.000 29.344 0.000 1.690

E.4 ROLL OUT

Fig. 9 illustrates the downstream execution process in the Autonomous Driving, the corresponding
text instructions can be found in the lower left corner of each frame.

F IMPLICIT MANIPULATIVE EVALUATION-RM

In this section, we provide additional details about Implicit Manipulative Evaluation-Robot Manip-
ulation that are not covered in the main paper due to space limitations.

F.1 DETAILED DESCRIPTION

We primarily conduct our experiments on the CALVIN benchmark (Mees et al., 2022), which is
specifically designed for long-horizon, language-conditioned manipulation tasks. CALVIN includes
four simulated environments (labeled A, B, C, and D) that differ in textures and object placements.
Each environment features a Franka Emika Panda robot positioned next to a desk with various ma-
nipulable objects. The evaluation protocol tests model performance across 1,000 unique instruction
chains, each consisting of five distinct tasks. By providing an extensive dataset paired with natu-
ral language annotations, the CALVIN benchmark can provide a close-loop evaluation platform for
evaluating World Simulator to test its generation and generalization capabilities.

Testing. We evaluated performance in Robot Manipulation using the CALVIN benchmark bench-
mark, policy models are trained on demonstrations from environments A, B, and C, and evaluated in
a zero-shot manner in environment D. During the testing phase, we leverage World Simulators and
a pre-trained video-to-action model to tackle novel manipulation tasks guided by user-specified nat-
ural language commands. Given a current observation, we generate future video predictions using
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Figure 9: Rollout of Autonomous Driving in Implicit Manipulative Evaluation.

the World Simulator for the manipulation task with text instruction. Once the video is sampled, we
then execute the video-to-action policy conditioned on for k timesteps, where k is a testing hyperpa-
rameter. After k timesteps, the video prediction is refreshed by sampling from the World Simulator
again, and the process is repeated.

Training. Due to the low video quality produced by the open-source video generation model based
on the provided instructions, we applied additional fine-tuning using data from the RM simulation
environment. For Video Generation Model training, we use Calvin(ABC D) datset (Mees et al.,
2022). We preprocessed the training data according to each model’s default input format and per-
formed fine-tuning following the official implementation without changing the training settings. We
fine-tuned each model using a short video generation setting with approximately 20 frames. For the
video-to-action model, we use a pre-trained Susie policy without extra fine-tuning.

Metrics. We report the success rates and the average task length completed (out of five tasks) for
each evaluation sequence.

F.2 ACTIONS

For low-level control, we utilize the same action space as Calvin (Mees et al., 2022).

F.3 FULL RESULT

Based on the results shown in Tab. 13, Open-Sora-Plan demonstrates consistent performance, with
an average task length of 2.95, indicating its ability to reliably complete task sequences. While
DynamiCrafter achieves a higher success rate of 0.95 on the initial task, its performance declines
as task complexity increases, suggesting limitations in handling longer manipulation sequences.
EasyAnimate, although moderately successful in completing early tasks, experiences a sharp decline
in performance as task difficulty rises, reflected in its lower average task length of 2.05.

Overall, the models’ ability to consistently complete multiple tasks in succession showcases their
potential in downstream applications, with Open-Sora-Plan emerging as the most capable. How-
ever, the observed decrease in success rates as task complexity increases highlights the need for
further improvements in video-to-action translation, particularly in addressing the challenges posed
by longer and more complex manipulation sequences.
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Table 13: Detail Result of Robot Manipulation in Implicit Manipulative Evaluation.

Method Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5
Open-Sora-Plan 0.85 0.70 0.60 0.40 0.40 2.95
DynamiCrafter 0.95 0.75 0.55 0.25 0.25 2.75
EasyAnimate 0.90 0.60 0.35 0.10 0.10 2.05

To minimize the impact of randomness caused by the number of experiments, we conducted an
additional 100 trajectories evaluation. The results are presented in Tab 14. Compared to the 20-
trajectories setup, the results from the 100-trajectories setup show slight variations but maintain a
consistent overall trend. We also compared the performance with Unipi based on the 25-trajectory
setup described in SuSIE, and it can be observed that the tested video generation models(Open-Sora-
Plan, DynamiCrafter, EasyAnimate) demonstrate superior capabilities compared to the PVDM Yu
et al. (2023) latent video diffusion model utilized by Unipi.

Table 14: Detail Result of Robot Manipulation in Implicit Manipulative Evaluation, by running 100
trajectories. ∗ Results reported by Susie Black et al. (2023).

Method Task completed in a row (%) ↑ Avg. Len. ↑1 2 3 4 5
UniPi∗(HiP) 0.08 0.04 0.00 0.00 0.00 -
UniPi∗ (Susie) 0.56 0.16 0.08 0.08 0.04 -
Open-Sora-Plan 0.89 0.72 0.63 0.34 0.32 3.12
DynamiCrafter 0.93 0.69 0.51 0.27 0.18 2.64
EasyAnimate 0.92 0.55 0.32 0.16 0.13 2.08

F.4 ROLL OUT

Fig. 10 illustrates the downstream execution process in the Robot Manipulation, along with the
corresponding textual instructions.

Instruction: Press the button to turn on the led light

Instruction: Go push the blue block right

Figure 10: Rollout of Robot Manipulation in Implicit Manipulative Evaluation.

G DISCUSSION OF VISION-LANGUAGE-ACTION MODELS

The generated videos have the potential to significantly enhance the performance of Vision-
Language-Action (VLA) models by addressing two key challenges in training such models: the
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availability of diverse, high-quality training data and the need for effective reward functions in real-
world scenarios.

Data Augmentation and Hindsight Relabeling for Imitation Learning. Generated videos can
serve as a valuable source of synthetic data for training VLA models. By leveraging the diversity
and scalability of generative models, we can create a wide array of training scenarios, covering
edge cases and rare events that are difficult to capture in real-world datasets. Additionally, these
videos enable hindsight relabeling, a process where we retrospectively adjust the labels of generated
data to align with desired outcomes. This approach is particularly effective for imitation learning,
allowing VLA models to learn optimal behavior by mimicking successful trajectories represented
in the generated videos. By expanding the data distribution and improving its quality, generative
videos can lead to more robust and generalizable VLA models.

Reward Generation for Online Reinforcement Learning. Beyond data augmentation, generated
videos can act as a Reward Generator in reinforcement learning (RL) contexts. Unlike traditional
RL setups that rely on pre-defined reward functions within a simulator, generative videos enable the
creation of dense and context-aware reward signals tailored to real-world tasks. For example, they
can simulate desirable outcomes or intermediate goals, providing detailed feedback to the agent.
This capability is particularly crucial for transferring RL models to real-world environments, where
designing explicit reward functions is often impractical. By aligning the generated rewards with
real-world objectives, we can bridge the gap between simulation and reality, allowing VLA models
to achieve higher performance in real-world tasks.
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