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Abstract—Radiology reports are crucial for bridging the exper-
tise of radiologists and other clinicians. Machine Learning models
trained on these reports have shown promising performance
in various downstream clinical tasks, such as predicting the
necessity of future follow-up procedures, based on past radiology
reports. However, for clinicians to adopt these models and for
radiologists to validate the results, interpretability of the model
is essential. In this study, we train BERT models on radiology
reports to classify pediatric brain tumor pathologies. These
large language models enable accurate report-level classification,
without the need for costly word-level annotations. To iden-
tify and extract keywords and key-phrases related to distinct
pathologies from radiology reports, we used a modified Term
Frequency-Inverse Document Frequency to determine phrase
importance based on prevalence and attributions scores. We
achieved an overall multiclass Area Under Receiver Operating
Characteristic Curve (AUROC) of 79.57% using ClinicalBERT.
Moreover, the per-class AUROC values were 86%, 71.2%, and
81.5%, for ‘Pilocytic Astrocytoma’, ‘Low-Grade Astrocytoma’,
and ‘Other’ pathologies, respectively. Our explainability analysis
identified hypotonia and mesencephalon as the most important
terms for ‘Pilocytic Astrocytoma’ and ‘Low-Grade Astrocytoma’,
respectively.

Index Terms—BERT, deep learning, keyword extraction, inter-
pretability, key-phrase extraction, MRI, NLP, radiology reports

I. INTRODUCTION

Radiology reports are considered as a primary form of
communication between radiologists and their colleagues.
These reports provide critical diagnostic information needed
for informed decisions and thus, play a pivotal role in medical
care [1]. However, due to the large amount of information
clinicians must process, critical information is sometimes
missed, leading to medical errors [2]. Healthcare outcomes

could be improved by using Artificial Intelligence algorithms
to extract important information from radiological reports
more efficiently [3].

Natural Language Processing (NLP), is a research field that
aims to have computers understand language. Traditional NLP
approaches to key information extraction, such as part-of-
speech (POS) tagging, rely on grammatical categories (noun,
verb, etc.), assigned to each word in a given text. Performance
of these traditional approaches is limited by a high false-
positive rate, a result of their difficulty handling unknown
words and different contextual meanings [4].

Large language models (LLMs) address the limitations of
traditional NLP approaches; they are trained on massive text
datasets and use billions of parameters to understand not only
words but their context as well. LLMs, such as Bidirectional
Encoder Representations from Transformers (BERT) [5] and
Generative Pretrained Transformer (GPT) [6], have achieved
remarkable success across various NLP tasks [7]. However, the
adoption of LLMs in the medical domain has been limited due
to their lack of interpretability, which has inspired many works
aiming to enhance the transparency of LLMs. For example,
Thomas et al. [8] showed that GPT-4 can be instructed
to replicate the clinical reasoning patterns used by doctors
when making a diagnosis. Healthcare professionals have more
confidence in interpretable models in which they can identify
potential biases and understand the factors driving predictions.

Tumor pathology impressions are oftentimes made by ra-
diologists based on magnetic resonance imaging (MRI) ex-
aminations, with reasoning for the pathological prediction
detailed in the radiology report. The gold standard for tumor
pathology diagnosis assessment is the analysis of a tissue



sample. In this study, the objective was to predict tumor
pathologies from radiology reports using LLMs, while also
highlight key information in the report contributing to the
prediction. Successful identification of tumor pathologies from
radiology reports using LLMs would show these models have
deep understandings of expert descriptions of radiological
images. Highlighting key information would help readers of
radiology reports more efficiently identify information relevant
to the underlying pathology. Our interpretable model with a
strong understanding of radiological reports could be used in
the future for educational purposes, for example, to help new
radiologists make sense of reports, or as a low-quality report
detection tool, to identify cases where there is a mismatch
between the radiologist’s description of the image and the
actual pathology.

II. RELATED WORKS AND LITERATURE REVIEW

NLP aims to give computers the ability to understand
text and spoken words. In radiology, NLP tools have been
used for various tasks including information retrieval and text
classification [9]. Traditionally, heuristic approaches such as
dictionary and rule-based methods were used for NLP tasks in
radiology. MedLEE, a natural language text extraction system,
converts radiology reports into a structured format using a
predefined dictionary [10]. Ontology-based clinical informa-
tion extraction system [11] employs a rule-based approach to
extract structured information from clinical notes.

More recently, machine learning (ML) techniques have been
used for medical keyword extraction. The Mayo Clinical Text
Analysis and Knowledge Extraction System (cTAKES) [12]
combines dictionary and ML methods with the Unified Med-
ical Language System (UMLS) [13] for dictionary inquiries,
which involves mapping terms in clinical texts to standardized
terms from a medical terminology database. ML methods
such as POS tagging have been used to identify and classify
medical terms. Wu et al. proposed a POS-based method to
convert unstructured text data into structured reports that allow
patient examination results to be more easily understood [14].
A Linear-chain Conditional Random Field (CRF) [15] is a
type of statistical model that is used for sequence classification
tasks such as POS tagging or named-entity recognition. Unlike
models that classify each item in a sequence independently,
Linear-chain CRFs take into account the entire sequence,
helping them to excel in tasks where the context and order
of items matter. Andrean et. al [16] employed a Linear-chain
CRF for POS tagging and then constructed an information
extraction system to retrieve and categorize clinical terms into
nine groups from radiology reports.

In comparison to ML techniques, deep learning (DL) meth-
ods rely on neural networks that benefit from a larger number
of parameters, allowing them to model more complex patterns
in the data. DL models have been used for medical classifi-
cation and keyword extraction. Charlene et al. [17] evaluated
the effectiveness of various ML and DL techniques for the
identification and assessment of ischemic stroke through MRI
radiology reports. They found that DL methods, particularly

those incorporating GloVe word embeddings [18] and Recur-
rent Neural Networks [19] demonstrated high accuracy.

Improving the interpretability of DL models in radiology is
crucial for enhancing clinical trust and decision-making accu-
racy. William et al. [20] utilized a recurrent neural network
(RNN) to generate descriptive text to explain model decision
making process in human language, providing explanations
that are easily understood by medical professionals.

III. METHODOLOGY

All methods of this study were performed in accordance
with the guidelines and regulations of the research ethics
board of The Hospital for Sick Children (Toronto, Canada),
which approved the study and waived informed consent. In
this section, we describe our approach for classifying pediatric
brain tumor pathologies from radiology reports and extracting
key information. The workflow is illustrated in Fig. 1.

A. Dataset and Pre-processing

We used radiology reports associated with pediatric brain
MRI from The Hospital for Sick Children, which consists of
26415 MRI reports without labels, and 336 reports with a total
of 15 different pathology labels acquired through histopatho-
logical analysis of tumor tissue collected during surgery. All
reports are consistently structured, beginning with a summary
of the patient’s clinical history, followed by detailed obser-
vations from the MRI scans, and concluding with a diagnosis
result from radiologists. All patients’ personal information was
removed from the reports to ensure data privacy. The labeled
data was split into three categories: 144 reports classified under
‘Pilocytic Astrocytoma’, 67 under ‘Low-Grade Astrocytoma’,
and 125 labeled as ‘others’. Given the limited size of our
labeled dataset, consisting of only 336 patients, and the uneven
distribution of cases across 15 pathologies, we categorized the
dataset into three classes to address potential class imbalance.
Specifically, the two pathologies with the highest number of
cases were designated as separate classes, while the remaining
13 pathologies were combined into a third class labeled as
‘other’. This strategy was employed to create a more balanced
distribution of labeled data, ensuring the model would be
trained on approximately equal amounts of data from each
class. By mitigating the risk of class imbalance, we aimed to
prevent the model from disproportionately weighting certain
classes due to uneven training data distribution. This approach
allows the model to learn effectively and avoid biases that
could compromise classification performance. We used the
Radiology Lexicon from BioPortal [21], which contains radio-
logical terms and their synonyms, to augment our dataset using
synonym replacement. Before training the LLM, we removed
irrelevant text such as headers, footers, and transcribed dates.

B. Brain Tumor Pathology Classification

Our approach involved first pretraining LLMs on a large
dataset of unlabeled data to learn semantic representations of
radiology reports and then fine-tuning the pretrained models
on labeled reports to identify pathology types. To ensure



Fig. 1. Model Training & Interpretability Workflow: Two sets of Radiology reports are used to train the model: reports with and without pediatric tumor
pathology labels. The preprocessed reports without labels are first used to pretrain the LLM; then the reports with labels are used for fine-tuning the model
on the classification task. Norm-based attention analysis is applied to the fine-tuned model, resulting in attribution scores associated with classification labels
for every word and phrase in each report.

Fig. 2. Ranking Workflow: Illustration of the ranking workflow, focusing on how extracted key information is processed and ranked to identify the most
relevant key-phrases among all reports. Reports with attribution scores calculated for each word and phrase, which are the output from the interpretability
analysis, are fed into the modified TF-IDF ranking algorithm. This algorithm ranks the key-phrases, and the final output presents the top 100 key-phrases
with their importance scores.

robustness of our results, we used 10-fold cross-validation.
This is based on splitting the data into 10 subsets, training
the model on 9 subsets and testing it on the remaining subset.
This process was repeated 10 times, each time with a different
subset as the test set. Performance metrics were averages
across these 10 runs. As this study aims to extract informa-
tive keywords for each pathological class, the classification
model serves a dual purpose. It not only categorizes reports
into different pathological labels but also facilitates keyword
extraction. The effectiveness of keyword extraction is directly
linked to the accuracy of the classification model, where a
high-accuracy model is more likely to be capable of under-
standing the text with more semantic meaning. Therefore, if
an advanced classification model demonstrates superior per-
formance, it would inherently improve our keyword extraction
results by providing more accurate and relevant keywords. For
this classification task, we relied on a set of state-of-the-art
DL models, namely RadBERT [22], ClinicalBERT [23], and
BERT-base-uncased [24].

1) BERT-base-uncased: BERT-base-uncased is a basic
version of BERT, trained on a large corpus of text from
Wikipedia and BooksCorpus. This extensive training
allows BERT to capture a wide range of linguistic
nuances and contextual information.

2) RadBERT: RadBERT is a variation of the BERT
model that has been specifically fine-tuned on radio-
logical data with initialization from BioBERT [25], a

domain-specific language model pretrained on large-
scale biomedical corpora.

3) ClinicalBERT: ClinicalBERT was trained on a large
multicenter corpus of patients’ records to fine-tune the
base language model.

Pretraining on Unlabeled Data: The key method we used
in the pretraining stage was masked language modeling [5],
which is a fill-in-the-blank task, where a model uses the
context words surrounding a mask token to predict what the
masked word should be. We hypothesized this pretraining
would help tailor the three BERT variants to data from our
institution. The hyperparameters used for pretraining were: a
learning rate of 1e−5, batch size of 16, AdamW optimizer,
and 10 epochs for training.

Fine-tuning on Labeled Data: After pretraining, we trun-
cated the length of input text for each sample to 512 tokens,
which is the maximum length accepted by BERT models and
sufficient to retain the majority of symptom descriptions for
most of the reports. We then fine-tuned the LLMs on the 336
labeled radiology reports for classification, splitting the reports
into 302 training datapoints (90%) and 34 test datapoints
(10%). During fine-tuning, the learning rate was set to 1e−5,
with a batch size of 8, using the AdamW optimizer and 20
epochs of training.



C. Interpretability Techniques

DL models are often considered to be black boxes as their
reasoning is hard to explain. Model interpretability is essential
so that clinicians can trust and understand the predictions.
Our research aims to improve LLM interpretability through
key-phrase extraction from radiology reports. Specifically, we
focus on a norm-based analysis of the attention mechanism
[26] to identify key-phrases with high attributions to the
classification process. Traditional interpretability techniques
based on model weights analysis [27], [28] ignore input
context. Norm-based attention analysis, in contrast, considers
both model weights [29] and the input sequences.

The attention mechanism is a fundamental component of
LLMs, enhancing their ability to understand and process
complex input sequences [29]. At a high level, it helps the
model focus on the most relevant parts of the input when
making predictions. The attention mechanism relies on three
components: query (the token of interest), key (all other
tokens in the sequence), and value (the contextual information
associated with each token). It computes weights that can be
used as a measure of the relevance of each token in the input
sequence to the target class. The process, referred to as self-
attention, generates a vector yi for each input token xi, which
captures the token’s contextual information within the input
sequence. These embeddings are then aggregated and passed
through subsequent layers, such as classification layers for the
final prediction. For each input vector xi, the attention weights
αi,j , in Eq. 1, are calculated based on the inner product
between the query q (xi) and the key k (xi) of each token,
scaled by

√
d′ where q(·), k(·), and v(·) are the Query, Key,

and Value vectors, respectively, and X = x1, . . . ,xn ⊆ Rd

represents the sequence of input vectors. d and d′ represent
the dimensions of the inputs and attention space, respectively,
while n is the number of input tokens.

αi,j := softmaxxi,xj∈X

(
q (xi)k (xj)

⊤
√
d′

)
∈ Rn×n (1)

Here, xi and xj correspond to the i-th and j-th token repre-
sentations within the encoder stack. The vector yi is updated
by interactions with all xj vectors, where every vector is a
representation of a specific token in the radiology reports. This
self-attention mechanism allows each token to dynamically
influence the contextual embedding of every other token.

The value vectors represent the actual information from the
input sequence that will be passed on to following model
processes after being scaled by attention scores. Similar to
how query and key vectors are generated, the value vectors
v (xj), in Eq. 2, are obtained by transforming the input vectors
using the value transformation where all WQ, WK and W V

∈ Rd×d′
, all bQ, bK and bV ∈ Rd′

, and d′ equals to d

q (xi) := xiW
Q + bQ

k (xj) := xjW
K + bK

v (xj) := xjW
V + bV

(2)

With the attention weights derived, the output vector yi in
Equation 3 is calculated as a weighted sum of the value vectors
v (xj). To ensure that the output yi has the same dimension
as the input xi, we apply a linear transformation using WO ∈
Rd′×d. Since we’re setting d′ = d (i.e., the attention dimension
equals the input dimension), WO ∈ Rd×d.

yi =

 n∑
j=1

αi,jv (xj)

WO. (3)

To interpret the LLM’s decision-making process, we lever-
age Equation 3, which shows that the attention mechanism
effectively computes a weighted sum of the transformed input
vectors, denoted as f(x), where:

f(x) =
(
xW V + bV

)
WO. (4)

Therefore, the output vector yi can be expressed as:

yi =
n∑

j=1

αi,jf (xj) . (5)

We can then compute the Euclidean norm of each weighted,
transformed vector αi,jf (xj):

Ai,j = ||αi,jf(xj)||, (6)

where ||.|| denotes the Euclidean norm in Rd. By analyzing
the values of Ai,j , we gain valuable insights into the LLM’s
attention during pathology classification. This interpretability
technique helps us understand how the model processes and
weighs different words, ultimately quantifying the keyword
attributions and facilitating further extraction processes from
radiology reports.

D. Keyword Extraction

A popular method for key-phrase ranking is the Term
Frequency-Inverse Document Frequency (TF-IDF) algorithm
which is a numerical statistical measurement used in informa-
tion retrieval and text mining to evaluate the importance of a
word within a collection of documents. Traditionally, TF-IDF
uses the frequency of words to determine how relevant those
words are to a given document. The importance of a term is
determined by TF and IDF. TF measures the frequency of a
term in a report, while IDF assesses the rarity of the term
across the entire collection of documents. The product of TF
and IDF evaluates the significance of each term.

Our method extends the traditional TF-IDF approach by
replacing the TF scores with the attribution scores obtained
from the norm-based attention analysis method (Fig. 2). These
scores are derived from the model’s attention mechanism,
which highlights how much each part of the input data
influences the model’s predictions. In our case, attribution
scores are numerical values that quantify the contribution of
each word or phrase in a radiology report to the model’s
decision. We used the same equation as TF-IDF but replaced
TF with attribution scores.



Each individual token in the radiology reports has corre-
sponding attribution scores. We calculated a modified TF-
IDF weight for each term, which takes into account these
attribution scores. By doing so, single keyword or phrase
attribution can be calculated across all reports. This can further
rank the words or phrases among all reports based on model
prediction rather than merely word occurrence. The modified
TF-IDF weight for a specific term i that may occur multiple
times in a report is given by Equation 7.

Modified TF-IDFi =

ni∑
j=1

(Attribution Scoreij × IDFi) (7)

In this equation, ni represents the total number of occur-
rences of term i in the radiology report, Attribution Scoreij
denotes the attribution score for the j-th occurrence of term i,
obtained from the norm-based attention analysis, and IDFi is
the inverse document frequency for term i calculated based
on all documents. Our IDF scores are calculated using all
radiology reports. When a word or phrase appears in many
reports, its IDF score decreases, as it is considered common
and less informative. Conversely, a term that appears in fewer
reports receives a higher IDF score, indicating it provides more
unique information about the reports it appears in.

By using attribution scores instead of the raw term frequen-
cies, we aim to enhance the keyword extraction process with
more contextually relevant keywords.

The modified TF-IDF algorithm includes six modules.
1) Calculating the Attribution Scores: We compute the

attribution scores for each token in the radiology reports
according to their contributions to model classifications.

2) Handling sub-tokens: Due to the tokenization process,
words can be split into sub-tokens to handle tokens
unseen in our tokenizer. For example, ‘sinuses’, which is
not in pre-defined tokenizers, is separated into ‘sin’ and
‘-uses’. Thus, a leading hyphen in a token indicates an
original token was split into two sub-tokens, ensuring
the procedure is reversible. For each word split into
sub-tokens, we aggregate their attribution scores by
averaging the scores associated with each sub-token for
that word. This ensures attribution scores correspond to
words instead of sub-tokens.

3) Computing the modified TF for term i: We replace raw
term frequency of term i with word-level attribution
scores calculated from step 1.

4) Calculating the IDF for term i: The IDF remains un-
changed and is computed based on the rarity of of term
i across the entire collection of radiology reports.

5) Computing the Modified TF-IDF Weight for term i:
The modified TF-IDF weight for term i is obtained by
multiplying its attribution score with the IDF value.

6) Keyword Extraction: We rank all terms based on their
modified TF-IDF weights and extract the top keywords
as the most relevant terms among all reports for each
specific pathology label.

E. Phrase Extraction
We further explore phrase extraction to identify meaningful

multi-word phrases (mainly bi-grams and tri-grams) from
radiology reports. Phrases contain more contextual information
compared to individual words, which is particularly important
in the medical field where complex phrases are used to convey
details about medical conditions, procedures, and findings.

Our approach to phrase extraction includes modules similar
to keywords extraction.

1) Calculating the Attribution Scores: Attribution scores for
each token are computed in the same way as in keyword
extraction

2) Handling sub-tokens: The phrase extraction process in-
volves analyzing groups of words rather than treating
individual words in isolation. Words in a phrase may
be decomposed into subtokens, depending on whether
they exist in the model’s token set. To determine the
attribution of an entire phrase, the attribution scores
of all subtokens corresponding to the words within the
phrase are averaged. For instance, if a phrase contains
two adjacent words, and each word is split into two
subtokens, the attribution for the phrase would be cal-
culated by averaging the attribution scores of the four
subtokens. This method, combined with a comprehen-
sive token set for the model, ensures that the original
medical terms are preserved by attributing importance
to the entire phrase as a unit, rather than focusing solely
on individual subtokens. By averaging the attribution
scores across all subtokens, the integrity and meaning
of complex medical terms are maintained, allowing for
a more accurate and contextually relevant interpretation
of medical terminology.

3) Filtering of Stopword Phrases: To enhance the relevance
of the extracted phrases, we remove multi-word phrases
that start or end with stopwords which is a collection of
commonly used words.

4) Ranking and Selection: We rank the phrases based on
their weight obtained by applying our proposed modified
TF-IDF Weight. The top-ranked phrases are selected as
contextually relevant and meaningful multi-word expres-
sions in the radiology reports.

IV. EXPERIMENTS AND RESULTS

Area Under Receiver Operating Characteristic Curve
(AUROC) Scores: Table I shows the averaged AUROC
scores for different BERT models. The ClinicalBERT model
performed the best overall with pretraining, resulting in an
AUROC of 0.784. This model achieved an AUROC of 0.86 for
‘Pilocytic Astrocytoma’, 0.712 for ‘Low-Grade Astrocytoma’,
and 0.815 for ‘others’. Note that even though ClinicalBERT
consistently outperformed the other BERT variants and pre-
training seemed to help, the difference between the perfor-
mance of the various models and the effects of pretraining
seemed to be minimal, given the high standard deviations.

A detailed examination of the AUROC scores reveals that
without pretraining, ClinicalBERT achieved the highest per-



formance with AUROC scores of 0.872 for ‘Pilocytic Astro-
cytoma’, 0.664 for ‘Low-Grade Astrocytoma’, and 0.809 for
other pathologies. RadBERT and BERT-base-uncased models
performed slightly lower in comparison. With pretraining,
ClinicalBERT continued to outperform the other models,
achieving AUROC scores of 0.860 for ‘Pilocytic Astrocy-
toma’, 0.712 for ‘Low-Grade Astrocytoma’, and 0.815 for
other pathologies. The RadBERT and BERT-base-uncased
models also showed improvements with pretraining, though
not as significantly as ClinicalBERT. This suggests that while
domain-specific pretraining is beneficial, the overall impact
may not be as substantial as initially expected.

Word Clouds: Fig. 3 displays two word clouds representing
the top 100 extracted keywords for the two most frequent
tumor pathologies in our datasets (left for ‘Pilocytic Astrocy-
toma’, right for ‘Low-Grade Astrocytoma’). The size of each
word corresponds to its modified TF-IDF score, aiding in the
identification of key terms associated with each pathology.

Fig. 3. Top 100 Keywords for ‘Pilocytic Astrocytoma’ (left) and ‘Low-Grade
Astrocytoma’ (right). The word sizes reflect modified TF-IDF scores.

Fig. 4 presents two word clouds representing the top 100
extracted phrases for specific tumor pathologies (left for ‘Pilo-
cytic Astrocytoma’, right for ‘Low-Grade Astrocytoma’). The
size of each phrase indicates its significance across all reports,
providing a clear representation of key-phrases associated with
these tumor types.

Fig. 4. Top 100 Key-phrases for ‘Pilocytic Astrocytoma’ (left) and ‘Low-
Grade Astrocytoma’ (right). Phrase sizes reflect significance across the reports.

We analyzed the top 30 words and phrases for ‘Low-
Grade Astrocytoma’ and ‘Pilocytic Astrocytoma’. It was found
that extracted phrases generally provided more insights into

specific pathology-relevant information compared to individual
words. For ‘Low-Grade Astrocytoma,’ only one phrase was
irrelevant, whereas three words were irrelevant for this class. In
the case of ‘Pilocytic Astrocytoma’, five words were found to
be irrelevant. One primary ongoing challenge is the typograph-
ical errors and misspelling, specifically the improper handling
of spaces between words. For example, ‘Theventricular’ is
supposed to be two words of ‘The’ and ‘ventricular’. Efforts to
resolve this issue could be one of the future works to enhance
the accuracy of our text extraction processes.

Fig. 5. Top 100 Key-phrases (Left) and Keywords (Right) Extracted by TF-
IDF

In Fig. 5, we compared our proposed pipeline with conven-
tional TF-IDF. The results showed that TF-IDF extracts words
and phrases without accounting for pathology types. Thus, our
method, tailored to specific pathologies, offers more detailed
insights that enhance decision-making in clinical settings.

Top 10 Extracted Key-phrases: Table II shows the most
frequent phrases and terms corresponding to the ‘Low-Grade
Astrocytoma’ and ‘Pilocytic Astrocytoma’ classes.

Example of keyword importance: An example of keyword
importance is visualized in Fig. 6. The darker color implies
higher importance for pathology classification and vice versa.

Fig. 6. Keywords Visualization for An Example of ‘Pilocytic Astrocytoma’

V. DISCUSSION

Rule-based and traditional keyword extraction methods can
be effective for general NLP but may lack the necessary level
of adaptability in specialized fields such as medicine. Most
ML and DL keyword extraction methods require word-level
annotations, which come with a high labeling cost. Addi-
tionally, both traditional and ML methods primarily focus on
extracting nouns [12], [30], potentially omitting other crucial
information, especially when dealing with complex medical
narratives or ambiguous terminology.



TABLE I
AVERAGED AUROC SCORES AND STANDARD DEVIATION FOR DIFFERENT BERT MODELS

Model Pilocytic Astrocytoma Low-Grade Astrocytoma Others Overall

Without pretraining
RadBERT 0.829 ± 0.028 0.621 ± 0.102 0.750 ± 0.008 0.733 ± 0.046
ClinicalBERT 0.872 ± 0.041 0.664 ± 0.076 0.809 ± 0.019 0.782 ± 0.045
BERT-base-uncased 0.855 ± 0.025 0.613 ± 0.089 0.792 ± 0.022 0.753 ± 0.045

With pretraining
RadBERT 0.856 ± 0.041 0.678 ± 0.059 0.803 ± 0.028 0.779 ± 0.042
ClinicalBERT 0.860 ± 0.033 0.712 ± 0.114 0.815 ± 0.026 0.784 ± 0.057
BERT-base-uncased 0.853 ± 0.038 0.635 ± 0.096 0.782 ± 0.050 0.757 ± 0.061

TABLE II
TOP 10 FREQUENT TERMS RELATED TO ‘LOW-GRADE ASTROCYTOMA’ AND ‘PILOCYTIC ASTROCYTOMA’ CLASSES

Low-Grade Astrocytoma Class Pilocytic Astrocytoma Class
Term Score Term Score
mesencephalon 0.0126 hypotonia 0.0250
distal thecal 0.0119 severe hydrocephalus 0.0114
thecal 0.0109 hypotonia and large 0.0107
dorsal exophytic 0.0105 macrocephaly 0.0103
sided mesencephalic 0.0101 tonsillar herniation 0.0099
distal thecal sac 0.0101 obstructing hydrocephalus 0.0099
mesencephalic 0.0095 difficulties and hypotonia 0.0092
thecal sac 0.0087 hydrocephalus with 0.0084
mesiotemporal 0.0074 moderately severe hydrocephalus 0.0082
theventricular 0.0074 cerebellum eccentric 0.0081

LLMs, a subset of DL, have the potential to remedy the
limitations of traditional and ML-based NLP methods for
medical applications. We trained LLMs on radiology reports to
identify brain tumor pathologies. Our adaptation of the tradi-
tional TF-IDF framework integrates attribution scores derived
from norm-based attention analysis. This method quantifies
the influence of specific text elements on model decisions. In
contrast, earlier approaches focus on generating descriptive
text using recurrent neural networks (RNNs) as an inter-
pretability technique. Such approaches provide explanations
that are intuitive and easy to understand for clinicians but
may introduce inaccuracies or misleading information since
language models are prone to hallucination. Our proposed
method minimizes the risks of hallucination by focusing on the
direct contributions of text elements contained in the report.

With an overall AUROC score of nearly 80% for our best
model, there is strong evidence that our pipeline can accurately
identify pathology from radiological reports. Furthermore, the
results (Fig. 3, Fig. 4, Fig. 6) illustrate that our key-phrase
extraction approach was able to highlight medically relevant
terms in radiological reports. The word clouds (Fig. 3, Fig.
4) offer a straightforward view of relevant keywords and
phrases associated with different pathologies. These could
be highlighted for healthcare professionals to facilitate more
efficient report analysis. The focus on two specific pathology
labels in this study is primarily due to the current scale of
our dataset, as discussed in Section III-A. Our framework is
capable of being expanded directly to other related problems,
including other medical conditions and multi-class problems
with sufficient data. Nothing about our approach is specific to
the use case in this paper and thus can be applied widely for

improved keyword identification in any radiology reports.
Despite the promising outcomes, our study has several

limitations. These include the restricted number of labeled data
points and errors in the data such as incorrect spelling. To
address these limitations, future work will focus on several
key areas. First, increasing the dataset size will help miti-
gate overfitting and enhance the model’s generalizability and
robustness. Second, employing additional data augmentation
techniques will correct misspellings and improve data quality.
Finally, experimenting with larger language models, such as
GPT models, which are more capable of handling noisy data
and extracting contextual information, may reduce the impact
of typographical errors and improve overall model perfor-
mance. In this study, we conducted a three-class classification,
distinguishing between ‘Pilocytic Astrocytoma’, ‘Low-Grade
Astrocytoma’, and a collective group of other pathologies.
Future research should explore more granular classification
using a greater number of pathology classes and larger sample
sizes to improve model performance and clinical relevance.

VI. CONCLUSION

Our study explored the potential for LLMs to identify
pediatric brain tumor pathologies from radiology reports, while
highlighting key-phrases for interpretability purposes. To that
end, we integrated norm-based attention analysis to identify
key-phrases contributing to the tumor pathology classifica-
tions. Our models, trained on report-level labels, achieved
strong classification performance. Furthermore, they efficiently
extracted relevant key-phrases without relying on costly and
laborious word-level annotations used in traditional keyword
extraction methods.
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