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Abstract

This paper studies a risk minimization problem with decision dependent data dis-
tribution. The problem pertains to the performative prediction setting in which a
trained model can affect the outcome estimated by the model. Such dependency
creates a feedback loop that influences the stability of optimization algorithms such
as stochastic gradient descent (SGD). We present the first study on performative
prediction with smooth but possibly non-convex loss. We analyze a greedy deploy-
ment scheme with SGD (SGD-GD). Note that in the literature, SGD-GD is often
studied with strongly convex loss. We first propose the definition of stationary
performative stable (SPS) solutions through relaxing the popular performative
stable condition. We then prove that SGD-GD converges to a biased SPS solution
in expectation. We consider two conditions of sensitivity on the distribution shifts:
(i) the sensitivity is characterized by Wasserstein-1 distance and the loss is Lips-
chitz w.r.t. data samples, or (ii) the sensitivity is characterized by total variation
(TV) divergence and the loss is bounded. In both conditions, the bias levels are
proportional to the stochastic gradient’s variance and sensitivity level. Our analysis
is extended to a lazy deployment scheme where models are deployed once per
several SGD updates, and we show that it converges to a bias-free SPS solution.
Numerical experiments corroborate our theories.

1 Introduction

When trained models are deployed in social contexts, the outcomes these models aim to predict can
be influenced by the models themselves. Taking email spam detection as an example. On one hand,
email service providers design filters to protect their users by identifying spam emails. On the other
hand, spammers aim to circumvent these filters to distribute malware and advertisements. Each time
a new classifier is deployed, spammers who are interspersed within the general population may alter
the characteristics of their messages to evade detection. The above example pertains to the strategic
classification problem [Dalvi et al., 2004, Cai et al., 2015, Hardt et al., 2016, Björkegren et al., 2020]
and can be modelled by dataset shifts [Quiñonero-Candela et al., 2022].

The scenarios described can be captured by the recently proposed performative prediction problem,
which called the above dataset shift phenomena as the ‘performative’ effect. Perdomo et al. [2020]
proposed to study the risk minimization problem with a decision-dependent data distribution:

minθ∈Rd V (θ) := EZ∼D(θ)[ℓ(θ;Z)], (1)

where ℓ(θ; z) is a loss function that is continuously differentiable with respect to (w.r.t.) θ for any
given data sample z ∈ Z, and Z ⊆ Rp is the sample space. The dependence on θ in D(θ) explicitly
captures the distribution shift effect of prediction models on data samples. The objective function
V (θ) is also known as the performative risk.
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Literature Ncvx-ℓ Ncvx-V Sensitivity Algorithm Rate θ∞

[Izzo et al., 2021] ✗ ✓ Loc.† 2-Phase O(T− 1
2 ) ∇V (·) = 0

[Miller et al., 2021] ✗ ✗ W1 2-Phase O(T−1) minV (θ)
[Mendler-Dünner et al., 2020] ✗ ✓ W1 SGD-GD O(T−1) PS
[Mofakhami et al., 2023] ✗‡ ✓ χ2 RRM‡ Linear‡ PS‡

✓ ✓ TV or W1 SGD-GD O(T− 1
2 ) O(ϵ)-SPS

This Work ✓ ✓ TV or W1 SGD-Lazy⋆ O(T− 1
2 ) O(ϵK− 1

2 )-SPS

Table 1: Comparison of Results in Existing Works. ‘Sensitivity’ indicates the distance metric
imposed on D(θ) when the latter is subject to perturbation, given in the form d(D(θ),D(θ′)) ≤
ϵ∥θ − θ′∥ such that d(·, ·) is a distance metric between distributions. ‘θ∞’ indicates the type of
convergent points: ‘PS’ refers to performative stable solution [cf. (4)], ‘SPS’ refers to Def. 1.
†Izzo et al. [2021] assumed that D(θ) belongs to the location family, i.e., D(θ) = N (f(θ);σ2).
‡Mofakhami et al. [2023] considered ℓ(θ; z) = ℓ̃(fθ(x), y) with strongly convex ℓ̃(·, y). The RRM
requires solving a non-convex optimization at each recursion.
⋆SGD-Lazy refers to the SGD method with lazy deployment scheme, which fixes the deployed model
for K iterations before the next deployment; see §4.

The decision variable θ in (1) affects simultaneously the distribution and the loss function. As such,
optimizing V (θ) directly is often difficult. Mendler-Dünner et al. [2020] considered the following
stochastic gradient (SGD) recursion: for any t ≥ 0 and let γt+1 > 0 be a stepsize,

θt+1 = θt − γt+1∇ℓ(θt;Zt+1), where Zt+1 ∼ D(θt). (2)

The above is known as the greedy deployment scheme with SGD (SGD-GD), where the learner
deploys the current trained model θt before drawing samples from D(θt). The SGD-GD scheme
describes a training procedure when the learner is unaware of the performative phenomena with the
data distribution D(·), which is plausible in many applications. Relevant studies to (2) include lazy
deployment where the learner deploys a new model only once every few iterations, or repeated risk
minimization; see [Mendler-Dünner et al., 2020, Perdomo et al., 2020, Zrnic et al., 2021].

Existing convergence analysis of (2) are limited to the case when ℓ(θ; z) is strongly convex1 w.r.t. θ.
Perdomo et al. [2020] introduced the concept of performative stable (PS) solution as the unique
minimizer of (1) with fixed distribution. The PS solution, while being different from an optimal or
stationary solution to (1), is shown to be the unique limit point of the recursion (2) provided that the
sensitivity of the distribution map D(·), measured w.r.t. the Wasserstein-1 (W1) distance, is upper
bounded by a factor proportional to the strong convexity modulus of ℓ(θ; z) [Mendler-Dünner et al.,
2020]. Furthermore, such convergence condition is proven to be tight [Perdomo et al., 2020] and the
analysis has been extended to proximal algorithm [Drusvyatskiy and Xiao, 2023], online optimization
[Cutler et al., 2023], saddle point seeking [Wood and Dall’Anese, 2023], multi-agent consensus
learning [Li et al., 2022], non-cooperative learning [Wang et al., 2023, Narang et al., 2023, Piliouras
and Yu, 2023], state-dependent learning [Brown et al., 2022, Li and Wai, 2022], etc.

This paper provides the first analysis of SGD-GD and related stochastic optimization schemes in
performative prediction when ℓ(θ; z) is smooth but possibly non-convex. This is a more common
scenario in machine learning than the strongly convex loss considered in the prior works, e.g., it
covers the case of training neural network (NN) models. We notice that existing works are limited
to imposing structure on the loss function ℓ(θ; z) and the distribution D(θ), utilizing advanced
algorithms that demand extra knowledge on D(θ), etc., as we overview below.

Related Works. In the non-convex setting, the most related work to ours is [Mofakhami et al.,
2023] which proved that a variant of PS solution can be found when training NN in the performative
prediction setting, i.e., a special case with non-convex loss. However, their analysis is restrictive: (i)
it requires a loss function of the form ℓ(θ; z) = ℓ̃(fθ(x); y) where ℓ̃(ŷ; y) is strongly convex w.r.t. ŷ,
(ii) it only analyzes the case of training NN using a repeated risk minimization (RRM) procedure
which exactly minimizes a non-convex objective function at each step. In comparison, we concentrate
on stochastic (first order) optimization schemes and require only smoothness for ℓ(·; z).

1Note that V (θ) is still non-convex.
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Other works departed from tackling the PS solution and considered alternative algorithms to directly
minimize V (θ). For example, Roy et al. [2022] assumed that unbiased estimates of ∇V (θ) is avail-
able and studied the convergence of stochastic conditional gradient algorithms towards a stationary
solution of V (θ), Li and Wai [2022] assumed bounded biasedness w.r.t.∇V (θ) in (2) and show that
(2) converges to a biased stationary point of V (θ). Notice that estimating∇V (θ) requires knowledge
on D(θ) which has to be learnt separately. To circumvent this difficulty, two phases algorithms are
studied in [Miller et al., 2021, Izzo et al., 2021] that learn D(θ) via a large batch of samples at the
first stage, then optimize θ later (see [Zhu et al., 2023] for a two-timescale type online algorithm),
derivative free optimization are studied in [Miller et al., 2021, Ray et al., 2022, Liu et al., 2023], and
confidence bound methods in [Jagadeesan et al., 2022]. In addition, Miller et al. [2021] proposed a
mixture dominance assumption that can imply the strong convexity of V (θ). We remark that [Zhao,
2022] studied conditions to ensure V (θ) to be weakly convex. Our work does not require such
advanced algorithms and show that stochastic (first order) optimization converges towards a similar
solution as the PS solution. We display a comparison between these related works in Table 1.

Our Contributions: This work provides the first analysis of stochastic gradient-based methods for
performative prediction with smooth but possibly non-convex losses. Our contributions are:

• We propose the concept of stationary performative stable (SPS) solutions which is a relaxation of
the commonly used performative stable (PS) condition [Perdomo et al., 2020]. The relaxation is
necessary for handling non-convex losses using first-order methods.

• We show that the stochastic gradient method with greedy deployment (SGD-GD) finds a biased
SPS solution. Assume that the distribution shift is ϵ-sensitive, i.e., it holds d(D(θ),D(θ′)) ≤
ϵ∥θ − θ′∥ for some distance measure d(·, ·) between the shifted distributions D(θ),D(θ′), SGD-
GD converges at a rate ofO(T− 1

2 ) in expectation to anO(ϵ)-SPS solution. The bias level is further
improved to O(ϵ2) when the gradient is exact.

• Our analysis relies on constructing a time varying Lyapunov function that may shed new lights
for non-gradient stochastic approximation [Dieuleveut et al., 2023]. We studied two alternative
conditions on the distance metric between distributions. When d(·, ·) is the Wasserstein-1 distance,
SGD-GD converges to a biased SPS solution for Lipschitz loss function. When d(·, ·) is the total
variation (TV) distance, SGD-GD converges to a biased SPS solution for bounded loss function.

• We extend the analysis to the lazy deployment scheme with SGD [Mendler-Dünner et al., 2020].
The latter scheme finds a bias-free SPS solution as the epoch length of lazy deployment grows.

Lastly, we provide numerical examples on synthetic and real data to validate our theoretical findings.
The rest of this paper is organized as follows. §2 introduces the problem setup and assumptions
for establishing our convergence results of SGD-GD. Furthermore, we highlight the challenges in
analyzing non-convex performative prediction. §3 introduces the concept of SPS solutions and
presents the convergence results for SGD-GD under two alternative assumptions on the distribution
shifts. We also outline the use of a time varying Lyapunov function to handle the dynamic nature
of SGD-GD. §4 shows the results for the lazy deployment scheme. Lastly, §5 provides numerical
experiments to illustrate our results.

Notations. Let Rd be the d-dimensional Euclidean space equipped with inner product ⟨· | ·⟩ and
induced norm ∥x∥ =

√
⟨x |x⟩. Let S be a (measurable) sample space, and µ, ν are two probability

measures defined as S. E[·] denotes taking expectation w.r.t all randomness, Et[·] := Et[·|Ft]
means taking conditional expectation on the filtration Ft := σ({θ0,θ1, · · · ,θt}), where σ(·) is the
sigma-algebra generated by the random variables in the operand and {θt} is the sequence of iterates
generated by the SGD-GD scheme (2).

2 Stationary Condition for Performative Stability

This section prepares the analysis of (1) with SGD-GD and related schemes in the non-convex loss
setting. To fix idea, we define the decoupled performative risk and the decoupled partial gradient:

J(θ1;θ2) = EZ∼D(θ2) [ℓ(θ1;Z)] , ∇J(θ1;θ2) = EZ∼D(θ2) [∇ℓ(θ1;Z)] . (3)

Observe that while V (θ) = J(θ;θ), ∇J(θ;θ) ̸= ∇V (θ) in general since ∇J(θ;θ) only represents
a partial gradient of V (θ); see [Izzo et al., 2021]. In (2), the conditional expectation of the stochastic
gradient update term satisfies Et[∇ℓ(θt;Zt+1)] = ∇J(θt;θt).
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If the loss ℓ(θ; z) is strongly convex w.r.t. θ, then the decoupled performative risk J(θ; θ̄) admits
a unique minimizer w.r.t. θ for any θ̄. It has hence motivated [Perdomo et al., 2020] to study the
performative stable (PS) solution θPS which is defined as a fixed point to the map

T (θ̄) := argminθ∈Rd J(θ; θ̄), i.e., θPS = T (θPS). (4)

In the above, the uniqueness and existence of θPS follows by observing that T (·) is a contraction
if and only if the sensitivity of D(θ), i.e., the ‘smoothness’ of D(θ) w.r.t. θ, is upper bounded by
the inverse of condition number of ℓ(θ; z). The convergence of SGD-GD follows by analyzing (2)
as a stochastic approximation (SA) scheme for the repeated risk minimization (RRM) procedure
θ ← T (θ) [Mendler-Dünner et al., 2020].

For the case of non-convex loss in this paper, the analysis becomes more nuanced since the map
T (·) is no longer well-defined, e.g., there may exist more than one minimizers to minθ J(θ; θ̄). Our
remedy is to concentrate on the following non-convex counter part to the PS solution:

Definition 1. (δ stationary performative stable solution) Let δ ≥ 0, the vector θδ−SPS ∈ Rd is
said to be an δ stationary performative stable (δ-SPS) solution of (1) if:

∥∇J(θδ−SPS ;θδ−SPS)∥2 =
∥∥EZ∼D(θδ−SPS) [∇ℓ(θδ−SPS ;Z)]

∥∥2 ≤ δ. (5)

We also say that θSPS is an (exact) SPS solution if it satisfies (5) with δ = 0. In other words, δ ≥ 0
measures the stationarity of a solution. Notice that if ℓ(θ; z) is strongly convex w.r.t. θ, then an SPS
solution is also a PS solution defined in [Perdomo et al., 2020].

Although (5) is similar to the usual definitions of stationary solution in smooth optimization, there
is a subtle but critical difference since ∇J(θ;θ) may not be the gradient of any function in θ. For
example, consider ℓ(θ; z) = (1/2)∥θ− z∥2 and D(θ) ≡ N (Aθ, I) for some square but asymmetric
matrix A, the map∇J(θ;θ) = (I−A)θ has a Jacobian of I−A which is not symmetric. Furthermore,
we observe that the mean field for SGD-GD scheme (2) is ∇J(θ;θ), which is not a gradient. The
SGD-GD scheme is thus a special case of non-gradient SA scheme [Dieuleveut et al., 2023].

To get further insight, as investigated in [Dieuleveut et al., 2023], a common analysis framework
of non-gradient SA scheme is by identifying a smooth Lyapunov function linked to the recursion
(2). When ℓ(·; z) is strongly convex, we may study the Lyapunov functions as the squared distance
∥θ − θPS∥2 [cf. (4)]. It can be shown that the properties required in [Dieuleveut et al., 2023] are
satisfied under the conditions analyzed by [Mendler-Dünner et al., 2020]. However, in the case of
non-convex loss, identifying a suitable Lyapunov function for non-gradient SA scheme is hard. In the
next section, we demonstrate how to address this challenge by identifying a time varying Lyapunov
function for SGD-GD.

3 Main Results

This section presents theoretical results on the SGD-GD scheme with non-convex loss. We first
show how to construct a time varying Lyapunov function tailor made for (2). We then show the
convergence of SGD-GD under two different sets of conditions.

We introduce two basic and natural assumptions on the risk minimization problem (1):

A1. For any z ∈ Z, there exists a constant L ≥ 0 such that

∥∇ℓ(θ; z)−∇ℓ(θ′; z)∥ ≤ L ∥θ − θ′∥ , ∀ θ,θ′ ∈ Rd, (6)

where∇ℓ(θ; z) denotes the gradient of ℓ(θ; z) w.r.t. θ. Moreover, there exists a constant ℓ⋆ > −∞
such that ℓ(θ; z) ≥ ℓ⋆ for any θ ∈ Rd.

A2. For any fixed θ1,θ2 ∈ Rd, the stochastic gradient∇ℓ(θ1;Z), Z ∼ D(θ2) is unbiased such that
EZ∼D(θ2)[∇ℓ(θ1;Z)] = ∇J(θ1;θ2), and there exists constants σ0, σ1 ≥ 0 such that

EZ∼D(θ2)

[
∥∇ℓ(θ1;Z)−∇J(θ1;θ2)∥2

]
≤ σ2

0 + σ2
1 ∥∇J(θ1;θ2)∥

2
. (7)

Note that A1, 2 are standard assumptions that hold for a wide range of applications and the respective
stochastic optimization based training schemes. For instance, A1 requires the loss function to
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be smooth, while A2 assumes the stochastic gradient estimates to have a variance that may grow
with ∥∇J(θ1;θ2)∥2. For the non performative prediction setting where the data distribution is not
shifted by θ, i.e., D(θ) ≡ D, these assumptions guarantee that SGD algorithm (i.e., SGD-GD with
Zt+1 ∼ D) to converge to a stationary solution of (1) with a suitable step size schedule [Ghadimi
and Lan, 2013]. In particular, in this case A1 implies that EZ∼D[ℓ(θ;Z)] is a smooth function and
serves as a Lyapunov function for the SGD algorithm.

In this light, it might be tempting to use the performative risk V (θ) [cf. (1)] as the Lyapunov function
for (2) and directly adopt the analysis in [Dieuleveut et al., 2023]. However, the condition A1 is
insufficient to guarantee that V (θ) is smooth, and the mean field of (2) may not be aligned with
∇V (θ). Instead, from A1, 2, we proceed with a descent-like lemma for the iterates of SGD-GD:
Lemma 1. Under A1, 2. Suppose that the step size satisfies supt≥1 γt ≤ 1/(L(1 + σ2

1)), then for
any t ≥ 0, the sequence of iterates {θt}t≥0 generated by SGD-GD (2) satisfies

γt+1

2
∥∇J(θt;θt)∥2 ≤ J(θt;θt)− Et[J(θt+1;θt)] +

L
2 σ

2
0γ

2
t+1. (8)

Proof. Fix any z ∈ Z, applying A1 and the recursion (2) lead to

ℓ(θt+1; z) ≤ ℓ(θt; z)− γt+1 ⟨∇ℓ(θt; z) | ∇ℓ(θt;Zt+1)⟩+
Lγ2

t+1

2
∥∇ℓ(θt;Zt+1)∥2 , (9)

for any t ≥ 0. Note that z ∈ Z can be any fixed sample while Zt+1 is the r.v. drawn from D(θt) in
(2). Let pθt

(z) ≥ 0 denotes the pdf of D(θt). We then multiply pθt
(z) on both sides of the inequality

and integrate w.r.t. z ∈ Z, i.e., taking the operator
∫
Z
(·)pθt(z)dz. This yields

J(θt+1;θt) ≤ J(θt;θt)− γt+1 ⟨∇J(θt;θt) | ∇ℓ(θt;Zt+1)⟩+
Lγ2

t+1

2
∥∇ℓ(θt;Zt+1)∥2 , (10)

since
∫
ℓ(θ; z)pθt

(z)dz = J(θ;θt) according to definition (3). We next evaluate the conditional
expectation, Et[·], on both sides of the above inequality

Et[J(θt+1;θt)] ≤ J(θt;θt)− γt+1∥∇J(θt;θt)∥2 +
Lγ2

t+1

2
Et[∥∇ℓ(θt;Zt+1)∥2]. (11)

Using A2, we note that Et[∥∇ℓ(θt;Zt+1)∥2] ≤ σ2
0 + (1 + σ2

1)∥∇J(θt;θt)∥2. Reshuffling terms
and using the step size condition yield the desired result (8); see §A for a detailed proof.

For sufficiently small γt+1 > 0 and when θt is not SPS, eq. (8) implies the descent relation
Et[J(θt+1;θt)] < J(θt;θt). This suggests that at the tth iteration, the function Jt(θ) := J(θ;θt)
may serve as a Lyapunov function for the SGD-GD scheme. Meanwhile, Jt(θ) is a time varying
Lyapunov function. The said descent relation does not necessarily imply the convergence towards an
SPS solution. Instead, the first term on the right hand side of (8) can be decomposed as:

E[Jt(θt)− Jt(θt+1)] = E[Jt(θt)− Jt+1(θt+1)] + E[Jt+1(θt+1)− Jt(θt+1)]︸ ︷︷ ︸
residual

. (12)

The first part is a difference-of-sequence which is summable, while the second part is a residual term.
The convergence of SGD-GD with non-convex losses hinges on bounding the latter residual. Taking
a closer look, the residual is the difference of evaluating θt+1 on Jt(·) and Jt+1(·), i.e.,

E[Jt+1(θt+1)− Jt(θt+1)] = E
[
EZ∼D(θt),Z′∼D(θt+1)[ℓ(θt+1;Z

′)− ℓ(θt+1;Z)]
]
. (13)

The above further depends on the differences between the distributions D(θt),D(θt+1), i.e., the
sensitivity of the data distribution w.r.t. perturbation in θ. Next, we study sufficient conditions that
imply the convergence of SGD-GD through bounding E[Jt+1(θt+1)− Jt(θt+1)].

3.1 Sufficient Conditions for Convergence of SGD-GD

From (8), we anticipate the convergence of SGD-GD towards a biased SPS solution if it holds
E[Jt+1(θt+1) − Jt(θt+1)] = O(E[∥θt − θt+1∥]) = O(γt+1E[∥∇ℓ(θt;Zt+1)]∥). Now, as seen
from (13), establishing such relation would require D(θ) to satisfy a certain sensitivity criterion
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when subject to perturbation in θ. Our subsequent discussions are organized according to various
distributional distance measures on sensitivity.

Wasserstein-1 Sensitivity. Our first set of conditions uses the Wasserstein-1 distance for measuring
the sensitivity of data distribution. The measure is commonly used in the studies of performative
prediction, e.g., as pioneered by [Perdomo et al., 2020, Mendler-Dünner et al., 2020]:
W1. (ϵ sensitivity w.r.t. Wasserstein-1 distance) There exists ϵ ≥ 0 such that

W1(D(θ),D(θ′)) ≤ ϵ∥θ − θ′∥, (14)

for any θ,θ′ ∈ Rd. Notice that the Wasserstein-1 distance is defined as W1(·, ·) :=
infP∈P(·,·) E(z,z′)∼P [∥z − z′∥1], where P (D(θ),D (θ′)) is the set of all joint distributions on
Z× Z whose marginal distributions are D(θ),D (θ′).

In this case, we require the loss function to be Lipschitz continuous w.r.t. shifts in the data sample z.
W2. There exists a constant L0 > 0 such that for all z, z′ ∈ Z, and θ ∈ Rd,

|ℓ(θ; z)− ℓ(θ; z′)| ≤ L0 ∥z − z′∥ . (15)

Our key observation is that the above conditions imply the desired Lipschitz continuity property on
J(θ; ·). In fact, we have:

Lemma 2. Under W1, 2. For any θ1,θ2,θ ∈ Rd, it holds

|J(θ;θ1)− J(θ;θ2)| ≤ L0ϵ ∥θ1 − θ2∥ . (16)

The proof, which is a variant of [Drusvyatskiy and Xiao, 2023, Lemma 2.1], can be found in §B.

TV distance Sensitivity. Although W1 holds for a number of applications, such as the location family
distributions (e.g., [Miller et al., 2021, Perdomo et al., 2020, Narang et al., 2023]), the assumption
of Lipschitz loss function in W2 can be difficult to verify, especially if we want L0 (and thus the
Lipschitz continuity constant of ℓ(θ; ·) given by L0ϵ) to be small. As an alternative, we consider a
slightly stronger sensitivity condition on D(θ) via the total variation (TV) distance.

C1. (ϵ sensitivity w.r.t. TV distance) For any θ,θ′ ∈ Rd, there exists a constant ϵ ≥ 0 such that

δTV (D(θ1),D(θ2)) ≤ ϵ ∥θ − θ′∥ , (17)

where δTV (·, ·) is the total variation distance defined as δTV (µ, ν) := supA⊂Z |µ(A)− ν(A)| =
1
2

∫
|pµ(z)− pν(z)| dz such that µ, ν are two probability measures supported on Z and p(·)(z)

denotes their probability distribution functions (p.d.f.s).

Although C1 is slightly strengthened from W1, it allows us to relax the Lipschitz continuity assump-
tion W2 on the loss. Particularly, we consider replacing W2 by:
C2. There exists a constant ℓmax ≥ 0 such that supθ∈Rd,z∈Z |ℓ(θ; z)| ≤ ℓmax.

The above condition requires ℓ(·; ·) to be uniformly bounded. Compared to W2, it can be easier to
verify and ℓmax is typically small. For example, it holds with ℓmax = 1 for the case of sigmoid loss.

Similar to W1, 2, we observe that the above conditions imply J(θ; ·) is Lipschitz continuous:

Lemma 3. Under C1, 2. For any θ1,θ2,θ ∈ Rd, it holds that

|J(θ;θ1)− J(θ;θ2)| ≤ 2ℓmaxϵ ∥θ1 − θ2∥ . (18)

See §C. The only difference with Lemma 2 is that (18) has a different Lipschitz constant.
Remark 1. It is worth noting that in lieu of C1, Mofakhami et al. [2023] assumed the following
sensitivity condition with respect to the Pearson χ2 divergence, i.e.,

χ2(D(θ),D(θ′)) :=

∫
(pθ(z)− pθ′(z))

2

pθ(z)
dz = O(∥fθ(·)− fθ′(·)∥2) (19)

where fθ(·) represents the output of a neural network parameterized by θ, pθ(·) and pθ′(·) are the
probability density functions (p.d.f.s) of the induced distributions D(θ) and D(θ′), respectively.
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Our TV distance sensitivity condition in C1 constitutes a weaker condition since for any bounded
sample space Z, the following holds:

W1(D(θ),D(θ′)) ≤ diam(Z) · δTV (D(θ),D(θ′)) ≤ diam(Z)

2

√
χ2(D(θ),D(θ′)),

as shown in [Gibbs and Su, 2002, Sec. 2], where diam(Z) := supz,z′∈Z ∥z−z′∥ denotes the diameter
of the sample space.

3.2 Convergence of SGD-GD with Non-convex Loss

Equipped with Lemmas 2, 3, we are ready to present the convergence result for SGD-GD with smooth
but non-convex losses. Observe the following theorem whose proof can be found in §D:

Theorem 1. Under A1, 2. Let the step sizes satisfy supt≥1 γt ≤ 1/(L(1 + σ2
1)). Moreover, let

L̃ = L0 if W1, 2 hold, or L̃ = 2ℓmax if C1, 2 hold. (20)

Then, for any T ≥ 1, the iterates {θt}t≥0 generated by SGD-GD satisfy

T−1∑
t=0

γt+1

4
E[∥∇J(θt;θt)∥2] ≤ ∆0 + L̃ϵ

(
σ0 + (1 + σ2

1)L̃ϵ
) T−1∑

t=0

γt+1 +
L

2
σ2
0

T−1∑
t=0

γ2
t+1, (21)

where ∆0 := J(θ0;θ0)− ℓ⋆ is an upper bound to the initial optimality gap of performative risk.

Using a fixed step size schedule, we simplify the bound as:

Corollary 1. Under A1, 2, the alternative conditions W1, 2, or C1, 2. Let T ≥ 1 be the maximum
number of iterations and set γt = 1/

√
T . Let T be a random variable chosen uniformly and

independently from {0, 1, · · · , T − 1}. For any T ≥ L2(1 + σ2
1)

2, the iterates by SGD-GD satisfy

E
[
∥∇J(θT;θT)∥2

]
≤ 4

(
∆0 +

L

2
σ2
0

)
· 1√

T
+ 4L̃ϵ (σ0 + (1 + σ2

1)L̃ϵ)︸ ︷︷ ︸
bias

. (22)

As T → ∞, the first term in (22) vanishes as O(1/
√
T ) and the above shows that the SGD-GD

scheme finds an O(σ0 ϵ+ (1 + σ2
1) ϵ

2)-SPS solution. This yields the first convergence guarantee for
performative prediction with non-convex loss via a stochastic optimization scheme.

Lastly, an interesting observation is that the bias level is controlled at O(σ0 ϵ+ (1 + σ2
1) ϵ

2). The
latter estimate highlights the role of the stochastic gradient’s variance. To see this, let us concentrate
on the case when ϵ is small. When stochastic gradient is used such that σ0 > 0, SGD-GD finds an
O(ϵ)-SPS solution; while with deterministic gradient, i.e., when ∇ℓ(θt;Zt+1) = ∇J(θt;θt) with
σ0 = σ1 = 0, SGD-GD finds an O(ϵ2)-SPS solution. Such a distinction in the bias levels indicate
that a unique property of non-convex performative prediction where the asymptotic performance of
SGD-GD is sensitive to the stochastic gradient’s noise variance. Furthermore, our result suggests
that adjusting the minibatch size in SGD-GD may have a significant effect on reducing the bias level
since σ0, σ1 can be controlled by the latter.

Remark 2. Prior analysis in [Mendler-Dünner et al., 2020, Drusvyatskiy and Xiao, 2023] showed
that with µ strongly convex loss ℓ(·; z), both the existence/uniqueness of the PS solution and the
convergence of SGD-GD to the PS solution critically depend on the condition ϵ < µ/L (in addition to
our A1, 2, W1). When ϵ > µ/L, it is shown that the SGD-GD scheme may even diverge. In contrary,
Theorem 1 does not exhibit such an explicit condition on ϵ for the convergence results (21), (22) to
hold. This happens because our result requires the loss function itself to be Lipschitz [cf. W2] or
bounded [cf. C2], which may not be satisfied by their strongly convex losses.

4 Extension: Lazy Deployment Scheme with SGD

Implementing the SGD-GD scheme (2) requires deploying the latest model every time when drawing
samples from D(·). This may be difficult to realize since deploying a new classifier in real time can
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be time consuming. As inspired by [Mendler-Dünner et al., 2020], this section studies an extension
of (2) to the lazy deployment scheme where the new (prediction) models are deployed only once per
several SGD updates.

To describe the extended scheme, let K ≥ 1 denotes the epoch length of lazy deployment, we have

θt,k+1 = θt,k − γ∇ℓ(θt,k;Zt,k+1), where Zt,k+1 ∼ D(θt), k = 0, ...,K − 1,

θt+1 = θt+1,0 = θt,K .
(23)

For simplicity, we focus on the case with a constant step size γ > 0. Observe that the lazy deployment
scheme is a double-loop algorithm where the index t denotes the number of deployments and the
index k denotes the SGD update. To analyze the convergence of (23), we further require the stochastic
gradient to be uniformly bounded:
A3. There exists a constant G ≥ 0 such that supθ∈Rd,z∈Z ∥∇ℓ(θ; z)∥ ≤ G.

Despite being a stronger assumption, the above remains valid for practical non-convex losses, e.g.,
sigmoid loss. We observe the following convergence results whose proof is in §E:

Theorem 2. Under A1, 2, 3, and the alternative conditions W1, 2, or C1, 2. Let T ≥ 1 be the
maximum number of deployments to be run, we set γ = 1/(K

√
T ) and let T be a random variable

chosen uniformly and independently from {0, 1, · · · , T − 1}. For any T ≥ L2(1 + σ2
1)

2/K2, the
iterates generated by the lazy deployment scheme with SGD (23) satisfy:

E
[
∥∇J(θT;θT)∥2

]
≤ 8∆0√

T
+

4Lσ2
0

K
√
T

+
2LG2

3T
+

8L̃ϵ

K

(√
2Kσ0 + 2

√
2(K + σ2

1)L̃ϵ

)
, (24)

where we recall that L̃ was defined in (20) and ∆0 = J(θ0;θ0)− ℓ⋆.

In (24), the first three terms decay as O(1/
√
T ) similar to SGD-GD, the last term simplifies to

O(L̃ϵ/
√
K) to be controlled with 1/

√
K. The lazy deployment scheme (23) finds a bias-free SPS

solution when T →∞,K →∞, contrasting with SGD-GD which admits a bias level of O(L̃ϵ).
We remark that the above result can be anticipated. During the tth deployment, (23) runs an SGD
recursion for minθ J(θ;θt) where it will find a stationary solution for the non-convex optimization
as K →∞. The lazy deployment scheme resembles RRM and we expect that it may find a bias-free
SPS solution as inspired by [Mofakhami et al., 2023] which studied a similar algorithm.

5 Numerical Experiments

We consider two examples of performative prediction with non-convex loss based on synthetic data
and real data. All simulations are performed with Pytorch on a server using a Intel Xeon 6318 CPU.
Additional results can be found in §F.

Synthetic Data with Linear Model. We first consider a binary classification problem using linear
model. To enhance robustness to outliers, we adopt the sigmoid loss function [Ertekin et al., 2010]:

ℓ(θ; z) := (1 + exp(c · y⟨x |θ⟩))−1
+ (β/2) ∥θ∥2 . (25)

For small regularization β > 0, ℓ(·; z) is smooth but non-convex. To define the data distribution, we
have a set of m unshifted samples Do ≡ {(xi, yi)}mi=1 with feature xi ∈ Rd and label yi ∈ {±1}.
For any θ ∈ Rd, D(θ) is a uniform distribution on m shifted samples {(xi − ϵLθ, yi)}mi=1, where
ϵL > 0 controls the shift magnitude. Applying SGD-GD to the setup yields a scheme such that A1, 2,
W1 (with ϵ = ϵL) are satisfied, and W2 holds as ∥θt∥ is bounded in practice. To generate the training
data, the unshifted samples Do are generated first as xi ∼ U [−1, 1]d, i.e., the uniform distribution,
ȳi = sgn(⟨xi |θo⟩) ∈ {±1} such that θo ∼ N (0, I), then a randomly selected 10% of the labels
are flipped to generate the final yi. Furthermore, we set m = 800, d = 10, c = 0.1, β = 10−3, ϵ ∈
{0, 0.1, 0.5, 2}. For (2), the batch size is b = 1 and the stepsize is γt = γ = 1/

√
T with T = 106.

First, we validate the convergence behavior of SGD-GD in Theorem 1. In Fig. 1 (left), we compare
∥∇J(θt;θt)∥2 against the number of iteration t for the SGD-GD scheme over 10 repeated runs. The
shaded region indicate the 95% confidence interval. We observe that after a rapid transient stage,
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Figure 1: Synthetic Data (left) SPS measure ∥∇J(θt;θt)∥2 of SGD-GD against iteration no. t.
(middle) Loss value J(θt;θt) of SGD-GD against iteration no. t. (right) SPS measure ∥∇J(θt;θt)∥2
of greedy (SGD-GD) and lazy deployment against number of sample accessed. We fix ϵL = 2.
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Figure 2: Real Data with Neural Network Benchmarking with SPS measure ∥∇J(θt;θt)∥2. (left)
Against t for SGD-GD with parameters ϵNN ∈ {0, 10, 100}. (middle & right) Against no. of samples
with greedy (SGD-GD) and lazy deployment when ϵNN = 10 & ϵNN = 104, respectively.

the SPS stationarity ∥∇J(θt;θt)∥2 saturates and stay around a constant level, indicating that the
SGD-GD converges to a biased-SPS solution. Increasing ϵL leads to an increased bias, corroborating
with Theorem 1 that the bias level is O(ϵ). Fig. 1 (middle) further evaluate the performance of the
trained classifier θt in terms of the performative risk value. Second, we compare the lazy deployment
scheme in §4 with K ∈ {5, 10} and stepsize γ = 1/(K

√
T ). For fairness, we test SGD-GD with

batch size of b ∈ {5, 25} and compare the SPS stationarity against the number of samples accessed.
The results in Fig. 1 (right) verifies Theorem 2 where increasing K effectively reduces the bias level.

Real Data with Neural Network. Our second example deals with the task of training a neural
network (NN) on the spambase Hopkins et al. [1999] dataset with m = 4601 samples, each with
d = 48 features. We split the training/test sets as 8 : 2. Our aim is to study the behavior of SGD-GD
when training NN classifier. To specify (1), we let z ≡ (x, y) where x ∈ Rd is the feature vector,
y ∈ {0, 1} is label (0 for not spam, 1 for spam). Consider the regularized binary cross entropy loss:

ℓ(θ; z) ≡ ℓ̃(fθ(x); y) = −y log(fθ(x))− (1− y) log(1− fθ(x)) + (β/2) ∥θ∥2 , (26)

where fθ(x) denotes the NN classifier. The unshifted data is denoted by Do = {(xi, yi)}mi=1.
Sampling from the shifted data distribution D(θ) is achieved through (i) uniformly draw a sample
z̄ ≡ (x̄, ȳ) from Do, (ii) maximize the following utility function:

x = argmaxx′ U(x′; x̄,θ) := −fθ(x′)− 1
2ϵNN
∥x′ − x̄∥2 , (27)

to get z ≡ (x, ȳ) ∼ D(θ). In practice, we take the approximation x ≈ x̄− ϵNN∇xfθ(x̄).

In our experiment, we set ϵNN ∈ {0, 10, 100}, batch size as b = 8. For SGD-GD, we use γt = γ =

200/
√
T and for lazy deployment, we use γ = 200/(K

√
T ) with T = 105. The NN encoded in

fθ(x) consists of three fully-connected layers with tanh activation and a sigmoid output layer, i.e.,

fθ(x) = Sigmoid
(
θ⊤
(1) · tanh(θ

⊤
(2) · tanh(θ

⊤
(3)x))

)
,

where θ(i) := [w(i); b(i)] concatenates the weight and bias for each layer with d1 = 10, d2 =
50, d3 = 57 neurons, making a total of d = 3421 parameters for θ. For the training, we initialize
these parameters as N (0, 1) for weights and constant values for the biases.
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Fig. 2 (left) compares the SPS measure ∥∇J(θt;θt)∥2 against the iteration number t using SGD-GD.
As observed, SGD-GD converges to a near SPS solution and the behavior seems to be insensitive to
ϵNN. We speculate that this is due to the shift model (27) but would relegate its study to future work.
Fig. 2 (middle & right) compare the greedy and lazy deployment schemes with ϵNN ∈ {10, 104}
against the number of samples used. Compared to SGD-GD, lazy deployment performs relatively
better as ϵNN ↑, as seen from the no. of samples needed to reach ∥∇J(θt;θt)∥2 = 10−4 in the plots.
This agrees with (24) which shows the dominant term as O(ϵ/

√
K) and ϵ is related to ϵNN.

6 Conclusions

This paper provides the first study on the performative prediction problem with smooth but possi-
bly non-convex loss. We proposed a stationary performative stable (SPS) condition which is the
counterpart of performative stable condition used with strongly convex loss. Using the SPS solution
concept, we studied the convergence of greedy deployment and lazy deployment schemes with SGD.
We prove that SGD-GD finds a biased, O(ϵ)-SPS solution, while the lazy deployment scheme finds a
bias-free SPS solution when the lazy deployment epoch is large. As an initial work on this subclass
of problems, our findings can lead to more general analysis on algorithms under the non-convex
performative prediction framework.
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A Proof of Lemma 1

Proof. Under A1, for any fixed z ∈ Z, we have that

ℓ(θt+1; z) ≤ ℓ(θt; z) + ⟨∇ℓ(θt; z) |θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2

≤ ℓ(θt; z)− γt+1 ⟨∇ℓ(θt; z) | ∇ℓ(θt;Zt+1)⟩+
Lγ2

t+1

2
∥∇ℓ(θt;Zt+1)∥2 ,

where the second inequality is due to the update rule of (2) as we recall that Zt+1 ∼ D(θt). Taking
integration on z with weights given by the p.d.f. of D(θt), i.e.,

∫
(·)pθt

(z)dz, on both sides of above
inequality leads to

J(θt+1;θt) ≤ J(θt;θt)− γt+1 ⟨∇J(θt;θt) | ∇ℓ(θt;Zt+1)⟩+
L

2
γ2
t+1 ∥∇ℓ(θt;Zt+1)∥2 .

As Et[∇ℓ(θt;Zt+1)] = ∇J(θt;θt), taking the conditional expectation Et[·] on both sides yield

Et [J(θt+1;θt)] ≤ J(θt;θt)− γt+1 ∥∇J(θt;θt)∥2 +
L

2
γ2
t+1Et

[
∥∇ℓ(θt;Zt+1)∥2

]
(28)

(a)
= J(θt;θt)− γt+1 ∥∇J(θt;θt)∥2

+
L

2
γ2
t+1

(
Et ∥∇ℓ(θt;Zt+1)−∇J(θt;θt)∥2 + ∥∇J(θt;θt)∥2

)
,

(b)

≤ J(θt;θt)− γt+1 ∥∇J(θt;θt)∥2 +
L

2
γ2
t+1

(
σ2
0 + (1 + σ2

1) ∥∇J(θ;θt)∥
2
)
,

where (a) used A2 and the property:

Et

[
∥∇ℓ(θt;Zt+1)∥2

]
= Et

[
∥∇ℓ(θt;Zt+1)−∇J(θt;θt)∥2

]
+ ∥∇J(θt;θt)∥2,

and (b) is due to the variance bound in A2. Rearranging terms in (28) leads to(
1− L

2
(1 + σ2

1)γt+1

)
γt+1 ∥∇J(θt;θt)∥2 ≤ J(θt;θt)− Et[J(θt+1;θt)] +

L

2
σ2
0γ

2
t+1.

The step size condition implies 1− L
2 (1 + σ2

1)γt+1 ≥ 1/2. This concludes the proof.

B Proof of Lemma 2

Proof. Our proof is modified from Lemma 2.1 of [Drusvyatskiy and Xiao, 2023]. By W2, since
ℓ(θ; z) is L0-Lipchitz in z, we have
|J(θ;θ1)− J(θ;θ2)| = |EZ∼D(θ1)ℓ(θ;Z)− EZ′∼D(θ2)ℓ(θ;Z

′)| ≤ L0W1(D(θ1),D(θ2)).
Applying W1 gives

|J(θ;θ1)− J(θ;θ2)| ≤ L0ϵ ∥θ1 − θ2∥ ,
which finishes the proof.

C Proof of Lemma 3

Proof. Under C1 & C2, we observe

|J(θ,θ1)− J(θ,θ2)| =
∣∣∣∣∫ ℓ(θ; z)(pθ1

(z)− pθ2
(z))dz

∣∣∣∣
(a)

≤
∫
|ℓ(θ; z)| · |pθ1(z)− pθ2(z)| dz

≤ ℓmax ·
∫
|pθ1

(z)− pθ2
(z)| d(z)

≤ ℓmax · 2δTV (D(θ1),D(θ2))
(b)

≤ 2ℓmaxϵ||θ1 − θ2||.
where (a) is due to the Cauchy-Schwarz inequality, (b) is due to the stated assumptions C1.
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D Proof of Theorem 1

Proof. We recall from Lemma 1 the following relation:

γt+1

2
∥∇J(θt;θt)∥2 ≤ Et[J(θt;θt)− J(θt+1;θt)] +

L

2
σ2
0γ

2
t+1. (29)

We notice that Lemmas 2, 3 imply

|J(θ̄;θ)− J(θ̄;θ′)| ≤ L̃ϵ ∥θ − θ′∥,

where L̃ = L0 if W1, 2 hold, or L̃ = ℓmax if C1, 2 hold. Subsequently, the first term on the right
hand side of (29) can be bounded by

Et[J(θt;θt)− J(θt+1;θt)] ≤ Et[J(θt;θt)− J(θt+1;θt+1)] + Et[|J(θt+1;θt+1)− J(θt+1;θt)|]
≤ Et[J(θt;θt)− J(θt+1;θt+1)] + L̃ϵEt[∥θt+1 − θt∥]
= Et[J(θt;θt)− J(θt+1;θt+1)] + γt+1L̃ϵEt[∥∇ℓ(θt;Zt+1)∥].

Notice that

γt+1L̃ϵEt [∥∇ℓ(θt;Zt+1)∥]
(a)

≤ γt+1L̃ϵ

√
Et

[
∥∇ℓ(θt;Zt+1)∥2

]
(b)

≤ γt+1L̃ϵ

(
σ0 +

√
1 + σ2

1 ∥∇J(θt;θt)∥
)

(c)

≤ γt+1L̃ϵ

(
σ0 + (1 + σ2

1)L̃ϵ+
1

4L̃ϵ
∥∇J(θt;θt)∥2

)
,

where (a) is due to the Cauchy-Schwarz inequality E[∥X∥] ≤
√

E[∥X∥2], (b) is due to the chain:

Et

[
∥∇ℓ(θt;Zt+1)∥2

]
= ∥∇J(θt;θt)∥2 + Et

[
∥∇ℓ(θt;Zt+1)−∇J(θt;θt)∥2

]
≤ σ2

0 + (1 + σ2
1)∥∇J(θt;θt)∥2 ≤

(
σ0 +

√
1 + σ2

1∥∇J(θt;θt)∥
)2

and (c) is due to the Young’s inequality. Substituting back into (29) gives

γt+1

4
∥∇J(θt;θt)∥2 ≤ Et[J(θt;θt)− J(θt+1;θt+1)] + γt+1L̃ϵ

(
σ0 + (1 + σ2

1)L̃ϵ
)
+

L

2
σ2
0γ

2
t+1.

Notice that taking full expectation and summing both sides of the inequality from t = 0 to T − 1
yields the theorem.

E Proof of Theorem 2

Proof. The first steps of our proof resemble that of Lemma 1 and is repeated here for completeness.
Under A1, for any fixed z ∈ Z, we have that

ℓ(θt,k+1; z) ≤ ℓ(θt,k; z) + ⟨∇ℓ(θt,k; z) |θt,k+1 − θt,k⟩+
L

2
∥θt,k+1 − θt,k∥2

≤ ℓ(θt,k; z)− γ ⟨∇ℓ(θt,k; z) | ∇ℓ(θt,k;Zt,k+1)⟩+
Lγ2

2
∥∇ℓ(θt,k;Zt,k+1)∥2 ,

where the second inequality is due to the update rule of (2) as we recall that Zt+1 ∼ D(θt). Taking
integration on z with weights given by the p.d.f. of D(θt), i.e.,

∫
(·)pθt(z)dz, on both sides of above

inequality leads to

J(θt,k+1;θt,0) ≤ J(θt,k;θt,0)− γ ⟨∇J(θt,k;θt,0) | ∇ℓ(θt,k;Zt,k+1)⟩+
L

2
γ2 ∥∇ℓ(θt,k;Zt,k+1)∥2 .

As Zt,k+1 ∼ D(θt,0), we have Et,k[∇ℓ(θt,k;Zt,k+1)] = ∇J(θt,k;θt,0), where Et,k[·] denotes the
conditional expectation on the filtration

Ft,k = σ({θ0,θ0,1, · · · ,θ0,K ,θ1,1, · · · ,θt,θt,1, · · · ,θt,k}).
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Taking the conditional expectation Et,k[·] on both sides yield

Et,k [J(θt,k+1;θt,0)]≤J(θt,k;θt,0)−γ ∥∇J(θt,k;θt,0)∥2+
Lγ2

2
Et,k ∥∇ℓ(θt,k;Zt,k+1)∥2 (30)

(a)
= J(θt,k;θt,0)− γ ∥∇J(θt,k;θt,0)∥2

+
L

2
γ2

(
Et,k ∥∇ℓ(θt,k;Zt,k+1)−∇J(θt,k;θt,0)∥2 + ∥∇J(θt,k;θt,0)∥2

)
,

(b)

≤ J(θt,k;θt,0)− γ ∥∇J(θt,k;θt,0)∥2 +
L

2
γ2

(
σ2
0 + (1 + σ2

1) ∥∇J(θt,k;θt,0)∥
2
)
,

where (a) used A2 and the property:

Et,k

[
∥∇ℓ(θt,k;Zt,k+1)∥2

]
= Et,k

[
∥∇ℓ(θt,k;Zt+1)−∇J(θt,k;θt,0)∥2

]
+ ∥∇J(θt,k;θt,0)∥2,

and (b) is due to the variance bound in A2. Rearranging terms in (30),(
1− L

2
(1 + σ2

1)γ

)
γ ∥∇J(θt,k;θt,0)∥2 ≤ J(θt,k;θt,0)− Et,k[J(θt,k+1;θt,0)] +

L

2
σ2
0γ

2. (31)

The step size condition implies 1− L
2 (1 + σ2

1)γ ≥ 1
2 .

γ

2
∥∇J(θt,k;θt,0)∥2 ≤ J(θt,k;θt,0)− Et,k[J(θt,k+1;θt,0)] +

L

2
σ2
0γ

2.

Taking summation on k from 0 to K − 1 leads to

γ

2

K−1∑
k=0

∥∇J(θt,k;θt,0)∥2 ≤ J(θt,0;θt,0)− Et,k[J(θt+1,0;θt,0)] +
LK

2
σ2
0γ

2. (32)

Recall that θt+1,0 = θt+1 = θt,K . Subsequently, the first term on the right hand side of (32) can be
bounded by

Et[J(θt;θt)− J(θt+1;θt)] ≤ Et[J(θt;θt)− J(θt+1;θt+1)] + Et[|J(θt+1;θt+1)− J(θt+1;θt)|]
≤ Et[J(θt;θt)− J(θt+1;θt+1)] + L̃ϵEt[∥θt+1 − θt∥]

= Et[J(θt;θt)− J(θt+1;θt+1)] + γL̃ϵEt

[∥∥∥∥∥
K−1∑
k=0

∇ℓ(θt,k;Zt,k+1)

∥∥∥∥∥
]
.

Notice that through a careful use of A2 and the independence between stochastic gradients, we have

Et

[∥∥∥∥∥
K−1∑
k=0

∇ℓ(θt,k;Zt,k+1)

∥∥∥∥∥
]
≤

√√√√√Et

∥∥∥∥∥
K−1∑
k=0

∇ℓ(θt,k;Zt,k+1)

∥∥∥∥∥
2


≤

√√√√√2Et

∥∥∥∥∥
K−1∑
k=0

(∇ℓ(θt,k;Zt,k+1)−∇J(θt,k;θt))

∥∥∥∥∥
2
+ 2Et

∥∥∥∥∥
K−1∑
k=0

∇J(θt,k;θt)

∥∥∥∥∥
2


=

√√√√√2

K−1∑
k=0

Et

[
∥∇ℓ(θt,k;Zt,k+1)−∇J(θt,k;θt)∥2

]
+ 2Et

∥∥∥∥∥
K−1∑
k=0

∇J(θt,k;θt)

∥∥∥∥∥
2


≤

√√√√√2Kσ2
0 + 2σ2

1

K−1∑
k=0

Et

[
∥∇J(θt,k;θt)∥2

]
+ 2Et

∥∥∥∥∥
K−1∑
k=0

∇J(θt,k;θt)

∥∥∥∥∥
2


≤

√√√√2Kσ2
0 + 2(K + σ2

1)

K−1∑
k=0

Et

[
∥∇J(θt,k;θt)∥2

]
.

(33)
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Using
√
a2 + b2 ≤ a+ b for a, b ≥ 0, we have

Et

[∥∥∥∥∥
K−1∑
k=0

∇ℓ(θt,k;Zt,k+1)

∥∥∥∥∥
]
≤
√
2Kσ0 +

√
2(K + σ2

1)

√√√√K−1∑
k=0

Et

[
∥∇J(θt,k;θt)∥2

]

≤
√
2Kσ0 + 2

√
2(K + σ2

1) L̃ϵ+
1

4L̃ϵ

K−1∑
k=0

Et

[
∥∇J(θt,k;θt)∥2

]
,

(34)

where the last inequality used the property
√
x ≤ c

2 + x
2c for any c > 0. Substituting above results to

(32) and taking full expectation on both sides give us

γ

4

K−1∑
k=0

E ∥∇J(θt,k,θt,0)∥2 ≤ E [J(θt,θt)− J(θt+1,θt+1)] (35)

+ γL̃ϵ

(√
2Kσ0 + 2

√
2(K + σ2

1)L̃ϵ

)
+

LK

2
σ2
0γ

2.

Next, we lower bound the left hand side by observing:
K−1∑
k=0

E ∥∇J(θt,k;θt,0)∥2
(a)

≥
K−1∑
k=0

E
[
1

2
∥∇J(θt,θt)∥2 − ∥∇J(θt,k;θt)−∇J(θt,θt)∥2

]
(b)

≥ 1

2
KE ∥∇J(θt,θt)∥2 − L

K−1∑
k=0

E ∥θt,k − θt∥2

(c)
=

1

2
KE ∥∇J(θt,θt)∥2 − L

K−1∑
k=0

E

∥∥∥∥∥
k−1∑
ℓ=0

γ∇ℓ(θt,ℓ;Zt,ℓ)

∥∥∥∥∥
2

≥ 1

2
KE ∥∇J(θt,θt)∥2 − Lγ2

K−1∑
k=0

k

k−1∑
ℓ=0

E ∥∇ℓ(θt,ℓ;Zt,ℓ)∥2

(d)

≥ 1

2
KE ∥∇J(θt,θt)∥2 − Lγ2

K−1∑
k=0

k

k−1∑
ℓ=0

G2

=
1

2
KE ∥∇J(θt,θt)∥2 − LG2γ2 · K(K − 1)(2K − 1)

6

≥ 1

2
KE ∥∇J(θt,θt)∥2 − LG2γ2 · K

3

3
,

where (a) is due to the fact that ∥a∥2 ≥ 1
2 ∥a+ b∥2 − ∥b∥2, for any a, b ∈ Rn, (b) is due to A1, (c)

is obtained from the updating rule (23). In (d), we used the additional assumption A3. The last chain
is due to

∑K−1
k=0 k2 = K(K−1)(2K−1)

6 ≤ K3

3 , when K ≥ 1. Substituting the above lower bound to
(35) and rearrange terms lead to

γK

8
E ∥∇J(θt,θt)∥2 ≤ E [J(θt,θt)− J(θt+1,θt+1)] +

1

12
γ3LG2K3

+ γL̃ϵ

(√
2Kσ0 + 2

√
2(K + σ2

1)L̃ϵ

)
+

LK

2
σ2
0γ

2.

Taking summation from t = 0, 1, · · · , T − 1 gives us

γK

8

T−1∑
t=0

E ∥∇J(θt,θt)∥2 ≤ E [J(θ0,θ0)− J(θT ,θT )] +
T

12
γ3LG2K3

+ γT L̃ϵ

(√
2Kσ0 + 2

√
2(K + σ2

1)L̃ϵ

)
+

TLK

2
σ2
0γ

2.

Dividing γKT/8 on both sides, we have

1

T

T−1∑
t=0

E ∥∇J(θt,θt)∥2 ≤
8∆0

γKT
+ 4Lσ2

0γ +
2

3
γ2LG2K2 +

8L̃ϵ

K

(√
2Kσ0 + 2

√
2(K + σ2

1)L̃ϵ

)
,

where we recall ∆0 := J(θ0;θ0)− ℓmax.
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F Additional Numerical Results

This section provides additional details for the numerical experiments that were omitted due to space
limitation.

Synthetic Data with Linear Model Fig. 3 shows the trajectories of training and testing accuracy
with the SGD-GD scheme under different shift parameters, using the same settings as in Fig. 1 (left &
right). Note that the testing dataset with 200 samples is generated from the same procedure described
in the main paper with the same ground truth θo, but without the label flipping step. In this case,
although increasing the shift leads to a larger risk value J(θt;θt) and more biased stationary solution
in terms of ∥∇J(θt;θt)∥2 [cf. Fig. 1 (left & middle)], the test/train accuracy remain relatively stable
regardless of the shift parameter. We remark that as observed from [Miller et al., 2021, Fig. 2],
increasing the shift parameter ϵ does not always lead to a deteriorated or improved model accuracy.
Importantly, the effects can be unpredictable in general, especially when only biased SPS solutions
are guaranteed.

101 102 103 104 105

iterations t
0.0

0.2

0.4

0.6

0.8

T
ra

in
 A

cc
ur

ac
y

SGD-GD = 0
SGD-GD = 0.1
SGD-GD = 0.5
SGD-GD = 2

101 102 103 104 105

iterations t

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t A
cc

ur
ac

y

Figure 3: Synthetic Data (Left) Training accuracy under different sensitivity parameter ϵL. (Right)
Testing accuracy under different ϵL.

Fig. 4 shows the trajectories of loss values J(θt;θt), training and testing accuracy with the greedy
and lazy deployment scheme using the same settings as in Fig. 1 (right). We observe similar behaviors
as indicated in Fig. 3. Moreover, we notice that although the lazy deployment scheme converges to a
less biased SPS solution than greedy deployment scheme utilizing the same number of samples, the
initial convergence speed is slower. This can be predicted from Theorem 2 as the lazy deployment
scheme is simulated with a larger noise variance σ0.
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Figure 4: Synthetic Data (Left) Loss V (θ) against no of sample accessed. (Middle) Training accuracy
under different sensitivity parameter ϵL. (Right) Testing accuracy under different ϵL.

Real Data with Neural Network Model Similar to the above paragraph, Fig. 5, 6, 7 show the
trajectories of train/test accuracy, for greedy/lazy deployment scheme when ϵ ∈ {10, 104} for
completeness. The figures demonstrate similar behavior as described in the main paper. Moreover,
we observe that the sensitivity parameter ϵNN has a small effect in the training/testing acccuracies of
the trained models.
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Figure 5: Real Data with Neural Network (Left) Training accuracy under different sensitivity
parameter ϵ. (Right) Testing accuracy under different ϵ.
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Figure 6: Real Data with Neural Network (left & right) Training accuracy under different deploy-
ment scheme when ϵNN = 10.
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Figure 7: Real Data with Neural Network (left & right) Training accuracy under different deploy-
ment scheme when ϵNN = 104.

18



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope, aligning with our Theorems 1 & 2 and experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed about the limitation in conclusions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provides a complete set of assumptions in Section 3 and proofs for each
theoretical result in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discloses all necessary information (e.g. parameters settings, model
structure) for reproducing the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper will provide open access to the source code, ensuring that the main
experimental results can be faithfully reproduced.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all training and test details, including data splits, hyperpa-
rameters and etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This paper reports the confidence intervals for experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We described the computation platform used in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have ensured that the research conducted in the paper complies
with the NeurIPS Code of Ethics, preserving anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel
must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our data were obtained from openly available datasets and modes are classical
machine learning model, mitigating any risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have appropriately cited and described the sources of our data.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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