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ABSTRACT

Optimization in deep learning remains a fundamental challenge, and developing
techniques that improve training efficiency and enhance model performance is es-
sential. We present a method for producing effective optimization frameworks,
introducing the activation function LogLU (logarithmic linear unit’s) and the op-
timizer ZenGrad (zen represents smooth, gradients), along with its momentum-
based variant, M-ZenGrad, all of which incorporate the logarithmic formulation.
We conducted extensive evaluations on benchmark datasets spanning vision and
language tasks, demonstrating that each component individually enhances perfor-
mance while collectively showcasing the advantages of the logarithmic approach.
Additionally, ablation studies analyze the contribution of each method and care-
ful hyperparameter tuning ensures robust and optimal performance, indicate the
effectiveness of our logarithmic optimization framework across diverse tasks and
datasets.

1 INTRODUCTION

Gradient-based optimization is the foundation of modern deep learning. It provides the process by
which neural networks adjust their parameters and learn useful patterns from data Ruder (2016);
Goodfellow et al. (2016). The way gradients flow through a model is critical, since it affects how
information is passed across layers, how stable the training remains, and how quickly a model can
converge Liu et al. (2025). When gradients vanish or explode, models struggle to train effectively,
highlighting the importance of designing methods that preserve smooth and stable gradient flow
Bengio et al. (1994); Zucchet & Orvieto (2024). Over the years, continuous improvements in both
optimization algorithms and activation functions have been driven by the need to make gradient
propagation more reliable. As networks grow deeper and tasks more complex, handling gradients
effectively has become not just a technical detail, but a key factor that decides the success of large-
scale learning systems Goodfellow et al. (2016); Nocedal & Wright (2006).

Activation functions Sharma et al. (2020) and optimizers form the backbone of how neural networks
learn from data. It introduces the necessary non-linearity that allows models to represent complex re-
lationships, while optimizers govern how gradient information is translated into parameter updates.
These components have evolved to improve both the speed and stability of training Dubey et al.
(2022). Carefully designed activations ensure smoother gradient propagation, reducing common is-
sues such as vanishing or exploding gradients, and adaptive optimizers Sun (2020) leverage momen-
tum to guide models toward more efficient convergence. These advancements have enabled modern
networks to scale to deeper architectures Christobel & Suji (2024) and larger datasets. Building on
this foundation, our work explores how incorporating logarithmic structures can provide a new lens
for understanding and improving gradient during training.

In this work, we examine gradient-based learning through a logarithmic lens and introduce LogLU,
an activation function designed to preserve smooth gradient propagation and enhance stability,
alongside ZenGrad and its momentum-augmented variant, M-ZenGrad, which adapt parameter up-
dates using logarithmic scaling. Theoretical analyses for both the activation function and the opti-
mizers are provided in their respective sections (See Section 2 and Section 3). Extensive empirical
evaluations are reported in Section 4, while hyperparameter tuning and ablation studies are reported
separately in Section 5 and Section 4.4. Together, these investigations demonstrate that the embed-
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ding of logarithmic principles provides a unified framework for understanding gradient behavior and
optimization.

2 LOGARITHMIC LINEAR UNIT’S (LOGLU)

Let f(x) : R → R be the activation function defined in Equation 1, which applies distinct transfor-
mations depending on the sign of the input. Specifically, for inputs x > 0, LogLU acts as the identity
function, thereby preserving linearity and facilitating stable gradient propagation. Conversely, for
inputs x ≤ 0, LogLU applies a negative logarithmic transformation shifted by one and offset by a
small constant ε, which non-linearly compresses the input domain. This design ensures smoothly
bounded gradients in the negative domain, promoting both stability and effective learning in deep
neural networks.

f(x) =

{
x, if x > 0,

− loge(−x+ 1) + ε, if x ≤ 0.
(1)

Proposition 2.1 (Gradient Bounds of LogLU). Let, f(x) = LogLU(x). Then the derivative f ′(x)
is strictly positive and uniformly bounded above by 1; that is,

0 < f ′(x) ≤ 1 for all x ∈ R.

Proof. We compute the derivative in each region:

For x > 0, we have f(x) = x, so f ′(x) = 1. For x ≤ 0,

f ′(x) =
d

dx
[− loge(−x+ 1)] =

1

−x+ 1
∈ (0, 1],

since −x+ 1 ≥ 1. Thus, 0 < f ′(x) ≤ 1 ∀x ∈ R.

Remark. Proposition 2.1 shows that 0 < f ′(x) ≤ 1 for all x, so the LogLU activation never induces
exploding gradients. Moreover, since f ′(x) = 1/(1 − x) → 0 only as x → −∞, the derivative
remains strictly positive for all finite pre-activations (raw linear responses z =

∑d
i=1 wixi+b before

the nonlinearity is applied). Consequently, if pre-activations are bounded below by some negative
value of x, then 1/(1 − x) ≤ f ′(x) ≤ 1, and the LogLU activation does not cause vanishing
gradients under realistic bounded-input conditions Goodfellow et al. (2016).
Proposition 2.2 (Lipschitz Continuity of LogLU). Let the activation function f(x) : R → R be
defined as above. Then LogLU is Lipschitz continuous on R with Lipschitz constant

L = sup
x∈R
|f ′(x)| = 1.

Proof. By Proposition 2.1, it holds that

0 < f ′(x) ≤ 1 for all x ∈ R.
Since LogLU is differentiable with uniformly bounded derivative, the Mean Value Theorem implies
that for any x, y ∈ R, there exists c between x and y such that Bednarczuk & Rutkowski (2021)

|f(x)− f(y)| = |f ′(c)| · |x− y|.
Using the bound on the derivative, it follows that

|f(x)− f(y)| ≤ |x− y|.
Hence, LogLU is Lipschitz continuous with Lipschitz constant Xu & Zhang (2024)

L = sup
x∈R
|f ′(x)| = 1.

These results highlight important theoretical properties of the LogLU activation function. The fact
that the derivative is strictly positive and uniformly bounded ensures that the function is smooth
across its entire domain. In addition, the Lipschitz continuity with constant L = 1 guarantees that
LogLU responds to changes in input in a controlled and stable manner. These properties contribute
to consistent gradient flow during optimization.
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3 OPTIMIZER

3.1 VANILLA ZENGRAD

Let wt ∈ Rd denote the parameter vector at optimization step t, and let γ > 0 denote the base
learning rate. The instantaneous gradient of the loss function L(w) at step t is given by ∇wL(wt).
To account for the historical magnitude of gradients during training, we define the element-wise
accumulated squared gradient Duchi et al. (2011) as:

Pt =

t∑
i=1

(∇wL(wi))
2 (2)

The inclusion of the logarithmic term loge(Pt + 1) introduces a sublinear dampening effect on the
learning rate. As training progresses and the accumulated gradient Pt grows, this term increases
slowly, ensuring that learning rates decay gradually rather than aggressively. This preserves suffi-
cient learning signal in later iterations, which is particularly beneficial for non-convex landscapes
where continued exploration is essential for escaping saddle points or poor local minima Dauphin
et al. (2014); Kashyap (2023). The additive constant ε > 0, placed outside the logarithm, serves a
distinct purpose: it establishes a lower bound on the denominator, thereby avoiding instability due to
division by small values during early training when Pt is close to zero. Importantly, ε does not inter-
fere with the curvature-based adaptivity introduced by loge(Pt + 1), which has been demonstrated
in Proposition B.1 that provides superior gradient scaling relative to the square root. Consequently,
this formulation preserves gradient-aware scaling while ensuring numerical stability.

This construction yields the following update rule for each parameter dimension:

wt+1 = wt −
γ

loge(Pt + 1) + ε
· ∇wL(wt), (3)

Lemma 3.1. Suppose the gradient norm is uniformly bounded by a constant G > 0. Then the
progress term Pt grows at most linearly with iteration count:

Pt ≤ G2t.

Proof. By Accumulated squared gradient’s Equation 2, Since ∥∇wL(wi)∥ ≤ G for all i, it follows
that

Pt ≤ G2t,

establishing the claimed linear upper bound. This linear growth ensures the normalization factor in
the step size denominator increases gradually but without abrupt escalation, contributing to a stable
decay in learning rates.

Proposition 3.2. Under the assumption that the gradient of the loss function is bounded, i.e.,

∥∇wL(wt)∥ ≤ G,

the step size in the ZenGrad algorithm is bounded for all t. Specifically, for each iteration t, the step
size ∥wt+1 −wt∥ satisfies the following bound:

∥wt+1 −wt∥ ≤
γG

loge(Pt + 1) + ε
.

Proof. From the update rule,

wt+1 = wt −
γ∇wL(wt)

loge(Pt + 1) + ε
,

taking norms and applying the gradient bound yields

∥wt+1 −wt∥ =
γ∥∇wL(wt)∥

loge(Pt + 1) + ε
≤ γG

loge(Pt + 1) + ε
.

This upper bound explicitly quantifies the maximum possible step length at each iteration, con-
firming that the update magnitude is effectively regulated by the accumulated gradient information.
As Pt grows, the step size shrinks, thus inherently preventing divergence caused by overly large
updates.
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Theorem 3.3 (Lyapunov Stability Sastry (1999) and Convergence of ZenGrad). Let L : Rd → R be
a differentiable objective function with a global minimizer w∗, and let {wt}t≥0 be the sequence of
iterates generated by the ZenGrad update rule in Equation 3, where γ > 0 is the learning rate and
Pt ≥ 0 is an auxiliary term dependent on the gradient history. Assume further that L is L-smooth,
i.e.,

L(y) ≤ L(x) +∇L(x)⊤(y − x) +
L

2
∥y − x∥2,

and the step-size ηt =
γ

loge(Pt+1)+ε satisfies ηt ≤ 1
L for all t. Then, the Lyapunov function

V (wt) = L(wt)− L(w∗)

is non-increasing, i.e.,
V (wt+1) ≤ V (wt),

and hence the iterates wt asymptotically converge towards the global minimum w∗ in the sense of
objective value.

Proof. To examine the evolution of V (wt), we look at the difference between V (wt+1) and V (wt):

V (wt+1)− V (wt) = (L(wt+1)− L(w∗))− (L(wt)− L(w∗)) .

By L-smoothness and the update rule wt+1 = wt − ηt∇L(wt), we have

L(wt+1) ≤ L(wt)− ηt∥∇L(wt)∥2 +
L

2
η2t ∥∇L(wt)∥2.

Substituting ηt =
γ

loge(Pt+1)+ε , we obtain

L(wt+1)− L(wt) ≤ −ηt
(
1− Lηt

2

)
∥∇L(wt)∥2.

Since ηt ≤ 1/L, it follows that 1− Lηt

2 ≥
1
2 , and thus

L(wt+1)− L(wt) ≤ −
ηt
2
∥∇L(wt)∥2.

Consequently,
V (wt+1)− V (wt) ≤ −

ηt
2
∥∇L(wt)∥2 ≤ 0,

showing V (wt+1) ≤ V (wt).

Therefore, the Lyapunov function V (wt) is non-increasing along the iterates, ensuring Lyapunov
stability of the ZenGrad dynamics. Since V (wt) is bounded below and decreases monotonically,
it converges to a finite limit, and ∥∇L(wt)∥2 → 0 as t → ∞. Hence, the iterates {wt} approach
a stationary point w∗, establishing convergence and stability of the update rule. Further results
on nonconvex stationary convergence and global linear convergence under the PL condition are
provided in Theorem B.4 and B.5.

3.2 ZENGRAD WITH MOMENTUM (M-ZENGRAD)

While Vanilla ZenGrad achieves adaptive learning by leveraging the accumulated magnitudes of his-
torical gradients, its convergence—especially during the initial phases of training from scratch—can
be further accelerated. To address this, we integrate momentum into the ZenGrad framework. In this
work, we explore two variants: standard momentum, which follows the conventional formulation
employed in stochastic gradient methods (Polyak, 1964), and Nesterov momentum, a widely used
extension that anticipates future parameter updates (Nesterov, 1983; Sutskever et al., 2013), leading
to improved convergence dynamics. We maintain the element-wise accumulated squared gradient
as in Equation 2. The velocity vector with momentum coefficient µ ∈ [0, 1) is defined as:

vt = µvt−1 +∇wL(wt), v0 = 0, ut =

{
∇wL(wt) + µvt (Nesterov)
vt (Standard)

wt+1 = wt −
γ

loge(Pt + 1) + ε
· ut (4)
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4 EXPERIMENTS

An experimental framework is designed to evaluate the effectiveness of the proposed optimizers,
i.e., ZenGrad and M-ZenGrad, as well as the novel activation function, i.e., LogLU. All experiments
are conducted on an NVIDIA RTX A4500 GPU hosted on RunPod, which provides 23.7 TFLOPS
using mixed precision (FP16+FP32) for improved computational efficiency. These settings are kept
consistent across all evaluations to ensure fair comparisons. Each optimizer is carefully tuned for
every task (See Section 5 for hyperparameter tuning details). The experiments cover a variety of
standard tasks, considering both training from scratch and using pretrained settings.

4.1 IMAGE CLASSIFICATION

We evaluate various datasets and architectures on the image classification benchmarks. We consider
ImageNet-1K Russakovsky et al. (2015) and its variants, including ReaL Beyer et al. (2020) and
ImageNet-V2 Recht et al. (2019), for large-scale evaluation. CIFAR-10 Krizhevsky (2009) is used
to examine performance on smaller-scale datasets. For the ImageNet results, images are processed
at the default size of 2242 and augmented with random resized crops and horizontal flips, followed
by standard normalization. Training uses label smoothing with a factor of 0.1 and automatic mixed
precision (AMP).

Training from Scratch We train a ResNet-18 model from scratch on the ImageNet-1K dataset
for 90 epochs and a ResNet-32 He et al. (2016) model on the CIFAR-10 for 160 epochs, both us-
ing a batch size of 256. For CIFAR-10, the learning rate is reduced by a factor of 10 at epochs 80
and 120, while for ImageNet, the learning rate is decayed every 30 epochs by the same factor. On
ImageNet-1K, Our proposed method achieved a higher validation accuracy compared to other opti-
mizers, excluding momentum SGD. M-ZenGrad achieves similar to SGD (Polyak, 1964; Robbins,
1951), with a slight increase of +0.07%. However, M-ZenGrad achieves a validation loss of 0.74,
significantly lower than the 1.61 obtained with SGD (See Table 5). On CIFAR-10 dataset, most
optimizers exhibit similar performance, while ZenGrad is observed to perform more effectively. All
results are illustrated in Figure 1.

(a) ResNet32 on Cifar10 (b) ResNet18 on ImageNet (c) ResNet18 on ImageNet

Figure 1: Test performance of different optimizers: (a, c) Test accuracy on ResNet32/18 for CIFAR-
10 and ImageNet, (b) Test loss on ResNet18 for ImageNet.

Pre-train on ImageNet-1K We pretrain the ViT-S/16 Dosovitskiy et al. (2021) model on the Im-
ageNet dataset with a batch size of 256 for 100K steps, employing a cosine annealing scheduler for
learning rate decay. Table 1 reports the performance of various optimizers, where standard adaptive
methods achieve 70.07–72.35%. The proposed ZenGrad and M-ZenGrad optimizers reach 78.82%
and 74.96%, respectively, demonstrating their capability to enhance convergence and performance
in large-scale transformer pretraining.

Table 1: Test accuracy (µ±σ) of multiple optimizers evaluated across different models and datasets.

Model Task AdamW Lion NAdam AdaBelief ZenGrad M-ZenGrad

ResNet-18
ImageNet 66.21 ± 0.482 66.15 ± 0.361 63.75 ± 0.527 66.32 ± 0.449 67.78 ± 0.282 69.29 ± 0.254

Real 69.45 ± 0.516 68.51 ± 0.427 68.46 ± 0.492 70.28 ± 0.378 71.31 ± 0.267 73.23 ± 0.239
V2 54.38 ± 0.433 54.56 ± 0.395 52.67 ± 0.502 55.14 ± 0.471 55.74 ± 0.292 57.45 ± 0.273

ViT-S/16
ImageNet 70.07 ± 0.559 72.59 ± 0.498 72.29 ± 0.461 72.35 ± 0.537 78.82 ± 0.211 74.96 ± 0.287

Real 73.24 ± 0.602 74.80 ± 0.512 74.54 ± 0.493 74.21 ± 0.468 79.60 ± 0.226 76.77 ± 0.294
V2 60.12 ± 0.471 61.20 ± 0.436 61.29 ± 0.514 61.32 ± 0.452 67.64 ± 0.203 66.84 ± 0.276
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Transfer Learning To assess generalization beyond the primary training set, we evaluate ResNet-
18 and ViT-S/16 across ImageNet variants, including Real and V2. Table 1 shows that ResNet-18
trained from scratch, M-ZenGrad achieves 69.29% on ImageNet, 73.23% on Real, and 57.45% on
V2. For ViT-S/16 (pretrained), ZenGrad reaches 78.82% on ImageNet and 79.60% on Real, with
M-ZenGrad demonstrating similarly strong results. On the V2 variant, both proposed optimizers
show higher validation metrics than standard adaptive methods. The results indicate consistent
improvements across model architectures and dataset variants.

4.2 IMAGE SEGMENTATION

We evaluate the Pascal VOC 2012 dataset Everingham et al. (2010) with a U-Net architecture Ron-
neberger et al. (2015) employing a ResNet-50 encoder under two training protocols: training from
scratch for 500 epochs and fine-tuning a pretrained encoder for 200 epochs. All experimental set-
tings were kept fixed, with the optimizer being the only factor varied. Table 2 shows that, the
pretrained setting, ZenGrad achieves an IoU of 93.86% and a Dice score of 94.96%, demonstrat-
ing its segmentation performance. When trained from scratch, ZenGrad consistently achieves better
performance, attaining an IoU of 94.11% and a Dice score of 94.78%, setting it apart from stan-
dard adaptive optimizers. Qualitative segmentation results are shown in the images, produced by
the ZenGrad model trained from scratch, alongside the corresponding ground-truth annotations (See
Figure 6).

Table 2: Evaluation metrics on the Pascal VOC dataset using U-Net with a ResNet-50 encoder,
reported as (µ± σ) across three runs.

Model Metric AdamW Lion Adabelief ZenGrad M-ZenGrad

U-Net
(ResNet-50)

IoU 90.55± 0.32 91.59± 0.41 91.16± 0.37 93.86± 0.25 91.81± 0.44
Dice 90.67± 0.28 91.73± 0.35 91.93± 0.33 94.96± 0.21 90.72± 0.39

Training from Scratch

IoU 89.22± 0.36 90.85± 0.28 91.91± 0.30 94.11± 0.22 90.03± 0.35
Dice 90.34± 0.31 91.61± 0.24 92.63± 0.27 94.78± 0.19 91.71± 0.29

4.3 LANGUAGE MODELING

We conduct experiments on the Wikitext-2 Merity et al. (2016) dataset with vocab size
of 50K tokens using a small GPT-style decoder Radford et al. (2018) of 4 trans-
former layers, 256-dimensional embeddings, 4 self-attention heads, and feed-forward lay-
ers with a hidden dimension of 4 × dmodel. All models are trained with 212 tokens
per batch for 225K steps. The context length is fixed at 128 tokens, with 0.1 dropout.

Figure 2: Test PPL on the WikiText-2 dataset
using the small GPT-style decoder with dif-
ferent activation functions across optimizers.

Both GeLU and our proposed LogLU activation
are employed within the feed-forward layers. For
optimizer evaluation, we focus on widely adopted
adaptive methods alongside our proposed ZenGrad
and M-ZenGrad optimizers, comparing their per-
formance against AdamW and Lion while exclud-
ing other optimizers to maintain computational ef-
ficiency. Figure 2 shows that, LogLU consistently
achieves slightly lower perplexity than GELU, indi-
cating better performance. Among the optimizers,
ZenGrad demonstrates the lowest perplexity values,
performing better than the other adaptive optimizers
and highlighting the advantage of combining it with
LogLU.

4.4 ABLATIONS

Hyperparameter Studies All experiments are conducted on the ResNet-32 using the CIFAR-10
dataset. First, we analyze the effect of the learning rate, a critical factor for optimization stability and
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convergence. We evaluate ZenGrad and M-ZenGrad values using {1e-1, 1e-2, 5e-2, 7e-2, 2e-3, 5e-
3}, with AdamW included as a baseline due to its robustness across a wide range of learning rates.
Next, we study the role of the epsilon (ϵ) parameter, which prevents division by zero and stabilizes
training under low-variance conditions, using values {1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8}.
Finally, we also investigate the momentum-based extension M-ZenGrad, testing momentum coeffi-
cients {0.1, 0.3, 0.6, 0.8, 0.9, 0.95, 0.99}, with both standard and Nesterov acceleration evaluated
on the same momentum values. The corresponding results are illustrated in Figure 5.

Effect of Log Variants We explored the impact of different logarithmic bases on the update rules
within the ZenGrad and M-ZenGrad optimization frameworks. While the natural logarithm (base e)
is commonly used as the default, we also evaluated the use of a logarithm with base 10 to understand
its effect on optimization dynamics. These experiments were conducted on the ImageNet -1k using
the ResNet-18, trained from scratch for 90 epochs, following the same experimental settings outlined
in Section 4.1. The goal was to assess how variations in the logarithmic base influence convergence
behavior and generalization performance. As shown in Figure 3, our results indicate that there is no
significant difference between using log base e and log base 10.

(a) ZenGrad (b) M-ZenGrad

Figure 3: The impact of logarithmic base on ZenGrad and M-ZenGrad updates is evaluated. ResNet-
18 was trained from scratch on ImageNet-1K using loge and log10.

Learning Rate and Weight Decay We trained the ResNet-18 model on the ImageNet-1K using
various combinations of learning rates and weight decay values. All models were trained for 90
epochs with a fixed batch size of 256. We evaluated four optimizer’s AdamW, Lion, ZenGrad, and
M-ZenGrad, across a grid of learning rates {1e-2, 1e-3, 1e-4} and weight decay values {1e-2, 1e-4,
1e-6}. The results are visualized as heatmaps (See Figure 4), enabling a clear comparison of each
optimizer’s performance under different regularization settings.

(a) AdamW (b) Lion (c) ZenGrad (d) M-ZenGrad

Figure 4: Ablation study of ResNet-18 on ImageNet-1K under varying learning rate and weight
decay configurations across different optimizers.

4.5 COMPARISON OF VARIOUS ACTIVATION FUNCTIONS WITH MULTIPLE OPTIMIZERS

To assess the effectiveness of the proposed activation function, experiments were conducted on
CIFAR-100 Krizhevsky (2009) using the ResNet-32 architecture for 160 epochs. The training em-
ployed a learning rate schedule, where the rate was reduced by a factor of 10 at epochs 80 and
120, with a batch size of 256. Table 3 shows that, LogLU consistently achieved better performance
than other activation functions across various optimizers, with most optimizers showing clear gains
when paired with it. ZenGrad achieved stronger performance in combination with LogLU, and
its momentum-based variant, M-ZenGrad, provided an additional improvement, demonstrating the
benefits of pairing effective optimization strategies with well-designed activation functions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Test accuracy (µ±σ) for different activation functions across various optimizers on CIFAR-
100.

DataSet A.F AdamW Lion NAdam AdaBelief AdaGrad RMSProp ZenGrad M-ZenGrad

CIFAR-100
(ResNet-32)

ReLU 70.43 ± 0.41 70.01 ± 0.44 70.26 ± 0.39 70.74 ± 0.42 70.16 ± 0.40 70.46 ± 0.43 71.28 ± 0.26 72.51 ± 0.19
LeakyReLU 70.86 ± 0.38 70.34 ± 0.41 71.11 ± 0.43 71.01 ± 0.40 70.27 ± 0.39 71.18 ± 0.42 70.66 ± 0.24 72.63 ± 0.18

Swish 72.22 ± 0.42 70.30 ± 0.39 71.23 ± 0.40 72.07 ± 0.44 70.62 ± 0.38 72.31 ± 0.41 72.33 ± 0.23 73.29 ± 0.20
Mish 71.44 ± 0.39 70.01 ± 0.37 72.16 ± 0.41 71.58 ± 0.43 70.08 ± 0.40 71.91 ± 0.38 70.13 ± 0.25 73.54 ± 0.17
GeLU 70.72 ± 0.40 70.20 ± 0.42 71.28 ± 0.38 71.69 ± 0.41 70.66 ± 0.43 71.57 ± 0.31 72.35 ± 0.22 73.11 ± 0.16

Softplus 71.96 ± 0.42 71.58 ± 0.39 73.09 ± 0.40 72.61 ± 0.43 70.42 ± 0.41 72.75 ± 0.39 72.08 ± 0.44 73.29 ± 0.37
LogLU 72.13 ± 0.37 72.57 ± 0.40 72.64 ± 0.39 72.74 ± 0.41 72.07 ± 0.38 72.40 ± 0.42 72.37 ± 0.21 73.65 ± 0.15

Table 4: Pre-training performance on ImageNet-1K: Test accuracy (%) reported as (µ ± σ) over
three runs across optimizers and activation functions.

Optimizer ResNet-18 ViT/S-16

ReLU LogLU GELU LogLU

AdamW 67.42 ± 0.832 68.68 ± 0.613 70.07 ± 0.559 70.31 ± 0.447
Lion 67.72 ± 0.789 68.25 ± 0.507 72.59 ± 0.498 73.04 ± 0.392
ZenGrad 68.52 ± 0.593 69.28 ± 0.482 78.82 ± 0.211 79.29 ± 0.163
M-ZenGrad 70.45 ± 0.487 71.28 ± 0.368 74.96 ± 0.287 76.29 ± 0.245

Furthermore, pre-trained results on ImageNet-1K were obtained after 100K training steps. As re-
ported in Table 4, comparing different optimizers across two architectures (ResNet-18 and ViT/S-16)
and activation functions. In both models, the use of LogLU led to more consistent and effective out-
comes across all optimizers. ZenGrad and M-ZenGrad showed better performance over AdamW and
Lion, especially when combined with LogLU. For ResNet-18, an accuracy of 71.28% was achieved
using M-ZenGrad with LogLU, while for ViT/S-16, ZenGrad attained 79.29% with LogLU. These
results suggest that integrating LogLU can slightly enhance the performance of the model across
different architectures.

5 HYPERPARAMETER TUNING

To ensure fair and meaningful comparisons, we systematically tune critical optimization hyperpa-
rameters—specifically, the learning rate (lr) and decoupled weight decay coefficient (λ)—across
all methods. M-ZenGrad employing a fixed momentum coefficient of β1 = 0.9 (See Figure 5 for
ablation analysis). Momentum parameters for all optimizers were kept default. The core of ZenGrad
lies in its learning rate (See Equation 3). Due to this logarithmic scaling, in our experiments we ob-
served that ZenGrad requires a 5–10x larger learning rate compared to AdamW to keep the similar
intensity. Note that the learning rate value must be adjusted according to the same ratio relative to
AdamW, Remaining all other training settings are kept constant throughout the experiments. The
optimizer configurations used in all experimental domains—including image classification, segmen-
tation, and language modeling—as:

• lr = 1e−3, λ = 1e−4 in AdamW; lr = 1e−4, λ = 1e−2 in Lion; lr = 1e−3, λ = 1e−4 in
NAdam; lr = 1e−3, λ = 1e−8 in AdaBelief; lr = 1e−2, λ = 1e−4 in ZenGrad; lr = 1e−2,
λ = 1e−4 in M-ZenGrad.

Hyperparameter tuning is a computationally intensive but essential part of optimizing performance.
To better understand the sensitivity of each optimizer, In Figure 4, we present multiple optimizers
with various lr and λ values, trained using ResNet-18 from scratch on the ImageNet. We observe
that ZenGrad and M-ZenGrad are more robust, achieving similar performance across a range of
hyperparameters compared to AdamW and Lion.

6 RELATED WORK

Our work focus on propagation of gradients navigating the complex, non-convex optimization land-
scapes typical of deep learning. This necessity has driven significant advancements in both op-
timization algorithms and activation functions. A variety of sophisticated optimizers—AdamW
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Loshchilov & Hutter (2019), Lion Chen et al. (2023), AdaBelief Zhuang et al. (2020), AdaGrad
Duchi et al. (2011), RMSProp Tieleman (2012), NAdam Dozat (2016), and SGD Robbins (1951)
have been engineered to enhance gradient-based training by dynamically adjusting learning rates
and stabilizing parameter updates. Alongside these, modern activation functions like ReLU Nair
& Hinton (2010), Leaky ReLU Xu et al. (2015), Swish Ramachandran et al. (2017), Mish Misra
(2020), and GELU Hendrycks & Gimpel (2023), Softplus Dugas et al. (2000), contribute by intro-
ducing nonlinearities that improve gradient stability and model expressiveness. The synergy of these
innovations facilitates the effective training of state-of-the-art neural architectures, including Vision
Transformers (ViT) Dosovitskiy et al. (2021), ResNets He et al. (2016), and GPT Radford et al.
(2018) models, enabling them to capture and learn complex data patterns with greater efficiency.

7 CONCLUSION

In this work, we introduced the ZenGrad optimizer, its momentum variant M-ZenGrad, and the
LogLU activation function, focusing on improving gradient flow and training stability. Our theoreti-
cal analysis confirmed their convergence properties across different types of optimization problems,
while extensive experiments demonstrated consistent performance gains across various tasks. Hy-
perparameter ablations further validated the reliability and adaptability of these methods. These
findings highlight the potential of rethinking gradient updates and activation design to achieve more
efficient and stable training, offering a foundation for future developments in optimization strategies.
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APPENDIX

A LOGLU PROOFS

The LogLU activation function introduces an implicit regularization effect in deep neural networks
by penalizing large negative pre-activations logarithmically. This effect stabilizes gradient flow
and enhances generalization. The LogLU activation function induces sparsity in activations and
stabilizes gradient flow by logarithmically penalizing large negative pre-activations. This implicit
regularization improves the generalization of deep neural networks.
Lemma A.1 (Logarithmic Growth of LogLU for z ≤ 0). Let the negative branch of the LogLU
activation be defined as

f(z) = − loge(−z + 1), z ≤ 0.

Then, for all z ≤ 0,
− loge(−z + 1) < |z|.

Moreover, the negative branch grows strictly sublinearly with respect to |z|:

lim
z→−∞

− loge(−z + 1)

|z|
= 0.

Proof. For any z ≤ 0, we have −z + 1 ≥ 1. Since the natural logarithm is strictly increasing and
loge(1) = 0, it follows that loge(−z + 1) ≥ 0, and therefore

− loge(−z + 1) ≤ 0 ≤ |z|.
Noting that |z| = −z for negative z, this immediately establishes the inequality

− loge(−z + 1) < |z|.

To analyze the asymptotic growth, consider the ratio

− loge(−z + 1)

|z|
=

loge(−z + 1)

−z
.

As z → −∞, the logarithmic term grows much more slowly than the linear term−z. Consequently,

lim
z→−∞

loge(−z + 1)

−z
= 0,

showing that the negative branch of LogLU grows strictly sublinearly with respect to the magnitude
of z. This ensures that large negative inputs are penalized gently, reducing the risk of excessively
large gradients, improving training stability, while still allowing meaningful negative activations.

Corollary A.2. The attenuation of gradients for large negative values ensures that excessively neg-
ative pre-activations do not dominate the gradient flow, promoting stable optimization dynamics in
deep neural networks.

Proof. The regularization effect of LogLU can be understood by analyzing its contribution to the
total loss function of a deep neural network. Let Ltask denote the task-specific loss (e.g., cross-
entropy or mean squared error). The total loss can be expressed as:

L = Ltask + λ
∑

i:zi≤0

[
− loge(−zi + 1)

]
, xi ≤ 0
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where the second term represents an implicit regularization effect introduced by LogLU. The
LogLU activation function introduces a logarithmic term, [− loge(−zi + 1)], which effectively dis-
courages large negative activations while minimally impacting small negative values. This property
promotes activation sparsity, a desirable characteristic known to enhance generalization in neural
networks. Furthermore, the gradient of this penalty diminishes for highly negative zi, inherently
stabilizing the gradient flow and preventing issues such as gradient explosion or oscillatory behavior
during training. By penalizing large negative pre-activations, LogLU implicitly enforces a constraint
on the model’s effective capacity, thereby acting as a form of regularization. This regularization mit-
igates overfitting risks and contributes to improved generalization performance on unseen data.

B ZENGRAD PROOFS

Proposition B.1 (Logarithmic vs. Square Root — Step-size Scaling Inequality). Let Pt ≥ 0 and
ε > 0. Define the ZenGrad and AdaGrad/Adam denominators as

Dzengrad(Pt) = loge(Pt + 1) + ε, Dadagrad(Pt) =
√
Pt + ε.

Then, for all Pt ≥ 0,

Dzengrad(Pt) ≤ Dadagrad(Pt) =⇒ 1

Dzengrad(Pt)
≥ 1

Dadagrad(Pt)
,

Consequently, for identical learning rates γ = η,

∆zengrad(Pt) =
γ

loge(Pt + 1) + ε
≥ η√

Pt + ε
= ∆adagrad(Pt),

indicating that ZenGrad maintains a consistently larger effective step-size compared to Ada-
Grad/Adam for all Pt ≥ 0.

Proof. For all Pt ≥ 0, which gives loge(Pt + 1) ≤
√
Pt and hence the inequality function is as

follows:
f(Pt) =

√
Pt − loge(Pt + 1), Pt ≥ 0.

Compute the derivative for Pt > 0:

f ′(Pt) =
1

2
√
Pt

− 1

1 + Pt
.

Note that

1

2
√
Pt

− 1

1 + Pt
≥ 0 ⇐⇒ 1

1 + Pt
≤ 1

2
√
Pt

⇐⇒ 1 + Pt ≥ 2
√
Pt.

But 1+Pt− 2
√
Pt = (

√
Pt− 1)2 ≥ 0, so the last inequality holds for all Pt ≥ 0. Thus f ′(Pt) ≥ 0

for all Pt > 0, which means f is nondecreasing on [0,∞). Since f(0) = 0, it follows that f(Pt) ≥ 0
for every Pt ≥ 0. Therefore

loge(Pt + 1) ≤
√

Pt (∀Pt ≥ 0).

Adding ε > 0 to both sides:
loge(Pt + 1) + ε ≤

√
Pt + ε,

taking reciprocals yields
1

loge(Pt + 1) + ε
≥ 1√

Pt + ε
.

The ZenGrad step-size is always greater than or equal to that of AdaGrad/Adam for the same ac-
cumulated gradient history. Consequently, ZenGrad’s logarithmic scaling yields a slower step-size
decay, offering better long-term gradient responsiveness and stability — a desirable property that
mitigates the over-damping observed in adaptive gradients.
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Algorithm 1 ZenGrad Optimizer

1: Input: Objective function J(θ), initial parameters θ0, learning rate η, total steps T
2: Initialize: P0 ← 0
3: for t = 1 to T do
4: Compute gradient gt ← ∇θJ(θt)
5: Accumulate squared gradients: Pt ← Pt−1 + g2t
6: Parameter update:

θt+1 ← θt −
η

loge(Pt + 1) + ε
gt

7: end for
8: Return: θT

Proposition B.2. If the progress term Pt is monotonically increasing in t, then the effective learning
rate

ηt =
γ

loge(Pt + 1) + ε

is a monotonically decreasing function of t. Specifically, for any t1 < t2,

ηt1 > ηt2 .

Proof. Since Pt is monotonically increasing,

Pt1 ≤ Pt2 =⇒ loge(Pt1 + 1) ≤ loge(Pt2 + 1).

Thus,
1

loge(Pt1 + 1) + ε
>

1

loge(Pt2 + 1) + ε
,

which immediately implies
ηt1 > ηt2 .

This monotonic decay of the effective learning rate is a desirable property, as it ensures that the
optimizer takes progressively smaller steps, facilitating convergence by avoiding oscillations or in-
stability in the later stages of training.

Proposition B.3. The initial learning rate γ0 influences the rate of convergence in ZenGrad. Specif-
ically, if γ0 is large, the algorithm will take larger steps initially, leading to faster progress in the
early stages of the optimization process. However, as t increases, the progress term Pt causes the
learning rate to decay, ensuring stability and fine-tuning of the solution. Conversely, if γ0 is small,
the algorithm will take smaller steps initially, but still converges effectively as the learning rate
decays over time.

Proof. Let the initial learning rate be γ0, and consider the learning rate at iteration t, which is given
by:

ηt =
γ0

loge(Pt + 1) + ε
.

If γ0 is large, the initial updates will be larger, leading to faster progress early on. However, as t
increases, the term loge(Pt+1)+ε increases, causing the learning rate to decrease, and the algorithm
will settle into a more stable convergence.

Theorem B.4 (Convergence in Non-Convex Settings). Let L : Rd → R be continuously differen-
tiable and L-smooth:

L(y) ≤ L(x) +∇L(x)⊤(y − x) +
L

2
∥y − x∥2.

Assume L is bounded below by Linf . Let

ηt =
γ

loge(Pt + 1) + ε
, γ/ε ≤ 1

2L
.
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Algorithm 2 ZenGrad Optimizer with Momentum (M-ZenGrad)

1: Input: Objective function J(θ), initial parameters θ0, learning rate η, momentum µ, total steps
T

2: Initialize: P0 ← 0, v0 ← 0
3: for t = 1 to T do
4: Compute gradient gt ← ∇θJ(θt)
5: Update momentum: vt ← µvt−1 + gt
6: Define update direction:

ut =

{
gt + µvt (Nesterov)
vt (Standard)

7: Accumulate squared gradients: Pt ← Pt−1 + g2t
8: Parameter update:

θt+1 ← θt −
η

loge(Pt + 1) + ε
ut

9: end for
10: Return: θT

Then
∞∑
t=1

∥gt∥2

loge(Pt + 1) + ε
<∞, and lim

t→∞
∥gt∥ = 0.

Hence, every cluster point of {wt} is stationary.

Proof. By L-smoothness and wt+1 = wt − ηtgt:

L(wt+1) ≤ L(wt)− ηt

(
1− L

2
ηt

)
∥gt∥2 ≤ L(wt)−

1

2
ηt∥gt∥2.

Summing over t gives
T∑

t=1

ηt∥gt∥2 ≤ 2(L(w1)− Linf) <∞.

Substituting ηt yields
∞∑
t=1

∥gt∥2

loge(Pt + 1) + ε
<∞.

If ∥gt∥ ̸→ 0, there exists c > 0 and a subsequence {tk} with ∥gtk∥ ≥ c, giving

∥gtk∥2

loge(Ptk + 1) + ε
≳

c2

loge k + C
,

which diverges, a contradiction. Hence ∥gt∥ → 0, and continuity of ∇L implies all cluster points
are stationary.

Theorem B.5 (Global linear convergence under the PL condition). Assume L is L-smooth and
satisfies the Polyak-Łojasiewicz (PL) Karimi et al. (2016) inequality with constant µ > 0:

∥∇L(w)∥2 ≥ 2µ
(
L(w)− Linf

)
for all w.

Let the ZenGrad iterates use step-sizes ηt with

0 < ηmin ≤ ηt ≤
1

L
for all t.

Then the objective decreases geometrically:

L(wt+1)− Linf ≤ (1− ηtµ) (L(wt)− Linf) ≤ (1− ηminµ)
t(L(w0)− Linf).

In particular, wt converges linearly in objective value to the global minimum value Linf .

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. From Theorem 3.3 we have

L(wt+1) ≤ L(wt)−
ηt
2
∥gt∥2.

Using the PL inequality ∥gt∥2 ≥ 2µ(L(wt)− Linf) yields

L(wt+1)− Linf ≤ L(wt)− Linf − ηtµ(L(wt)− Linf) = (1− ηtµ)(L(wt)− Linf).

Since each step-size satisfies ηt ≥ ηmin > 0, iterating the inequality gives:

L(wt)− Linf ≤ (1− ηminµ)
t(L(w0)− Linf).

Thus, the objective decreases by a constant factor at each step. As a result, the iterates converge
linearly to the global minimum Linf .

Table 5: Optimizer performance Train from scratch on CIFAR-10 and ImageNet

DataSet CIFAR-10 ImageNet
(ResNet-32) (ResNet-18)

Optimizer Top-1 Loss Top-1 Loss Time per Epoch / Memory Usage

SGD 90.51±0.12 0.160±0.041 69.22±0.32 1.61±0.08 20.505min / 9.603GB
AdamW 90.89±0.15 0.009±0.003 66.21±0.48 1.81±0.09 21.271min / 10.128GB
Lion 90.35±0.11 0.005±0.002 66.15±0.36 1.81±0.08 21.172min / 9.712GB
NAdam 91.21±0.17 0.009±0.003 63.75±0.53 1.86±0.09 21.313min / 10.304GB
Adabelief 90.96±0.14 0.007±0.003 66.32±0.45 1.80±0.09 20.537min / 10.047GB

ZenGrad 91.27±0.09 0.004±0.002 67.78±0.28 1.71±0.07 20.454min / 9.695GB
M-ZenGrad 90.66±0.08 0.009±0.001 69.29±0.25 0.74±0.04 20.675min / 10.113GB

Training Time and Memory Usage. Across the evaluated optimizers, the per-epoch training time
and GPU memory footprint are broadly similar, reflecting comparable computational efficiency. In
terms of relative resource requirements, SGD, ZenGrad, and Lion demonstrate the lowest mem-
ory consumption, followed by AdamW, AdaBelief, and M-ZenGrad with intermediate usage, while
NAdam incurs the highest computational cost. All experiments were conducted on a NVIDIA RTX
A4500 GPU hosted on RunPod. Formally, the hierarchy can be expressed as:

SGD ∼ ZenGrad ∼ Lion < AdamW ∼ AdaBelief ∼ M-ZenGrad < NAdam.
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(a) AdamW LR (b) ZenGrad LR (c) M-ZenGrad LR

(d) AdamW eps (e) ZenGrad eps (f) M-ZenGrad eps

(g) M-ZenGrad Momentum (h) M-ZenGrad Nesterov

Figure 5: Ablation study on CIFAR-10 with ResNet-32, evaluating the effects of learning rate and ϵ
across AdamW, ZenGrad and M-ZenGrad, and also the impact of standard and Nesterov momentum
for M-ZenGrad.

Image

Ground
Truth

Predicted

Figure 6: Qualitative segmentation results using ZenGrad on six representative samples. Each col-
umn corresponds to a different image. Rows from top to bottom represent: (1) input image, (2)
ground truth segmentation mask, and (3) model prediction. The proposed method demonstrates ac-
curate boundary delineation and structural consistency.
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