Under review as a conference paper at ICLR 2026

GRADIENTS THROUGH LOGARITHMIC LENS: REFOR-
MULATING OPTIMIZATION DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization in deep learning remains a fundamental challenge, and developing
techniques that improve training efficiency and enhance model performance is es-
sential. We present a method for producing effective optimization frameworks,
introducing the activation function LogLU (logarithmic linear unit’s) and the op-
timizer ZenGrad (zen represents smooth, gradients), along with its momentum-
based variant, M-ZenGrad, all of which incorporate the logarithmic formulation.
We conducted extensive evaluations on benchmark datasets spanning vision and
language tasks, demonstrating that each component individually enhances perfor-
mance while collectively showcasing the advantages of the logarithmic approach.
Additionally, ablation studies analyze the contribution of each method and care-
ful hyperparameter tuning ensures robust and optimal performance, indicate the
effectiveness of our logarithmic optimization framework across diverse tasks and
datasets.

1 INTRODUCTION

Gradient-based optimization is the foundation of modern deep learning. It provides the process by
which neural networks adjust their parameters and learn useful patterns from data [Ruder| (2016));
Goodfellow et al|(2016). The way gradients flow through a model is critical, since it affects how
information is passed across layers, how stable the training remains, and how quickly a model can
converge Liu et al.| (2025). When gradients vanish or explode, models struggle to train effectively,
highlighting the importance of designing methods that preserve smooth and stable gradient flow
Bengio et al.| (1994); Zucchet & Orvieto| (2024). Over the years, continuous improvements in both
optimization algorithms and activation functions have been driven by the need to make gradient
propagation more reliable. As networks grow deeper and tasks more complex, handling gradients
effectively has become not just a technical detail, but a key factor that decides the success of large-
scale learning systems |Goodfellow et al.| (2016); Nocedal & Wright| (2006).

Activation functions|Sharma et al.| (2020) and optimizers form the backbone of how neural networks
learn from data. It introduces the necessary non-linearity that allows models to represent complex re-
lationships, while optimizers govern how gradient information is translated into parameter updates.
These components have evolved to improve both the speed and stability of training Dubey et al.
(2022). Carefully designed activations ensure smoother gradient propagation, reducing common is-
sues such as vanishing or exploding gradients, and adaptive optimizers Sun| (2020) leverage momen-
tum to guide models toward more efficient convergence. These advancements have enabled modern
networks to scale to deeper architectures |Christobel & Suji| (2024)) and larger datasets. Building on
this foundation, our work explores how incorporating logarithmic structures can provide a new lens
for understanding and improving gradient during training.

In this work, we examine gradient-based learning through a logarithmic lens and introduce LogL.U,
an activation function designed to preserve smooth gradient propagation and enhance stability,
alongside ZenGrad and its momentum-augmented variant, M-ZenGrad, which adapt parameter up-
dates using logarithmic scaling. Theoretical analyses for both the activation function and the opti-
mizers are provided in their respective sections (See Section 2] and Section [3). Extensive empirical
evaluations are reported in Section[d] while hyperparameter tuning and ablation studies are reported
separately in Section [5]and Section[4.4} Together, these investigations demonstrate that the embed-

Under review as a conference paper at ICLR 2026

ding of logarithmic principles provides a unified framework for understanding gradient behavior and
optimization.

2 LOGARITHMIC LINEAR UNIT’S (LOGLU)

Let f(z) : R — R be the activation function defined in Equation which applies distinct transfor-
mations depending on the sign of the input. Specifically, for inputs x > 0, LogLU acts as the identity
function, thereby preserving linearity and facilitating stable gradient propagation. Conversely, for
inputs x < 0, LogLU applies a negative logarithmic transformation shifted by one and offset by a
small constant €, which non-linearly compresses the input domain. This design ensures smoothly
bounded gradients in the negative domain, promoting both stability and effective learning in deep

neural networks.
fa) {x, if x > 0, o
€Tr) =
—log.(—z+1)+e, ifz<O0.

Proposition 2.1 (Gradient Bounds of LogLU). Let, f(x) = LogLU(x). Then the derivative f'(x)
is strictly positive and uniformly bounded above by I; that is,

0< f'(z) <1 forallz € R.

Proof. We compute the derivative in each region:

For x > 0, we have f(x) = x, so f'(z) = 1. Forz <0,

d 1
'(2) = ~—[—log,(—x + 1)] = 1
(@) = [log,(~z 4 1] = —-— € (0,1],
since —z+ 1> 1. Thus, 0 < f/(x) <1 VzeR. O

Remark. Proposition[2.1|shows that 0 < f’(z) < 1 for all z, so the LogLU activation never induces
exploding gradients. Moreover, since f'(z) = 1/(1 —) — 0 only as © — —oo, the derivative

remains strictly positive for all finite pre-activations (raw linear responses z = Zle w;x; +b before
the nonlinearity is applied). Consequently, if pre-activations are bounded below by some negative
value of z, then 1/(1 — z) < f’(z) < 1, and the LogLU activation does not cause vanishing
gradients under realistic bounded-input conditions (Goodfellow et al.|(2016).

Proposition 2.2 (Lipschitz Continuity of LogLU). Let the activation function f(x) : R — R be
defined as above. Then LogLU is Lipschitz continuous on R with Lipschitz constant

L =sup|f(z)|=1.
z€eR

Proof. By Proposition [2.1] it holds that
0< f'(z) <1 forallz € R.

Since LogL.U is differentiable with uniformly bounded derivative, the Mean Value Theorem implies
that for any x, y € R, there exists ¢ between x and y such that Bednarczuk & Rutkowski(2021)

[f (@) = f)l = 1f' ()] - |z = yl.

Using the bound on the derivative, it follows that

[f (@) = f(y)] < |z =yl
Hence, LogLU is Lipschitz continuous with Lipschitz constant|Xu & Zhang| (2024)

L =sup|f(x)|=1.
z€R

These results highlight important theoretical properties of the LogL U activation function. The fact
that the derivative is strictly positive and uniformly bounded ensures that the function is smooth
across its entire domain. In addition, the Lipschitz continuity with constant . = 1 guarantees that
LogLU responds to changes in input in a controlled and stable manner. These properties contribute
to consistent gradient flow during optimization. O

Under review as a conference paper at ICLR 2026

3 OPTIMIZER

3.1 VANILLA ZENGRAD

Let w, € R? denote the parameter vector at optimization step ¢, and let v > 0 denote the base
learning rate. The instantaneous gradient of the loss function £(w) at step ¢ is given by V. L(wy).
To account for the historical magnitude of gradients during training, we define the element-wise
accumulated squared gradientDuchi et al.| (2011) as:

Pr=) (VwL(wi))® 2)
i=1

The inclusion of the logarithmic term log, (P; + 1) introduces a sublinear dampening effect on the
learning rate. As training progresses and the accumulated gradient P; grows, this term increases
slowly, ensuring that learning rates decay gradually rather than aggressively. This preserves suffi-
cient learning signal in later iterations, which is particularly beneficial for non-convex landscapes
where continued exploration is essential for escaping saddle points or poor local minima [Dauphin
et al.| (2014); Kashyap| (2023)). The additive constant € > 0, placed outside the logarithm, serves a
distinct purpose: it establishes a lower bound on the denominator, thereby avoiding instability due to
division by small values during early training when F is close to zero. Importantly, € does not inter-
fere with the curvature-based adaptivity introduced by log, (P; + 1), which has been demonstrated
in Proposition [B.T] that provides superior gradient scaling relative to the square root. Consequently,
this formulation preserves gradient-aware scaling while ensuring numerical stability.

This construction yields the following update rule for each parameter dimension:

v
— -V L(wy), 3
log,(Pi+1)+e 7 (we) ©)
Lemma 3.1. Suppose the gradient norm is uniformly bounded by a constant G > 0. Then the
progress term P; grows at most linearly with iteration count:

P, < G?t.

Wip1 = Wi —

Proof. By Accumulated squared gradient’s Equation [2| Since ||V L(w;)|| < G for all 4, it follows
that
P, < G*t,
establishing the claimed linear upper bound. This linear growth ensures the normalization factor in
the step size denominator increases gradually but without abrupt escalation, contributing to a stable
decay in learning rates. O
Proposition 3.2. Under the assumption that the gradient of the loss function is bounded, i.e.,
IVwL(w)| <G,

the step size in the ZenGrad algorithm is bounded for all t. Specifically, for each iteration t, the step
size ||wyr1 — wy|| satisfies the following bound:

H IS
Wit] — W _—.

i = log (P, +1) +¢
Proof. From the update rule,
_ YVwl(we)

log (P, +1)+¢’

taking norms and applying the gradient bound yields

YWl _ G
log (P, +1)+e ~ log (P +1)+¢

Wit1 = Wy

[Wip1 —we| =

This upper bound explicitly quantifies the maximum possible step length at each iteration, con-
firming that the update magnitude is effectively regulated by the accumulated gradient information.
As P, grows, the step size shrinks, thus inherently preventing divergence caused by overly large
updates. [

Under review as a conference paper at ICLR 2026

Theorem 3.3 (Lyapunov Stability Sastry|(1999) and Convergence of ZenGrad). Let L : R? — R be
a differentiable objective function with a global minimizer w*, and let {w,},>¢ be the sequence of
iterates generated by the ZenGrad update rule in Equation[3| where vy > 0 is the learning rate and
P, > 0 is an auxiliary term dependent on the gradient history. Assume further that L is L-smooth,
ie.,

L
L(y) < L(z) + VL(z) " (y — 2) + Sl =7,
and the step-size n; = m satisfies ny < +

V(w) = L(wy) — L(w™)

1 for all t. Then, the Lyapunov function

is non-increasing, i.e.,

V(wg1) < V(wy),
and hence the iterates w; asymptotically converge towards the global minimum w* in the sense of
objective value.

Proof. To examine the evolution of V' (w;), we look at the difference between V (w;1) and V (wy):
V(wip1) = Vi(we) = (L(Wegr) — L(w7)) — (L(wi) = L(WT)).

By L-smoothness and the update rule wy1 = wy — 7;V.L(w;), we have
L
L(Wii1) < L(wi) = 0e|[VL(W) [P + 577152||V£(Wt)H2-

Substituting 7, = we obtain

S S
Tog, (P 1)<

£lwii) = L) < - (1= 5) VLm0

Since n; < 1/L, it follows that 1 — % > %, and thus
Llwisr) = Lwi) < = TIVLW)

Consequently,
V(wesr) = V(we) < —ZVEW)[? <0,

showing V(wyy1) < V(wy).

Therefore, the Lyapunov function V' (w;) is non-increasing along the iterates, ensuring Lyapunov
stability of the ZenGrad dynamics. Since V (w;) is bounded below and decreases monotonically,
it converges to a finite limit, and ||V L(w;)||?> — 0 as t — oo. Hence, the iterates {w;} approach
a stationary point w*, establishing convergence and stability of the update rule. Further results
on nonconvex stationary convergence and global linear convergence under the PL condition are
provided in Theorem [B-4]and [B.3] O

3.2 ZENGRAD WITH MOMENTUM (M-ZENGRAD)

While Vanilla ZenGrad achieves adaptive learning by leveraging the accumulated magnitudes of his-
torical gradients, its convergence—especially during the initial phases of training from scratch—can
be further accelerated. To address this, we integrate momentum into the ZenGrad framework. In this
work, we explore two variants: standard momentum, which follows the conventional formulation
employed in stochastic gradient methods (Polyakl [1964])), and Nesterov momentum, a widely used
extension that anticipates future parameter updates (Nesterov, (1983} [Sutskever et al.,[2013)), leading
to improved convergence dynamics. We maintain the element-wise accumulated squared gradient
as in Equation The velocity vector with momentum coefficient i € [0, 1) is defined as:

Vwl(w;) + pv; (Nesterov)

Ve Lt vw£(wt>, - 07 e {'Ut (Standard)

v

Y S 4
log (P +1) +¢ @

Wiyl = Wy —

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

An experimental framework is designed to evaluate the effectiveness of the proposed optimizers,
i.e., ZenGrad and M-ZenGrad, as well as the novel activation function, i.e., LogLLU. All experiments
are conducted on an NVIDIA RTX A4500 GPU hosted on RunPod, which provides 23.7 TFLOPS
using mixed precision (FP16+FP32) for improved computational efficiency. These settings are kept
consistent across all evaluations to ensure fair comparisons. Each optimizer is carefully tuned for
every task (See Section [3] for hyperparameter tuning details). The experiments cover a variety of
standard tasks, considering both training from scratch and using pretrained settings.

4.1 IMAGE CLASSIFICATION

We evaluate various datasets and architectures on the image classification benchmarks. We consider
ImageNet-1K [Russakovsky et al.| (2015)) and its variants, including Real Beyer et al.[(2020) and
ImageNet-V2 Recht et al.[(2019), for large-scale evaluation. CIFAR-10 Krizhevsky| (2009) is used
to examine performance on smaller-scale datasets. For the ImageNet results, images are processed
at the default size of 2242 and augmented with random resized crops and horizontal flips, followed
by standard normalization. Training uses label smoothing with a factor of 0.1 and automatic mixed
precision (AMP).

Training from Scratch We train a ResNet-18 model from scratch on the ImageNet-1K dataset
for 90 epochs and a ResNet-32 |He et al.| (2016) model on the CIFAR-10 for 160 epochs, both us-
ing a batch size of 256. For CIFAR-10, the learning rate is reduced by a factor of 10 at epochs 80
and 120, while for ImageNet, the learning rate is decayed every 30 epochs by the same factor. On
ImageNet-1K, Our proposed method achieved a higher validation accuracy compared to other opti-
mizers, excluding momentum SGD. M-ZenGrad achieves similar to SGD (Polyakl [1964} Robbins,
1951)), with a slight increase of +0.07%. However, M-ZenGrad achieves a validation loss of 0.74,
significantly lower than the 1.61 obtained with SGD (See Table [5). On CIFAR-10 dataset, most
optimizers exhibit similar performance, while ZenGrad is observed to perform more effectively. All
results are illustrated in Figure [T}

90 4.0 AdamW NAdam
— Lion —— M-ZenGrad
>8° 35 — sGD —— ZenGrad .60
Z70 3.0 —— AdaBelief 9
5 3 A X 550
S 60 dos ANV o
v} - v}
< 7] <
+50 @ 2.0 + 40
& Adamw NAdam & AdamW NAdam
40 —— Lion —— M-ZenGrad 1.5 30 —— Lion —— M-ZenGrad
— SGD = ZenGrad —— SGD = ZenGrad
30 —— AdaBelief 10 —— AdaBelief
0 20 40 60 80 100 120 140 160 0 20 40 60 80 0 20 40 60 80
Epoch Epoch Epoch
(a) ResNet32 on Cifarl0 (b) ResNet18 on ImageNet (c) ResNet18 on ImageNet

Figure 1: Test performance of different optimizers: (a, ¢) Test accuracy on ResNet32/18 for CIFAR-
10 and ImageNet, (b) Test loss on ResNet18 for ImageNet.

Pre-train on ImageNet-1K We pretrain the ViT-S/16 Dosovitskiy et al.|(2021) model on the Im-
ageNet dataset with a batch size of 256 for 100K steps, employing a cosine annealing scheduler for
learning rate decay. Table[T]reports the performance of various optimizers, where standard adaptive
methods achieve 70.07-72.35%. The proposed ZenGrad and M-ZenGrad optimizers reach 78.82%
and 74.96%, respectively, demonstrating their capability to enhance convergence and performance
in large-scale transformer pretraining.

Table 1: Test accuracy (¢4 o) of multiple optimizers evaluated across different models and datasets.

Model Task \ AdamW Lion NAdam AdaBelief ZenGrad M-ZenGrad
ImageNet | 66.21 £0.482 66.15+£0.361 63.75 £0.527 66.32 +£0.449 67.78 £0.282 69.29 + 0.254
ResNet-18 Real 69.45 +£0.516 68.51 +£0.427 68.46 +£0.492 70.28 +£0.378 71.31 +0.267 73.23 £ 0.239
V2 5438 £0.433 5456 £0.395 52.67 £0.502 55.14 +£0471 55.74+0.292 57.45 + 0.273
ImageNet | 70.07 +0.559 72.59 £0.498 72.29 +£0.461 72.35+0.537 78.82+0.211 74.96 + 0.287
ViT-S/16 Real 73.24 £ 0.602 74.80 £ 0.512 74.54 £ 0.493 7421 £ 0.468 79.60 + 0.226 76.77 + 0.294
V2 60.12 £ 0.471 61.20 £0.436 61.29 £0.514 61.32 +0452 67.64 +0.203 66.84 + 0.276

Under review as a conference paper at ICLR 2026

Transfer Learning To assess generalization beyond the primary training set, we evaluate ResNet-
18 and ViT-S/16 across ImageNet variants, including Real and V2. Table |I| shows that ResNet-18
trained from scratch, M-ZenGrad achieves 69.29% on ImageNet, 73.23% on Real, and 57.45% on
V2. For ViT-S/16 (pretrained), ZenGrad reaches 78.82% on ImageNet and 79.60% on Real, with
M-ZenGrad demonstrating similarly strong results. On the V2 variant, both proposed optimizers
show higher validation metrics than standard adaptive methods. The results indicate consistent
improvements across model architectures and dataset variants.

4.2 IMAGE SEGMENTATION

We evaluate the Pascal VOC 2012 dataset [Everingham et al.|(2010) with a U-Net architecture
neberger et al| (2015) employing a ResNet-50 encoder under two training protocols: training from
scratch for 500 epochs and fine-tuning a pretrained encoder for 200 epochs. All experimental set-
tings were kept fixed, with the optimizer being the only factor varied. Table [2] shows that, the
pretrained setting, ZenGrad achieves an IoU of 93.86% and a Dice score of 94.96%, demonstrat-
ing its segmentation performance. When trained from scratch, ZenGrad consistently achieves better
performance, attaining an IoU of 94.11% and a Dice score of 94.78%, setting it apart from stan-
dard adaptive optimizers. Qualitative segmentation results are shown in the images, produced by
the ZenGrad model trained from scratch, alongside the corresponding ground-truth annotations (See

Figure|[6).

Table 2: Evaluation metrics on the Pascal VOC dataset using U-Net with a ResNet-50 encoder,
reported as (4 = o) across three runs.

Model | Metric | AdamW Lion Adabelief ZenGrad M-ZenGrad

IoU | 90.55£0.32 91.59+041 91.16+0.37 93.86 £0.25 91.81+0.44
U-Net Dice | 90.67£0.28 91.73+0.35 91.93+0.33 94.96 +0.21 90.72+0.39

(ResNet-50) | Training from Scratch

IoU 89.22+0.36 90.85£0.28 91.91+0.30 94.11+0.22 90.03£0.35
Dice | 90.34+0.31 91.614+0.24 92.63+0.27 9478 +0.19 91.71+0.29

4.3 LANGUAGE MODELING

We conduct experiments on the Wikitext-2 |[Merity et al| (2016) dataset with vocab size
of 50K tokens using a small GPT-style decoder [Radford et al| (2018) of 4 trans-
former layers, 256-dimensional embeddings, 4 self-attention heads, and feed-forward lay-
ers with a hidden dimension of 4 X dpodel- All models are trained with 2'2 tokens
per batch for 225K steps. The context length is fixed at 128 tokens, with 0.1 dropout.
Both GeLU and our proposed LogLU activation 160 e

are employed within the feed-forward layers. For 1,5 sl e T
optimizer evaluation, we focus on widely adopted 120
adaptive methods alongside our proposed ZenGrad
and M-ZenGrad optimizers, comparing their per-
formance against AdamW and Lion while exclud-
ing other optimizers to maintain computational ef-
ficiency. Figure 2] shows that, LogLU consistently 0
achieves slightly lower perplexity than GELU, indi-

cating better performance. Among the optimizers, Figure 2: Test PPL on the WikiText-2 dataset
ZenGrad demonstrates the lowest perplexity values, using the small GPT-style decoder with dif-

performing better than the other adaptive optimizers feren activation functions across optimizers.
and highlighting the advantage of combining it with

LogLU.

N GELU W Loglu

104.51 103.89

=
o
o

Perplexity
©
o

Lion Adamw ZenGrad M-ZenGrad

4.4 ABLATIONS

Hyperparameter Studies All experiments are conducted on the ResNet-32 using the CIFAR-10
dataset. First, we analyze the effect of the learning rate, a critical factor for optimization stability and

Under review as a conference paper at ICLR 2026

convergence. We evaluate ZenGrad and M-ZenGrad values using {1le-1, le-2, 5e-2, 7e-2, 2e-3, Se-
3}, with AdamW included as a baseline due to its robustness across a wide range of learning rates.
Next, we study the role of the epsilon (e) parameter, which prevents division by zero and stabilizes
training under low-variance conditions, using values {le-1, le-2, le-3, le-4, le-5, le-6, le-7, le-8}.
Finally, we also investigate the momentum-based extension M-ZenGrad, testing momentum coeffi-
cients {0.1, 0.3, 0.6, 0.8, 0.9, 0.95, 0.99}, with both standard and Nesterov acceleration evaluated
on the same momentum values. The corresponding results are illustrated in Figure 3}

Effect of Log Variants We explored the impact of different logarithmic bases on the update rules
within the ZenGrad and M-ZenGrad optimization frameworks. While the natural logarithm (base e)
is commonly used as the default, we also evaluated the use of a logarithm with base 10 to understand
its effect on optimization dynamics. These experiments were conducted on the ImageNet -1k using
the ResNet-18, trained from scratch for 90 epochs, following the same experimental settings outlined
in Section[4.1] The goal was to assess how variations in the logarithmic base influence convergence
behavior and generalization performance. As shown in Figure 3] our results indicate that there is no
significant difference between using log base e and log base 10.

~
=)

g o
[SR=

Test Accuracy
B
S

w
=)

—— log_e ~—— log_10 20 —— log_e —— log_10

0 20 60 80 0 20 60 80

40 40
Epoch Epoch

(a) ZenGrad (b) M-ZenGrad

Figure 3: The impact of logarithmic base on ZenGrad and M-ZenGrad updates is evaluated. ResNet-
18 was trained from scratch on ImageNet-1K using log, and log,,.

Learning Rate and Weight Decay We trained the ResNet-18 model on the ImageNet-1K using
various combinations of learning rates and weight decay values. All models were trained for 90
epochs with a fixed batch size of 256. We evaluated four optimizer’s AdamW, Lion, ZenGrad, and
M-ZenGrad, across a grid of learning rates {1e-2, le-3, le-4} and weight decay values {le-2, le-4,
le-6}. The results are visualized as heatmaps (See Figure F_lg, enabling a clear comparison of each

optimizer’s performance under different regularization settings.
o 65
60
55
- 50
le-2 le-4 le-6

- e- e-
Weight Decay Weight Decay Weight Decay Weight Decay

(a) AdamW (b) Lion (c) ZenGrad (d) M-ZenGrad

le-2
le-2
le-2
le.

le-3
Learning Rate
le-3

Learning Rate

le-4
e-4

le-2 le-6

Learning Rate
le-4 le-3 -
-
(]
b.
Learning Rate
le-4 le-3 -

,_.
14
o

le-2 le-6 le-6

Figure 4: Ablation study of ResNet-18 on ImageNet-1K under varying learning rate and weight
decay configurations across different optimizers.

4.5 COMPARISON OF VARIOUS ACTIVATION FUNCTIONS WITH MULTIPLE OPTIMIZERS

To assess the effectiveness of the proposed activation function, experiments were conducted on
CIFAR-100 Krizhevsky| (2009) using the ResNet-32 architecture for 160 epochs. The training em-
ployed a learning rate schedule, where the rate was reduced by a factor of 10 at epochs 80 and
120, with a batch size of 256. Table [3]shows that, LogLU consistently achieved better performance
than other activation functions across various optimizers, with most optimizers showing clear gains
when paired with it. ZenGrad achieved stronger performance in combination with LogL.U, and
its momentum-based variant, M-ZenGrad, provided an additional improvement, demonstrating the
benefits of pairing effective optimization strategies with well-designed activation functions.

Under review as a conference paper at ICLR 2026

Table 3: Test accuracy (u=o) for different activation functions across various optimizers on CIFAR-
100.

DataSet | AF | AdamW Lion NAdam AdaBelief AdaGrad RMSProp ZenGrad M-ZenGrad

ReLU 7043 £041 7001 £044 7026 £0.39 70.74+042 70.16 £0.40 70.46+043 7128026 72.51+0.19
LeakyReLU | 70.86 +0.38 70.34 £0.41 71.11 £0.43 71.01 £0.40 7027 £0.39 71.18£0.42 70.66 £0.24 72.63 & 0.18
Swish 72224042 7030+£039 71.23+£040 7207044 70.62+£038 7231+041 7233+£023 73.29+0.20
Mish 7144 £0.39 7001 £0.37 7216 £0.41 7158043 70.08£0.40 71.91+0.38 70.13£025 73.54+0.17
GeLU 70.72+£040 7020+£042 7128 +£0.38 71.69+041 70.66+043 71.57+0.31 7235+£022 73.11+0.16
Softplus 71.96 £042 7158 £0.39 73.094+0.40 7261 £043 70424+041 7275+£039 72.084044 73.29 +0.37
LogLU 72.13+£0.37 7257 +040 7264 £039 7274+041 72.07£038 7240+042 7237+£021 73.65+0.15

CIFAR-100
(ResNet-32)

Table 4: Pre-training performance on ImageNet-1K: Test accuracy (%) reported as (u = o) over
three runs across optimizers and activation functions.

Optimi | ResNet-18 | ViT/S-16
ptimizer

| ReLU LogLU | GELU LogLU
AdamW 67.424+0.832 68.68 £ 0.613 | 70.07 +£0.559 70.31 & 0.447
Lion 67.72+£0.789 68.25+£0.507 | 72.59 £0.498 73.04 & 0.392
ZenGrad 68.52 +0.593 69.28 = 0.482 | 78.82+£0.211 79.29 & 0.163

M-ZenGrad | 70.45 4+ 0.487 71.28 £0.368 | 74.96 + 0.287 76.29 £ 0.245

Furthermore, pre-trained results on ImageNet-1K were obtained after 100K training steps. As re-
ported in Table[d] comparing different optimizers across two architectures (ResNet-18 and ViT/S-16)
and activation functions. In both models, the use of LogLU led to more consistent and effective out-
comes across all optimizers. ZenGrad and M-ZenGrad showed better performance over AdamW and
Lion, especially when combined with LogL.U. For ResNet-18, an accuracy of 71.28% was achieved
using M-ZenGrad with LogLU, while for ViT/S-16, ZenGrad attained 79.29% with LogL.U. These
results suggest that integrating LogL.U can slightly enhance the performance of the model across
different architectures.

5 HYPERPARAMETER TUNING

To ensure fair and meaningful comparisons, we systematically tune critical optimization hyperpa-
rameters—specifically, the learning rate (1r) and decoupled weight decay coefficient (\)—across
all methods. M-ZenGrad employing a fixed momentum coefficient of 5; = 0.9 (See Figure [5| for
ablation analysis). Momentum parameters for all optimizers were kept default. The core of ZenGrad
lies in its learning rate (See Equation [3). Due to this logarithmic scaling, in our experiments we ob-
served that ZenGrad requires a 5—10x larger learning rate compared to AdamW to keep the similar
intensity. Note that the learning rate value must be adjusted according to the same ratio relative to
AdamW, Remaining all other training settings are kept constant throughout the experiments. The
optimizer configurations used in all experimental domains—including image classification, segmen-
tation, and language modeling—as:

e Ir = 1le—3, A = le—4 in AdamW; Ir = le—4, A = le—2in Lion; Ir = 1le—3, A\ = le—4 in
NAdam; Ir = 1le—3, A = 1le—8 in AdaBelief; Ir = 1e—2, A = le—4 in ZenGrad; Ir = le—2,
A = le—4 in M-ZenGrad.

Hyperparameter tuning is a computationally intensive but essential part of optimizing performance.
To better understand the sensitivity of each optimizer, In Figure [d] we present multiple optimizers
with various 1r and A values, trained using ResNet-18 from scratch on the ImageNet. We observe
that ZenGrad and M-ZenGrad are more robust, achieving similar performance across a range of
hyperparameters compared to AdamW and Lion.

6 RELATED WORK

Our work focus on propagation of gradients navigating the complex, non-convex optimization land-
scapes typical of deep learning. This necessity has driven significant advancements in both op-
timization algorithms and activation functions. A variety of sophisticated optimizers—AdamW

Under review as a conference paper at ICLR 2026

Loshchilov & Hutter| (2019)), Lion |Chen et al.| (2023), AdaBelief |[Zhuang et al| (2020), AdaGrad
Duchi et al.| (2011), RMSProp [Tieleman| (2012), NAdam |Dozat (2016), and SGD |Robbins| (1951}
have been engineered to enhance gradient-based training by dynamically adjusting learning rates
and stabilizing parameter updates. Alongside these, modern activation functions like ReL.U Nair
& Hinton| (2010), Leaky ReLU Xu et al.| (2015), Swish [Ramachandran et al.| (2017), Mish [Misra
(2020), and GELU Hendrycks & Gimpel, (2023), Softplus [Dugas et al.| (2000), contribute by intro-
ducing nonlinearities that improve gradient stability and model expressiveness. The synergy of these
innovations facilitates the effective training of state-of-the-art neural architectures, including Vision
Transformers (ViT) Dosovitskiy et al.| (2021), ResNets He et al.| (2016), and GPT |Radford et al.
(2018) models, enabling them to capture and learn complex data patterns with greater efficiency.

7 CONCLUSION

In this work, we introduced the ZenGrad optimizer, its momentum variant M-ZenGrad, and the
LogLU activation function, focusing on improving gradient flow and training stability. Our theoreti-
cal analysis confirmed their convergence properties across different types of optimization problems,
while extensive experiments demonstrated consistent performance gains across various tasks. Hy-
perparameter ablations further validated the reliability and adaptability of these methods. These
findings highlight the potential of rethinking gradient updates and activation design to achieve more
efficient and stable training, offering a foundation for future developments in optimization strategies.

REFERENCES

Ewa M. Bednarczuk and Krzysztof E. Rutkowski. On lipschitz continuity of projections onto poly-
hedral moving sets. Applied Mathematics & Optimization, 84(2):2147-2175, 2021. doi: 10.1007/
s00245-020-09706-y. URLhttps://doi.org/10.1007/s00245-020-09706—yl!

Y. Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks / a publication of the IEEE Neural
Networks Council, 5, 1994. doi: 10.1109/72.279181.

Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aédron van den Oord. Are
we done with imagenet?, 2020. URL https://arxiv.org/abs/2006.07159.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham,
Xuanyi Dong, Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Sym-
bolic discovery of optimization algorithms. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 49205-49233. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
9a39p4925e35cf447ccbal8757137d84f-Paper—-Conference.pdfl

Y. Angeline Christobel and R. Jaya Suji. A comprehensive review on neural network architectures.
Journal of Computational Analysis and Applications (JoCAAA), 33(07):1443-1448, Sep. 2024.
URLhttps://eudoxuspress.com/index.php/pub/article/view/1329.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/
paper/2014/fi1e/04192426585542c54b96bald445be996-Paper.pdf.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Timothy Dozat. Incorporating Nesterov momentum into Adam. ICLR Workshop, 2016.

https://doi.org/10.1007/s00245-020-09706-y
https://arxiv.org/abs/2006.07159
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a39b4925e35cf447ccba8757137d84f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a39b4925e35cf447ccba8757137d84f-Paper-Conference.pdf
https://eudoxuspress.com/index.php/pub/article/view/1329
https://proceedings.neurips.cc/paper_files/paper/2014/file/04192426585542c54b96ba14445be996-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/04192426585542c54b96ba14445be996-Paper.pdf
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Under review as a conference paper at ICLR 2026

Shiv Ram Dubey, Satish Kumar Singh, and Bidyut Baran Chaudhuri. Activation functions in
deep learning: A comprehensive survey and benchmark. Neurocomputing, 503:92—-108, 2022.
ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2022.06.111. URL https://www.
sciencedirect.com/science/article/p11/S0925231222008426.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121-2159, 2011. URL
http://Jmlr.org/papers/v12/duchilla.htmll

Charles Dugas, Yoshua Bengio, Francois Bélisle, Claude Nadeau, and René Garcia. Incorporating
second-order functional knowledge for better option pricing. In Proceedings of the 13th Inter-
national Conference on Neural Information Processing Systems (NIPS’00), pp. 451-457. MIT
Press, 2000.

Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. Int. J. Comput. Vision, 88(2):303—-338, June 2010.
ISSN 0920-5691. doi: 10.1007/s11263-009-0275-4. URL https://doi.org/10.1007/
s11263-009-0275-4\

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Optimization for training deep models. In
Deep Learning, chapter 8, pp. 271-325. MIT Press, 2016. doi: 10.5555/3292323.3292332. URL
http://www.deeplearningbook.org.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. pp. 770-778, 06 2016. doi: 10.1109/CVPR.2016.90.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.org/abs/1606.08415.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-tojasiewicz condition. In Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken (eds.), Machine Learning and Knowledge Discovery in
Databases, pp. 795-811, Cham, 2016. Springer International Publishing. ISBN 978-3-319-
46128-1.

Rohan Kashyap. A survey of deep learning optimizers — first and second order methods, 2023. URL
https://arxiv.org/abs/2211.15596.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/cifar.html.

Xiaodong Liu, Huaizhou Qi, Suisui Jia, Yongjing Guo, and Yang Liu. Recent advances in optimiza-
tion methods for machine learning: A systematic review. Mathematics, 13:2210, 07 2025. doi:
10.3390/math13132210.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6oRiCgY7.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations (ICLR), 2016. URL https:
//openreview.net/forum?id=rJ4km2R5t 7.

Diganta Misra. Mish: A self regularized non-monotonic activation function. Proceedings of the
British Machine Vision Conference 2020, 2020. URL https://api.semanticscholar.
org/CorpusID:221113156.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, 2010.

Y. Nesterov. A method for solving the convex programming problem with convergence rate o(1/k2),
1983. URL https://cir.nii.ac.Jp/crid/1370862715914709505.

10

https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
http://www.deeplearningbook.org
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/2211.15596
https://www.cs.toronto.edu/~kriz/cifar.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://api.semanticscholar.org/CorpusID:221113156
https://api.semanticscholar.org/CorpusID:221113156
https://cir.nii.ac.jp/crid/1370862715914709505

Under review as a conference paper at ICLR 2026

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, New York, 2nd edition, 2006. ISBN 978-
0-387-30303-1. doi: 10.1007/978-0-387-40065-5. URL https://doi.org/10.1007/
978-0-387-40065-5.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Compu-
tational Mathematics and Mathematical Physics, 4(5):1-17, 1964. doi: 10.1016/0041-5553(64)
90137-5.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. OpenAl Technical Report, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc Le. Swish: a self-gated activation function. 10 2017.
doi: 10.48550/arXiv.1710.05941.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389-5400, 2019.

Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:
400-407,1951. URL https://api.semanticscholar.org/CorpusID:16945044.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. volume 9351, pp. 234-241, 10 2015. ISBN 978-3-319-24573-7. doi:
10.1007/978-3-319-24574-4 28.

Sebastian Ruder. An overview of gradient descent optimization algorithms. 09 2016. doi: 10.48550/
arXiv.1609.04747.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y. URL https://doi.org/10.1007/
s11263-015-0816-vy.

Shankar Sastry. Lyapunov Stability Theory, pp. 182-234. Springer New York, New York, NY, 1999.
ISBN 978-1-4757-3108-8. doi: 10.1007/978-1-4757-3108-8_5. URL https://doi.org/
10.1007/978-1-4757-3108-8_5.

Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions in neural networks.
International Journal of Engineering Applied Sciences and Technology, 04:310-316, 05 2020.
doi: 10.33564/IJEAST.2020.v04i12.054.

Ruo-Yu Sun. Optimization for deep learning: An overview. Journal of the Operations Research
Society of China, 8:1-46, 06 2020. doi: 10.1007/s40305-020-00309-6.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester (eds.), Pro-
ceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings
of Machine Learning Research, pp. 1139-1147, Atlanta, Georgia, USA, 17-19 Jun 2013. PMLR.
URLhttps://proceedings.mlr.press/v28/sutskeverl3.html.

T. Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude,
2012. URL https://cir.nii.ac.Jp/crid/1370017282431050757.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network, 2015. URL https://arxiv.org/abs/1505.00853.

Yuesheng Xu and Haizhang Zhang. Uniform convergence of deep neural networks with lipschitz
continuous activation functions and variable widths. IEEE Transactions on Information Theory,
70(10):7125-7142, 2024. doi: 10.1109/tit.2024.3439136.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James S. Duncan. Adabelief optimizer: adapting stepsizes by the belief in
observed gradients. NIPS °20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

11

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://api.semanticscholar.org/CorpusID:16945044
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/978-1-4757-3108-8_5
https://doi.org/10.1007/978-1-4757-3108-8_5
https://proceedings.mlr.press/v28/sutskever13.html
https://cir.nii.ac.jp/crid/1370017282431050757
https://arxiv.org/abs/1505.00853

Under review as a conference paper at ICLR 2026

Nicolas Zucchet and Antonio Orvieto. Recurrent neural networks: vanishing and explod-
ing gradients are not the end of the story. In A. Globerson, L. Mackey, D. Bel-
grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 139402-139443. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/fbb07254ef01868967dc891ea3fabcl3-Paper—-Conference.pdfl

APPENDIX

A LoGLU PROOFS

The LogLU activation function introduces an implicit regularization effect in deep neural networks
by penalizing large negative pre-activations logarithmically. This effect stabilizes gradient flow
and enhances generalization. The LogL.U activation function induces sparsity in activations and
stabilizes gradient flow by logarithmically penalizing large negative pre-activations. This implicit
regularization improves the generalization of deep neural networks.

Lemma A.1 (Logarithmic Growth of LogLU for z < 0). Let the negative branch of the LogLU
activation be defined as
f(z)=—log,(-2+1), z<0.
Then, for all z <0,
—log.(—z+1) < |z|.
Moreover; the negative branch grows strictly sublinearly with respect to |z|:
lm log.(—z +1)

2——00 |z‘

=0.

Proof. For any z < 0, we have —z + 1 > 1. Since the natural logarithm is strictly increasing and
log,. (1) = 0, it follows that log,(—z + 1) > 0, and therefore

—log.(—z+1) <0< |z
Noting that |z| = —z for negative z, this immediately establishes the inequality

—log.(—z+1) < |z|.

To analyze the asymptotic growth, consider the ratio

—log (—z+4+1) log.(—z+1)
|2 B —z

As z — —o0, the logarithmic term grows much more slowly than the linear term —z. Consequently,

lim loge(=2+1)

z2——00 —z

:07

showing that the negative branch of LogLU grows strictly sublinearly with respect to the magnitude
of z. This ensures that large negative inputs are penalized gently, reducing the risk of excessively
large gradients, improving training stability, while still allowing meaningful negative activations.

O

Corollary A.2. The attenuation of gradients for large negative values ensures that excessively neg-
ative pre-activations do not dominate the gradient flow, promoting stable optimization dynamics in
deep neural networks.

Proof. The regularization effect of LogLU can be understood by analyzing its contribution to the
total loss function of a deep neural network. Let L denote the task-specific loss (e.g., cross-
entropy or mean squared error). The total loss can be expressed as:

L=CLagx+X Y [—log(-z+1)], 2:<0

1:2; <0

12

https://proceedings.neurips.cc/paper_files/paper/2024/file/fbb07254ef01868967dc891ea3fa6c13-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/fbb07254ef01868967dc891ea3fa6c13-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

where the second term represents an implicit regularization effect introduced by LogLU. The
LogLU activation function introduces a logarithmic term, [— log, (—z; + 1)], which effectively dis-
courages large negative activations while minimally impacting small negative values. This property
promotes activation sparsity, a desirable characteristic known to enhance generalization in neural
networks. Furthermore, the gradient of this penalty diminishes for highly negative z;, inherently
stabilizing the gradient flow and preventing issues such as gradient explosion or oscillatory behavior
during training. By penalizing large negative pre-activations, LogL.U implicitly enforces a constraint
on the model’s effective capacity, thereby acting as a form of regularization. This regularization mit-
igates overfitting risks and contributes to improved generalization performance on unseen data. [

B ZENGRAD PROOFS

Proposition B.1 (Logarithmic vs. Square Root — Step-size Scaling Inequality). Let P, > 0 and
€ > 0. Define the ZenGrad and AdaGrad/Adam denominators as

Dzengrad(Pt) = 1Ogg(Pt + 1) + e, Dadagrad(Pt) = Pt + €.
Then, for all P; > 0,

1 1
>)
Dzengrad(Pt) o Dadagrad(Pt)

’ Dzengrad (Pt) < Dadagrad (Pt) ‘ —

Consequently, for identical learning rates v = n,

B n
Azen ra P) = >
sraa (1) log,(P,+1)+¢ — VP +e

indicating that ZenGrad maintains a consistently larger effective step-size compared to Ada-
Grad/Adam for all P, > 0.

= Aadagrad (Pt)>

Proof. For all P, > 0, which gives log,(P; + 1) < /P, and hence the inequality function is as
follows:

f(Pt):\/Pt—IOge(Pt+1)7 PtZO
Compute the derivative for P, > 0:

1 1
"P)=— — ——.
() o0/, 1+P
Note that
1 1 1 1
_ >0 & —— < —— <= 1+P >2P.
20/, 1+P ~ 1+P — 2D, b= !

But 1+ P, — 2y/P; = (v/P; — 1)? > 0, so the last inequality holds for all P; > 0. Thus f'(P;)
forall P, > 0, which means f is nondecreasing on [0, co). Since f(0) = 0, it follows that f(P;)
for every P, > 0. Therefore

>0
>0

1Oge(Pt+1) S \/Pt (thZ(D
Adding € > 0 to both sides:
log.(Pi4+1)4+e <P +¢,

taking reciprocals yields
1 1

> .

IOgE(Pt+1)+€ - \/Pt+€
The ZenGrad step-size is always greater than or equal to that of AdaGrad/Adam for the same ac-
cumulated gradient history. Consequently, ZenGrad’s logarithmic scaling yields a slower step-size

decay, offering better long-term gradient responsiveness and stability — a desirable property that
mitigates the over-damping observed in adaptive gradients.

13

Under review as a conference paper at ICLR 2026

Algorithm 1 ZenGrad Optimizer

1: Input: Objective function J(0), initial parameters 6, learning rate 7, total steps T
2: Initialize: Py < 0
3: fort=1to7T do
4: Compute gradient g; + Vo J(6;)
5: Accumulate squared gradients: P, <— P;_; + gf
6: Parameter update:
n
Opp1 <0 — ———————
t+1 t loge(Pt+1)+€gt
7: end for

8: Return: 0

Proposition B.2. Ifthe progress term P; is monotonically increasing in t, then the effective learning
rate
v

- log, (P, +1) +¢
is a monotonically decreasing function of t. Specifically, for any t1 < ta,

Tt

T4 > Nty -

Proof. Since P, is monotonically increasing,
Pt1 S Pt2 — loge(Ptl + 1) S loge(PtQ + 1)

Thus,
1 1

>)
log, (P, +1)4+¢ =~ log (P, +1)+¢

which immediately implies
Tty > Nty -

This monotonic decay of the effective learning rate is a desirable property, as it ensures that the
optimizer takes progressively smaller steps, facilitating convergence by avoiding oscillations or in-
stability in the later stages of training. O

Proposition B.3. The initial learning rate v influences the rate of convergence in ZenGrad. Specif-
ically, if v is large, the algorithm will take larger steps initially, leading to faster progress in the
early stages of the optimization process. However, as t increases, the progress term P; causes the
learning rate to decay, ensuring stability and fine-tuning of the solution. Conversely, if o is small,
the algorithm will take smaller steps initially, but still converges effectively as the learning rate
decays over time.

Proof. Let the initial learning rate be v, and consider the learning rate at iteration ¢, which is given
by:
_ 7o

log, (P +1) +¢
If ~ is large, the initial updates will be larger, leading to faster progress early on. However, as ¢
increases, the term log, (P, +1)+¢ increases, causing the learning rate to decrease, and the algorithm
will settle into a more stable convergence. O

Tt

Theorem B.4 (Convergence in Non-Convex Settings). Let £ : R? — R be continuously differen-
tiable and L-smooth:

L(y) < L) + VL) (v~) + 2y — 2]

Assume L is bounded below by Liys. Let

v

1
=1 qje< =
log (P +1)+¢ v/

e = 9L

14

Under review as a conference paper at ICLR 2026

Algorithm 2 ZenGrad Optimizer with Momentum (M-ZenGrad)

—_

Input: Objective function J(0), initial parameters 6, learning rate 1), momentum g, total steps
T

2: Initialize: Py < 0, v9 <+ 0
3: fort =1to T do
4: Compute gradient g; + Vo J(6;)
5. Update momentum: v; <— puvs—1 + gz
6: Define update direction:
w — gt + pvy (Nesterov)
EA P (Standard)
7: Accumulate squared gradients: P; < P;_1 + g7
8: Parameter update:
n
Opy1 60— ———u
i Y log (P4 1) +e
9: end for
10: Return: 07
Then
lge? :
—_— < d 1 =0.
Z log, (P + 1) +e " A llgell

Hence, every cluster point of {w} is stationary.
Proof. By L-smoothness and w; 11 = w; — 1:G¢:

L 1
Llwin) < Lew) = me(1 = Sme) el < Llwe) = Smillgel®

Summing over ¢ gives
T
> nllgel? < 2(L(w1) — Ling) < o0
=1
Substituting 7, yields
Z llgell*
loge P+1)+¢

If ||g¢|| # O, there exists ¢ > 0 and a subsequence {¢;,} with ||g:, || > ¢, giving

g2 L&

log (P, +1)+¢ ~ log . k+C’

which diverges, a contradiction. Hence ||g;|| — 0, and continuity of V£ implies all cluster points
are stationary. O

Theorem B.5 (Global linear convergence under the PL condition). Assume L is L-smooth and

satisfies the Polyak-Lojasiewicz (PL)|Karimi et al.|(2016)) inequality with constant p > 0:
IVL(w)|* > 2u(L(w) — Ling) forall w.

Let the ZenGrad iterates use step-sizes 1 with

1
0 < Mmin < < — forallt.

h

Then the objective decreases geometrically:
E(thrl) - ACinf S (1 - 77tl~t> (ﬁ(wt) - ‘Clllf) (1 nmln,u) (‘c(w0> - £inf>-

In particular, wy converges linearly in objective value to the global minimum value L;s.

15

Under review as a conference paper at ICLR 2026

Proof. From Theorem [3.3 we have
Llwin) < Lwr) = il
Using the PL inequality ||g;||? > 2u(L(w;) — Lint) yields
L(wiy1) — Ling < L(wi) — Ling — nepp(L(we) — Ling) = (1 = nep) (L(we) — Lin).-
Since each step-size satisfies 7 > nmin > 0, iterating the inequality gives:
L(we) = Ling < (1= Nminpt) (L(wo) — Ling)-

Thus, the objective decreases by a constant factor at each step. As a result, the iterates converge
linearly to the global minimum L;¢. O

Table 5: Optimizer performance Train from scratch on CIFAR-10 and ImageNet

DataSet CIFAR-10 ImageNet

(ResNet-32) (ResNet-18)
Optimizer | Top-1 Loss | Top-1 Loss Time per Epoch / Memory Usage
SGD 90.514+0.12 0.16040.041 | 69.224+0.32 1.6140.08 20.505min / 9.603GB
AdamW 90.894+0.15 0.0094+0.003 | 66.214+0.48 1.81+0.09 21.271min / 10.128GB
Lion 90.354+0.11 0.0054+0.002 | 66.15+0.36 1.8140.08 21.172min/9.712GB
NAdam 91.2140.17 0.00940.003 | 63.7540.53 1.86+0.09 21.313min / 10.304GB
Adabelief 90.964+0.14 0.00740.003 | 66.324+0.45 1.80+0.09 20.537min / 10.047GB
ZenGrad 91.274+0.09 0.004+0.002 | 67.78+0.28 1.7140.07 20.454min / 9.695GB
M-ZenGrad | 90.66+0.08 0.009+0.001 | 69.29+0.25 0.74+0.04 20.675min / 10.113GB

Training Time and Memory Usage. Across the evaluated optimizers, the per-epoch training time
and GPU memory footprint are broadly similar, reflecting comparable computational efficiency. In
terms of relative resource requirements, SGD, ZenGrad, and Lion demonstrate the lowest mem-
ory consumption, followed by AdamW, AdaBelief, and M-ZenGrad with intermediate usage, while
NAdam incurs the highest computational cost. All experiments were conducted on a NVIDIA RTX
A4500 GPU hosted on RunPod. Formally, the hierarchy can be expressed as:

SGD ~ ZenGrad ~ Lion < AdamW ~ AdaBelief ~ M-ZenGrad < NAdam.

16

Under review as a conference paper at ICLR 2026

® ©
o o o

Test Accuracy
o

w A~ U o N
o o o

Test Accuracy
w ~
o o

N
o

o
o

0

0

20 140 160
le-l
le-2
5e-2
7e-2
2e-3

—— 5e-3
20 40 60 80 100 120 140 160

Epoch

(a) AdamW_LR

20 40 60 80 100 120 140 160
Epoch

(d) AdamW _eps

90 90
80" 801
370 g0
::; :3:60-

E’GO o1 i’so “
—u) e
40 0.9 30
301 | L 233 20

0 20 40 60 80 100 120 140 160 0

® ©
o © o

Test Accuracy
w & U O Y
o O o o

0

0

70 Ta0 160
le-1
le-2
5e-2
7e-2
2e-3
—— 5e-3
20 40 60 80 100 120 140 160
Epoch

(b) ZenGrad_LR

e=le-l
e=le-2
e=le-3
e=le-4
e=le-5
e=le-6
e=le-7
e=le-8

20 40 60 80 100 120 140 160

Epoch

(e) ZenGrad_eps

e
360
&
<50
40
30
20

Tes

©
o

801

Test Accuracy
= N W A U O
o o o o o

~
°

o

20 140 T60
le-1
le-2
5e-2
7e-2
2e-3

—— 5e-3
20 40 60 80 100 120 140 160

Epoch

(¢) M-ZenGrad LR

e=le-l
e=le-2
e=le-3
e=le-4
e=le-5
e=le-6
e=le-7
—— €=le-8
20 40 60 80 100 120 140 160
Epoch

(f) M-ZenGrad_eps

T60

0.99

20 40 60 80 100 120 140 160

Epoch

(g) M-ZenGrad_Momentum

Epoch

(h) M-ZenGrad Nesterov

Figure 5: Ablation study on CIFAR-10 with ResNet-32, evaluating the effects of learning rate and e
across AdamW, ZenGrad and M-ZenGrad, and also the impact of standard and Nesterov momentum
for M-ZenGrad.

Image

Ground
Truth

Predicted

Figure 6: Qualitative segmentation results using ZenGrad on six representative samples. Each col-
umn corresponds to a different image. Rows from top to bottom represent: (1) input image, (2)
ground truth segmentation mask, and (3) model prediction. The proposed method demonstrates ac-
curate boundary delineation and structural consistency.

17

	Introduction
	Logarithmic Linear Unit's (LogLU)
	Optimizer
	Vanilla ZenGrad
	ZenGrad with Momentum (M-ZenGrad)

	Experiments
	Image Classification
	Image Segmentation
	Language Modeling
	Ablations
	blue!90!blackComparison of various activation functions with multiple optimizers

	Hyperparameter Tuning
	Related Work
	Conclusion
	LogLU Proofs
	ZenGrad Proofs

