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Abstract—Cameras were originally designed using physics-based heuristics to capture aesthetic images. In recent years, there has

been a transformation in camera design from being purely physics-driven to increasingly data-driven and task-specific. In this paper,

we present a framework to understand the building blocks of this nascent field of end-to-end design of camera hardware and

algorithms. As part of this framework, we show how methods that exploit both physics and data have become prevalent in imaging and

computer vision, underscoring a key trend that will continue to dominate the future of task-specific camera design. Finally, we share

current barriers to progress in end-to-end design, and hypothesize how these barriers can be overcome.

Index Terms—Camera Design, Computational Imaging, Perception, Computer Vision, Machine Learning

✦

1 INTRODUCTION

Early advances in imaging were inspired by human
vision. For example, the Bayer filter was inspired by human
retinal sensitivity to red, green, and blue light. Such insights
from human vision have led to camera designs that have
yielded remarkable digital photography capabilities and
have widespread consumer applications.

The goals of imaging have since shifted from photog-
raphy to solving tasks such as 3D shape reconstruction,
phase estimation, and material estimation. These tasks rely
on information beyond what the human eye can directly
measure, so it no longer makes sense to design imaging
systems based on the eye. Much like the evolution of animal
vision, camera design has evolved to adapt to the needs of
the task and environment [1]. By using known physics of
light-matter interactions, physical cues such as polarization,
interference, and spectrum are exploited to encode task-
relevant information. Measurements of these cues can then
be decoded into the scene parameter of interest by solving
a model inversion problem. This idea of jointly exploiting
physical cues and computation is the premise of the field of
computational imaging.

Whereas imaging deals with capturing image represen-
tations of the world, computer vision extracts meaningful
information from these images for high-level tasks, such as
classification, detection, and segmentation. The modern era
of computer vision was ushered in by advances in sensors,
computing, and algorithms. High-resolution sensors paved
the way to megapixel resolution, computing systems pro-
vided the bandwidth needed to process high-dimensional
data, and deep learning provided a framework to learn from
large amounts of data.

Together, these two steps, imaging and vision, form the
visual perception pipeline. The imaging step can be inter-
preted as a physical encoder, transforming the 3D scene
into a lower-dimensional representation (i.e. image), and the
vision step as a digital decoder, using the representation
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to perform high-level tasks, as shown in Fig. 4. While
perception is more closely linked with vision, imaging has a
downstream effect on perception that has historically been
ignored. Recent works in end-to-end design have brought
together the design of the physical encoder (i.e. camera)
and digital decoder (i.e. neural network) for task-specific
perception.

We envision design of future imaging systems to be
done in an end-to-end manner. Consider the problem of
face recognition. A computational imaging approach would
enable acquisition of a robust representation of the face
(e.g. 3D shape and color from stereo), but inherently cannot
perform face recognition. Vision approaches can learn from
data to recognize faces, but will perform poorly in edge
cases (e.g. low light). Intelligent and integrated design of
both the imaging and vision steps can enable acquisition of
robust image representations that lead to high-accuracy face
recognition.

We discuss two major trends in this paper:

1) Visual perception is being solved in an end-to-end,
task-specific manner, with the imaging hardware
jointly optimized with the vision algorithm.

2) Imaging, while traditionally physics-based, has re-
cently become increasingly data-driven to perform
optimally on high-level vision tasks. Similarly, deep
learning, while typically data-driven, has begun to
incorporate physical models to drive advances in
areas such as neural rendering [2].

In connection to these trends, we discuss advances in five
major fields related to visual perception (as shown in Fig. 1):
image processing, classical optics, physics-based learning,
computational imaging and vision, and joint optimization
of optics and algorithm. Each of these topics is treated as a
separate section in this paper, except for image processing
and deep neural networks, for which we refer the reader
to [3] and [4], respectively. While other review perspectives
highlight the use of optics for computing [5], we focus on the
use of computing for optics. Task-specific cameras that are
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Fig. 1: Our framework maps inverse problems in visual perception by how they parametrize F . Deep learning focuses
on learning priors through data-driven methods, whereas classical computer vision, optics, and computational imaging
rely on physics. Each section of our paper corresponds to a field/method shown in this chart. We anticipate future imaging
systems will use physics and data for joint optimization (green box).

jointly designed with vision algorithms will continue to be
a theme in the next generation of visual perception systems.

1.1 Contributions

• We present a review perspective on the building
blocks of end-to-end design, including a conceptual
framework to connect and understand each block
based on its use of physics and learned priors.

• We define five ingredients for designing end-to-end
imaging systems, highlighted in Fig. 2. We also iden-
tify open challenges and hypothesize solutions along
each axis.

2 OPTICAL CAMERA DESIGN

The most primitive camera is arguably the pinhole cam-
era. A pinhole camera consists of a tiny aperture placed
in front of the image plane to map a single scene point
to a single image point, based on ray optics. In practice,
diffraction effects and SNR limitations of a tiny aperture
cause us to use lenses to focus light. More complex multi-
lens systems enable extended depth of field and correction
of optical aberrations. These imaging systems were derived
from fundamental ideas in optics. In this section, we discuss
mathematical- and simulation-based methods for designing
optical imaging systems.

2.1 Inverse Optics

The initial goal of camera design was to efficiently map light
coming from one point in a scene to one point on the image
sensor using compound optics. Engineers design optical
systems with a desired input-output pair by combining a

sequence of optical components. They may leverage insights
from first order optics using approximations such as thin
lenses, paraxial approximations, and plane/spherical wave
models. They then verify the design by using commercial
raytracing software such as Zemax [6] or Code V [7]. How-
ever, such design is often a process of trial and error.

2.2 PSF Engineering

The point spread function (PSF) of an imaging system is its
response to a point source of light, or the 2D spatial impulse
response. A measured image y can be expressed as

y = f(x ∗ h+ η), (1)

where x is the actual scene, f(·) is the camera response
function, ∗ is the convolution operator, h is the PSF, and η is
read noise. x can be estimated by solving the deconvolution
problem in the Fourier domain. However, under certain
conditions, the deconvolution problem is ill-posed and cer-
tain assumptions must be employed. Carefully designing
the PSF (i.e. PSF engineering) can numerically guarantee
more robust reconstruction of x. PSF engineering is the
process of wavefront coding, in which the electromagnetic
field distribution at the aperture plane is modified in a
known way to encode information about the scene. h is
physically constructed by refractive elements, phase masks,
and amplitude masks.

PSF engineering has applications in microscopy for
single-particle tracking [8], [9], [10]. It has also been em-
ployed for extended depth of field [11]. We will discuss
approaches that enable optimization of the PSF. There are
works that optimize the PSF using deep learning [12], but
we restrict our discussion to analytical methods in this
section.

Authorized licensed use limited to: Meta (formerly Facebook). Downloaded on November 11,2023 at 17:10:36 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Ingredients and open challenges for end-to-end
methods. We present five ingredients that we consider most
important when designing end-to-end imaging systems,
and evaluate how each field (computer vision, computa-
tional imaging, optics, current end-to-end methods) takes
advantage of these ingredients. We anticipate future imag-
ing systems will make more effective use of the five ingre-
dients and span the entire radar chart. We discuss progress
and challenges for each ingredient in Section 6.1.

Fig. 3: 4f system: a simple example of optical signal
processing. The mask at the Fourier plane is a pinhole here,
which means the system behaves as a low-pass filter.

2.2.1 Fourier Domain Approaches

One of the simplest examples of PSF engineering is the
manipulation the optical signal in the 2D spatial frequency
domain. This manipulation can be done using a 4f optical
system, as shown in Fig. 3. A lens takes a 2D Fourier
transform of the incident beam. At the Fourier plane, an
amplitude (or phase) mask can be placed to manipulate the
relative intensities (or phases) of different frequency compo-
nents. Another lens takes the inverse Fourier transform of
the beam before it is fed to the sensor. In this case, the mask
at the Fourier plane determines the optical transfer function
(OTF), which is the Fourier Transform of the PSF. The 4f
system is frequently used for optical signal filtering. For a
detailed reference on Fourier optics, the reader is directed to

the introductory text by Goodman [13].

2.2.2 Information Theory Approaches

The goal of imaging is to obtain some scene property, x,
from a set of observations, y. Doing so requires us to
design an ”optically informative” PSF. Fisher information
and statistical information theory give us a method of doing
so. Fisher information gives us a way to quantify the infor-
mation content of a PSF by measuring the sensitivity of y

to changes in x, given a PSF. The Fisher information matrix
can be used to compute Cramér Rao lower bounds on the
variance of the estimation. This method has been applied
in microscopy for single particle tracking [14], fluorescence
imaging beyond the diffraction limit [15], and depth estima-
tion [16].

2.2.3 Wigner Distribution and Ambiguity Function

The space-bandwidth product theorem states that the product
of the moduli of a function and its Fourier transform must
be greater than or equal to some constant. In ray optics,
this theorem translates to the idea that there will exist a
tradeoff between the accuracy in measuring the position
and direction of a ray. The Wigner distribution enables a
visualization of the Fourier conjugate variables: complex
electric field amplitude and spatial frequency (k vector).
The ambiguity function is the Fourier dual of the Wigner
distribution. For a more detailed explanation of the Wigner
distribution, the interested reader is directed to [17], [18].
Horstmeyer et al. use the ambiguity function to design an
optimal depth-dependent PSF [19].

3 COMPUTATIONAL IMAGING

Light is well described by the plenoptic dimensions: space,
time, angle, and spectrum. The goal of plenoptic imaging
is to capture information about each of these dimensions,
but in practice, most cameras capture only a subset of this
information for a given application [57]. For example, the
intensity I(r) measured by a standard intensity camera can
be expressed by the following integral

I(r) =

∫
I(r,Θ, t, λ) dΘ dt dλ, (2)

where r = (x, y) is the spatial position, Θ = (θ, φ) is
the angle of incident light (i.e. light field), t is the time of
arrival of the light, and λ is the wavelength. The plenoptic
dimensions are commonly used in graphics because they
enable a convenient representation of light in ray space.
Additional wave properties, such as polarization, coherence,
and phase, are also frequently used outside of graphics.

Each dimension of light (space, time, angle, spectrum,
polarization, phase, etc.) provides different information
about the scene. For example, the time of flight (ToF) can be
used to estimate depth, spectrum is strongly tied to material
properties, polarization has fundamental relationships to
shape and texture, and light field probing is tied to image
focusing and depth of field.

Computational imaging is the co-design of imaging hard-
ware and reconstruction algorithms for a vision application.
The hardware is used to encode information about the scene
in an image measurement. The algorithm is then designed
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Space Time Angle Spectrum Polarization

Illumination
Coding with

Photometric Stereo [21]
Separation [20]
Direct-Global

Imaging [25]
Fluorescence

Interference [24]
Multipath
[22], [23]

Light Transport

Measurement [26]
Refraction

Photography [28]
Low-Light

Imaging [27]
Multispectral

Descattering [29]

Optics
Coding with

[31], [32], [33]
Single-Shot Depth
HDR Imaging [30]

Deblurring [35]
Motion

Imaging [34]
Time Stretch

Estimation [37]
Novel View

Refocusing [36]
Digital

[38], [39], [40], [41], [42]
Imaging

Multispectral

Decomposition [46], [47]
Light Transport

Stokes Imaging [45]
[43], [44]

Shape Estimation

Sensors
Coding with

Gradient Camera [50]
HDR Imaging [49]
Stereo Vision [48]

Scattering [52]
Imaging Through

NLOS Imaging [51]
Depth Estimation (ToF)

Sensing [53]
Wavefront

Objects [55], [56]
Seeing Occluded

Superresolution [54]
Spatio-Spectral

3D Imaging [44]

TABLE 1: A classification of computational imaging problems based on how physics is encoded. Note that some works
can fall into multiple categories. This is not an exhaustive list, but is meant to illustrate some key examples.

to decode this scene information. We direct the interested
reader to [58] and [59] for a more comprehensive treatment
of computational imaging.

A general forward imaging model is described in Fig. 4.
A light source first illuminates the scene. The scene scatters
light back to the imaging system, where the light is optically
transformed by a configuration of optical elements. Then,
light is measured by a sensor, which digitizes analog values
into a digital image. Finally, the image is processed by an al-
gorithm to provide perceptual information about the scene.
From this, we see there are four degrees of freedom when
designing computational imaging systems: illumination, op-
tics, sensor, and algorithms. We discuss some examples of
each degree of freedom in this section. We categorize each
example in Table 1. The image signal processor (ISP) can
be considered an additional degree of freedom, which we
abstract into the algorithm in this section and discuss in
section 5.3.

3.1 Coding with Illumination

Active illumination is the process of illuminating the scene
with a known and controlled pattern of light, as opposed to
passive illumination (i.e. ambient light). Active illumination
enables more robust reconstruction of scene properties and,
in some cases, enables faster image acquisition because light
sources can be dynamically manipulated more easily than
optical elements in front of the sensor.

Nayar et al. use a high-frequency checkerboard pattern
to decompose the light transport of a scene into direct and
global components [20]. Park et al. acquire multispectral
images by capturing multiple images with different multi-
plexed spectral sources [27]. Krishnan and Fergus use flash
at near-infrared wavelengths for low-light photography and
obtain reconstructions at visible wavelengths using spatio-
spectral correlations [28]. Wetzstein et al. measure the po-
sition and angle of light rays when probed with a light
field to measure materials with varying refractive fields [26].
Kadambi et al. use custom temporal codes for robust depth
measurements in the presence of multi-path interference
[24]. Bhandari et al. use time-coded illumination to estimate
fluorescence lifetime with continuous wave ToF sensors [25].

Photometric stereo (PS) is a technique to obtain the surface
normals of an object under controlled lighting [21]. In its

most primitive form, PS illuminates a diffuse object sequen-
tially with point sources from multiple lighting directions
and the camera in a fixed position. The resultant shading
profile can then be fit to a Lambertian model to intensity
measurements. Subsequent works have since extended PS
to non-diffuse materials and uncontrolled lighting [60], [61].
Tanaka et al. use transient profiles of thermal light to ex-
tract diffuse reflectance of objects and perform photometric
stereo, leveraging that the propagation speed of heat is
resolvable at video frame rates [22].

One way to image through scattering media is by illumi-
nating with modulated light. Light that returns to the sensor
in the same modulated state is considered unscattered. For
example, if light is linearly polarized and emitted at a scene
immersed in a scattering media, the sensor would only
measure light arriving at the linear polarization angle with
strongest intensity, and reject all other light (i.e. polariza-
tion gating) [29]. The same principle can also be applied
with coherent light through scattering media, where only
coherent light is measured (i.e. coherence gating). These
principles are based on the idea that scattered light reduces
degree of polarization and coherence. ToF imaging can also
be used (i.e. time gating) since unscattered light (i.e. ballistic
photons) has the shortest pathlength, meaning it arrives at
the sensor first [23].

3.2 Coding with Optics

Optical coding refers to optically transforming light arriving
from the scene before it reaches the sensor. This trans-
formation can be performed by optical components such
as refractive elements (e.g. lenses), phase and amplitude
masks, and color filter arrays.

A classic example of optical coding is the Bayer filter. By
creating a mosaic of red, green, and blue pixels, an RGB
image can be estimated by interpolation (i.e. demosaicking).
Similarly, a multispectral image can be obtained by placing
a multispectral filter array in front of the sensor, instead
of a color filter array [38], [39]. A multispectral image can
also be obtained by placing diffraction gratings [40], prisms
[41], or compound optics [42] in front of the sensor. In a
similar spirit to the Bayer filter, full Stokes imaging can be
performed by using a micropolarimeter, where micropolar-
izers at different linear polarization orientations are placed
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in front of each pixel [45]. Ng et al. place a microlens array in
front of a camera to capture a 4D light field, which enables
digital refocusing of an image [36]. It is also possible to
generate novel views using a 4D light field [37].

As discussed earlier, a well-chosen PSF can make the
deconvolution problem well-posed. A coded exposure can
be used to solve the problem of motion deblurring [35]
and for HDR imaging [62]. A coded aperture is an array
of spatially varying opaque and transparent materials that
modulate the phase and amplitude of incident light. Coded
apertures were first deployed in X-ray imaging to provide
a computational solution to forming X-rays, since X-rays
cannot be focused with lenses like light [63]. Since then,
coded apertures have been applied to solve problems, such
as single-shot depth [31], [32], [33], high dynamic range
(HDR) imaging [30], [64], and 4D light field acquisition
[65]. Some methods place a diffuser in front of a sensor
for 3D reconstruction [66], hyperspectral imaging [67], and
microscopy [68]. All these methods fall under lensless imag-
ing, in which scene information is encoded with an optical
element rather than a bulky lens [69].

The light transport of specular vs. diffuse light [46] and
real vs. virtual images (caused by transparent materials) [47]
can be decomposed using polarization filters. Intuitively,
this decomposition is based on the idea of cross-polarization,
where the undesirable reflectance component (e.g. specular
reflection) is highly polarized and can be filtered out by plac-
ing a linear polarizer in front of the sensor at an orientation
orthogonal to that polarization state. Polarization filters can
also be used for measuring shape of objects, using known
models of Fresnel reflection [43], [44], [70].

3.3 Coding with Sensors

The choice of sensor dictates what type of information
can be captured in a scene. For example, a single photon
avalanche detector (SPAD) or streak camera can be used
to capture transients on the order of picoseconds. These
time profiles can be used to capture light-in-flight videos,
measure ToF, and analyze transient decays of fluorescent
samples. Velten et al. use ToF information and tomographic
reconstruction for non-line-of-sight (NLOS) imaging. Other
approaches to NLOS use thermal light emanating from
occluded humans [56] and RF antennas to image through
the occluder [55]. Satat et al. use ToF information to image
through volumetric scattering by modeling scattering as
a probabilistic spatio-temporal convolution [52]. A Shack-
Hartmann sensor can be used to measure the shape (i.e.
phase distribution) of a wavefront [53].

Combining measurements from different sensing modal-
ities, or sensor fusion, has also shown great promise for
different applications. Stereo vision uses two or more spa-
tially offset RGB cameras that observe the same scene to
obtain binocular cues, which are used for depth estimation
[48]. Kadambi et al. combine depth maps from a Kinect
sensor with polarization images to obtain textures at mi-
cron scale [44]. The idea is that depth maps are noisy, but
polarization images alone can result in ambiguous geome-
tries. Combining both modalities overcomes the individual
weaknesses of each sensing modality. Similarly, Cao et al.
combine a high spatial resolution RGB image with a low

spatial resolution multispectral image to obtain high spatial
resolution multispectral images [54]. Ferstl et al. use high
spatial resolution intensity images to upsample low spatial
resolution depth maps obtained from a Kinect sensor to
estimate high resolution depth maps [71].

Manipulating backend electronics of the sensor also has
interesting applications. Bhandari et al. show that mod-
ulo sampling at the sensor level enables reconstruction of
HDR images [49]. Event cameras, which measure changes
in intensity rather than raw intensity, also enable HDR
imaging [72]. Tumblin et al. manipulate the sensor to send
the logarithm of the gradients of intensity to the analog-
to-digital (ADC) converter (instead of intensity), which has
applications for downstream tasks and HDR imaging [50].
A coded two bucket (C2B) sensor is a sensor in which each
pixel contains two ”buckets”, with each bucket measuring
light with a programmable exposure. C2Bs have been used
for compressive sensing [73] and 3D shape estimation [74],
among other applications.

3.4 Forward Model Inversion

An imaging system is typically modeled by a forward oper-
ator F(·), such that the measured image, y, can be related to
a scene parameter, x, by y = F(x) + η. Solutions for x can
be found by solving an optimization problem of the form

x̂ = argmin
x

{||y −F(x)||2
2
+ αφ(x)}, (3)

where φ(x) is a regularization term and α is the weight.
If F is differentiable, we can solve for x using gradient
descent. This is the premise of differentiable optics and differ-
entiable rendering. For a tutorial on classic optimization meth-
ods, we refer the reader to Boyd and Vandenberghe [75].
Other methods use domain-specific algorithms or neural
networks. We discuss these ideas in the following sections.

4 PHYSICS-BASED COMPUTER VISION

Physics-based vision incorporates physical priors into oth-
erwise data-driven deep learning methods, often by solving
problems similar to forward model inversion, but through
the use of a neural network. Deep learning approaches have
largely dominated the computer vision community over
the last decade, and involve the use of large amounts of
data to iteratively learn an algorithm with backpropogation
and gradient descent. In recent years, the incorporation of
more physics in deep learning vision models has unleashed
new breakthroughs, such as in the area of neural rendering.
Physics can be incorporated into deep learning vision mod-
els in several ways, as discussed in the rest of this section.

4.1 Physics-Based Learning

Physics-based learning (PBL) is a group of methods that
combine the use of physical priors with data-driven neural
networks. We adopt the categorization of PBL methods,
as proposed by [76], into physical fusion, residual physics,
embedded physics, and physical regularization.

Physical fusion models use the output of physical models
as input to neural networks, which are then optimized for a
downstream task, and have been employed in applications
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Fig. 4: Modular formulation for end-to-end optimization of the imaging and vision pipeline. Components can be
selected for each numbered module and then jointly optimized. Existing end-to-end methods optimize modules 2-4 with
5 (described in Section 5). The early parts of the image formation pipeline are implemented in hardware and encode
the scene into RAW measurements (physical encoder). Then, the digital decoder produces the desired output, e.g. HDR
image, classification, etc. With this proposed formulation, end-to-end systems can be created that use novel, non-obvious
combinations of computer vision, computational imaging, and optics that are jointly optimized to solve downstream tasks.

such as shape from polarization [70]. Residual physics, on the
other hand, uses the output of a physical model as ground
truth to guide the training of a neural network. Applications
of residual physics include training a neural network to
create CT reconstructions from limited views, using filtered
back projection (FBP) to generate ground truth as done by
Jin et al. [77]. Embedded physics deals with methods in which
the neural network is tasked with learning the parameters of
a physical model, such as in algorithm unrolling, where each
layer corresponds with an iteration of an iterative model
[78]. Lastly, we explore physics regularization in more depth
in Section 4.1.1, as it is used for a variety of vision tasks.

Additional PBL methods have also been proposed that
incorporate physics into deep learning in other ways, such
as using simulated data from a physics model to pre-train a
neural network for better weight initialization [79], [80].

4.1.1 Physics Regularization

A loss function consists of a primary term and regulariza-
tion term(s). Physics regularization uses known physics of
the scene parameter x and enforces this as an additional
term in the loss function. In such a setup, a neural network
is often used to predict physical parameters from input data,
such as images. A loss can then be applied on the predicted
parameters, or they can be used by the physical model to
create additional output(s). For example, in the work of Che
et al. [81], the physical scene parameters necessary to recon-
struct an image with a renderer, such as shape, material, and
illumination, are predicted and compared to known ground
truth parameter values. In general, access to ground truth
parameters of a physical model may not be available, moti-
vating methods that predict parameters of a physical model
and enforce their accuracy only through the final output,
such as image reconstruction. These methods are commonly
used for inverse and neural rendering, discussed further in
Section 4.3. Physics regularization has also been used for
areas such as image dehazing by estimating parameters of
the atmospheric scattering model [82], deblurring [83], and
depth prediction [84], to name a few.

4.2 Differentiable Rendering

Rendering in graphics uses known models of the world,
including scene geometry, illumination models, material

properties, etc., to render the scene from the camera’s per-
spective. The field of inverse graphics aims to recover geom-
etry, reflectance, material properties and illumination from
images of the scene. Differentiable rendering stems from the
field of inverse graphics, where the forward model is made
differentiable, thus enabling the scene parameters to be
recovered by computing gradients and performing gradient
descent. OpenDR [85] is one of the earliest implementations
of this idea. Although it assumes a simple lighting model
and cannot render complex effects such as inter-reflections,
OpenDR paved the way for an entire class of differentiable
renderers, such as SoftRas [86], Mitsuba2 [87], PyRedner
[88], among others [89] [90], which can handle ever more
complex forward light simulations. While differentiable ren-
dering can be used in isolation, the framework can also
work alongside neural networks. The machine learning
component typically predicts the scene parameters such as
geometry [91], textures, or diffuse and specular reflections.
More recently, neural networks have been used to encode
the scene directly. We discuss this transition to using more
data and machine learning in the following section.

4.3 Neural Rendering

Neural rendering refers to the field that emerges from the
use of neural networks to learn scene parameters, which
can then be used generate photo-realistic imagery in a
controllable way [92]. 2D neural rendering often relies on
statistical approaches for image synthesis, such as deep
generative models, in contrast to graphics frameworks that
traditionally rely on light transport and the rendering equa-
tion to render images [2] [93]. Approaches that rely on deep
generative models typically use generative adversarial net-
works (GANs) [94], variational auto-encoders (VAEs) [95],
or diffusion models [96] to learn a distribution by training
on the task of image-to-image translation. Therefore, these
methods are data-driven and do not exploit physics. Re-
cent 2D neural rendering techniques have merged physi-
cally inspired modules into data-driven methods by using
techniques from computer graphics, such as illumination
models [97], textures [98] and multi-view constraints [99]
[100], among others. Exploiting physics-based priors gives
greater control over image synthesis over purely data-
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driven methods, by allowing light, geometry, and camera to
be disentangled. For a comprehensive review for 2D neural
rendering, we refer the reader to [2].

The field of 3D neural rendering has also seen tremen-
dous growth primarily due to the use of differentiable ren-
derers discussed in Section 4.2. 3D neural rendering aims to
learn and render a 3D neural scene representation from real-
world imagery and relies on the image formation model by
leveraging techniques from computer graphics. State-of-the-
art techniques parameterize the scene with a neural network
using a differentiable renderer for novel-view synthesis.
Typically, volumetric rendering is used for the differentiable
rendering component as its continuous representation has
been shown to work well with gradient descent [90] [101],
although there are a plethora of techniques that use dif-
ferent scene representations and rendering techniques [2],
[92]. This physics and machine learning framework has
been highly effective and subsequent works have added
additional physics-based priors such as reflectance models
[102], [103], normal estimation [104], and shadow models
[105] to enable better novel-view synthesis and 3D recon-
struction. Moreover, these physics-based priors are now also
used to train on classical computer vision tasks, such as
object classification and segmentation, and show improved
performance over purely data-driven techniques [106] [107].
Neural de-rendering has also been used for unsupervised
representation learning, and has led to improved down-
stream accuracy over purely data-driven methods [108].

5 JOINT OPTIMIZATION OF OPTICS & ALGORITHM

Imaging systems have typically been designed inde-
pendently of the downstream perception task that they
seek to solve. Joint optimization, also known as end-to-end
optimization or deep optics, seeks to address this by jointly
optimizing optics and image processing together for either
low-level imaging or high-level vision tasks. Deep optics
has been applied to low-level problems, such as color imag-
ing and demosaicking [109], extended depth of field and
superresolution imaging [110], high dynamic range (HDR)
imaging [111] [64], and depth estimation [112], [113], [114],
and high level problems, such as classification [115] and
object detection [116] [62]. Deep optics has also been used
in time of flight imaging [117], [118], [119], computational
microscopy [120], [121], [122], and imaging through scatter-
ing [123]. Existing work primarily focuses on optimizing the
parameters of the optical element, sensor, and image signal
processor (ISP), each of which can be considered a core block
of the imaging pipeline and can be filled with different
components in a plug-and-play manner. Optimization of
each block is described in the following sections.

5.1 Optical Element Optimization

The first component of the imaging pipeline that is consid-
ered for end-to-end optimization is the optical element. Ad-
vances in optimization and autodifferentiation have enabled
the optics parameters of imaging systems to be optimized
for downstream imaging and perception tasks. Sitzmann et
al. [110] propose the joint optimization of the parameters

of an imaging system’s optical element and reconstruction
algorithm by defining a fully differentiable wave optics
image formation model. They experiment with optimizing
a Zernike parameterization and Fourier coefficient param-
eterization of a lens using gradient-based optimization in
simulation. Once optimized in simulation, the optical ele-
ment is manufactured and results are validated in the real
world. While the work of Sitzmann et al. [110] is applied
to learning optimal parameters for the tasks of achromatic
extended depth of field and super-resolution imaging, the
proposed framework is task-agnostic and can be extended
to optimize for other downstream tasks. [111] extend this
method to optimize optics for high dynamic range (HDR)
imaging, while [112] extend this method to optimize optics
for depth estimation. Ikoma et al. [124] optimize the aperture
design for monocular depth estimation. Tseng et al. [125]
optimize the compound optics, i.e. parameters of multiple
lenses, along with the ISP and downstream neural network,
in a fully end-to-end pipeline. After optimal lens parameters
are learned in simulation, the lens can be manufactured and
used in production systems.

Rather than optimize an optical element, other methods
replace the optical elements altogether and instead optimize
a phase mask, such as in the work of Wu et al. [32]. The
phase mask is manufactured with photolithography, and is
used to change the phase of light passing through it. Wu
et al. [32] introduce a framework for jointly learning the
optimal phase mask and reconstruction algorithm for depth
estimation.

5.2 Sensor Optimization

Recent advances in image sensor technology have resulted
in the capability for per-pixel sensing and processing, un-
leashing new opportunities for sensor optimization [73].
Martel et al. [30] propose a method to learn spatially vary-
ing pixel exposures for the tasks of HDR and high-speed
imaging. Rather than use expensive spatial light modulators
(SLMs) to implement optical coding, exposure times are
directly learned and then programmed onto a focal-plane
sensor–processor (FPSP), which can run both sensing and
processing for each pixel. In their work, a per-pixel shutter
function is parameterized by a neural network and learned
with stochastic gradient descent in simulation before being
programmed onto the sensor. The shutter function encodes
the exposure time of each pixel. Nguyen et al. [126] adopt
a similar method for motion deblurring through spatially
varying pixel exposures. Li et al. [127] propose a different
way to optimize the sensor for compressive sensing (CS).
In their work, a CS mask is directly learned by a neural
network to encode the scene with fewer bits and then
programmed on a coded two-bucket (C2B) camera [74].

5.3 Image Signal Processor (ISP) Optimization

Image signal processors (ISPs) produce color images
from RAW pixel measurements from the sensor through
a pipeline of demosaicking, denoising, deblurring, tone
mapping, etc. [128]. ISPs can either be implemented on
hardware, as traditionally done, or in software, which, while
easier to optimize, is often slower. Hardware ISPs contain
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hundreds of categorical and continuous parameters that can
be tuned based on application. However, because the inner
workings of hardware ISPs are usually not revealed to users,
imaging experts are needed to manually configure the pa-
rameters, which can be time-intensive. As a result, methods
that can automatically identify the optimal values of ISP
parameters for a given downstream task, such as object
detection, are of interest. While grid search can be used
to optimize the parameters of a hardware ISP when there
is a small number of parameters, the search space grows
exponentially as more parameters are added. More sophis-
ticated optimizations, such as the artificial bee colony algo-
rithm have also been used for hardware ISP optimization
as done by Nishimura et al. [129], but were demonstrated
on only 3-4 continuous parameters. Because the ISP is im-
plemented in hardware and is non-differentiable, gradient-
based approaches cannot be directly applied. Tseng et al.
[130] observe that ISPs can instead be made differentiable
by modeling them with neural networks. Thus, since the
inner workings of hardware ISPs are hidden to protect trade
secrets, the hardware ISP can be treated as a black box and
optimized using a differentiable proxy function, i.e. neural
network. Tseng et al. use hardware in the training loop
to acquire RAW pixel measurements of projected images
and randomly sample hardware ISP parameters. The RAW
pixel measurements and sampled hardware ISP parameters
are used to train a neural network to generate the same
output as the hardware ISP. Once trained, the parameters of
the hardware ISP can be directly optimized with gradient
descent for a given downstream task.

Robidoux et al. [116] propose an alternative method for
hardware ISP optimization in the framework of end-to-end
optimization of multi-exposure high dynamic range (HDR)
camera systems. In their work, optimization alternates be-
tween 0th-order evolutionary search over sensor and ISP
parameters and 1st-order gradient descent on the neural
network weights, where the neural network is trained for a
perception task, such as automotive object detection, using
images captured by the camera system. An evolutionary
search algorithm similar to CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) [131] is used to optimize the
hardware ISP parameters. To optimize the model, raw data
is collected with 254 different ISP parameters and simulated
SNR drop artifacts are added.

A variety of other methods attempt to replace the image
processing steps done by the ISP with a single optimized
or learned operation [132], [133], [134], [135]. Diamond et
al. [135] propose Anscombe networks as neural ISPs that
transform RAW pixel measurements to an output image,
and jointly train the neural ISP with a network for the
downstream task. They find that directly learning the down-
stream task from RAW pixel measurements leads to worse
performance than when either a hardware or neural ISP is
used, and that neural ISPs are especially helpful in low-light
conditions where traditional ISPs produce worse output.

5.4 Optical Neural Networks

Optical neural networks (ONNs) are physical implementa-
tions of neural networks using optical components. Because
operations are done with photons rather than electrons,

Fig. 5: Future of Camera System Design. Progress in joint
optimization of camera hardware and software has enabled
task-specific cameras. In the future, this trend will continue
and extend to fully end-to-end optimizable imaging systems
that choose which modalities to use to achieve a task.

ONNs may bring major increases in bandwidth. Early re-
search found that fully connected layers can be cheaply im-
plemented with optics components [136], followed by more
recent advances in implementing convolutional layers in op-
tics [115]. However, because optics operations are typically
linear, implementing nonlinearity, an essential component
to the success of deep neural networks, with optics is an
active area of research. For more information on ONNs, we
refer the reader to [137] and [5].

6 INGREDIENTS FOR JOINT OPTIMIZATION

We present five ingredients that we anticipate will drive
progress in end-to-end methods and rank relevant fields
for each ingredient in Fig. 2. These ingredients are opti-
cal simulators, differentiability, interpretability, learned
priors, and exploitation of physics. While there has been
significant progress in advancing each tool, we identify open
challenges and present some insights into overcoming them.

6.1 Progress and Open Challenges

Optical simulators. Optical simulators like Zemax and tech-
niques like PSF engineering with deep learning have en-
abled data- and task-driven optical design. Yet, optical sim-
ulation remains a core challenge for end-to-end methods.
Simulating complex optics of a camera is difficult and often
proprietary. One solution to this challenge is to create open
source simulators that can drive research and lower the
barrier of entry for new researchers. Data-driven simulators,
such as [138], can help in overcoming this challenge.
Differentiability: Although differentiability is not impera-
tive for optimization, recent progress in computer vision,
as discussed in Section 4.2, has shown that differentiable
systems converge faster and are more optimal. Advances
in autodifferentiation have enabled progress in end-to-end
design. Nevertheless, the problem of how much differen-
tiability is needed and how to make complex simulators
differentiable is an open question for these systems.
Interpretability: As task-specific imaging systems that learn
over data and physics become ubiquitous, interpretability
of the systems decrease. Many end-to-end methods ana-
lyze the learned PSFs of the system or perform analysis
on intermediate outputs. Nevertheless, while the physical
encoder remains more interpretable than pure deep learning
systems, interpretability will remain a challenge as more
learned priors are used. We can begin to overcome this
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by leveraging known physics and inputs, and comparing
outputs from learned models to those from physical models.
Learned Priors: Ideally, the end-to-end imaging system will
continually learn and self-optimize to generalize to new
environments that it may not have encountered in simulated
training data. The key challenge is the sim-to-real gap and
labeling real-world data on-the-fly. Existing methods use
static or simulated scenes to avoid expensive relabeling of
large datasets. Therefore, we anticipate the need for multi-
step optimization, where training first happens in simula-
tion and is then evaluated on real-world data, using the
evaluation score to inform continued training in simulation.
Progress in continual and lifelong learning can be leveraged
to create cameras that adapt and learn from their environ-
ment [139].
Exploiting Physics: Physics can be exploited in hardware
and algorithms. End-to-end frameworks exploit physics at
the hardware level, but do not fully exploit physics at
the algorithm level. We anticipate future work will use
differentiable, physics-based forward models that encode
properties, such as reflectance and geometry, for better
convergence and performance.

7 DISCUSSION

Camera design has typically been rooted in the physics
of light transport, but there has been progress recently
towards combining physics-based design with data-driven
design. We claim that both are essential tools for task-
specific camera design. Simultaneously, modern computer
vision, which typically relies on data-driven deep learn-
ing, has begun to incorporate physics into deep learning
methods. We propose a framework that classifies state-of-
art methods based on their use of physics and data/learned
priors. We also identify five key ingredients for end-to-end
design, and show how challenges in these five areas can be
addressed. In the future, systems may intelligently choose
both which types of imagers to use and how to configure
them, as shown in Fig. 5. We envision a modular end-
to-end pipeline to drive non-intuitive camera design that
employs principles from computational imaging, physics-
based computer vision, and optics.
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