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Solving stochastic weak Minty variational inequalities
without increasing batch size

Thomas Pethick∗ Olivier Fercoq† Puya Latafat‡ Panagiotis Patrinos‡ Volkan Cevher∗

Abstract

This paper introduces a family of stochastic extragradient-type algorithms for a
class of nonconvex-nonconcave problems characterized by the weak Minty vari-
ational inequality (MVI). Unlike existing results on extragradient methods in the
monotone setting, employing diminishing stepsizes is no longer possible in the
weak MVI setting. This has led to approaches such as increasing batch sizes per
iteration which can however be prohibitively expensive. In contrast, our proposed
methods involves two stepsizes and only requires one additional oracle evaluation
per iteration. We show that it is possible to keep one fixed stepsize while it is only
the second stepsize that is taken to be diminishing, making it interesting even in
the monotone setting. Almost sure convergence is established and we provide a
unified analysis for this family of schemes which contains a nonlinear generaliza-
tion of the celebrated primal dual hybrid gradient algorithm.

1 Introduction

Stochastic first-order methods have been at the core of the current success in deep learning appli-
cations. These methods are mostly well-understood for minimization problems at this point. This is
even the case in the nonconvex setting where there exists matching upper and lower bounds on the
complexity for finding an approximately stable point (Arjevani et al., 2019).

The picture becomes less clear when moving beyond minimization into nonconvex-nonconcave min-
imax problems—or more generally nonmonotone variational inequalities. Even in the deterministic
case, finding a stationary point is in general intractable (Daskalakis et al., 2021; Hirsch & Vavasis,
1987). This is in stark contrast with minimization where only global optimality is NP-hard.

An interesting nonmonotone class for which we do have efficient algorithms is characterized by the
so called weak Minty variational inequality (MVI) (Diakonikolas et al., 2021). This problem class
captures nontrivial structures such as attracting limit cycles and is governed by a parameter ρ whose
negativity increases the degree of nonmonotonicity. It turns out that the stepsize γ for the exploration
step in extragradient-type schemes lower bounds the problem class through ρ > −γ/2 (Pethick et al.,
2022). In other words, it seems that we need to take γ large to guarantee convergence for a large class.

This reliance on a large stepsize is at the core of why the community has struggled to provide
a stochastic variants for weak MVIs. The only known results effectively increase the batch size
at every iteration (Diakonikolas et al., 2021, Thm. 4.5)—a strategy that would be prohibitively
expensive in most machine learning applications. Pethick et al. (2022) proposed (SEG+) which
attempts to tackle the noise by only diminishing the second stepsize. This suffices in the special case
of unconstrained quadratic games but can fail even in the monotone case as illustrated in Figure 1.
This naturally raises the following research question:

Can stochastic weak Minty variational inequalities be solved without increasing the batch size?

We resolve this open problem in the affirmative when the stochastic oracles are Lipschitz in mean,
with a modification of stochastic extragradient called bias-corrected stochastic extragradient (BC-
SEG+). The scheme only requires one additional first order oracle call, while crucially maintaining
the fixed stepsize. Specifically, we make the following contributions:
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(i) We show that it is possible to converge for weak MVI without increasing the batch size, by in-
troducing a bias-correction term. The scheme introduces no additional hyperparameters and
recovers the maximal range ρ ∈ (−γ/2,∞) of explicit deterministic schemes. The rate we es-
tablish is interesting already in the star-monotone case where only asymptotic convergence of
the norm of the operator was known when refraining from increasing the batch size (Hsieh
et al., 2020, Thm. 1). Our result additionally carries over to another class of problem treated in
Appendix G, which we call negative weak MVIs.

(ii) We generalize the result to a whole family of schemes that can treat constrained and regular-
ized settings. First and foremost the class includes a generalization of the forward-backward-
forward (FBF) algorithm of Tseng (2000) to stochastic weak MVIs. The class also contains
a stochastic nonlinear extension of the celebrated primal dual hybrid gradient (PDHG) algo-
rithm (Chambolle & Pock, 2011). Both methods are obtained as instantiations of the same
template scheme, thus providing a unified analysis and revealing an interesting requirement on
the update under weak MVI when only stochastic feedback is available.

(iii) We prove almost sure convergence under the classical Robbins-Monro stepsize schedule of the
second stepsize. This provides a guarantee on the last iterate, which is especially important in
the nonmonotone case, where average guarantees cannot be converted into a single candidate
solution. Almost sure convergence is challenging already in the monotone case where even
stochastic extragradient may not converge (Hsieh et al., 2020, Fig. 1).

2 Related work

Weak MVI Diakonikolas et al. (2021) was the first to observe that an extragradient-like scheme
called extragradient+ (EG+) converges globally for weak MVIs with ρ ∈ (−1/8LF ,∞). This re-
sults was later tightened to ρ ∈ (−1/2LF ,∞) and extended to constrained and regularized settings
in (Pethick et al., 2022). A single-call variant has been analysed in Böhm (2022). Weak MVI is a
star variant of cohypomonotonicity, for which an inexact proximal point method was originally stud-
ied in Combettes & Pennanen (2004). Later, a tight characterization was carried out by Bauschke
et al. (2021) for the exact case. It was shown that acceleration is achievable for an extragradient-type
scheme even for cohypomonotone problems (Lee & Kim, 2021). Despite this array of positive re-
sults the stochastic case is largely untreated for weak MVIs. The only known result (Diakonikolas
et al., 2021, Theorem 4.5) requires the batch size to be increasing. Similarly, the accelerated method
in Lee & Kim (2021, Thm. 6.1) requires the variance of the stochastic oracle to decrease as O(1/k).

Stochastic & monotone When more structure is present the story is different since diminishing
stepsizes becomes permissible. In the monotone case rates for the gap function was obtained for
stochastic Mirror-Prox in Juditsky et al. (2011) under bounded domain assumption, which was later
relaxed for the extragradient method under additional assumptions (Mishchenko et al., 2020). The
norm of the operator was shown to asymptotically converge for unconstrained MVIs in Hsieh et al.
(2020) with a double stepsize policy. There exists a multitude of extensions for monotone prob-
lems: Single-call stochastic methods are covered in detail by Hsieh et al. (2019), variance reduction
was applied to Halpern-type iterations (Cai et al., 2022), cocoercivity was used in Beznosikov et al.
(2022), and bilinear games studied in Li et al. (2022). Beyond monotonicity, a range of structures
have been explored such as MVIs (Song et al., 2020), pseudomonotonicity (Kannan & Shanbhag,
2019; Boţ et al., 2021), two-sided Polyak-Łojasiewicz condition (Yang et al., 2020), expected coco-
ercivity (Loizou et al., 2021), sufficiently bilinear (Loizou et al., 2020), and strongly star-monotone
(Gorbunov et al., 2022).

Variance reduction The assumptions we make about the stochastic oracle in Section 3 are similar
to what is found in the variance reduction literature (see for instance Alacaoglu & Malitsky (2021,
Assumption 1) or Arjevani et al. (2019)). However, our use of the assumption are different in a
crucial way. Whereas the variance reduction literature uses the stepsize γ ∝ 1/LF̂ (see e.g. Alacaoglu
& Malitsky (2021, Theorem 2.5)), we aim at using the much larger γ ∝ 1/LF . For instance, in
the special case of a finite sum problem of size N, the mean square smoothness constant LF̂ from
Assumption III can be

√
N times larger than LF (see Appendix I for details). This would lead to a

prohibitively strict requirement on the degree of allowed nonmonotonicity through the relationship
ρ > −γ/2.
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Bias-correction The idea of adding a correction term has also been exploited in minimization,
specifically in the context of compositional optimization Chen et al. (2021). Due to their distinct
problem setting it suffices to simply extend stochastic gradient descent (SGD), albeit under addi-
tional assumptions such as (Chen et al., 2021, Assumption 3). In our setting, however, SGD is not
possible even when restricting ourselves to monotone problems.

3 Problem formulation and preliminaries

We are interested in finding z ∈ �n such that the following inclusion holds,
0 ∈ Tz := Az + Fz. (3.1)

A wide range of machine learning applications can be cast as an inclusion. Most noticeable, a struc-
tured minimax problem can be reduced to (3.1) as shown in Section 8.1. We will rely on common
notation and concepts from monotone operators (see Appendix B for precise definitions).
Assumption I. In problem (3.1),

(i) The operator F : �n → �n is LF-Lipschitz with LF ∈ [0,∞), i.e.,
∥Fz − Fz′∥ ≤ LF∥z − z′∥ ∀z, z′ ∈ �n. (3.2)

(ii) The operator A : �n ⇒ �n is a maximally monotone operator.

(iii) Weak Minty variational inequality (MVI) holds, i.e., there exists a nonempty set S⋆ ⊆ zer T
such that for all z⋆ ∈ S⋆ and some ρ ∈ (− 1

2LF
,∞)

⟨v, z − z⋆⟩ ≥ ρ∥v∥2, for all (z, v) ∈ gph T. (3.3)
Remark 1. In the unconstrained and smooth case (A ≡ 0), Assumption I(iii) reduces to ⟨Fz, z−z⋆⟩ ≥
ρ∥Fz∥2 for all z ∈ �n. When ρ = 0 this condition reduces to the MVI (i.e. star-monotonicity),
while negative ρ makes the problem increasingly nonmonotone. Interestingly, the inequality is not
symmetric and one may instead consider that the assumption holds for −F. Through this observation,
Appendix G extends the reach of the extragradient-type algorithms developed for weak MVIs.

Stochastic oracle We assume that we cannot compute Fz easily, but instead we have access to
the stochastic oracle F̂(z, ξ), which we assume is unbiased with bounded variance. We additionally
assume that z 7→ F̂(z, ξ) is LF̂ Lipschitz continuous in mean and that it can be simultaneously queried
under the same randomness.
Assumption II. For the operator F̂(·, ξ) : �n → �n the following holds.

(i) Two-point oracle: The stochastic oracle can be queried for any two points z, z′ ∈ �n,
F̂(z, ξ), F̂(z′, ξ) where ξ ∼ P. (3.4)

(ii) Unbiased: Eξ
[
F̂(z, ξ)

]
= Fz ∀z ∈ �n.

(iii) Bounded variance: Eξ
[
∥F̂(z, ξ) − F̂(z)∥2

]
≤ σ2

F ∀z ∈ �n.

Assumption III. The operator F̂(·, ξ) : �n → �n is Lipschitz continuous in mean with LF̂ ∈ [0,∞):

Eξ
[
∥F̂(z, ξ) − F̂(z′, ξ)∥2

]
⩽ L2

F̂
∥z − z′∥2 for all z, z′ ∈ �n. (3.5)

Remark 2. Assumptions II(i) and III are also common in the variance reduction literature (Fang
et al., 2018; Nguyen et al., 2019; Alacaoglu & Malitsky, 2021), but in contrast with variance re-
duction we will not necessarily need knowledge of LF̂ to specify the algorithm, in which case the
problem constant will only affect the complexity. Crucially, this decoupling of the stepsize from LF̂
will allow the proposed scheme to converge for a larger range of ρ in Assumption I(iii). Finally, note
that Assumption II(i) commonly holds in machine learning applications, where usually the stochas-
ticity is induced by the sampled mini-batch.

4 Method

To arrive at a stochastic scheme for weak MVI we first need to understand the crucial ingredients
in the deterministic setting. For simplicity we will initially consider the unconstrained and smooth
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Algorithm 1 (BC-SEG+) Stochastic algorithm for problem (3.1) when A ≡ 0

Require z−1 = z̄−1 = z0 ∈ �n αk ∈ (0, 1), γ ∈ (⌊−2ρ⌋+, 1/LF)
Repeat for k = 0, 1, . . . until convergence
1.1: Sample ξk ∼ P

1.2: z̄k = zk − γF̂(zk, ξk) + (1 − αk)
(
z̄k−1 − zk−1 + γF̂(zk−1, ξk)

)
1.3: Sample ξ̄k ∼ P

1.4: zk+1 = zk − αkγF̂(z̄k, ξ̄k)
Return zk+1

setting, i.e. A ≡ 0 in (3.1). The first component is taking the second stepsize α smaller as done in
extragradient+ (EG+),

z̄k = zk − γFzk

zk+1 = zk − αγFz̄k (EG+)

where α ∈ (0, 1). Convergence in weak MVI was first shown in Diakonikolas et al. (2021) and later
tightened by Pethick et al. (2022), who characterized that smaller α allows for a larger range of
the problem constant ρ. Taking α small is unproblematic for a stochastic scheme where usually the
stepsize is taken diminishing regardless.

However, Pethick et al. (2022) also showed that the extrapolation stepsize γ plays a critical role for
convergence under weak MVI. Specifically, they proved that a larger stepsize γ leads to a looser
bound on the problem class through ρ > −γ/2. While a lower bound has not been established
we provide an example in Figure 3 of Appendix H where small stepsize prevents convergence.
Unfortunately, picking γ large (e.g. as γ = 1/LF) causes significant complications in the stochastic
case where both stepsizes are usually taken to be diminishing as in the following scheme,

z̄k = zk − βkγF̂(zk, ξk) with ξk ∼ P

zk+1 = zk − αkγF̂(z̄k, ξ̄k) with ξ̄k ∼ P
(SEG)

where αk = βk ∝ 1/k. Even with a two-timescale variant (when βk > αk) it has only been possible
to show convergence for MVI (i.e. when ρ = 0) (Hsieh et al., 2020). Instead of decreasing both
stepsizes, Pethick et al. (2022) proposes a scheme that keeps the first stepsize constant,

z̄k = zk − γF̂(zk, ξk) with ξk ∼ P

zk+1 = zk − αkγF̂(z̄k, ξ̄k) with ξ̄k ∼ P
(SEG+)

However, (SEG+) does not necessarily converge even in the monotone case as we illustrate
in Figure 1. The non-convergence stems from the bias term introduced by the randomness of
z̄k in F̂(z̄k, ξ̄k). Intuitively, the role of z̄k is to approximate the deterministic exploration step
˜̄zk := zk − γFzk. While z̄k is an unbiased estimate of ˜̄zk this does not imply that F̂(z̄k, ξ̄k) is an un-
biased estimate of F(˜̄zk). Unbiasedness only holds in special cases, such as when F is linear and
A ≡ 0 for which we show convergence of (SEG+) in Section 5 under weak MVI. In the monotone
case it suffice to take the exploration stepsize γ diminishing (Hsieh et al., 2020, Thm. 1), but this
runs counter to the fixed stepsize requirement of weak MVI.

Instead we propose bias-corrected stochastic extragradient+ (BC-SEG+) in Algorithm 1. BC-SEG+
adds a bias correction term of the previous operator evaluation using the current randomness ξk. This
crucially allows us to keep the first stepsize fixed. We further generalize this scheme to constrained
and regularized setting with Algorithm 2 by introducing the use of the resolvent, (id + γA)−1.

5 Analysis of SEG+

In the special case where F is affine and A ≡ 0 we can show convergence of (SEG+) under weak
MVI up to arbitrarily precision even with a large stepsize γ.
Theorem 5.1. Suppose that Assumptions I and II hold. Assume Fz := Bz + v and choose αk ∈ (0, 1)
and γ ∈ (0, 1/LF) such that ρ ≥ γ(αk − 1)/2. Consider the sequence (zk)k∈� generated by (SEG+).
Then for all z⋆ ∈ S⋆,

K∑
k=0

αk∑K
j=0 α j
E∥Fzk∥2 ≤

∥z0−z⋆∥2+γ2(γ2L2
F+1)σ2

F
∑K

j=0 α
2
j

γ2(1−γ2L2
F )

∑K
j=0 α j

. (5.1)
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Figure 1: Monotone constrained case illustrating the issue for projected variants of (SEG+) (see Ap-
pendix H.2 for algorithmic details). The objective is bilinear ϕ(x, y) = (x − 0.9) · (y − 0.9) under box
constraints ∥(x, y)∥∞ ≤ 1. The unique stationary point (x⋆, y⋆) = (0.9, 0.9) lies in the interior, so even
∥Fz∥ can be driven to zero. Despite the simplicity of the problem both projected variants of (SEG+) only
converges to a γ-dependent neighborhood. For weak MVI with ρ < 0 this neighborhood cannot be made
arbitrarily small since γ cannot be taken arbitrarily small (see Figure 3 of Appendix H).

The underlying reason for this positive results is that F̂(z̄k, ξ̄k) is unbiased when F is linear. This no
longer holds when either linearity of F is dropped or when the resolvent is introduced for A . 0, in
which case the scheme only converges to a γ-dependent neighborhood as illustrated in Figure 1. This
is problematic in weak MVI where γ cannot be taken arbitrarily small (see Figure 3 of Appendix H).

6 Analysis for unconstrained and smooth case

For simplicity we first consider the case where A ≡ 0. To mitigate the bias introduced in F(z̄k, ξ̄k) for
(SEG+), we propose Algorithm 1 which modifies the exploration step. The algorithm can be seen
as a particular instance of the more general scheme treated in Section 7.
Theorem 6.1. Suppose that Assumptions I to III hold. Suppose in addition that γ ∈ (⌊−2ρ⌋+, 1/LF)
and (αk)k∈� ⊂ (0, 1) is a diminishing sequence such that

2γLF̂
√
α0 +

(
1 +

( 1+γ2L2
F

1−γ2L2
F
γ2L2

F
)
γ2L2

F̂

)
α0 ≤ 1 + 2ρ

γ
. (6.1)

Then, the following estimate holds for all z⋆ ∈ S⋆

E[∥F(zk⋆ )∥2] ≤
(1 + ηγ2L2

F)∥z0 − z⋆∥2 +Cσ2
Fγ

2 ∑K
j=0 α

2
j

µ
∑K

j=0 α j
(6.2)

where C = 1 + 2η
(
(γ2L2

F̂
+ 1) + 2α0

)
, η = 1

2
1+γ2L2

F

1−γ2L2
F
γ2L2

F +
1

γLF̂
√
α0

, µ = γ2(1 − γ2L2
F)/2 and k⋆ is

chosen from {0, 1, . . . ,K} according to probability P[k⋆ = k] = αk∑K
j=0 α j

.

Remark 6.2. As α0 → 0, the requirement (6.1) reduces to ρ > −γ/2 as in the deterministic setting
of Pethick et al. (2022). Letting αk = α0/

√
k+r the rate becomes O(1/

√
k), thus matching the rate for the

gap function of stochastic extragradient in the monotone case (see e.g. Juditsky et al. (2011)).

The above result provides a rate for a random iterate as pioneered by Ghadimi & Lan (2013). Show-
ing last iterate results even asymptotically is more challenging. Already in the monotone case,
vanilla (SEG) (where βk = αk) only has convergence guarantees for the average iterate (Juditsky
et al., 2011). In fact, the scheme can cycle even in simple examples (Hsieh et al., 2020, Fig. 1).

Under the classical (but more restrictive) Robbins-Monro stepsize policy, it is possible to show
almost sure convergence for the iterates generates by Algorithm 1. The following theorem demon-
strates the result in the particular case of αk = 1/k+r. The more general statement is deferred to
Appendix D.
Theorem 6.3 (almost sure convergence). Suppose that Assumptions I to III hold. Suppose γ ∈
(⌊−2ρ⌋+, 1/LF), αk =

1
k+r for any positive natural number r and

(γLF̂ + 1)αk + 2
(

1+γ2L2
F

1−γ2L2
F
γ4L2

F L2
F̂
αk+1 + γLF̂

)
(αk+1 + 1)αk+1 ≤ 1 + 2ρ

γ
. (6.3)
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Algorithm 2 (BC-PSEG+) Stochastic algorithm for problem (3.1)

Require z−1 = z0 ∈ �n, h−1 ∈ �n, αk ∈ (0, 1), γ ∈ (⌊−2ρ⌋+, 1/LF)
Repeat for k = 0, 1, . . . until convergence
2.1: Sample ξk ∼ P

2.2: hk =
(
zk − γF̂(zk, ξk)

)
+ (1 − αk)

(
hk−1 −

(
zk−1 − γF̂(zk−1, ξk)

))
2.3: z̄k = (id + γA)−1hk
2.4: Sample ξ̄k ∼ P

2.5: zk+1 = zk − αk
(
hk − z̄k + γF̂(z̄k, ξ̄k)

)
Return zk+1

Then, the sequence (zk)k∈� generated by Algorithm 1 converges almost surely to some z⋆ ∈ zer T.

Remark 6.4. As αk → 0 the condition on ρ reduces to ρ > −γ/2 like in the deterministic case.

To make the results more accessible, both theorems have made particular choices of the free param-
eters from the proof, that ensures convergence for a given ρ and γ. However, since the parameters
capture inherent tradeoffs, the choice above might not always provide the tightest rate. Thus, the
more general statements of the theorems have been preserved in the appendix.

7 Analysis for constrained case

The result for the unconstrained smooth case can be extended when the resolvent is available. Al-
gorithm 2 provides a direct generalization of the unconstrained Algorithm 1. The construction relies
on approximating the deterministic algorithm proposed in Pethick et al. (2022), which iteratively
projects onto a half-space which is guaranteed to contain the solutions. By defining Hz = z − γFz,
the scheme can concisely be written as,

z̄k = (I + γA)−1(Hzk)

zk+1 = zk − αk(Hzk − Hz̄k),
(CEG+)

for a particular adaptive choice of αk ∈ (0, 1). With a fair amount of hindsight we choose to replace
Hzk with the bias-corrected estimate hk (as defined in Step 2.2 in Algorithm 2), such that the estimate
is also reused in the second update.

Theorem 7.1. Suppose that Assumptions I to III hold. Moreover, suppose that αk ∈ (0, 1), γ ∈
(⌊−2ρ⌋+, 1/LF) and the following holds,

µ B
1−
√
α0

1+
√
α0
− α0(1 + 2γ2L2

F̂
η) + 2ρ

γ
> 0 (7.1)

where η ≥ 1
√
α0(1−γ2L2

F ) +
1−
√
α0

√
α0

. Consider the sequence (zk)k∈� generated by Algorithm 2. Then, the

following estimate holds for all z⋆ ∈ S⋆

E[dist(0,T z̄k⋆ )2] ≤
E[∥z0 − z⋆∥2] + ηE[∥h−1 − Hz−1∥2] +Cγ2σ2

F
∑K

j=0 α
2
j

γ2µ
∑K

j=0 α j

where C = 1 + 2η(1 + γ2L2
F̂

) + 2α0η and k⋆ is chosen from {0, 1, . . . ,K} according to probability
P[k⋆ = k] = αk∑K

j=0 α j
.

Remark 3. The condition on ρ in (7.1) reduces to ρ > −γ/2 when α0 → 0 as in the deterministic
case. As oppose to Theorem 6.3 which tracks ∥Fzk∥2, the convergence measure of Theorem 7.1
reduces to dist(0,T z̄k)2 = ∥Fz̄k∥2 when A ≡ 0. Since Algorithm 1 and Algorithm 2 coincide when
A ≡ 0, Theorem 7.1 also applies to Algorithm 1 in the unconstrained case. Consequently, we obtain
rates for both ∥Fz̄k∥2 and ∥Fzk∥2 in the unconstrained smooth case.

8 Asymmetric & nonlinear preconditioning

In this section we show that the family of stochastic algorithms which converges under weak MVI
can be expanded beyond Algorithm 2. This is achieved by extending (CEG+) through introducing
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Algorithm 3 Nonlinearly preconditioned primal dual extragradient (NP-PDEG) for solving (8.5)

Require z−1 = z0 = (x0, y0) with x0, x−1, x̂−1, x̄−1 ∈ �n, y0, y−1 ∈ �r, θ ∈ [0,∞), Γ1 ≻ 0, Γ2 ≻ 0
Repeat for k = 0, 1, . . . until convergence
3.1: ξk ∼ P

3.2: x̂k = xk − Γ1∇xφ̂(zk, ξk) + (1 − αk)
(
x̂k−1 − xk−1 + Γ1∇xφ̂(xk−1, yk−1, ξk)

)
3.3: x̄k = proxΓ

−1
1

f
(
x̂k)

3.4: ξ′k ∼ P

3.5: ŷk = yk + Γ2
(
θ∇yφ̂(x̄k, yk, ξ′k) + (1 − θ)∇yφ̂(zk, ξk)

)
3.6: +(1 − αk)

(
ŷk−1 − yk−1 − Γ2

(
θ∇yφ̂(x̄k−1, yk−1, ξ′k) + (1 − θ)∇yφ̂(zk−1, ξk)

))
3.7: ȳk = proxΓ

−1
2

g
(
ŷk)

3.8: ξ̄k ∼ P

3.9: xk+1 = xk + αk

(
x̄k − x̂k − Γ1∇xφ̂(z̄k, ξ̄k)

)
3.10: yk+1 = yk + αk

(
ȳk − ŷk + Γ2∇yφ̂(z̄k, ξ̄k)

)
Return zk+1 = (xk+1, yk+1)

a nonlinear and asymmetrical preconditioning. Asymmetrical preconditioning has been used in the
literature to unify a large range of algorithm in the monotone setting Latafat & Patrinos (2017). A
subtle but crucial difference, however, is that the preconditioning considered here depends nonlin-
early on the current iterate. As it will be shown in Section 8.1 this nontrivial feature is the key for
showing convergence for primal-dual algorithms in the nonmonotone setting.

Consider the following generalization of (CEG+) by introducing a potentially asymmetric nonlinear
preconditioning Pzk that depends on the current iterate zk.

find z̄k such that Hzk (zk) ∈ Pzk (z̄k) + A(z̄k), (8.1a)

update zk+1 = zk + αΓ
(
Hzk (z̄k) − Hzk (zk)

)
. (8.1b)

where Hu(v) B Pu(v) − F(v) and Γ is some positive definite matrix. The iteration independent and
diagonal choice Pzk = γ−1I and Γ = γI correspond to the basic (CEG+). More generally we consider

Pu(z) B Γ−1z + Qu(z) (8.2)
where Qu(z) captures the nonlinear and asymmetric part, which ultimately enables alternating up-
dates and relaxing the Lipschitz conditions (see Remark 8.1(ii)). Notice that the iterates above does
not always yield well-defined updates and one must inevitably impose additional structures on the
preconditioner (we provide sufficient condition in Appendix F.1). Consistently with (8.2), in the
stochastic case we define

P̂u(z, ξ) B Γ−1z + Q̂u(z, ξ). (8.3)
The proposed stochastic scheme, which introduces a carefully chosen bias-correction term, is sum-
marized as

compute hk = P̂zk (zk, ξk) − F̂(zk, ξk) + (1 − αk)
(
hk−1 − P̂zk−1 (zk−1, ξk) + F̂(zk−1, ξk) (8.4a)

− Q̂zk−1 (z̄k−1, ξ′k−1) + Q̂zk−1 (z̄k−1, ξ′k)
)

with ξk, ξ
′
k ∼ P

find z̄k such that hk ∈ P̂zk (z̄k, ξ′k) + Az̄k (8.4b)

update zk+1 = zk + αkΓ
(
P̂zk (z̄k, ξ̄k) − F̂(z̄k, ξ̄k) − hk

)
with ξ̄k ∼ P (8.4c)

Remark 4. The two additional terms in (8.4a) are due to the interesting interplay between weak
MVI and stochastic feedback, which forces a change of variables (see Appendix F.4).

To make a concrete choice of Q̂u(z, ξ) we will consider a minimax problem as a motivating example
(see Appendix F.1 for a more general setup).

8.1 Nonlinearly preconditioned primal dual hybrid gradient

We consider the problem of
minimize

x∈�n
maximize

y∈�r
f (x) + φ(x, y) − g(y). (8.5)

7
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where φ(x, y) := Eξ[φ̂(x, y, ξ)]. The first order optimality conditions may be written as the inclusion
0 ∈ Tz B Az + Fz, where A = (∂ f , ∂g), F(z) = (∇xφ(z),−∇yφ(z)), (8.6)

while the algorithm only has access to the stochastic estimates F̂(z, ξ) B (∇xφ̂(z, ξ),−∇yφ̂(z, ξ)).
Assumption IV. For problem (8.5), let the following hold with a stepsize matrix Γ = blkdiag(Γ1,Γ2)
where Γ1 ∈ �

n and Γ2 ∈ �
r are symmetric positive definite matrices:

(i) f , g are proper lsc convex

(ii) φ : �n+r → � is continuously differentiable and for some symmetric positive definite matrices
Dxx,Dxy,Dyx,Dyy, the following holds for all z = (x, y), z′ = (x′, y′) ∈ �n+r

∥∇xφ(z′) − ∇xφ(z)∥2Γ1
≤ L2

xx∥x
′ − x∥2Dxx

+ L2
xy∥y

′ − y∥2Dxy
,

∥∇yφ(z′) − θ∇yφ(x′, y) − (1 − θ)∇yφ(z)∥2Γ2
≤ L2

yx∥x
′ − x∥2Dyx

+ L2
yy∥y

′ − y∥2Dyy
.

(iii) Stepsize condition: L2
xxDxx + L2

yxDyx ≺ Γ
−1
1 and L2

xyDxy + L2
yyDyy ≺ Γ

−1
2 .

(iv) Bounded variance: Eξ
[
∥F̂(z, ξ) − F̂(z′, ξ)∥2

Γ

]
≤ σ2

F ∀z, z′ ∈ �n.

(v) φ̂(·, ξ) : �n+r → � is continuously differentiable and for some symmetric positive definite ma-
trices Dx̂z,Dŷz,Dŷx,Dŷy, the following holds for all z = (x, y), z′ = (x′, y′) ∈ �n+r and v, v′ ∈ �n

for θ ∈ [0,∞): Eξ
[
∥∇xφ̂(z′, ξ) − ∇xφ̂(z, ξ)∥2Γ1

]
≤ L2

x̂z∥z
′ − z∥2Dx̂z

if θ , 1: Eξ
[
∥∇yφ̂(z, ξ) − ∇yφ̂(z′, ξ)∥2Γ2

]
≤ L2

ŷz∥z
′ − z∥2Dŷz

if θ , 0: Eξ
[
∥∇yφ̂(v′, y′, ξ) − ∇yφ̂(v, y, ξ)∥2Γ2

]
≤ L2

ŷx∥v
′ − v∥2Dŷx

+ L2
ŷy∥y

′ − y∥2Dŷy
.

Remark 8.1. In Algorithm 3 the choice of θ ∈ [0,∞) leads to different algorithmic oracles and
underlying assumptions in terms of Lipschitz continuity in Assumptions IV(ii) and IV(v).

(i) If θ = 0 then the first two steps may be computed in parallel and we recover Algorithm 2.
Moreover, to ensure Assumption IV(ii) in this case it suffices to assume for Lx, Ly ∈ [0,∞),

∥∇xφ(z′) − ∇xφ(z)∥ ≤ Lx∥z′ − z∥, ∥∇yφ(z′) − ∇yφ(z)∥ ≤ Ly∥z′ − z∥.

(ii) Taking θ = 1 leads to Gauss-Seidel updates and a nonlinear primal dual extragradient algorithm
with sufficient Lipschitz continuity assumptions for some Lx, Ly ∈ [0,∞),

∥∇xφ(z′) − ∇xφ(z)∥ ≤ Lx∥z′ − z∥, ∥∇yφ(z′) − ∇yφ(x′, y)∥ ≤ Ly∥y′ − y∥.

Algorithm 3 is an application of (8.4) applied for solving (8.6). In order to cast the algorithm as
an instance of the template algorithm (8.4), we choose the positive definite stepsize matrix as Γ =
blkdiag(Γ1,Γ2) with Γ1 ≻ 0, Γ2 ≻ 0, and the nonlinear part of the preconditioner as

Q̂u(z̄, ξ) B
(
0,−θ∇yφ̂(x̄, y, ξ)

)
, and Qu(z̄) B

(
0,−θ∇yφ(x̄, y)

)
(8.7)

where u = (x, y) and z̄ = (x̄, ȳ). Recall Hu(z) B Pu(z) − F(z) and define S u(z; z̄) B Hu(z) − Qu(z̄).
The convergence in Theorem 8.2 depends on the distance between the initial estimate Γ−1ẑ−1 with
ẑ−1 = (x̂−1, ŷ−1) and the deterministic S z−1 (z−1; z̄−1). See Appendix B for additional notation.
Theorem 8.2. Suppose that Assumption I(iii) to II(ii) and IV hold. Moreover, suppose that αk ∈

(0, 1), θ ∈ [0,∞) and the following holds,

µ B
1−
√
α0

1+
√
α0
+

2ρ
γ̄
− α0 − 2α0(ĉ1 + 2ĉ2(1 + ĉ3))η > 0 and 1 − 4ĉ2α0 > 0 (8.8)

where γ̄ denotes the smallest eigenvalue of Γ, η ≥ (1 + 4ĉ2α
2
0)( 1
√
α0(1−LM )2 +

1−
√
α0

√
α0

)/(1 − 4ĉ2α0) and

ĉ1 B L2
x̂z∥ΓDx̂z∥ + 2(1 − θ)2L2

ŷz∥ΓDŷz∥ + 2θ2L2
ŷy∥Γ2Dŷy∥, ĉ2 B 2θ2L2

ŷx∥Γ1Dŷx∥, ĉ3 B L2
x̂z∥ΓDx̂z∥,

L2
M B max

{
L2

xx∥DxxΓ1∥ + L2
yx∥DyxΓ1∥, ∥L2

xy∥DxyΓ2∥ + L2
yy∥DyyΓ2∥

}
.

Consider the sequence (zk)k∈� generated by Algorithm 3. Then, the following holds for all z⋆ ∈ S⋆

E[distΓ(0,T z̄k⋆ )2] ≤
E[∥z0 − z⋆∥2

Γ−1 ] + ηE[∥Γ−1ẑ−1 − S z−1 (z−1; z̄−1)∥2
Γ
] +Cσ2

F
∑K

j=0 α
2
j

µ
∑K

j=0 α j

8
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Figure 2: Comparison of methods in the unconstrained setting of Example 2 (left) and the constrained
setting of Example 3 (right). Notice that only BC-SEG+ and BC-PSEG+ converges properly while (SEG)
diverges, (PSEG) cycles and both (SF-EG+) and (SF-PEG+) only converge to a neighborhood. BC-
(P)SEG+ is guaranteed to converge with probability 1 as established through Theorem 6.3 and ??.

where C B 2(η+α0( 1
√
α0(1−LM )2 +

1−
√
α0

√
α0

))(1+ 2ĉ2)+ 1+ 2(ĉ1 + 2ĉ2(Θ+ ĉ3))η with Θ = (1− θ)2 + 2θ2

and k⋆ is chosen from {0, 1, . . . ,K} according to probability P[k⋆ = k] = αk∑K
j=0 α j

.

Remark 5. When α0 → 0 the conditions in (8.2) reduces to 1 + 2ρ
γ̄
> 0 as in the deterministic case.

For θ = 0 Algorithm 3 reduces to Algorithm 2. With this choice Theorem 8.2 simplifies, since the
constant ĉ2 = 0, and we recover the convergence result of Theorem 7.1.

9 Experiments

We compare BC-SEG+ and BC-PSEG+ against (EG+) using stochastic feedback (which we refer
to as (SF-EG+)) and (SEG) in both an unconstrained setting and a constrained setting introduced
in Pethick et al. (2022). See Appendix H.2 for the precise formulation of the projected variants
which we denote (SF-PEG+) and (PSEG) respectively. In the unconstrained example we control all
problem constant and set ρ = −1/10LF , while the constrained example is a specific minimax problem
where ρ > −1/2LF holds within the constrained set for a Lipschitz constant LF restricted to the same
constrained set. To simulate a stochastic setting in both examples, we consider additive Gaussian
noise, i.e. F̂(z, ξ) = Fz + ξ where ξ ∼ N(0, σ2I). In the experiments we choose σ = 0.1 and
αk ∝ 1/k, which ensures almost sure convergence of BC-(P)SEG+. For a more aggressive stepsize
choice αk ∝ 1/

√
k see Figure 4. Further details can be found in Appendix H.

The results are shown in Figure 2. The sequence generated by (SEG) and (PSEG) diverges for the
unconstrained problem and cycles in the constrained problem respectively. In comparison (SF-EG+)
and (SF-PEG+) gets within a neighborhood of the solutions but fails to converge due to the non-
diminishing stepsize, while BC-SEG+ and BC-PSEG+ converges in the examples.

10 Conclusion

This paper shows that nonconvex-nonconcave problems characterize by the weak Minty variational
inequality can be solved efficiently even when only stochastic gradients are available. The approach
crucially avoids increasing batch sizes by instead introducing a bias-correction term. We show that
convergence is possible for the same range of problem constant ρ ∈ (−γ/2,∞) as in the determin-
istic case. Rates are established for a random iterate, which matches those of stochastic extragra-
dient in the monotone case, and the result is complemented with almost sure convergence, thus
providing asymptotic convergence for the last iterate. We show that the idea extends to a family of
extragradient-type methods which includes a nonlinear extension of the celebrated primal dual hy-
brid gradient (PDHG) algorithm. For future work it is interesting to see if the rate can be improved
by considering accelerated methods such as Halpern iterations.

9



Published as a conference paper at ICLR 2023

11 Acknowledgments and disclosure of funding

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement n° 725594 - time-data).
This work was supported by the Swiss National Science Foundation (SNSF) under grant number
200021_205011. The work of the third and fourth author was supported by the Research Founda-
tion Flanders (FWO) postdoctoral grant 12Y7622N and research projects G081222N, G033822N,
G0A0920N; Research Council KU Leuven C1 project No. C14/18/068; European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No.
953348. The work of Olivier Fercoq was supported by the Agence National de la Recherche grant
ANR-20-CE40-0027, Optimal Primal-Dual Algorithms (APDO).

References

Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality meth-
ods. arXiv preprint arXiv:2102.08352, 2021.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. arXiv preprint arXiv:1912.02365, 2019.

Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory in
Hilbert spaces. CMS Books in Mathematics. Springer, 2017. ISBN 978-3-319-48310-8.

Heinz H Bauschke, Walaa M Moursi, and Xianfu Wang. Generalized monotone operators and their
averaged resolvents. Mathematical Programming, 189(1):55–74, 2021.

Dimitri P. Bertsekas. Incremental proximal methods for large scale convex optimization. Mathe-
matical programming, 129(2):163–195, 2011.

Aleksandr Beznosikov, Eduard Gorbunov, Hugo Berard, and Nicolas Loizou. Stochastic gradi-
ent descent-ascent: Unified theory and new efficient methods. arXiv preprint arXiv:2202.07262,
2022.

Axel Böhm. Solving nonconvex-nonconcave min-max problems exhibiting weak minty solutions.
arXiv preprint arXiv:2201.12247, 2022.
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Table 1: Overview of the results. The second row is obtained as special cases of the first row.

Unconstrained & smooth (A ≡ 0) Constrained (A . 0)
Random iterate Last iterate BC-PSEG+ NP-PDHG

Appendix Theorem D.2 Theorem D.3 Theorem E.2 Theorem F.5
⇓ ⇓ ⇓ ⇓

Main paper Theorem 6.1 Theorem 6.3 Theorem 7.1 Theorem 8.2

A Prelude

For the unconstrained and smooth setting Appendix C treats convergences of (SEG+) for the re-
stricted case where F is linear. Appendix D shows both random iterate results and almost sure con-
vergence of Algorithm 1. Theorems 6.1 and 6.3 in the main body are implied by the more general re-
sults in this section, which preserves certain free parameters and more general stepsize requirements.
Appendices E and F moves beyond the unconstrained and smooth case by showing convergence for
instances of the template scheme (8.1). The analysis of Algorithm 3 in Appendix F applies to Al-
gorithm 2, but for completeness we establish convergence for general F separately in Appendix E.
The relationship between the theorems are presented in Table 1.

B Preliminaries

Given a psd matrix V we define the inner product as ⟨·, ·⟩V B ⟨·,V ·⟩ and the corresponding norm
∥ · ∥ B

√
⟨·, ·⟩V . The distance from u ∈ �n to a setU ⊆ �n with respect to a positive definite matrix

V is defined as distV (u,U) B minu′∈U ∥u − u′∥V , which we simply denote dist(u,U) when V = I.
The norm ∥X∥ refers to spectral norm when X is a matrix.

We summarize essential definitions from operator theory, but otherwise refer to Bauschke & Com-
bettes (2017); Rockafellar (1970) for further details.

An operator A : �n ⇒ �d maps each point x ∈ �n to a subset Ax ⊆ �d, where the notation A(x)
and Ax will be used interchangably. We denote the domain of A by dom A B {x ∈ �n | Ax , ∅},
its graph by gph A B {(x, y) ∈ �n × �d | y ∈ Ax}. The inverse of A is defined through its graph,
gph A−1 B {(y, x) | (x, y) ∈ gph A} and the set of its zeros by zer A B {x ∈ �n | 0 ∈ Ax}.

Definition B.1 ((co)monotonicity Bauschke et al. (2021)). An operator A : �n ⇒ �n is said to be
ρ-monotone for some ρ ∈ �, if for all (x, y), (x′, y′) ∈ gph A

⟨y − y′, x − x′⟩ ≥ ρ∥x − x′∥2,
and it is said to be ρ-comonotone if for all (x, y), (x′, y′) ∈ gph A

⟨y − y′, x − x′⟩ ≥ ρ∥y − y′∥2.
The operator A is said to be maximally (co)monotone if there exists no other (co)monotone operator
B for which gph A ⊂ gph B properly.

If A is 0-monotone we simply say it is monotone. When ρ < 0, ρ-comonotonicity is also referred to
as |ρ|-cohypomonotonicity.

Definition B.2 (Lipschitz continuity and cocoercivity). Let D ⊆ �n be a nonempty subset of �n. A
single-valued operator A : D → �n is said to be L-Lipschitz continuous if for any x, x′ ∈ D

∥Ax − Ax′∥ ≤ L∥x − x′∥,
and β-cocoercive if

⟨x − x′, Ax − Ax′⟩ ≥ β∥Ax − Ax′∥2.

Moreover, A is said to be nonexpansive if it is 1-Lipschitz continuous, and firmly nonexpansive if it
is 1-cocoercive.

A β-cocoercive operator is also β−1-Lipschitz continuity by direct implication of Cauchy-Schwarz.
The resolvent operator JA = (id + A)−1 is firmly nonexpansive (with dom JA = �

n) if and only if A
is (maximally) monotone.

We will make heavy use of the Fenchel-Young inequality. For all a, b ∈ �n and e > 0 we have,

14
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2⟨a, b⟩ ≤ e∥a∥2 + 1
e ∥b∥

2 (B.1)

∥a + b∥2 ≤ (1 + e)∥a∥2 + (1 + 1
e )∥b∥2 (B.2)

−∥a − b∥2 ≤ − 1
1+e ∥a∥

2 + 1
e ∥b∥

2 (B.3)

C Proof for SEG+

Proof of Theorem 5.1. Following (Hsieh et al., 2020) closely, define the reference state ˜̄zk := zk −

γFzk to be the exploration step using the deterministic operator and denote the second stepsize as
ηk := αkγ. We will let ζ denote the additive noise term, i.e. F̂(z, ξ) := F(z) + ζ. Expanding the
distance to solution,
∥zk+1 − z⋆∥2 = ∥zk − ηkF̂(z̄k, ξ̄k) − z⋆∥2

= ∥zk − z⋆∥2 − 2ηk⟨F̂(z̄k, ξ̄k), zk − z⋆⟩ + η2
k∥F̂(z̄k, ξ̄k)∥2

= ∥zk − z⋆∥2 − 2ηk⟨F̂(z̄k, ξ̄k), ˜̄zk − z⋆⟩ − 2γηk⟨F̂(z̄k, ξ̄k), F(zk)⟩ + η2
k∥F̂(z̄k, ξ̄k)∥2.

(C.1)

Recall that the operator is assumed to be linear Fz = Bz + v in which case we have,

F̂(z̄k, ξ̄k) = Bz̄k + v + ζ̄k

=B(zk − γF̂(zk, ξk)) + v + ζ̄k

=B(zk − γBzk − γv − γζk) + v + ζ̄k

=B(zk − γ(Bzk + v)) + v − γBζk + ζ̄k

=F(˜̄zk) − γBζk + ζ̄k.

(C.2)

The two latter terms are zero in expectation due to the unbiasedness from Assumption II(ii), which
lets us write the terms on the RHS of (C.1) as,

−Ek⟨F̂(z̄k, ξ̄k), ˜̄zk − z⋆⟩ = −⟨F(˜̄zk), ˜̄zk − z⋆⟩ (C.3)

−Ek⟨F̂(z̄k, ξ̄k), F(zk)⟩ = −⟨F(˜̄zk), F(zk)⟩ (C.4)

Ek∥F̂(z̄k, ξ̄k)∥2 = ∥F(˜̄zk)∥2 + Ek∥γBζk∥
2 + Ek∥ζ̄k∥

2. (C.5)
We can bound (C.3) directly through the weak MVI in Assumption I(iii) which might still be posi-
tive,

−⟨F(˜̄zk), ˜̄zk − z⋆⟩ ≤ −ρ∥F(˜̄zk)∥2. (C.6)

For the latter two terms of (C.5) we have
Ek∥γBζk∥

2 + Ek∥ζ̄k∥
2 = γ2Ek∥F(ζk) − F(0)∥2 + Ek∥ζ̄k∥

2 ≤ (γ2L2
F + 1)σ2

F , (C.7)
where the last inequality follows from Lipschitz in Assumption I(i) and bounded variance in As-
sumption II(iii).

Combining everything into (C.1) we are left with
Ek∥zk+1 − z⋆∥2 ≤ ∥zk − z⋆∥2 + η2

k(γ2L2
F + 1)σ2

F − 2γηk⟨F(˜̄zk), F(zk)⟩ + (η2
k − 2ηkρ)∥F(˜̄zk)∥2 (C.8)

By assuming the stepsize condition, ρ ≥ (ηk − γ)/2, we have η2
k − 2ηkρ ≤ γηk. This allows us to

complete the square,

−2γηk⟨F(˜̄zk), F(zk)⟩ + (η2
k − 2ηkρ)∥F(˜̄zk)∥2 ≤ −2γηk⟨F(˜̄zk), F(zk)⟩ + γηk∥F(˜̄zk)∥2

= γηk(∥F(zk) − F(˜̄zk)∥2 − ∥F(zk)∥2)

≤ γηk(γ2L2
F − 1)∥F(zk)∥2,

(C.9)

where the last inequality follows from Lipschitzness of F and the definition of the update rule.
Plugging into (C.8) we are left with

Ek∥zk+1 − z⋆∥2 ≤ ∥zk − z⋆∥2 + η2
k(γ2L2

F + 1)σ2
F − γηk(1 − γ2L2

F)∥F(zk)∥2. (C.10)
The result is obtained by total expectation and summing.
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D Proof for smooth unconstrained case

Lemma D.1. Consider the recurrent relation Bk+1 = ξkBk + dk such that ξk > 0 for all k ≥ 0. Then

Bk+1 =
(
Πk

p=0ξp
)B0 +

k∑
ℓ=0

dℓ
Πℓp=0ξp

.
Assumption V. γ ∈ (⌊−2ρ⌋+, 1/LF) and for positive real valued b,

µ B γ2(1 − γ2L2
F(1 + b−1)) > 0. (D.1)

Theorem D.2. Suppose that Assumptions I to III hold. Suppose in addition that Assumption V holds
and that (αk)k∈� ⊂ (0, 1) is a diminishing sequence such that

2γLF̂
√
α0 +

(
1 +

(
(b + 1)γ2L2

F
)
γ2L2

F̂

)
α0 ≤ 1 + 2ρ

γ
. (D.2)

Consider the sequence (zk)k∈� generated by Algorithm 1. Then, the following estimate holds

K∑
k=0

αk∑K
j=0 α j

E[∥F(zk)∥2] ≤
∥z0 − z⋆∥2 + ηγ2∥F(z0)∥2 +Cσ2

Fγ
2 ∑K

j=0 α
2
j

µ
∑K

j=0 α j
, (D.3)

where C = 1 + 2η
(
(γ2L2

F̂
+ 1) + 2α0

)
and η = 1

2 (b + 1)γ2L2
F +

1
γLF̂
√
α0

.

Proof of Theorem D.2. The proof relies on establishing a (stochastic) descent property on the fol-
lowing potential function

Uk+1 B ∥zk+1 − z⋆∥2 + Ak+1∥uk∥2 + Bk+1∥zk+1 − zk∥2.

where uk B z̄k− zk+γF(zk) measures the difference of the bias-corrected step from the deterministic
exploration step, and (Ak)k∈�, (Bk)k∈� are positive scalar parameters to be identified. We proceed to
consider each term individually.

Let us begin by quantifying how well z̄k estimates zk − γF(zk).

uk = z̄k − zk + γF(zk) = γF(zk) − γF̂(zk, ξk) + (1 − αk)(z̄k−1 − zk−1 + γF̂(zk−1, ξk)).

Therefore,

∥uk∥2 = ∥γF(zk) − γF̂(zk, ξk) + (1 − αk)(γF̂(zk−1, ξk) − γF(zk−1))∥2 + (1 − αk)2∥uk−1∥2

+ 2(1 − αk)⟨z̄k−1 − zk−1 + γF(zk−1), γF(zk) − γF̂(zk, ξk) + (1 − αk)(γF̂(zk−1, ξk) − γF(zk−1))⟩.

Conditioned on Fk, in the inner product the left term is known and the right term has an expectation
that equals zero. Therefore, we obtain

E[∥uk∥2 |Fk]=E[∥(1−αk)
(
γF(zk)−γF̂(zk,ξk)+γF̂(zk−1,ξk)−γF(zk−1)

)
+αk

(
γF(zk)−γF̂(zk,ξk)

)
∥2 |Fk]

+(1−αk)2∥uk−1∥2

≤(1−αk)2∥uk−1∥2+2(1−αk)2γ2E[∥F̂(zk,ξk)−F̂(zk−1,ξk)∥2 |Fk]

+2α2
kγ

2E[∥F(zk)−F̂(zk,ξk)∥2 |Fk]

≤(1−αk)2∥uk−1∥2+2(1−αk)2γ2L2
F̂
∥zk−zk−1∥2+2α2

kγ
2σ2

F (D.4)

where in the first inequality we used Young inequality and the fact that the second moment is larger
than the variance, and Assumptions II(iii) and III were used in the second inequality.

By step 1.4, the equality

∥zk+1 − z⋆∥2 = ∥zk − z⋆∥2 − 2αkγ⟨F̂(z̄k, ξ̄k), zk − z⋆⟩ + α2
kγ

2∥F̂(z̄k, ξ̄k)∥2, (D.5)
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holds. The inner product in (D.5) can be upper bounded using Young inequalities with positive
parameters εk, k ≥ 0, and b as follows.
E[⟨−γF̂(z̄k, ξ̄k), zk − z⋆⟩ | F̄k] = − γ⟨F(z̄k), zk − z̄k⟩ − γ⟨F(z̄k), z̄k − z⋆⟩

= − γ2⟨F(z̄k), F(zk)⟩ + γ⟨F(z̄k), z̄k − zk + γF(zk)⟩ − γ⟨F(z̄k), z̄k − z⋆⟩

≤ γ2
(1
2
∥F(z̄k) − F(zk)∥2 −

1
2
∥F(z̄k)∥2 −

1
2
∥F(zk)∥2

)
+
γ2εk

2
∥F(z̄k)∥2

+
1

2εk
∥z̄k − zk + γF(zk)∥2 − γρ∥F(z̄k)∥2

≤ γ2L2
F

1 + b
2
∥uk∥2 +

1 + b−1

2
γ4L2

F∥F(zk)∥2 −
γ2

2
∥F(z̄k)∥2

−
γ2

2
∥F(zk)∥2 +

γ2εk

2
∥F(z̄k)∥2 +

1
2εk
∥uk∥2 − γρ∥F(z̄k)∥2

=
(
γ2L2

F
1 + b

2
+

1
2εk

)
∥uk∥2 +

γ2(γ2L2
F(1 + b−1) − 1)

2
∥F(zk)∥2

+
(γ2(εk − 1)

2
− γρ

)
∥F(z̄k)∥2. (D.6)

Conditioning (D.6) with E
[
· | Fk

]
= E

[
E
[
· | F̄k

]
| Fk

]
, since Fk ⊂ F̄k, yields

2E[⟨−γF̂(z̄k, ξ̄k), zk − z⋆⟩ | Fk] ≤
(
γ2L2

F(1 + b) +
1
εk

)
E[∥uk∥2 | Fk] − µ∥F(zk)∥2

+
(
γ2(εk − 1) − 2γρ

)
E
[
∥F(z̄k)∥2 | Fk

]
, (D.7)

where µ was defined in (D.1).

The condition expectation of the third term in (D.5) is bounded through Assumption II(iii) by

E
[
∥F̂(z̄k, ξ̄k)∥2 | Fk

]
= E

[
E[∥F̂(z̄k, ξ̄k)∥2 | F̄k] | Fk

]
≤ ∥F(z̄k)∥2 + σ2

F ,

which in turn implies

E
[
∥zk+1 − zk∥2 | Fk

]
= α2

kγ
2E

[
∥F̂(z̄k, ξ̄k)∥2 | Fk

]
≤ α2

kγ
2E

[
∥Fz̄k∥2 | Fk

]
+ α2

kγ
2σ2

F (D.8)

Combining (D.7), (D.8), and (D.5) yields
E[∥zk+1 − z⋆∥2 + Ak+1∥uk∥2 + Bk+1∥zk+1 − zk∥2 | Fk]

≤ ∥zk − z⋆∥2 +
(
Ak+1 + αk

(
γ2L2

F(1 + b) +
1
εk

))
E[∥uk∥2 | Fk] − αkµ∥F(zk)∥2

+
(
αk

(
γ2(εk − 1) − 2γρ

)
+ α2

kγ
2
)
E
[
∥F(z̄k)∥2 | Fk

]
+ α2

kγ
2σ2

F

+ Bk+1α
2
kγ

2E
[
∥Fz̄k∥2 | Fk

]
+ Bk+1α

2
kγ

2σ2
F . (D.9)

Further using (D.4) and denoting

Xk
1 B αk

(
γ2L2

F(1 + b) + 1
εk

)
+ Ak+1,

Xk
2 B αk

(
γ2(εk − 1) − 2ργ + αk γ

2
)

leads to
E[Uk+1 | Fk] −Uk ≤ − αkµ∥F(zk)∥2 +

(
Xk

1(1 − αk)2 − Ak

)
∥uk−1∥2

+
(
2Xk

1(1 − αk)2γ2L2
F̂
− Bk

)
∥zk − zk−1∥2 +

(
Xk

2 + Bk+1α
2
kγ

2
)
E
[
∥F(z̄k)∥2 | Fk

]
+

(
Bk+1α

2
k + α

2
k + 2Xk

1α
2
k

)
γ2σ2

F . (D.10)

Having established (D.10), set Ak = A, Bk = 2Aγ2L2
F̂

, and εk = ε to obtain by the law of total
expectation that

E[Uk+1] − E[Uk] ≤ − αkµE
[
∥F(zk)∥2

]
+

(
Xk

1(1 − αk)2 − A
)
E
[
∥uk−1∥2

]
+ 2γ2L2

F̂

(
Xk

1(1 − αk)2 − A
)
E
[
∥zk − zk−1∥2

]
+

(
Xk

2 + 2Aγ4L2
F̂
α2

k

)
E
[
∥F(z̄k)∥2

]
+

(
2Aγ2L2

F̂
+ 1 + 2Xk

1

)
α2

kγ
2σ2

F . (D.11)
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To get a recursion we require

Xk
1(1 − αk)2 − A ≤ 0 and Xk

2 + 2Aγ4L2
F̂
α2

k ≤ 0. (D.12)
By developing the first requirement of (D.12) we have,

0 ≥ Xk
1(1 − αk)2 − A = αk(1 − αk)2

(
γ2L2

F(1 + b) + 1
ε

)
+ αk(αk − 2)A. (D.13)

Equivalently, A needs to satisfy

A ≥
(1 − αk)2

2 − αk

(
γ2L2

F(1 + b) + 1
ε

)
. (D.14)

for any αk ∈ (0, 1). Since (1−αk)2

2−αk
≤ 1

2 given αk ∈ (0, 1) it suffice to pick

A = 1
2

(
(b + 1)γ2L2

F +
1
ε

)
. (D.15)

For the second requirement of (D.12) note that we can equivalently require that the following quan-
tity is negative

1
αkγ2

(
Xk

2 + 2Aγ4L2
F̂
α2

k

)
= ε − 1 − 2ρ

γ
+ αk + 2Aγ2L2

F̂
αk

≤ ε − 1 − 2ρ
γ
+

(
1 +

(
(b + 1)γ2L2

F +
1
ε

)
γ2L2

F̂

)
α0

where we have used that αk ≤ α0 and the choice of A from (D.15). Setting the Young parameter
ε = γLF̂

√
α0 we obtain that Xk

2 + 2Aγ4L2
F̂
α2

k ≤ 0 owing to (D.2).

On the other hand, the last term in (D.11) may be upper bounded by

2Aγ2L2
F̂
+ 1 + 2Xk

1 = 1 +
(
(b + 1)γ2L2

F +
1

γLF̂
√
α0

)(
(γ2L2

F̂
+ 1) + 2αk

)
≤ 1 +

(
(b + 1)γ2L2

F +
1

γLF̂
√
α0

)(
(γ2L2

F̂
+ 1) + 2α0

)
= C.

Thus, it follows from (D.11) that

E[Uk+1] − E[Uk] ≤ − αkµE
[
∥F(zk)∥2

]
+Cα2

kγ
2σ2

F .

Telescoping the above inequality completes the proof.

Proof of Theorem 6.1. The theorem is obtained as a particular instantiation of Theorem D.2.

The condition in (D.1) can be rewritten as b > γ2L2
F

1−γ2L2
F

. A reasonable choice is b = 2γ2L2
F

1−γ2L2
F

. Substituting
back into µ we obtain

µ = γ2(1 − γ2L2
F(1 + 1−γ2L2

F

2γ2L2
F

)) = γ2(1−γ2L2
F )

2 > 0. (D.16)

Similarly, the choice of b is substituted into η and (D.2) of Theorem D.2.

The rate in (D.2) is further simplified by applying Lipschitz continuity of F from Assumption I(i)
to ∥Fz0∥2 = ∥Fz0 − Fz⋆∥2. The proof is complete by observing that the guarantee on the weighted
sum can be converted into an expectation over a sampled iterate in the style of Ghadimi & Lan
(2013).

Assumption VI (almost sure convergence). Let d ∈ [0, 1], b > 0. Suppose that the following holds

(i) the diminishing sequence (αk)k∈� ⊂ (0, 1) satisfies the classical conditions∑∞
k=0 αk = ∞, ᾱ B

∑∞
k=0 α

2
k < ∞;

(ii) letting ck B (1 + b)γ2L2
F +

1
γLF̂

α−d
k for all k ≥ 0

ηk B
∑∞
ℓ=k

(
clαlΠ

ℓ
p=0(1 − αp)2

)
< ∞, ν B

∑∞
k=0 ηk+1α

2
k

(
Πk

p=0
1

(1−αp)2

)
< ∞, (D.17)

and
γLF̂α

d
k + αk + 2γ2L2

F̂
αkηk+1Π

k
p=0

1
(1−αp)2 ≤ 1 + 2ρ

γ
. (D.18)
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Although at first look the above assumptions may appear involved, as shown in Theorem D.3 clas-
sical stepsize choice of α0

k+1 is sufficient to satisfy (D.17), and to ensure almost sure convergence
provided that instead (D.20) holds. Note that with this choice as k goes to infinity, αk ↘ 0 and the
deterministic range γ + 2ρ > 0 is obtained.
Theorem D.3 (almost sure convergence). Suppose that Assumptions I to III hold. Additionally,
suppose the stepsize conditions in Assumptions V and VI. Then, the sequence (zk)k∈� generated by
Algorithm 1 converges almost surely to some z⋆ ∈ zer T. Moreover, the following estimate holds

K∑
k=0

αk∑K
j=0 α j

E[∥F(zk)∥2] ≤
∥z0 − z⋆∥2 + η0γ

2∥F(z0)∥2 + C̄
µ
∑K

j=0 α j
, (D.19)

where C̄ = 2γ2σ2
F
(
(γ2L2

F̂
+ 1)ν + ᾱ

( 1
2 + (b + 1)γ2L2

F +
1
γLF̂

))
is finite.

In particular, if αk =
1

k+r for any positive natural number r, and d = 1, then Assumption VI(ii) can
be replaced by

(γLF̂ + 1)αk + 2
(
(1 + b)γ4L2

F L2
F̂
αk+1 + γLF̂

)
(αk+1 + 1)αk+1 ≤ 1 + 2ρ

γ
. (D.20)

Proof of Theorem D.3 (almost sure convergence). Having established (D.10), let Bk = 2Akγ
2L2

F̂
such that(

2Xk
1(1 − αk)2γ2L2

F̂
− Bk

)
∥zk − zk−1∥2 = 2γ2L2

F̂

(
Xk

1(1 − αk)2 − Ak

)
∥zk − zk−1∥2. (D.21)

In what follows we show that it is sufficient to ensure
Xk

1(1 − αk)2 ≤ Ak, Xk
2 + 2Ak+1γ

4L2
F̂
α2

k ≤ 0, (D.22)
resulting in the inequality

E[Uk+1 | Fk] −Uk ≤ − αkµ∥F(zk)∥2 +
(
2Ak+1γ

2L2
F̂
+ 1 + 2Xk

1

)
α2

kγ
2σ2

F . (D.23)
A reasonable choice for the Young parameter εk is to choose

εk = γLF̂α
d
k for some d ∈ [0, 1]. (D.24)

The rational for this choice will become more clear in what follows.

The first inequality in (D.22) is linear and we can solve it to equality by Lemma D.1. Let

A0 B
∞∑
ℓ=0

(
clαlΠ

ℓ
p=0(1 − αp)2

)
= η0

(D.17)
< ∞, and ν =

∞∑
k=0

Ak+1α
2
k

(D.17)
< ∞. (D.25)

Furthermore, let ck and ηk be as in Assumption VI(ii). Then, Lemma D.1 yields

Ak+1 =

(
Πk

p=0
1

(1 − αp)2

)A0 −

k∑
ℓ=0

(
clαlΠ

ℓ
p=0(1 − αp)2

) = ηk+1Π
k
p=0

1
(1 − αp)2 (D.26)

which would ensure Ak ≥ 0 for all k. Therefore, assumptions (D.17) and (D.18) (which is a re-
statement of the conditions in (D.22)) are sufficient for ensuring (D.23). Substituting Xk

1 and Ak+1 in
(D.23) yields

E[Uk+1 | Fk] −Uk ≤ − αkµ∥F(zk)∥2 + ξk, (D.27)

where ξk = 2
(
Ak+1(γ2L2

F̂
+ 1) + 1

2 + (b + 1)γ2L2
Fαk +

1
γLF̂

α1−d
k

)
α2

kγ
2σ2

F . By Assumption VI we have
that ∑∞

k=0 ξk = 2γ2σ2
F

(γ2L2
F̂
+ 1)

∞∑
k=0

Ak+1α
2
k +

∞∑
k=0

α2
k

2 + (b + 1)γ2L2
F

∞∑
k=0

α3
k +

1
γLF̂

∞∑
k=0

α3−d
k


≤ 2γ2σ2

F

(γ2L2
F̂
+ 1)

∞∑
k=0

Ak+1α
2
k +

(
1
2 + (b + 1)γ2L2

F +
1
γLF̂

) ∞∑
k=0

α2
k

 < ∞
where we used the fact that α3

k ≤ α
2
k and d ≤ 1 in the first inequality, while the second inequality uses

(D.25), and Assumption VI(i). The claimed convergence result follows by the Robbins-Siegmund
supermartingale theorem (Bertsekas, 2011, Prop. 2) and standard arguments as in (Bertsekas, 2011,
Prop. 9).

The claimed rate follows by taking total expectation and summing the above inequality over k and
noting that initial iterates were set as z̄−1 = z−1 = z0.
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To provide an instance of the sequence (αk)k∈� that satisfy the assumptions, let r denote a positive
natural number and set

αk =
1

k+r . (D.28)

Then,

Πℓp=0(1 − αp)2 = Πℓp=0( p+r−1
p+r )2 =

(r−1)2

(ℓ+r)2 = (r − 1)2α2
ℓ ,

and for any K ≥ 0
K∑
ℓ=0

(
cℓαℓΠℓp=0(1 − αp)2

)
=

K∑
ℓ=0

(r−1)2

(ℓ+r)3 cℓ.

Plugging the value of cℓ and εk from Assumption VI(ii) and (D.24) we obtain that A0 is finite valued
since

∑∞
ℓ=0

1
(ℓ+r)3εℓ

=
∑∞
ℓ=0

1
(ℓ+r)3−d < ∞ owing to the fact that d ≤ 1.

Moreover,

Ak+1 =
(k + r)2

(r − 1)2

A0 −

k∑
ℓ=0

(
(r−1)2

(ℓ+r)3 cℓ
) = (k + r)2

∞∑
ℓ=k+1

1
(ℓ+r)3 cℓ = 1

α2
k

∞∑
ℓ=k+1

α3
ℓcℓ (D.29)

On the other hand, for e > 1 we have the following bound
∞∑

ℓ=k+1

αe
ℓ ≤

1
(k+1+r)e +

∫ ∞

k+1

1
(x+r)e dx = 1

(k+1+r)e +
1

(e−1)(k+1+r)e−1 . (D.30)

Therefore, it follows from (D.29) that

Ak+1αk =
1
αk

∞∑
ℓ=k+1

(
α3
ℓ (1 + b)γ2L2

F +
1
γLF

α3−d
ℓ

)
(D.30) ≤

(
(1 + b)γ2L2

F
1

2(k+1+r)

)(
2

k+1+r + 1
)

1
k+1+r +

(
1
γLF̂

1
(2−d)(k+1+r)1−d

)(
1

k+1+r + 1
)

1
k+1+r

=
(

1+b
2 γ2L2

Fαk+1

)
(2αk+1 + 1)αk+1 +

(
1

γLF̂ (2−d)α
1−d
k+1

)
(αk+1 + 1)αk+1

≤
(
(1 + b)γ2L2

Fαk+1 +
1

γLF̂ (2−d)α
1−d
k+1

)
(αk+1 + 1)αk+1 (D.31)

In turn, this inequality ensures that ν as defined in Assumption VI(ii) is finite. To see this note that

ν =
∑∞

k=0 Ak+1α
2
k

(D.31)
≤

∑∞
k=0

(
(1 + b)γ2L2

Fαk+1 +
1

γLF̂ (2−d)α
1−d
k+1

)
(αk+1 + 1)αk+1αk ≤ δ

∑∞
k=0 α

2
k < ∞,

where in the last two inequalities Assumption VI(i) was used.

It remains to confirm the second inequality in (D.22). With the choice of αk and εk as in (D.28) and
(D.24) we have

1
αkγ2

(
X2 + 2Ak+1γ

4L2
F̂
α2

k
)

= γLF̂α
d
k − 1 − 2ρ

γ
+ αk + 2Ak+1γ

2L2
F̂
αk

(D.31) ≤ γLF̂α
d
k + αk + 2γ2L2

F̂

(
(1 + b)γ2L2

Fαk+1 +
1

γLF̂ (2−d)α
1−d
k+1

)
(αk+1 + 1)αk+1 − 1 − 2ρ

γ
.

It follows that with d = 1 the assumption (D.20) is sufficient to ensure that the second condition in
(D.22) holds.

Proof of Theorem 6.3 (almost sure convergence). The result is a restatement of the special case in
Theorem D.3 where αk =

1
k+r . We proceed similarly to the proof of Theorem 6.1.

The condition in (D.1) can be rewritten as b > γ2L2
F

1−γ2L2
F

. A reasonable choice is b = 2γ2L2
F

1−γ2L2
F

. The choice

of b is substituted into (D.1), (D.20) and C̄ of Theorem D.3. This completes the proof.
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E Proof for constrained case

We will rely on two well-known and useful properties of the deterministic operator H = id − γF
from (Pethick et al., 2022, Lm. A.3) that we restate here for convenience.

Lemma E.1. Let F : �n → �n be a LF-Lipschitz operator and H = id−γF with γ ∈ (0, 1/LF]. Then,

(i) The operator H is 1/2-cocoercive.

(ii) The operator H is (1 − γLF)-monotone, and in particular

∥Hz′ − Hz∥ ≥ (1 − γLF)∥z′ − z∥ ∀z, z′ ∈ �n. (E.1)

Proof. The first claim follows from direct computation
⟨Hz − Hz′, z − z′⟩ = ⟨Hz − Hz′,Hz − Hz′ + γFz − γFz′⟩

= 1
2 ∥Hz − Hz′∥2 − γ2

2 ∥Fz′ − Fz∥2 + 1
2 ∥z
′ − z∥2

≥ 1
2 ∥Hz − Hz′∥2,

(E.2)

where the last inequality is due to Lipschitz continuity and γ ≤ 1/LF . The strongly monotonicity of
H is a consequence of Cauchy-Schwarz and Lipschitz continuity of F,

⟨Hz′ − Hz, z′ − z⟩ = ∥z′ − z∥2 − γ⟨Fz′ − Fz, z′ − z⟩ ≥ (1 − γL)∥z′ − z∥2.

The last claim follows from the Cauchy-Schwarz inequality.

Theorem E.2. Suppose that Assumptions I to III hold. Moreover, suppose that αk ∈ (0, 1), γ ∈
(⌊−2ρ⌋+, 1/LF) and for positive parameters ε and b the following holds,

µ B 1
1+b (1 − 1

ε(1−γLF )2 ) − α0(1 + 2γ2L2
F̂

A) + 2ρ
γ
> 0 and 1 − 1

ε(1−γLF )2 ≥ 0 (E.3)

where A ≥ ε + 1
b (1 − 1

ε(1−γLF )2 ). Consider the sequence (zk)k∈� generated by Algorithm 2. Then, the
following estimate holds for all z⋆ ∈ S⋆

K∑
k=0

αk∑K
j=0 α j
E[∥hk − Hz̄k∥2] ≤

E[∥z0 − z⋆∥2] + AE[∥h−1 − Hz−1∥2] +Cγ2σ2
F
∑K

j=0 α
2
j

µ
∑K

j=0 α j
(E.4)

where C = 1 + 2A(1 + γ2L2
F̂

) + 2α0A.

Proof of Theorem E.2. We rely on the following potential function,

Uk+1 B ∥zk+1 − z⋆∥2 + Ak+1∥hk − Hzk∥2 + Bk+1∥zk+1 − zk∥2,

where (Ak)k∈� and (Bk)k∈� are positive scalar parameters to be identified.

We will denote ˆ̄Hk := z̄k − γF̂(z̄k, ξ̄k), so that zk+1 = zk − αk(hk − ˆ̄Hk). Then, expanding one step,

∥zk+1 − z⋆∥2 = ∥zk − z⋆∥2 − 2αk⟨hk − ˆ̄Hk, zk − z⋆⟩ + α2
k∥h

k − ˆ̄Hk∥
2. (E.5)

Recall that Hz B z − γFz in the deterministic case. In the Algorithm 2, hk estimates Hzk. Let us
quantify how good this estimation is.

hk − Hzk = γFzk − γF̂(zk, ξk) + (1 − αk−1)(hk−1 − zk−1 + γF̂(zk−1, ξk))

∥hk − Hzk∥2 = (1 − αk−1)2∥hk−1 − zk−1 + γFzk−1∥2

+ ∥γFzk − γF̂(zk, ξk) + (1 − αk−1)(γF̂(zk−1, ξk) − γFzk−1)∥2

+ 2(1 − αk−1)⟨hk−1 − zk−1 + γFzk−1,

γFzk − γF̂(zk, ξk) + (1 − αk−1)(γF̂(zk−1, ξk) − γFzk−1)⟩

In the scalar product, the left term is known when zk is known and the right term has an expectation
equal to 0 by Assumption II(ii) when zk is known. Thus, taking conditional expectation and using
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the fact that the second moment is larger than the variance, we can go on as

E[∥hk − Hzk∥2 | Fk] ≤ (1 − αk)2∥hk−1 − Hzk−1∥2

+ E[2(1 − αk)2γ2∥F̂(zk, ξk) − F̂(zk−1, ξk)∥2 | Fk]

+ E[2α2
kγ

2∥Fzk − F̂(zk, ξk)∥2 | Fk]

≤ (1 − αk)2∥hk−1 − Hzk−1∥2 + 2(1 − αk)2L2
F̂
γ2∥zk − zk−1∥2 + 2α2

kγ
2σ2

F (E.6)

where we have used Assumption II(iii) and Assumption III.

We continue with the conditional expectation of the inner term in (E.5).

−E[⟨hk − ˆ̄Hk, zk − z⋆⟩ | Fk] = −⟨hk − Hz̄k, zk − z⋆⟩

= −⟨hk − Hz̄k, zk − z̄k⟩ − ⟨hk − Hz̄k, z̄k − z⋆⟩

= −⟨hk − Hzk, zk − z̄k⟩ − ⟨Hzk − Hz̄k, zk − z̄k⟩ − ⟨hk − Hz̄k, z̄k − z⋆⟩

≤ −⟨hk − Hzk, zk − z̄k⟩ − 1
2∥Hzk − Hz̄k∥2 − ⟨hk − Hz̄k, z̄k − z⋆⟩

(E.7)

where the last inequality uses 1/2-cocoercivity of H from Lemma F.2(i) under Assumption I(i) and
the choice γ ≤ 1/LF .

By definition of z̄k in Step 2.3, we have hk ∈ z̄k + γA(z̄k), so that 1
γ
(hk −Hz̄k) ∈ F(z̄k)+ A(z̄k). Hence,

using the weak MVI from Assumption I(iii),

⟨hk − Hz̄k, z̄k − z⋆⟩ ≥ ρ
γ
∥hk − Hz̄k∥2 . (E.8)

Using (E.8) in (E.7) leads to the following inequality, true for any εk > 0:

−E[⟨hk − ˆ̄Hk, zk − z⋆⟩ | Fk] ≤ εk
2 ∥h

k − Hzk∥2 + 1
2εk
∥z̄k − zk∥2 − 1

2∥Hzk − Hz̄k∥2 −
ρ
γ
∥hk − Hz̄k∥2 .

To majorize the term ∥z̄k − zk∥2, we use Lemma F.2(ii) to get

∥Hz̄k − Hzk∥2 ≥ (1 − γLF)2∥z̄k − zk∥2 .

Hence, as long as γLF < 1, then

−E[⟨hk − ˆ̄Hk, zk − z⋆⟩ | Fk] ≤ εk
2 ∥h

k − Hzk∥2 +
(

1
2εk(1−γLF )2 −

1
2

)
∥Hzk − Hz̄k∥2 −

ρ
γ
∥hk − Hz̄k∥2 .

(E.9)

The third term in (E.5) is bounded by

α2
kE[∥hk − ˆ̄Hk∥

2 | Fk] = α2
k∥h

k − Hz̄k∥2 + α2
kγ

2E[∥Fz̄k − F̂(z̄k, ξ̄k)∥2 | Fk] ≤ α2
k∥h

k − Hz̄k∥2 + α2
kγ

2σ2
F

(E.10)

Combined with the update rule, (E.10) can also be used to bound the difference of iterates

E[∥zk+1 − zk∥2 | Fk] = E[α2
k∥h

k − ˆ̄Hk∥
2 | Fk] ≤ α2

k∥h
k − Hz̄k∥2 + α2

kγ
2σ2

F (E.11)

Using (E.5), (E.9), (E.10) and (E.11) we have,

E[Uk+1 | Fk] ≤ ∥zk − z⋆∥2 + (Ak+1 + αkεk)∥hk − Hzk∥2 − αk

(
1 − 1

εk(1−γLF )2

)
∥Hzk − Hz̄k∥2

+ αk(αk −
2ρ
γ
+ αkBk+1)∥hk − Hz̄k∥2 + α2

k(1 + Bk+1)γ2σ2
F

≤ ∥zk − z⋆∥2 +
(
Ak+1 + αk(εk +

1
b (1 − 1

εk(1−γLF )2 ))
)
∥hk − Hzk∥2

+ αk

(
αk −

2ρ
γ
+ αkBk+1 −

1
1+b (1 − 1

εk(1−γLF )2 )
)
∥hk − Hz̄k∥2

+ α2
k(1 + Bk+1)γ2σ2

F ,

(E.12)

where the last inequality follows from Young’s inequality with positive b and requiring 1 −
1

εk(1−γLF )2 ≥ 0 as also stated in (E.3). By defining

X1
k B Ak+1 + αk(εk +

1
b (1 − 1

εk(1−γLF )2 ))

X2
k B αk

(
αk −

2ρ
γ
+ αkBk+1 −

1
1+b (1 − 1

εk(1−γLF )2 )
) (E.13)
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and applying (E.6), we finally obtain
E[Uk+1 | Fk] −Uk ≤ X2

k ∥h
k − Hz̄k∥2

+ (X1
k (1 − αk)2 − Ak)∥hk−1 − Hzk−1∥2

+ (2X1
k (1 − αk)2γ2L2

F̂
− Bk)∥zk − zk−1∥2

+ 2X1
kα

2
kγ

2σ2
F + α

2
k(1 + Bk+1)γ2σ2

F ,

(E.14)

We can pick Bk = 2γ2L2
F̂

Ak in which case, to get a recursion, we only require the following.

X1
k (1 − αk)2 − Ak ≤ 0 and X2

k < 0 (E.15)
Set Ak = A, εk = ε. For the first requirement of (E.15),

X1
k (1 − αk)2 − Ak = αk(1 − αk)2(ε + 1

b (1 − 1
ε(1−γLF )2 )) + (1 − αk)2A − A

≤ αk(ε + 1
b (1 − 1

ε(1−γLF )2 )) + (1 − αk)2A − A

≤ αk(ε + 1
b (1 − 1

ε(1−γLF )2 )) + (1 − αk)A − A

= αk(ε + 1
b (1 − 1

ε(1−γLF )2 )) − αkA

(E.16)

where the first inequality follows from (1 − αk)2 ≤ 1 and the second inequality follows from
(1 − αk)2 ≤ (1 − αk). Thus, to satisfy the first inequality of (E.15) it suffice to pick

A ≥ ε + 1
b (1 − 1

ε(1−γLF )2 ). (E.17)

The noise term in (E.14) can be made independent of k by using αk ≤ α0 and (E.17) as follows
2X1

k + 1 + Bk+1 = 1 + 2A(1 + γ2L2
F̂

) + 2αk(ε + 1
b (1 − 1

ε(1−γLF )2 ))

≤ 1 + 2A(1 + γ2L2
F̂

) + 2α0A = C.
(E.18)

Thus it follows from (E.14) and αk ≤ α0 that
E[Uk+1 | Fk] −Uk

≤ αk

(
α0 −

2ρ
γ
+ 2α0γ

2L2
F̂

A − 1
1+b (1 − 1

εk(1−γLF )2 )
)
∥hk − Hz̄k∥2 + α2

kCγ2σ2
F .

(E.19)

The result is obtained by total expectation and summing the above inequality while noting that the
initial iterate were set as z−1 = z0.

Proof of Theorem 7.1. The theorem is a specialization of Theorem E.2 with a particular a choice of
b and ε. The second requirement in (E.3) can be rewritten as,

ε ≥ 1
(1−γLF )2 , (E.20)

which is satisfied by ε = 1
√
α0(1−γLF )2 . We substitute in the choice of ε, b =

√
α0 and denotes η B A.

The weighted sum in (E.4) can be converted into an expectation over a sampled iterate in the style
of Ghadimi & Lan (2013),

E[∥hk⋆ − Hz̄k⋆∥2] =
K∑

k=0

αk∑K
j=0 α j
E[∥hk − Hz̄k∥2]

with k⋆ chosen from {0, 1, . . . ,K} according to probability P[k⋆ = k] = αk∑K
j=0 α j

.

Noticing that hk⋆ − Hz̄k⋆ ∈ γ(Fz̄k⋆ + Az̄k⋆ ) = γT z̄k⋆ so
E[∥hk⋆ − Hz̄k⋆∥2] ≥ min

u∈T z̄k⋆
E[∥γu∥2] ≥ E[ min

u∈T z̄k⋆
∥γu∥2] =: E[dist(0, γT z̄k⋆ )2]

where the second inequality follows from concavity of the minimum. This completes the proof.

F Proof for NP-PDEG through a nonlinear asymmetric preconditioner

F.1 Preliminaries

Consider the decomposition z = (z1, . . . , zm), u = (u1, . . . , um) with zi, ui ∈ �
ni and define the short-

hand notation u≤i B (u1, u2, . . . , ui) and u≥i B (ui, . . . , um) for the truncated vectors. Moreover sup-
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pose that A conforms to the decomposition Az = (A1, z1, . . . , Amzm) with Ai : �ni ⇒ �ni maximally
monotone. Consistently with the decomposition define Γ = blkdiag(Γ1, . . . ,Γm) where Γi ∈ �

ni×ni

are positive definite matrices and let
Pu(z) B Γ−1z + Qu(z), where Qu(z) =

(
0, q1(z1, u≥2), q2(z1, z2, u≥3), . . . , qm−1(z≤m−1, um)

)
(F.1)

When Pu furnishes such an asymmetric structure the preconditioned resolvent has full domain, thus
ensuring that the algorithm is well-defined.

In the following lemma we show that the iterates in (8.1) are well-defined for a particular choice of
the preconditioner Pu in (F.1). The proof is similar to that of (Latafat & Patrinos, 2017, Lem. 3.1)
and is included for completeness.

Lemma F.1. Let z = (z1, . . . , zm), u = (u1, . . . , um) be given vectors, suppose that A conforms to
the decomposition Az = (A1, z1, . . . , Amzm) with Ai : �ni ⇒ �ni maximally monotone, and let Pu be
defined as in (F.1). Then, the preconditioned resolvent (Pu + A)−1 is Lipschitz continuous and has
full domain. Moreover, the update z̄ = (Pu + A)−1z reduces to the following update

z̄i =

{
(Γ−1

1 + A1)−1z1 if i = 1
(Γ−1

i + Ai)−1(zi − qi−1(z̄≤i−1, u≥i) if i = 2, . . . ,m (F.2)

Proof. Owing to the asymmetric structure (F.1), the resolvent may equivalently be expressed as
z̄ = (z̄1, . . . z̄m) = (Pu + A)−1z ⇐⇒ Γ−1

i z̄i + Ai(z̄i) ∈ zi − qi−1(z̄≤i−1, u≥i), i = 1, . . . ,m,
where q0 ≡ 0. The Gauss-Seidel-type update in (F.2) is of immediate verification after noting that
(Γ−1

i + Ai)−1 is single-valued (in fact Lipschitz continuous) since the sum of Γi ≻ 0 and Ai is (maxi-
mally) strongly monotone. This also implies that Γ−1

i + Ai = Āi + βI for some β > 0 and some max-
imally monotone operator Āi. Thus dom

(
Γ−1

i + Ai)−1) = range(Γ−1
i + Ai) = range( 1

β
Ā + I) = �n,

where we used Minty’s theorem in the last equality.

F.2 Deterministic lemmas

To eventually prove Theorem F.5 we will compare the stochastic algorithm (8.4) with its determin-
istic counterpart (8.1), so we introduce

Hu(z) B Pu(z) − F(z) (F.3a)

Ḡ(z) B (Pz + A)−1(Hz(z)) (F.3b)

G(z) B z − αkΓ
(
Hz(z) − Hz(Ḡ(z))

)
. (F.3c)

We first derive results for the deterministic operator G and then shows that zk+1 from the stochastic
scheme behaves similarly to G(zk) when αk is small enough, even if Γ, which also appears inside the
preconditioner P̂u(·, ξ), remains large.

Instead of making assumptions on F directly, we instead consider the following important operator,
Mu(z) := F(z) − Qu(z). (F.4)

such that we can write (F.3b) as Hu(z) = Γ−1z − Mu(z). As a shorthand we write M(z) = Mz(z).

Assumption VII. The operator Mu as defined in (F.4) is LM-Lipschitz with LM ≤ 1 with respect to
a positive definite matrix Γ ∈ �n×n, i.e.

∥Mu(z) − Mu(z′)∥Γ ≤ LM∥z − z′∥Γ−1 ∀z, z′ ∈ �n. (F.5)

Remark 6. This is satisfied by the choice of Qu in (8.7) and Assumptions IV(ii) and IV(iii).

With Mu defined, it is straightforward to establish that Hu is 1/2-cocoercive and strongly monotone.

Lemma F.2. Suppose Assumption VII holds. Then,

(i) The mapping Hu is 1/2-cocoercive for all u ∈ �n, i.e.
⟨Hu(z′) − Hu(z), z′ − z⟩ ≥ 1

2 ∥Hu(z′) − Hu(z)∥2Γ ∀z, z′ ∈ �n. (F.6)

(ii) Furthermore, Hu is (1 − LM)-monotone for all u ∈ �n, and in particular
∥Hu(z′) − Hu(z)∥Γ ≥ (1 − LM)∥z′ − z∥Γ−1 ∀z, z′ ∈ �n. (F.7)
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Proof. By expanding using (F.4),
Hu(z) − Hu(z′) = Γ−1(z − z′) − (Mu(z) − Mu(z′)). (F.8)

Using this we can show cocoercivity,
⟨Hu(z′) − Hu(z), z′ − z⟩ = ⟨Hu(z′) − Hu(z),Hu(z′) − Hu(z) − (Mu(z) − Mu(z′))⟩Γ

(F.8) = 1
2 ∥Hu(z′) − Hu(z)∥2Γ +

1
2 ∥z
′ − z∥2

Γ−1 −
1
2∥Mu(z) − Mu(z′)∥2Γ

Assumption VII ≥ 1
2 ∥Hu(z′) − Hu(z)∥2Γ (F.9)

That Hu is strongly monotone follows from Cauchy-Schwarz and Assumption VII,
⟨Hu(z′) − Hu(z), z′ − z⟩ = ∥z′ − z∥2

Γ−1 − ⟨Mu(z′) − Mu(z), z′ − z⟩ ≥ (1 − LM)∥z′ − z∥2
Γ−1 . (F.10)

The last claim follows from Cauchy-Schwarz and dividing by ∥z′ − z∥Γ−1 .

We will rely on the resolvent remaining nonexpansive when preconditioned with a variable stepsize
matrix.

Lemma F.3. Let Γ ∈ �n×n be positive definite and the operator A : �n ⇒ �n be maximally
monotone. Then, R = (Γ−1 + A)−1 is nonexpansive, i.e. ∥Rx − Ry∥Γ−1 ≤ ∥x − y∥Γ for all x, y ∈ �n.

Proof. Let v ∈ Rx and u ∈ Ry. By maximal monotonicity of A,
0 ≤ ⟨v − Γ−1x − u + Γ−1y, x − y⟩ = − ∥x − y∥2

Γ−1 + ⟨v − u, x − y⟩.
Therefore, using the Cauchy–Schwarz inequality

∥x − y∥2
Γ−1 ≤ ⟨v − u, x − y⟩ ≤ ∥x − y∥Γ−1∥v − u∥Γ (F.11)

The proof is complete by rearranging.

F.3 Stochastic results

The stochastic assumptions on F̂ in Theorem F.5 propagates to M̂ and Q̂u as captured by the follow-
ing lemma.

Lemma F.4. Suppose Assumptions II(ii) and IV(iv) for F̂(z, ξ) = (∇xφ̂(z, ξ),−∇yφ̂(z, ξ)) as defined
in (8.6). Let M̂ and M be as defined in (F.15) and Q̂u and Qu as in (8.7) with θ ∈ [0,∞). Then, the
following holds for all z, z′ ∈ Rn

(i) Eξ[M̂(z, ξ)] = M(z) and Eξ[Q̂z′ (z, ξ)] = Qz′ (z)

(ii) Eξ[∥M(z) − M̂(z, ξ)∥2
Γ
] ≤ ((1 − θ)2 + θ2)σ2

F and Eξ[∥Qz′ (z) − Q̂z′ (z, ξ)∥2Γ] ≤ θ
2σ2

F .

Proof. Unbiasedness follows immediately through Assumption II(ii). For the second claim we have
for all (x, y) = z ∈ �n

Eξ[∥M(z) − M̂(z, ξ)∥2Γ] = Eξ

∥∥∥∥∥∥
(

∇xφ̂(z, ξ) − ∇xφ(z)
(1 − θ)(∇yφ̂(z, ξ) − ∇yφ(z′))

)∥∥∥∥∥∥2

Γ


= Eξ

∥∥∥∥∥∥
(
(1 − θ)(∇xφ̂(z, ξ) − ∇xφ(z)) + θ(∇xφ̂(z, ξ) − ∇xφ(z))

(1 − θ)(∇yφ̂(z, ξ) − ∇yφ(z))

)∥∥∥∥∥∥2

Γ


(Assumption II(ii)) ≤ (1 − θ)2Eξ

∥∥∥∥∥∥
(
∇xφ̂(z, ξ) − ∇xφ(z)
∇yφ̂(z, ξ) − ∇yφ(z)

)∥∥∥∥∥∥2

Γ

 + θ2Eξ

∥∥∥∥∥∥
(
∇xφ̂(z, ξ) − ∇xφ(z)

0

)∥∥∥∥∥∥2

Γ


(Assumption IV(iv)) ≤ ((1 − θ)2 + θ2)σ2

F .
(F.12)

The last claim follows directly through Assumption IV(iv). This completes the proof.

Theorem F.5. Suppose that Assumption I(iii) to II(ii) and IV hold. Moreover, suppose that αk ∈

(0, 1), θ ∈ [0,∞) and for positive parameter b and ε the following holds,

µ B 1
1+b (1 − 1

ε(1−LM )2 ) + 2ρ
γ̄
− α0 − 2α0(ĉ1 + 2ĉ2(1 + ĉ3))A > 0, (F.13)

1 − 4ĉ2α0 > 0 and 1 − 1
ε(1−LM )2 ≥ 0
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where γ̄ denotes the smallest eigenvalue of Γ, A ≥ (1 + 4ĉ2α
2
0)(ε + 1

b (1 − 1
ε(1−LM )2 ))/(1 − 4ĉ2α0) and

ĉ1 B L2
x̂z∥ΓDx̂z∥ + 2(1 − θ)2L2

ŷz∥ΓDŷz∥ + 2θ2L2
ŷy∥Γ2Dŷy∥, ĉ2 B 2θ2L2

ŷx∥Γ1Dŷx∥, ĉ3 B L2
x̂z∥ΓDx̂z∥,

L2
M B max

{
L2

xx∥DxxΓ1∥ + L2
yx∥DyxΓ1∥, ∥L2

xy∥DxyΓ2∥ + L2
yy∥DyyΓ2∥

}
.

Consider the sequence (zk)k∈� generated by Algorithm 3. Then, the following holds for all z⋆ ∈ S⋆

K∑
k=0

αk∑K
j=0 α j
E[∥Γ−1ẑk−S zk (z̄k; z̄k)∥2Γ] ≤

E[∥z0 − z⋆∥2
Γ−1 ] + AE[∥Γ−1ẑ−1 − S z−1 (z−1; z̄−1)∥2

Γ
] +Cσ2

F
∑K

j=0 α
2
j

µ
∑K

j=0 α j

(F.14)
where C B 2(A+α0(ε+ 1

b (1− 1
ε(1−LM )2 )))(Θ+ 2ĉ2)+ 1+ 2(ĉ1 + 2ĉ2(1+ ĉ3))A and Θ = (1− θ)2 + 2θ2.

Proof of Theorem F.5. The proof relies on tracking the two following important operators instead
of F and F̂

M(z) := F(z) − Qz(z) and M̂(z, ξ) := F̂(z, ξ) − Q̂z(z, ξ). (F.15)

We will denote ˆ̄Hk := P̂k(z̄k, ξ̄k) − F̂(z̄k, ξ̄k), so that zk+1 = zk − αkΓ(hk − ˆ̄Hk). We will further need
the following change of variables to later be able to apply weak MVI (see Appendix F.4):

sk = hk − Q̂zk (z̄k, ξ′k)
ˆ̄S k =

ˆ̄Hk − Q̂zk (z̄k, ξ′k)
S u(z̄) = Hu(z̄) − Qu(z̄)

S u(z; z̄) = Hu(z) − Qu(z̄)

(F.16)

where Qu(z) and Hu are as defined in Section 8.

In contrast with the unconstrained smooth case we will rely on a slightly different potential function,
namely,

Uk+1 B ∥zk+1 − z⋆∥2
Γ−1 + Ak+1∥sk − S zk (zk; z̄k)∥2Γ + Bk+1∥zk+1 − zk∥2Γ

where (Ak)k∈� and (Bk)k∈� are positive scalar parameters to be identified.

We start by writing out one step of the update

∥zk+1 − z⋆∥2
Γ−1 = ∥zk − z⋆∥2

Γ−1 − 2αk⟨hk − ˆ̄Hk, zk − z⋆⟩ + α2
k∥h

k − ˆ̄Hk∥
2
Γ (F.17)

= ∥zk − z⋆∥2
Γ−1 − 2αk⟨sk − ˆ̄S k, zk − z⋆⟩ + α2

k∥s
k − ˆ̄S k∥

2
Γ (F.18)

In the algorithm, sk estimates S zk (zk; z̄k). Let us quantify how good this estimation is. We will make
use of the careful choice of the bias-correction term to shift the noise index by 1 in the second
equality.

sk − S zk (zk; z̄k) = M(zk) + Qzk (z̄k) − M̂(zk, ξk) − Q̂zk (z̄k, ξ′k)

+ (1 − αk)(hk−1 − Γ−1zk−1 + M̂(zk−1, ξk) − Q̂zk−1 (z̄k−1, ξ′k−1) + Q̂zk−1 (z̄k−1, ξ′k))

= M(zk) + Qzk (z̄k) − M̂(zk, ξk) − Q̂zk (z̄k, ξ′k)

+ (1 − αk)(sk−1 + Q̂zk−1 (z̄k−1, ξ̄′k) − Γ−1zk−1 + M̂(zk−1, ξk))

= M(zk) + Qzk (z̄k) − M̂(zk, ξk) − Q̂zk (z̄k, ξ′k) + (1 − αk)(sk−1 − S zk−1 (zk−1; z̄k−1))

+ (1 − αk)(M̂(zk−1, ξk) − M(zk−1) + Q̂zk−1 (z̄k−1, ξ̄′k) − Qzk−1 (z̄k−1))
Using the shorthand notation

s̃k B sk − S zk (zk; z̄k),

Q̃zk (z̄k, ξ′k) B Qzk (z̄k) − Q̂zk (z̄k, ξ′k),

M̃(zk, ξk) B M(zk) − M̂(zk, ξk),
it follows that
∥s̃k∥2Γ = (1 − αk)2∥s̃k−1∥2Γ + ∥M̃(zk, ξk) + Q̃zk (z̄k, ξ′k) − (1 − αk)(M̃(zk−1, ξk) + Q̃zk−1 (z̄k−1, ξ′k)∥2Γ

+ 2(1 − αk)⟨s̃k−1, M̃(zk, ξk) + Q̃zk (z̄k, ξ′k) − (1 − αk)
(
M̃(zk−1, ξk) + Q̃zk−1 (z̄k−1, ξ′k)

)
⟩ (F.19)
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In the scalar product, the left term is known when zk is known. Moreover, since E
[
· | Fk

]
= E

[
E
[
· |

F ′k
]
| Fk

]
, owing to Fk ⊂ F

′
k , we have

E
[
M̃(zk, ξk) + Q̃zk (z̄k, ξ′k) − (1 − αk)

(
M̃(zk−1, ξk) + Q̃zk−1 (z̄k−1, ξ′k)

)
| Fk

]
= E

[
M̃(zk, ξk) − (1 − αk)M̃(zk−1, ξk) | Fk

]
= 0,

where we use Assumption II(ii) through Lemma F.4(i).

Since the second moment is larger than the variance we have

E
[
∥M̃(zk, ξk) + Q̃zk (z̄k, ξ′k) − M̃(zk−1, ξk) − Q̃zk−1 (z̄k−1, ξ′k)∥2Γ | Fk

]
≤

E
[
∥M̂(zk, ξk) − M̂(zk−1, ξk) + Q̂zk (z̄k, ξ′k) − Q̂zk−1 (z̄k−1, ξ′k)∥2Γ | Fk

]
(F.20)

Using the Young inequality it follows from (F.19), (F.20) that
E[∥s̃k∥2Γ | Fk] ≤ (1 − αk)2∥s̃k−1∥2Γ + 2α2

kE[∥M̃(zk, ξk) + Q̃zk (z̄k, ξ′k)∥2Γ | Fk]

+ 2(1 − αk)2E[∥M̃(zk, ξk) + Q̃zk (z̄k, ξ′k) − M̃(zk−1, ξk) − Q̃zk−1 (z̄k−1, ξ′k)∥2Γ | Fk]

≤ (1 − αk)2∥s̃k−1∥2Γ + 2α2
kE[∥M(zk) − M̂(zk, ξk) + Qzk (z̄k) − Q̂zk (z̄k, ξ′k)∥2Γ | Fk]

+ E[2(1 − αk)2∥M̂(zk, ξk) − M̂(zk−1, ξk) + Q̂zk (z̄k, ξ′k) − Q̂zk−1 (z̄k−1, ξ′k)∥2Γ | Fk]
(F.21)

To bound the second last term of (F.21) we use unbiasedness due to Assumption II(ii) through
Lemma F.4(i) and that E

[
· | Fk

]
= E

[
E
[
· | F ′k

]
| Fk

]
, owing to Fk ⊂ F

′
k

E[∥M(zk) − M̂(zk, ξk) + Qzk (z̄k) − Q̂zk (z̄k, ξ′k)∥2Γ | Fk]

= E[∥M(zk) − M̂(zk, ξk)∥2Γ | Fk] + E[E[∥Qzk (z̄k) − Q̂zk (z̄k, ξ′k)∥2Γ | F
′

k ] | Fk]

≤ Θσ2
F (F.22)

with Θ = (1−θ)2+2θ2. where the last inequality follows from Assumptions II(ii) and IV(iv) through
Lemma F.4(ii).

To bound the last term of (F.21) we use the particular choice of Qu,
M̂(zk, ξk) − M̂(zk−1, ξk) + Q̂zk (z̄k, ξ′k) − Q̂zk−1 (z̄k−1, ξ′k)

=

(
∇xφ̂(zk, ξk) − ∇xφ̂(zk−1, ξk)

(1 − θ)(∇yφ̂(zk−1ξk) − ∇yφ̂(zk, ξk)) − θ(∇yφ̂(x̄k, yk, ξ′k) − ∇yφ̂(x̄k, yk, ξ′k)

)
.

(F.23)

So Assumption IV(v) applies after application of Young’s inequality and the tower rule, leading to
the following bound
E[∥M̂(zk, ξk) − M̂(zk−1, ξk) + Q̂zk (z̄k, ξ′k) − Q̂zk−1 (z̄k−1, ξ′k)∥2Γ | Fk]

= E[∥∇xφ̂(zk, ξk) − ∇xφ̂(zk−1, ξk)∥2Γ1
| Fk]

+ E[∥(1 − θ)(∇yφ̂(zk−1ξk) − ∇yφ̂(zk, ξk)) − θ∇yφ̂(x̄k, yk, ξ′k) − ∇yφ̂(x̄k, yk, ξ′k)∥2Γ2
| Fk]

≤ E[∥∇xφ̂(zk, ξk) − ∇xφ̂(zk−1, ξk)∥2Γ1
| Fk]

+ 2(1 − θ)2E[∥(∇yφ̂(zk−1ξk) − ∇yφ̂(zk, ξk))∥2Γ2
| Fk]

+ 2θ2E
[
E[∥∇yφ̂(x̄k, yk, ξ′k) − ∇yφ̂(x̄k, yk, ξ′k)∥2Γ2

| F ′k ] | Fk

]
Assumption IV(v) ≤ L2

x̂z∥z
k − zk−1∥2Dx̂z

+ 2(1 − θ)2L2
ŷz∥z

k − zk−1∥2Dŷz

+ 2θ2L2
ŷy∥y

k − yk−1∥2Dŷy
+ 2θ2L2

ŷx∥x̄
k − x̄k−1∥2Dŷx

≤ ĉ1∥zk − zk−1∥2
Γ−1 + ĉ2∥x̄k − x̄k−1∥2

Γ−1 (F.24)

where ĉ1 B L2
x̂z∥ΓDx̂z∥ + 2(1 − θ)2L2

ŷz∥ΓDŷz∥ + 2θ2L2
ŷy∥Γ2Dŷy∥ and ĉ2 B 2θ2L2

ŷx∥Γ1Dŷx∥.

Using (F.24) and (F.22) in (F.21) yields,

E[∥s̃k∥2Γ | Fk] ≤ (1 − αk)2∥s̃k−1∥2Γ + 2α2
kΘσ

2
F + 2(1 − αk)2

(
ĉ1∥zk − zk−1∥2

Γ−1 + ĉ2∥x̄k − x̄k−1∥2
Γ−1

1

)
.

(F.25)

To majorize ∥x̄k− x̄k−1∥Γ−1
1

in (F.25) let sk
x be the primal components of sk in what follows. Recall that

A decomposes as specified in Section 8, such that we can write sk
x ∈ Γ

−1
1 x̄k+A1(x̄k). By monotonicity
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of A1 we have through Lemma F.3 that

∥x̄k − x̄k−1∥Γ−1
1
≤ ∥sk

x − sk−1
x ∥Γ1 . (F.26)

We can go on as

∥sk
x − sk−1

x ∥Γ1 = ∥Γ
−1
1 xk − ∇xϕ̂(zk, ξk) + (1 − αk)

(
Γ−1

1 (xk−1 − xk−1) + ∇̂xϕ̂(zk−1, ξk)
)
− sk−1

x ∥Γ1

≤ (1 − αk)∥xk − xk−1∥Γ−1
1
+ (1 − αk)∥∇xϕ̂(zk, ξk) − ∇xϕ̂(zk−1, ξk)∥Γ1

+ αk∥Γ
−1
1 xk − ∇xϕ̂(zk, ξk) − sk−1

x ∥Γ1

(Assumption IV(v)) ≤ (1 − αk)∥xk − xk−1∥Γ−1
1
+ (1 − αk)Lx̂z∥zk − zk−1∥Dx̂z

+ αk∥Γ
−1
1 xk − ∇xϕ̂(zk, ξk) − sk−1

x ∥Γ1

= (1 − αk)∥xk − xk−1∥Γ−1
1
+ (1 − αk)Lx̂z∥zk − zk−1∥Dx̂z

+ αk∥sk
x − sk−1

x ∥Γ−1
1
+ αk(1 − αk)∥Γ−1

1 xk−1 − ∇xϕ̂(zk−1, ξk) − sk−1
x ∥Γ1 ,

where the last equality uses ∥a−b∥2 = ∥a∥2+ ∥b∥2−2⟨a, b⟩ and unbiasedness from Assumption II(ii)
to conclude that the inner product is zero.

Hence, by subtracting αk∥sk
x − sk−1

x ∥Γ−1
1

and diving by 1 − αk, we get

E[∥sk
x − sk−1

x ∥
2
Γ−1

1
| Fk] ≤ 2(1 + ĉ3)∥xk − xk−1∥2

Γ−1
1
+ 2α2

kE[∥Γ−1xk−1 − ∇xϕ̂(zk−1, ξk) − sk−1
x ∥

2
Γ1
| Fk]

Assumptions II(ii) and IV(iv) ≤ 2(1 + ĉ3)∥xk − xk−1∥2
Γ−1

1
+ 2α2

kE[∥Γ−1xk−1 − ∇xϕ(zk−1) − sk−1
x ∥

2
Γ1
| Fk] + 2α2

kσ
2
F

≤ 2(1 + ĉ3)∥zk − zk−1∥2
Γ−1 + 2α2

kE[∥S zk−1 (zk−1; z̄k−1) − sk−1∥2Γ | Fk] + 2α2
kσ

2
F

where ĉ3 B L2
x̂z∥ΓDx̂z∥ and the last inequality reintroduces the y-components.

We finally obtain

E[∥x̄k − x̄k−1∥2
Γ−1 | Fk] ≤ 2(1 + ĉ3)∥zk − zk−1∥2

Γ−1 + 2α2
kE[∥sk−1 − S zk−1 (zk−1; z̄k−1)∥2Γ | Fk] + 2α2

kσF .
(F.27)

Introducing (F.27) into (F.25) yields

E[∥sk − S zk (zk; z̄k)∥2Γ | Fk] ≤ (1 − αk)2(1 + 4ĉ2α
2
k)∥sk−1 − S zk−1 (zk−1; z̄k−1)∥2Γ

+ 2(1 − αk)2(ĉ1 + 2ĉ2(1 + ĉ3))∥zk − zk−1∥2
Γ−1

+ 2α2
k(Θ + (1 − αk)22ĉ2)σ2

F .

(F.28)

We continue with the inner term in (F.18) under conditional expectation.

−E[⟨sk − ˆ̄S k, zk − z⋆⟩Γ | Fk]

= −⟨sk − S zk (z̄k), zk − z⋆⟩

= −⟨sk − S zk (z̄k), zk − z̄k⟩ − ⟨sk − S zk (z̄k), z̄k − z⋆⟩

= −⟨sk − S zk (zk; z̄k), zk − z̄k⟩ − ⟨S zk (zk; z̄k) − S zk (z̄k), zk − z̄k⟩ − ⟨sk − S zk (z̄k), z̄k − z⋆⟩

= −⟨sk − S zk (zk; z̄k), zk − z̄k⟩ − ⟨Hzk (zk) − Hzk (z̄k), zk − z̄k⟩ − ⟨sk − S zk (z̄k), z̄k − z⋆⟩

where the last equality uses that S zk (zk; z̄k) − S zk (z̄k) = Hzk (zk) − Hzk (z̄k).

By definition of z̄k in (8.4b), we have sk = hk − Q̂zk (z̄k, ξ′k) ∈ Γ−1z̄k + A(z̄k), so that sk − S zk (z̄k) ∈
F(z̄k) + A(z̄k). Hence, using the weak MVI from Assumption I(iii),

⟨sk − S zk (z̄k), z̄k − z⋆⟩ ≥ ρ∥sk − S zk (z̄k)∥2 . (F.29)
Using also cocoercivity of Hu from Lemma F.2(i), this leads to the following inequality, true for any
εk > 0:

−E[⟨sk − ˆ̄S k, zk − z⋆⟩ | Fk] ≤ εk
2 ∥s

k − S zk (zk; z̄k)∥2Γ +
1

2εk
∥z̄k − zk∥2

Γ−1

− 1
2 ∥Hzk (zk) − Hzk (z̄k)∥2Γ − ρ∥s

k − S zk (z̄k)∥2 .

To majorize the term ∥z̄k − zk∥2
Γ−1 , we may use Lemma F.2(ii) for which we need to determind LM .

For the particular choice of Qu, we have through Assumption IV(ii) that
∥M(z′) − M(z)∥2Γ ≤ L2

M∥z
′ − z∥2

Γ−1 (F.30)

28



Published as a conference paper at ICLR 2023

with L2
M B max

{
L2

xx∥DxxΓ1∥ + L2
yx∥DyxΓ1∥, ∥L2

xy∥DxyΓ2∥ + L2
yy∥DyyΓ2∥

}
. By the stepsize choice As-

sumption IV(iii), LM < 1, which will be important promptly.

From Lemma F.2(ii) it then follows that
∥Hzk (zk) − Hzk (z̄k)∥2Γ ≥ (1 − LM)2∥zk − z̄k∥2

Γ−1 .

Hence, given LM < 1,

−E[⟨sk − ˆ̄S k, zk − z⋆⟩Γ | Fk]

≤
εk
2 ∥s

k − S zk (zk; z̄k)∥2Γ +
(

1
2εk(1−LM)2 −

1
2

)
∥Hzk (zk) − Hzk (z̄k)∥2Γ − ρ∥s

k − S zk (z̄k)∥2

= εk
2 ∥s

k − S zk (zk; z̄k)∥2Γ +
(

1
2εk(1−LM)2 −

1
2

)
∥S zk (zk; z̄k) − S zk (z̄k)∥2Γ − ρ∥s

k − S zk (z̄k)∥2. (F.31)

The conditional expectation of the third term in (F.18) is bounded by

α2
kE[∥sk − ˆ̄S k∥

2
Γ | Fk] = α2

k∥s
k − S zk (z̄k)∥2Γ + α

2
kE[∥F(z̄k) − F̂(z̄k, ξ̄k)∥2Γ | Fk]

≤ α2
k∥s

k − S zk (z̄k)∥2Γ + α
2
kσ

2
F (F.32)

where we have used Assumption IV(iv).

Combined with the update rule, (F.32) can also be used to bound the conditional expectation of the
difference of iterates

E[∥zk+1 − zk∥2
Γ−1 | Fk] = E[α2

k∥s
k − ˆ̄S k∥

2
Γ | Fk] ≤ α2

k∥s
k − S zk (z̄k)∥2Γ + α

2
kσ

2
F (F.33)

Using (F.18), (F.31), (F.32), (F.33) and that −ρ∥sk − S zk (z̄k)∥2 ≤ − ρ
γ̄
∥sk − S zk (z̄k)∥2

Γ
with γ̄ denoting

the smallest eigenvalue of Γ we have,

E[Uk+1 | Fk] ≤ ∥zk − z⋆∥2
Γ−1 + (Ak+1 + αkεk)∥sk − S zk (zk; z̄k)∥2Γ − αk

(
1 − 1

εk(1−LM )2

)
∥S zk (zk; z̄k) − S zk (z̄k)∥2Γ

+ αk(αk −
2ρ
γ̄
+ αkBk+1)∥sk − S zk (z̄k)∥2Γ + α

2
k(1 + Bk+1)σ2

F

≤ ∥zk − z⋆∥2
Γ−1 +

(
Ak+1 + αk(εk +

1
b (1 − 1

εk(1−LM )2 ))
)
∥sk − S zk (zk; z̄k)∥2Γ

+ αk

(
αk −

2ρ
γ̄
+ αkBk+1 −

1
1+b (1 − 1

εk(1−LM )2 )
)
∥Hzk (zk) − Hzk (z̄k)∥2Γ

+ α2
k(1 + Bk+1)σ2

F , (F.34)

where the last inequality follows from Young’s inequality with positive b as long as 1− 1
εk(1−LM)2 ≥ 0.

By defining

X1
k B Ak+1 + αk(εk +

1
b (1 − 1

εk(1−LM )2 ))

X2
k B

2ρ
γ̄
− αk − αkBk+1 +

1
1+b (1 − 1

εk(1−LM )2 )
(F.35)

and applying (F.28), we finally obtain

E[Uk+1 | Fk] −Uk ≤ −αkX2
k ∥s

k − S zk (z̄k)∥2Γ
+ (X1

k (1 − αk)2(1 + 4ĉ2α
2
k) − Ak)∥sk−1 − S zk−1 (zk−1; z̄k−1)∥2Γ

+ (2X1
k (1 − αk)2(ĉ1 + 2ĉ2(1 + ĉ3)) − Bk)∥zk − zk−1∥2

Γ−1

+ 2X1
kα

2
k(Θ + (1 − αk)22ĉ2)σ2

F + α
2
k(1 + Bk+1)σ2

F ,

(F.36)

If Ak ≥ X1
k (1 − αk)2(1 + 4ĉ2α

2
k), then it suffice to pick Bk as

2X1
k (1 − αk)2(ĉ1 + 2ĉ2(1 + ĉ3)) = 2(ĉ1+2ĉ2(1+ĉ3))Ak

1+4ĉ2α
2
k

≤ 2(ĉ1 + 2ĉ2(1 + ĉ3))Ak =: Bk. (F.37)

To get a recursion, we then only require the following conditions
X1

k (1 − αk)2(1 + 4ĉ2α
2
k) ≤ Ak and X2

k > 0. (F.38)

Set Ak = A, εk = ε. For the first inequality of (F.38), since (1 − αk)2 ≤ (1 − αk), the terms involving
A are bounded as

(1 − αk)2(1 + 4ĉ2α
2
k)A − A

≤ (1 − αk)(1 + 4ĉ2α
2
k)A − A

= −αkA + (1 − αk)(4ĉ2α
2
k)A

≤ −αk(1 − 4ĉ2α0)A (F.39)
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where the last inequality follows from (1 − αk) ≤ 1 and αk ≤ α0. Thus to satisfy the first inequality
of (F.38) it suffice to pick

A ≥
(1 + 4ĉ2α

2
0)(ε + 1

b (1 − 1
ε(1−LM)2 ))

1 − 4ĉ2α0
(F.40)

where 1 − 4ĉ2α0 > 0 is required.

The second equality of (F.38) is satisfied owing to (F.13).

The noise term in (F.36) can be made independent of k by using αk ≤ α0,
2X1

k (1 + (1 − αk)22ĉ2) + 1 + Bk+1

= 2(A + αk(ε + 1
b (1 − 1

ε(1−LM )2 )))(Θ + (1 − αk)22ĉ2) + 1 + 2(ĉ1 + 2ĉ2(1 + ĉ3))A

≤ 2(A + α0(ε + 1
b (1 − 1

ε(1−LM )2 )))(Θ + 2ĉ2) + 1 + 2(ĉ1 + 2ĉ2(1 + ĉ3))A =: C. (F.41)

Thus, it follows from (F.36) that
E[Uk+1 | Fk] −Uk

≤ αk

(
α0 −

2ρ
γ̄
+ 2α0(ĉ1 + 2ĉ2(1 + ĉ3))A − 1

1+b (1 − 1
ε(1−LM )2 )

)
∥sk − S zk (z̄k)∥2Γ

+ α2
kCσ2

F .

(F.42)

The result is obtained by total expectation and summing the above inequality while noting that the
initial iterate were set as z−1 = z0.

Proof of Theorem 8.2. The theorem is a specialization of Theorem F.5 for a particular a choice of
b and ε. The third requirement of (F.13) can be rewritten as,

ε ≥ 1
(1−LM )2 , (F.43)

which is satisfied by ε = 1
√
α0(1−LM)2 . We substitute in the choice of ε, b =

√
α0 and denotes η B A.

The weighted sum in (F.14) is equivalent to an expectation over a sampled iterate in the style of
Ghadimi & Lan (2013),

E[∥Γ−1ẑk⋆ − S zk⋆ (z̄k⋆ ; z̄k⋆ )∥2Γ] =
K∑

k=0

αk∑K
j=0 α j
E[∥Γ−1ẑk − S zk (z̄k; z̄k)∥2Γ].

with k⋆ chosen from {0, 1, . . . ,K} according to probability P[k⋆ = k] = αk∑K
j=0 α j

.

Noticing that Γ−1ẑk⋆ − S zk⋆ (z̄k⋆ ; z̄k⋆ ) ∈ Fz̄k⋆ + Az̄k⋆ = T z̄k⋆ so
E[∥Γ−1ẑk⋆ − S zk⋆ (z̄k⋆ ; z̄k⋆ )∥2Γ] ≥ min

u∈T z̄k⋆
E[∥u∥2Γ] ≥ E[ min

u∈T z̄k⋆
∥u∥2Γ] =: E[distΓ(0,T z̄k⋆ )2]

where the second inequality follows from concavity of the minimum. This completes the proof.

F.4 Explanation of bias-correction term

Consider the naive analysis which would track hk. By the definition of z̄k in (8.4b) and Hk(z̄k) we
would have hk − Hk(z̄k) + Pk(z̄k) − P̂k(z̄k, ξ̄k) ∈ F(z̄k) + A(z̄k). Hence, assuming zero mean and using
the weak MVI from Assumption I(iii),

E[⟨hk − Hk(z̄k), z̄k − z⋆⟩ | F ′k ] = E[⟨hk − Hk(z̄k) + Pk(z̄k) − P̂k(z̄k, ξ′k), z̄k − z⋆⟩ | F ′k ]

≥ E[ρ∥hk − Hk(z̄k) + Pk(z̄k) − P̂k(z̄k, ξ′k)∥2 | F ′k ] .
(F.44)

To proceed we could apply Young’s inequality, but this would produce a noise term, which would
propagate to the descent inequality in (F.36) with a αk factor in front. To show convergence we
would instead need a smaller factor of α2

k .

To avoid this error term entirely we instead do a change of variables with sk B hk − P̂zk (z̄k, ξ′k) such
that,

hk ∈ P̂zk (z̄k, ξ′k) + Az̄k ⇔ hk − P̂zk (z̄k, ξ′k) ∈ Az̄k

⇔ sk ∈ Az̄k.
(F.45)
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This make application of Assumption I(iii) unproblematic, but affects the choice of the bias-
correction term, since the analysis will now apply to sk. If we instead of the careful choice of hk

in (8.4a) had made the choice

hk = P̂zk (zk, ξk) − F̂(zk, ξk) + (1 − αk)(hk−1 − P̂zk−1 (zk−1, ξk) + F̂(zk−1, ξk)) (F.46)

then

sk = P̂zk (zk, ξk)− F̂(zk, ξk)− P̂zk (z̄k, ξ′k)+ (1−αk)(sk−1 − P̂zk−1 (zk−1, ξk)+ F̂(zk−1, ξk)− P̂zk−1 (z̄k−1, ξ′k−1)).

Notice how the latter term is evaluated under ξ′k−1 instead of ξ′k. The choice in (8.4a) resolves this
issue.

G Negative weakMinty variational inequality

In this section we consider the problem of finding a zero of the single-valued operator F (with the
set-valued operator A ≡ 0). Observe that the weak MVI in Assumption I(iii), ⟨Fz, z − z⋆⟩ ≥ ρ∥Fz∥2,
for all z ∈ �n, is not symmetric and one may instead consider that the assumption holds for −F. As
we will see below this simple observation leads to nontrivial problem classes extending the reach of
extragradient-type methods both in the deterministic and stochastic settings.

Assumption VIII (negative weak MVI). There exists a nonempty set S⋆ ⊆ zer T such that for all
z⋆ ∈ S⋆ and some ρ̄ ∈ (−∞, 1/2L)

⟨Fz, z − z⋆⟩ ≤ ρ̄∥Fz∥2, for all z ∈ �n. (G.1)

Under this assumption the algorithm of Pethick et al. (2022) leads to the following modified iterates:

z̄k = zk+γkFzk, (G.2)

zk+1 = zk + λkαk(Hk z̄k − Hkzk) = zk+λkαkγkFz̄k, where Hk B id+γkF (G.3)

We next consider the lower bound example of (Pethick et al., 2022, Ex. 5) to show that despite the
condition for weak MVI being violated for b smaller than a certain threshold, the negative weak
MVI in Assumption VIII holds for any negative b and thus the extragradient method applied to −F
is guaranteed to converge.

Example 1. Consider (Pethick et al., 2022, Ex. 5)

minimize
x∈R

maximize
y∈R

f (x, y) := axy +
b
2

(x2 − y2), (G.4)

where b < 0 and a > 0. The associated F is a linear mapping. For a linear mapping M, Assump-
tion VIII holds if

1
2 (M + M⊤) − ρ̄M⊤M ⪯ 0, ρ̄ ∈ (−∞, 1/2L)

While Assumption I(iii) holds if
1
2 (M + M⊤) − ρM⊤M ⪰ 0, ρ ∈ (−1/2L,∞).

For this example L =
√

a2 + b2 and

F(z) =
CMz︷                   ︸︸                   ︷

(bx + ay,−ax + by).

Since M is a bisymmetric linear mapping, M⊤M = (a2 + b2)I which according to the above charac-
terizations implies

ρ ∈ (− 1
2L ,

b
a2+b2 ], ρ̄ ∈ [ b

a2+b2 ,
1

2L ).

The range for ρ is nonempty if b > − a
√

3
while this is not an issue for ρ̄ which allows any negative b.

We complete this section with a corollary to Theorem 6.3 when replacing weak MVI assumption
with Assumption VIII.

Corollary G.1. Suppose that Assumptions I(i) and I(ii), Assumptions II, III and VIII hold. Let (zk)k∈�
denote the sequence generated by Algorithm 1 applied to −F. Then, the claims of Theorem 6.3 hold
true.
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Figure 3: The (projected) (SEG+) method needs to take γ arbitrarily small to guarantee convergence to
an arbitrarily small neighborhood. We show an instance satisfying the weak MVI where γ cannot be taken
arbitrarily small. The objective is ψ(x, y) = ϕ(x − 0.9, y − 0.9) under box constraints ∥(x, y)∥∞ ≤ 1 with ϕ
from Example 2 where L = 1 and ρ = −1/10L. The unique stationary point (x⋆, y⋆) = (0.9, 0.9) lies in the
interior, so even ∥Fz∥ can be driven to zero. Taking γ smaller does not make the neighborhood smaller as
oppose to the monotone case in Figure 1.

H Experiments

H.1 Synthetic example

Example 2 (Unconstrained quadratic game (Pethick et al., 2022, Ex. 5)). Consider,

minimize
x∈R

maximize
y∈R

ϕ(x, y) := axy +
b
2

x2 −
b
2

y2, (H.1)

where a ∈ R+ and b ∈ R.

The problem constants in Example 2 can easily be computed as ρ = b
a2+b2 and L =

√
a2 + b2. We

can rewrite Example 2 in terms of L and ρ by choosing a =
√

L2 − L4ρ2 and b = L2ρ.

Example 3 (Constrained minimax (Pethick et al., 2022, Ex. 4)). Consider

minimize
|x|≤4/3

maximize
|y|≤4/3

ϕ(x, y) := xy + ψ(x) − ψ(y), (GlobalForsaken)

where ψ(z) = 2z6

21 −
z4

3 +
z2

3 .

In both Example 2 and Example 3 the operator F is defined as Fz = (∇xϕ(x, y),−∇yϕ(x, y)).

To simulate a stochastic setting in all examples, we consider additive Gaussian noise, i.e. F̂(z, ξ) =
Fz+ ξ where ξ ∼ N(0, σ2I). We choose σ = 0.1 and initialize with z0 = 1 if not specified otherwise.
The default configuration is γ = 1/2LF with αk = 1/18·(k/c+1), c = 100 and βk = αk for diminishing
stepsize schemes and α = 1/18 for fixed stepsize schemes. We make two exceptions: Figure 1 uses
the slower decay c = 1000 when γ = 0.1 and Figure 3 uses c = 5000 for γ = 0.01 (and otherwise
c = 1000) to ensure fast enough convergence. When the aggressive stepsize schedule is used then
αk = 1/18·

√
k/100+1.
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Figure 4: Instead of taking αk ∝ 1/k (for which almost sure convergence is established through The-
orem 6.3 and ??) we take αk ∝ 1/

√
k as permitted in Theorems 6.1 and 7.1. We consider the example

provided in Figure 1 (top row) and the two examples from Figure 2 (bottom row). Under this more aggres-
sive stepsize schedule the guarantee is only in expectation over the iterates which is also apparent from
the relatively large volatility in comparison with Figures 1 and 2.

H.2 Additional algorithmic details

For the constrained setting in Figure 1, we consider two extensions of (SEG+). One variant uses a
single application of the resolvent as suggested by Pethick et al. (2022),

z̄k = (id + γA)−1(zk − γF̂(zk, ξk)) with ξk ∼ P

zk+1 = zk + αk

(
(z̄k − zk) − γ(F̂(z̄k, ξ̄k) − F̂(zk, ξk))

)
with ξ̄k ∼ P

(P1SEG+)

The other variant applies the resolvent twice as in stochastic Mirror-Prox (Juditsky et al., 2011),

z̄k = (id + γA)−1(zk − γF̂(zk, ξk)) with ξk ∼ P

zk+1 = (id + αkγA)−1(zk − αkγF̂(z̄k, ξ̄k)) with ξ̄k ∼ P
(P2SEG+)

When applying (SEG) to constrained settings we similarly use the following projected variants:

z̄k = (id + βkγA)−1(zk − βkγF̂(zk, ξk)) with ξk ∼ P

zk+1 = (id + αkγA)−1(zk − αkγF̂(z̄k, ξ̄k)) with ξ̄k ∼ P
(PSEG)

and (EG+) (using stochastic feedback denoted SF)

z̄k = (id + γA)−1(zk − γF̂(zk, ξk)) with ξk ∼ P

zk+1 = (id + αγA)−1(zk − αγF̂(z̄k, ξ̄k)) with ξ̄k ∼ P
(SF-PEG+)

which we in the unconstrained case (A ≡ 0) refer to as (SF-EG+) as defined below.

z̄k = zk − γF̂(zk, ξk) with ξk ∼ P

zk+1 = zk − αγF̂(z̄k, ξ̄k) with ξ̄k ∼ P
(SF-EG+)
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I Comparison with variance reduction

Consider the case where the expectation comes in the form a finite sum,

Fz =
1
N

N∑
ξ=1

F̂(z, ξ). (I.1)

In the worst case the averaged Lipschitz constant FF̂ scales proportionally to the number of elements
N squared, i.e. LF̂ = Ω(

√
NLF). It is easy to construct such an example by taking one elements to

have Lipschitz constant NL while letting the remaining elements have Lipschitz constant L. Re-
calling the definition in Assumption III, L2

F̂
= N2L2

N + N−1
N L2 ≥ NL2 while the average becomes

LF =
NL
N +

N−1
N L ≤ 2L so LF̂ ≥

√
N/2LF . Thus, LF̂ can be

√
N times larger than LF , leading to a po-

tentially strict requirement on the weak MVI parameter ρ > −LF̂/2 for variance reduction methods.
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