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ABSTRACT

Continual Learning (CL) is recently gaining increasing attention for its ability to
enable a single model to learn incrementally from a sequence of new classes. In
this scenario, it is important to keep consistent predictive performance across all
the classes and prevent the so-called Catastrophic Forgetting (CF). However, in
safety-critical applications, predictive performance alone is insufficient. Predic-
tive models should also be able to reliably communicate their uncertainty in a
calibrated manner – that is, with confidence scores aligned to the true frequencies
of target events. Existing approaches in CL address calibration primarily from a
data-centric perspective, relying on a single temperature shared across all tasks.
Such solutions overlook task-specific differences, leading to large fluctuations in
calibration error across tasks. For this reason, we argue that a more principled ap-
proach should adapt the temperature according to the distance to the current task.
However, the unavailability of the task information at test time/during deployment
poses a major challenge to achieve the intended objective. For this, we propose
Distance-Aware Temperature Scaling (DATS), which combines prototype-based
distance estimation with distance-aware calibration to infer task proximity and
assign adaptive temperatures without prior task information. Through extensive
empirical evaluation on both standard benchmarks and real-world, imbalanced
datasets taken from the biomedical domain, our approach demonstrates to be sta-
ble, reliable and consistent in reducing calibration error across tasks compared to
state-of-the-art approaches.

1 INTRODUCTION

The steep improvement of the predictive capabilities of modern neural architectures has led prac-
titioners to increasingly deploy neural networks into critical decision-making systems. In these
contexts, however, predictive models must not only be accurate but also calibrated – i.e., able to re-
liably communicate via uncertainty estimates when they are likely to be incorrect. Yet, despite their
accuracy, neural networks often show under- or over-confidence, especially under distribution shifts.
Model calibration offers a way to ensure that a model’s predicted confidence levels are statistically
consistent with the empirical frequency of correct predictions. For instance, among all predictions
assigned a confidence level of 85%, the model should yield correct outputs in approximatively 85%
of the cases. Consequently, model calibration has become progressively more investigated over the
years to enhance the reliability and trustworthiness of neural architectures in standard single-task
settings (Guo et al., 2017; Zhang et al., 2020; Gupta et al., 2021; Tomani et al., 2022).

However, in many real-world applications – ranging from predicting virus variants to product rec-
ommendation in e-commerce –, the environment is not static but may vary over time. For this
reason, Continual Learning (CL) has gained increasing attention for its ability to enable a single
model to learn incrementally from a sequence of new classes. In this scenario, due to the tendency
of the model to focus on the most recent information, it is important to keep consistent predictive
performance across all the classes and thus mitigate the so-called Catastrophic Forgetting (CF) (Mc-
Closkey & Cohen, 1989; Ratcliff, 1990). Reducing the forgetting effect in CL has been largely
investigated in recent years (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019; Tao et al., 2020;
Bang et al., 2021; Hurtado et al., 2023; Serra et al., 2025) but remains a major challenge yet to be
completely solved.
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Figure 1: Comparison of the worst-case difference in Expected Calibration Error (Max ∆ECE)
after post-hoc re-calibration. Positive values (red) indicate worsened calibration (higher CE than
before re-calibration), while negative ones (green) indicate improved calibration (lower calibration
error than before re-calibration). We observe that state-of-the-art methods can substantially increase
calibration error for certain tasks, whereas our approach consistently reduces miscalibration.
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Figure 2: Schematic overview of the proposed framework. Given the validation set of the current
task Dt,val and the calibration buffer Bt, our method first aligns each class in Bt (i.e., cbuf ) with
the closest class in Dt,val (i.e., ct). Each sample in Bt (e.g., xi) is then assigned a distance score
dcbuf=ci . During calibration, both the logit vector zi and the corresponding distance score serve
as inputs to the distance-aware optimisation phase. At test time, samples from Dt,test are mapped
to their nearest counterparts in Bt; the assigned classes provide a reference for computing dtest and
guide the final distance-aware temperature scaling.

Considering the forgetting effect and the dynamic characteristics of the setting, CL models are in-
trinsically more prone to make wrong predictions than single-task models. Thus, it is even more
important to ensure that CL models reliably communicate their uncertainty. Let’s consider a practi-
cal example as a running example throughout this work; in one hospital, a neural network is trained
continuously to detect skin lesions. The model will initially be trained on the most common types
of skin lesions (e.g., melanocytic nevi) but, as more data are collected, new and rarer classes (e.g.,
vascular lesions, dermatofibroma) will be encountered during training. For the deployment of such
model in critical scenarios, the model is required to be accurate but, more importantly, should be
able to reliably communicate its uncertainty such that human intervention can be requested when
complex cases are encountered. For such uncertainty estimates to be useful in practice, they need to
be calibrated. In standard single-task classification scenarios, model calibration can be substantially
improved by employing post-hoc uncertainty calibration approaches (Platt et al., 1999; Zadrozny
& Elkan, 2002; Zhang et al., 2020; Tomani et al., 2023) - that is, after training model outputs are
transformed, most commonly by dividing logits by a learnt temperature (temperature scaling), such
that they better match the true likelihood.

Despite the relevance of the problem, post-hoc uncertainty calibration, is largely under-explored in
CL. The limited literature available (Li et al., 2024; Hwang et al., 2025) tackles the problem from a
data-centric perspective by learning a single temperature shared across all the involved tasks. How-
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ever, due to catastrophic forgetting, predictive performance often differs substantially between tasks,
indicating that such task-agnostic strategies fail to capture the dynamic nature of CL problems. This
motivates us to shift towards task-aware calibration methods in order to account for the variability
across tasks.

In an ideal setting, each task could be re-calibrated by using its own validation set. Yet, this is
impractical during deployment – and in class-incremental learning (CIL) – where the task informa-
tion is not available at any time. Thus, to solve this challenge and introduce task-awareness into
the re-calibration process, we propose Distance-Aware Temperature Scaling (DATS), a method that
a) infers the proximity to the current task via a prototype-based distance criterion and b) exploits
such information to inject task-awareness during calibration optimisation and, in the context of
temperature-based approaches, learns how to assign a temperature based on the estimated distance.
This mitigates miscalibration due to temperature variability across tasks.

The contributions of this work can be summarised as follows:

• We demonstrate that, given the dynamic characteristics of CL (Figure 3), calibration should
move from task-agnostic to task-aware and adaptive re-calibration methods and expose the
limitations of current task-agnostic data-centric approaches (Figure 4).

• We propose a distance-aware calibration framework that shifts the focus from data selection
and injects task-awareness directly into the re-calibration algorithm. Our approach allows
us to assign a distance score to each test batch, enabling task-aware re-calibration without
explicit task information.

• We show the effectiveness of our method on standard benchmarks and more probing real-
world scenarios from the medical domain.

2 PRELIMINARIES AND RELATED WORK

Preliminaries Following the notation proposed in Hwang et al. (2025), we assume to have a
dataset Dt = {(xi, yi)} for each task t, such that each class label yi ∈ Dt belongs to a disjoint
set of classes Ct. The dataset is split in Dt,train, Dt,val, and Dt,test. We also assume to have a
memory buffer M, which stores a subset of samples from the previously encountered tasks. We
denote with C a set of classes and with C the union of set of classes. Thus, let Ct−1 =

⋃t−1
k=1 Ck de-

note the set of all previously seen classes up to task t−1; then, the memoryMt−1 contains a limited
set of labelled samples (xj , yj) such that yj ∈ Ct−1. The model is trained on Dt and usesMt−1

for replay. At the end of the training of task t , the memoryMt is updated with a portion of samples
taken from Dt,train. Finally, following Li et al. (2024), we also assume to have a calibration buffer
Bt which contains a subset of samples from the validation sets encountered up to task t.

Let fθ be a classifier parametrised by θ, producing a logit vector zi = fθ(xi) for an input xi. The
function maps input data to K output classes, where K is the size of Ct (i.e., the total number of
classes at time t). The probability vector pi is obtained by passing the logits zi through a softmax
function such that pi = softmax(zi). Then, we denote with ŷi = argmaxk pi,k and p̂i = maxk pi,k

the predicted class and the confidence of the prediction respectively.

Using the notion of calibration, we can define perfect calibration (Guo et al., 2017) as:
P(ŷi = yi|p̂i = p) = p ∀p ∈ [0, 1]. (1)

It naturally follows the definition of Calibration Error (CE) (Naeini et al., 2015) which measures the
gap between predicted confidence and actual accuracy:

E(xi,yi)∼P [|P(ŷi = yi | p̂i)− p̂i|] . (2)
However, in practical scenarios with a finite number of samples, the probability defined in Equation 2
cannot be computed exactly, and binning-based estimators are commonly used. Let us divide the
interval [0, 1] in B equally-spaced bins b. For each bin Bb, we can compute the empirical average
accuracy and confidence via accb = 1

|Bb|
∑

i∈b 1(ŷi = yi) and confb = 1
|Bb|

∑
i∈b p̂i respectively.

Finally, we can estimate the expected calibration error (ECE) via

ECE =

B∑
b=1

|Bb|
N
|accb − confb|, (3)

where N represents the total number of samples in the considered dataset D.
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Post-hoc calibration methods Among existing calibration strategies, post-hoc methods have
gained particular popularity due to their ease of application. Unlike approaches that require modify-
ing the classifier’s training procedure (Müller et al., 2019; Moon et al., 2020; Ghosh et al., 2022; Liu
et al., 2022; Noh et al., 2023), post-hoc calibration is applied after training, making it flexible and
computationally efficient. Several post-hoc techniques have been proposed, including Platt Scal-
ing (Platt et al., 1999), Isotonic Regression (IR) (Zadrozny & Elkan, 2002), and Spline Calibration
(Gupta et al., 2021). Following prior work in continual learning (Li et al., 2024; Hwang et al., 2025),
we focus on temperature scaling (TS, Guo et al. (2017)). TS learns a single scalar parameter T on
a validation set to rescale the classifier’s logits: predictions are softened if overconfident (T > 1)
or sharpened if underconfident (T < 1). The method is order-preserving and efficient, as it requires
learning only one parameter. More advanced variants of TS extend this idea, for example through
ensembling (ETS, Zhang et al. (2020)) or parameterised temperature scaling (PTS, Tomani et al.
(2022)), where T is modelled sample-wise by a multi-layer perceptron (MLP). In all these standard
TS approaches, calibration relies only on the logit vector zi of each sample. Taking inspiration from
the literature in out-of-distribution detection, where Sun et al. (2022) introduce a non-parametric
density estimation based on k-nearest neighbour (KNN) distance, Tomani et al. (2023) propose to
exploit the information contained in the inner layers of the classifier (up to the penultimate one) as
an additional input for KNN. This density-based information is then used, together with z, to learn
sample-wise temperatures for uncertainty calibration in OOD scenarios.

Calibration in CL The challenge of post-hoc uncertainty calibration in CL has only been recently
investigated. Li et al. (2024) present the first study of this problem in class-incremental learning
(CIL) in the context of memory-based approaches. The authors introduce Replayed Calibration
(RC), an approach that leverages an additional buffer (namely, a calibration buffer) populated with
samples taken from the validation set of each task for calibration optimisation. Despite its simplicity,
this work opens a new research direction and highlights the importance of exploiting information
from both current and past tasks for calibration. More recently, Hwang et al. (2025) propose T-
CIL, a new temperature scaling (TS) approach for CIL. Starting from the observation that using
the memory buffer for temperature optimisation is not effective due to its usage during training, the
authors propose to perturb the samples contained in the memory buffer to create synthetic samples
for calibration. In particular, the magnitude and the direction of the perturbations is adjusted based
on the difficulty of the samples taken into consideration – samples from old tasks are perturbed more
strongly than the current task’s ones.

RC and T-CIL primarily emphasise the choice of the data used for calibration rather than the cal-
ibration mechanism itself. For instance, T-CIL generates synthetic samples for calibration starting
from the memory buffer and the current validation set, but its generative nature introduces substan-
tial computational overhead and significantly increases the execution time (see Table 5). Ultimately,
both methods rely on the same principle of learning a single temperature across tasks while avoiding
direct use of the memory buffer. Such task-agnostic approach, however, fails to account for task-
specific variability and thus appears insufficient to mitigate miscalibration in CL. In contrast, we
depart from this task-agnostic and data-centric perspective (i.e., which data to use for calibration)
and are the first to explicitly consider the dynamic nature of CL, introducing task-awareness into
post-hoc calibration to better account for the variations across tasks.

3 METHODOLOGY

As argued above, the evolving nature of CL motivates the need for a task-aware re-calibration ap-
proach. Catastrophic forgetting causes predictive performance to vary substantially across tasks, and
we hypothesize that this discrepancy is reflected in the confidence scores of the model. We investi-
gate this behaviour in Figure 3, which reports the average confidence score per task for two different
datasets. In both cases, the most recent task exhibit significantly higher confidence than earlier ones.
This observation supports our hypothesis: although accuracy for the last task is typically higher, a
task-agnostic approach cannot yield well-calibrated predictions across all tasks.

To make this point explicit, we translate the task-agnostic vs. task-aware dilemma in the context
of temperature scaling. In a synthetic experiment (Figure 4), we compute the ideal temperature per
task by using its corresponding validation set. The results clearly show that the optimal temperature
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Figure 3: Visualisation of the average confidence score for each task at the end of the training
procedure. A clear difference is noticeable between the average confidence of the last task and the
one of the past tasks.

per task fluctuates across past tasks and decreases for the most recent ones, demonstrating that a
single temperature approach is not sufficient for effective calibration in CL.

These findings motivate us to move beyond task-agnostic strategies and develop adaptive, task-
aware post-hoc calibration methods. In the context of temperature scaling, this means moving from
learning a single temperature for all tasks to learning different temperatures depending on the task at
hand. In this way, we can instil task-awareness into the re-calibration phase and overcome the limi-
tations of current task-agnostic state-of-the-art approaches. In the ideal scenario presented in Figure
4, one could calibrate each task with its validation set, but this is impractical in class-incremental
learning and during deployment where task labels are not available at any time. To address this
challenge, we propose to infer the task information indirectly through prototype-based distance in-
formation and use this signal to tune the temperature accordingly.

In the remainder of this section, we describe in more details the modules constituting our approach.
First, in Section 3.1, we describe how to compute and assign distance scores to classes in the cali-
bration buffer. Then, in Section 3.2, we illustrate the use of the learned scores for task-aware tem-
perature optimisation procedure. Finally, in Section 3.3, we outline the strategy to assign a distance
score to the test set without task knowledge and to adapt the temperature accordingly. A summary
of the whole method is described in Appendix A.6 - Algorithm 1.

3.1 CLASS DISTANCE SCORE ASSIGNMENT

The main objective in this phase is to identify the closest class pairs between the current classes
(contained in Dt,val) and those in the calibration buffer (i.e., all seen classes). For this purpose, let
Ct be the set of classes for the current task t, and Cbuf = Ct =

⋃t
k=1 Ck be the set of buffer classes

containing all classes seen up to and including task t.
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Figure 4: Comparison between the ideal temperature for each task learned by exploiting the corre-
sponding validation set Dt,val (blue line) and the optimal single-temperature learned by concatenat-
ing the validation information of all tasks (red dashed line).
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To quantify the relationship between classes in the current task and those stored in the calibration
buffer, we represent each class by a prototype embedding µc, computed as the average of the latent
representations at the penultimate layer ℓ− 1 of the neural network:

µc =
1

|Dc|
∑

(xi,yi)∈Dc

f ℓ−1
θ (xi), (4)

where Dc denotes the set of samples belonging to class c, and f ℓ−1
θ (xi) is the output of the penul-

timate layer for input xi. For the current task classes, these prototypes are computed from Dt,val,
while for buffer classes they are computed from the samples stored in Bt.
Then, to assess the similarity between buffer and validation classes, we compute the pairwise cosine
similarity matrix S ∈ R|Ct|×|Cbuf |:

S(ct, cbuf ) =
µ⊤

ctµcbuf

∥µct∥2 ∥µcbuf
∥2

, ct ∈ Ct, cbuf ∈ Cbuf . (5)

Finally, the score for each buffer class cbuf is defined as the minimum distance (based on cosine
similarity) to any current class:

d(cbuf ) = min
ct∈Ct

(1− S(ct, cbuf )) ∀cbuf ∈ Cbuf . (6)

The scores are then normalised via MinMaxScaler. Intuitively, we expect d(cbuf ) ≈ 0 when cbuf ∈
Ct, and d(cbuf )≫ 0, otherwise. The score is assigned back to the examples in the buffer such that
the ones from the same class c share the same score d(cbuf = c). An illustration of this assignment
is depicted in Figure 2; the learned distance scores are assigned back to samples in Bt according to
the corresponding class.

3.2 TASK-AWARE CALIBRATION

Once we assign a distance-per-class score d(cbuf ) to each sample in the calibration buffer Bt, we
leverage these scores as an additional signal during the calibration optimisation phase. Here, d(cbuf )
acts as a proxy for the distance between a buffer sample and the current task, thereby introducing
task-awareness into the calibration process. While the logit information z already provide fine-
grained, sample-specific information, we assign the same distance score to all samples of a given
class c. This choice reduces the information burden during temperature optimisation and encourages
the model to capture class-level temperature dynamics. In contrast, using per-sample distances
would introduce unnecessary noise and instability, since the variability within a class may impede
learning the broader class-level trends that are most relevant for inducing task-aware calibration.

For a given class c, the temperature is defined as

T (dc) = wcdc + Tbase, (7)

where Tbase is the global base temperature and wc controls how strongly the distance score dc
modulates the adjustment. In this way, our method can learn a temperature for each seen class (i.e.,
for each class c ∈ Cbuf ). We learn Tbase and wc by minimising the Brier score based on the logits,
distance scores and labels from Bt (see Equation 9). More details about the optimisation of our
task-aware re-calibration approach are reported in Appendix A.1.

3.3 TEST-TIME CALIBRATION

At test time, our goal is to apply T (dc) to Dt,test for all tasks up to t. Since class and task infor-
mation are not available in this phase, we proceed as follows. First, each test sample is assigned to
the nearest class embedding µc in the calibration buffer Bt. Then, we retain only the most frequent
classes covering at least 60% of the assignments. This filtering step ensures that the selected classes
reliably describe the test set while reducing the risk of including spurious classes. For this, consid-
ering the catastrophic forgetting effect, we adopt a 60% threshold as a practical trade-off between
coverage and representativeness of each task: higher thresholds increase the likelihood of incorpo-
rating misclassified classes, thereby amplifying discrepancies between assigned and true classes (see
Appendix A.5, Table 6).
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Through this class assignment, we approximate the dominant classes in the test set and use them to
compute a representative score for the entire set. Specifically, given the set of assigned classes Ĉtest
and the distance score obtained from the calibration buffer, we define the test set distance dtest as

dtest =
1

|Ĉtest|

∑
c∈Ĉtest

d(cbuf = c). (8)

A numerical example of this procedure is illustrated in Figure 2. Suppose we are processing the test
set of the current task with classes 6 and 1 and, with a threshold of 0.6, the class assignment step
successfully retrieves the two classes. Then, dtest is computed via Equation 8 and used as input to
calculate the temperature according to Equation 7. Intuitively, when the class assignment is (almost)
correct, we expect to have dtest ≈ 0 when dealing with the current task and dtest > 0 otherwise.

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

Datasets In line with related work (Li et al., 2024; Hwang et al., 2025), we evaluate our method
on three popular datasets: CIFAR10, CIFAR100 (Krizhevsky et al., 2009), and TinyImageNet (Le
& Yang, 2015). To reproduce the class-incremental scenario, we divide each dataset into disjoint
tasks. For CIFAR10, we randomly assign two classes to each task (5 tasks). For CIFAR100 and
TinyImageNet, we respectively assign 10 and 20 classes to every task (10 tasks). This setup allows
the evaluation of baselines independently of task composition. As anticipated in Section 1, we next
evaluate our approach under more challenging and realistic settings. Instead of using CIFAR-like
datasets (e.g., ImageNet) or artificial tasks (e.g., EMNIST), we conduct validation on biomedical
image analysis datasets. Beyond domain differences in image statistics, these datasets also introduce
an additional challenge: class imbalance. To better imitate realistic scenarios, where newer tasks
typically provide fewer samples due to limited collection time or due to class rarity, we assign
classes to tasks according to their relative sizes. This setting represents a realistic and common
scenario in AI-assisted medicine where one hospital may encounter different pathology subtypes
with different frequencies. For this purpose, we focus on two biomedical datasets, both annotated
by expert clinical pathologists; BloodCell (Acevedo et al., 2020; Yang et al., 2021), with 8 classes of
microscopic blood cell images, and SkinLesions (Tschandl et al., 2018; Codella et al., 2019; Yang
et al., 2021), with 7 classes of dermoscopic images for skin cancer detection. Statistics are reported
in Appendix A.2.

Experimental settings In all the main experiments, we use a slim version of ResNet18 (He et al.,
2016) as done in previous CL works (Lopez-Paz & Ranzato, 2017; Kumari et al., 2022; Hurtado
et al., 2023; Serra et al., 2025) and use the SGD optimizer with a learning rate of 0.1. For replay,
we use Experience Replay (ER) (Chaudhry et al., 2019). In order to achieve competitive results on
each dataset and have a meaningful baseline, the size of the memory bufferM is adapted according
to the dataset in consideration. It is important to notice that, since our approach is post-hoc, the
initial training procedure can be changed as desired as long as the trained model achieves reasonable
predictive results. We ablate the use of a different architecture in Appendix A.5 - Table 8. For the
composition of the calibration buffer B, following Li et al. (2024), we reserve with random selection
a percentage of the validation set Dt,val of each processed task. We ablate the percentage value
in Appendix A.5 - Table 7. A detailed list of the hyperparameter selection can be found in the
supplementary material. We run the experiments on three random seeds such that each time the
class-per-task assignment is different. Each experiment was run on a Linux machine using a single
Quadro RTX 5000 with 16 GB RAM.

Baselines In line with prior work (Li et al., 2024; Hwang et al., 2025), we first benchmark our
method against standard temperature scaling (TS) techniques (i.e., TS, Ensemble TS (ETS), and
Parametrised TS (PTS)) which rely only on the current validation set. This comparison highlights
the inefficacy of approaches that ignore information from previous tasks in CL. Then, we compare
DATS against RC (Li et al., 2024) and T-CIL (Hwang et al., 2025) to assess the effectiveness of our
approach in comparison with task-agnostic approaches specifically tailored for class-incremental
learning (CIL).
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Table 1: Comparison of average negative log-likelihood (NLL), average expected calibration error
(ECE) and average delta last ECE (∆LECE) on standard benchmarks.

CIFAR10 (Acc: 63.58 ± 2.86) CIFAR100 (Acc: 45.19 ± 0.89) TinyImageNet (Acc: 22.79 ± 0.38)

NLL (▼) AECE (▼) ∆LECE (▼) NLL (▼) AECE (▼) ∆LECE (▼) NLL (▼) AECE (▼) ∆LECE (▼)
Uncal 3.38 ± 0.54 30.77 ± 3.01 ✗ 4.02 ± 0.07 35.55 ± 0.47 ✗ 4.27 ± 0.13 38.09 ± 1.23 ✗

TS 2.33 ± 0.28 27.94 ± 2.95 -1.14 ± 0.25 4.03 ± 0.59 35.38 ± 2.64 0.08 ± 1.93 4.36 ± 0.09 39.45 ± 0.50 0.55 ± 0.35

ETS 2.31 ± 0.34 28.26 ± 2.75 -1.00 ± 0.18 3.90 ± 0.60 35.67 ± 2.00 0.18 ± 1.62 4.36 ± 0.09 39.45 ± 0.51 0.55 ± 0.35

PTS ✗ ✗ ✗ 5.96 ± 1.50 34.92 ± 2.06 1.48 ± 2.34 5.10 ± 1.08 37.50 ± 2.83 -0.09 ± 0.31

RC 1.12 ± 0.06 12.18 ± 2.33 7.68 ± 1.24 2.32 ± 0.07 10.03 ± 0.32 6.44 ± 5.98 3.52 ± 0.04 14.45 ± 0.59 7.24 ± 2.87

T-CIL 1.12 ± 0.06 12.33 ± 2.68 7.34 ± 2.01 2.32 ± 0.08 9.56 ± 1.29 7.11 ± 3.70 3.52 ± 0.02 10.48 ± 0.78 16.77 ± 3.84

Ours 1.08 ± 0.04 8.80 ± 0.93 -2.31 ± 0.75 2.29 ± 0.06 7.63 ± 0.84 -1.26 ± 1.21 3.50 ± 0.02 11.84 ± 0.58 -2.66 ± 1.67
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Figure 5: Visual comparison of the learned temperatures across tasks between task-agnostic (RC
and T-CIL) and task-aware (ours) calibration methods for CL.

Evaluation metrics Following standard practice in CIL settings, we report the average metric. For
instance, the average accuracy (Acc in our tables) report the average of the accuracy across tasks at
the end of the training procedure. Similarly, we report the average negative log-likelihood (NLL)
and the average expected calibration error (AECE). We adopt both ECE and NLL as complementary
measures of calibration quality. While NLL assesses the overall quality of the predictive distribu-
tion, ECE directly measures the alignment between predicted confidence and empirical accuracy.
Furthermore, we introduce two additional metrics to evaluate calibration in CL settings: the differ-
ence in ECE before and after calibrating the last task (∆LECE) and the worst-case difference in
ECE across tasks after re-calibration (max∆ECE). We propose ∆LECE to show the effect of the
adopted temperature on the current task; considering the change in the confidence distribution be-
tween the current and previous tasks, this metric gives an idea of the effect of the calibration on the
currently evaluated task. Instead, max∆ECE provides insight into the stability and robustness of a
calibration method. For both metrics, negative values mean that the considered approach effectively
reduces the calibration error, while positive values indicate increased ECE. A detailed definition of
the metrics is provided in Appendix A.4.

4.2 EMPIRICAL RESULTS

From the results reported in Table 1, we can observe that the proposed approach consistently re-
duces miscalibration in most cases in terms of NLL and ECE. Looking at the difference between
the calibration error before and after calibrating the last task (∆LECE), it is evident that existing so-
lutions produce an undesirable behaviour: miscalibration becomes even more severe than when no
re-calibration is applied. The learned temperatures shown in Figure 5 further illustrate these dynam-
ics, where it is clear that a task-agnostic fixed temperature does not capture the dynamic properties of
CIL settings. Noticeably, while RC and T-CIL perform similarly on CIFAR datasets, T-CIL assign a
much higher temperature on TinyImageNet. This results in a smaller average ECE compared to our
method, but at the cost of a substantially larger calibration error on the last task. Importantly, we
also demonstrate that our approach remains effective and stable on imbalanced, real-world datasets
from the biomedical domain, as reported in Table 2.

In practical deployments, and especially in critical domains as our running example described in
Section 1, our method proves safer and more reliable by avoiding large fluctuations across tasks and
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Table 2: Comparison of average negative log-likelihood (NLL), average expected calibration error
(ECE) and average delta last ECE (∆LECE) on BloodCell and SkinLesions.

Blood Cell (Acc: 77.90 ± 4.46) Skin Lesions (Acc: 49.14 ± 0.67)

NLL (▼) AECE (▼) ∆LECE (▼) NLL (▼) AECE (▼) ∆LECE (▼)
Uncal 1.25 ± 0.24 16.47 ± 3.54 ✗ 1.57 ± 0.08 16.48 ± 0.88 ✗

RC 0.82 ± 0.12 9.91 ± 1.04 12.53 ± 1.63 1.44 ± 0.02 14.26 ± 1.58 14.77 ± 2.31

T-CIL 0.83 ± 0.11 10.08 ± 1.24 13.31 ± 2.74 1.43 ± 0.03 13.09 ± 0.76 9.56 ± 1.56

Ours 0.80 ± 0.11 9.87 ± 1.40 0.21 ± 0.66 1.42 ± 0.09 12.53 ± 2.68 -1.90 ± 1.81

preventing severe degradation on individual ones. This is illustrated in Figure 1, where we show
the worst-case ECE improvement (max∆ECE) across tasks for each baseline. A positive delta
(in red) indicates that the ECE of a given task is increased after calibration, while a negative delta
(in green) represents decreased ECE. From the results, we can observe that, in the worst case, our
approach does not change or marginally improves the calibration of a task, while current state-of-
the-art approaches exacerbate the problem in all the considered datasets. This property is particularly
important in safety-critical settings, such as biomedical applications, where rare or newly introduced
classes are at risk of being severely miscalibrated by approaches like RC or T-CIL. In such cases,
our method offers a more stable and trustworthy calibration strategy across tasks.

5 DISCUSSION AND CONCLUSION

Execution time Due to space constraints, we report the runtime of the calibration phase in seconds
in Appendix A.5 - Table 5. The results show that, while DATS introduces some overhead compared
to RC, it remains competitively fast compared to RC and considerably faster than T-CIL.

Comprehensive evaluation tailored to the CL setting Beyond standard metrics, we introduce two
new evaluation measures: 1) ∆LECE to assess the impact of calibration on the most recently learned
task (given the change in its predictive performance and confidence distribution), and 2) max∆ECE
which captures whether re-calibration degrades calibration on any task by tracking the worst-case
change in ECE across the sequence. In line with our shift from a task-agnostic to a task-aware
re-calibration perspective, these metrics provide a more nuanced understanding of re-calibration
effectiveness beyond average metrics.

Ablation studies In Appendix A.5, we analyse the impact of the most relevant hyperparameters on
the performance of our method. From the results (Tables 6, 7, and 8), our approach remains stable
and robust within a broad range of settings.

Limitations The approach assumes that the representative classes selected at test-time are a reliable
proxy of the processed task. However, under highly non-stationary streams, this assumption may be
weakened.

Conclusions In this work, we tackle the challenges of uncertainty calibration in CL, a largely under-
explored problem. By investigating the behaviour of CL models (Figure 3), we argue that post-hoc
calibration techniques in CL should move from a task-agnostic to a task-aware perspective. Cur-
rent state-of-the-art approaches, primarily focusing on the data to use for calibration, overlook task
variability and propose a task-agnostic single temperature approach which appears to be limited in
CL settings (Figure 4). This choice, in fact, leads to large fluctuations in ECE across tasks (Figure
1), an undesirable behaviour for the deployment of CL models in safety-critical settings. For this
reason, we depart from such task-agnostic, data-centric view and are the first to propose an adaptive,
task-aware calibration method for CL. To integrate task-awareness into the calibration phase, we
propose DATS, an elegant solution that, in the context of TS, is able to adapt the task temperature
without prior information about it via a combination of prototype-based distance estimation and
distance-aware calibration. The empirical results show that our approach delivers robust calibration
across tasks on a variety of datasets, ranging from standard benchmark (Table 1) to real-world, im-
balanced biomedical ones (Table 2). Additional ablation studies demonstrates that DATS is simple
to tune and efficient, providing an easy-to-integrate tool for post-hoc recalibration of CL models.
Overall, DATS offers a lightweight, principled, and effective solution for task-aware calibration in
class-incremental learning, enabling safer deployment of CL models in safety-critical domains.
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REPRODUCIBILITY STATEMENT

Code availability. We provide the full implementation of our method, along with all scripts nec-
essary to reproduce the experiments. The code is submitted as supplementary material and will be
made publicly available upon acceptance.

Data accessibility. All datasets employed in our experiments are publicly available. We include
detailed instructions on dataset usage, and any required preprocessing steps are automated via scripts
included in the code repository.

Hyperparameters. Complete training configurations and hyperparameter values are specified in
the main text. The effect of critical hyperparameters is further examined in the ablation study (see
Appendix A.5).

Hardware and runtime. Experiments were conducted on a Linux server with a single NVIDIA
Quadro RTX 5000 GPU and 16 GB RAM. Training times are reported in Table 5.

Experiment instructions. The repository includes a README file with step-by-step instructions
for reproducing the results. For clarity, we also provide pseudocode for the main components of our
method in Appendix A.6.
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A APPENDIX

A.1 POST-HOC CALIBRATION OPTIMISATION

Given the logits z, the distance scores d(cbuf), and the labels from the calibration buffer Bt, we fit our
task-aware, class-specific temperature scaling parameters for the trained classifier fθ by minimizing
the Brier score using the L-BFGS optimizer:

Lcal =

N∑
i=1

∑
c∈Cbuf

(Ii,c − softmax((zc
i /T (dc)))

2 (9)

where N is the number of samples in Bt, Ii,c is an indicator variable equal to 1 if yi = c and 0
otherwise, and T (dc) denotes the temperature assigned to class c as a function of its distance score
dc.

A.2 DATASET STATISTICS

In Table 3, we report the statistics of the datasets used for the main experiments. Following related
work, we use standard benchmarks (CIFAR10, CIFAR100, TinyImagenet), and datasets from differ-
ent domains (SkinLesions and BloodCell). In particular, the two biomedical datasets pose additional
challenges as they reflect more realistic conditions (less data, imbalanced).

Table 3: Statistics of the datasets.
Number of Classes Samples Tasks Image size

CIFAR10 10 60000 5 32
CIFAR100 100 60000 10 32
TinyImageNet 200 100000 10 64
SkinLesions 7 10015 3 64
BloodCell 8 17092 4 28

A.3 HYPERPARAMETER SELECTION

In Table 4, we report the hyperparameters used for each dataset. The choices follow standard prac-
tice in CL literature to obtain a backbone configuration that achieves reasonable predictive perfor-
mance. Specifically, NF denotes the number of features in the ResNet backbone, |M| is the memory
buffer size, Patience controls early stopping during training, and and Val. inclusion (%) indicates
the percentage of each task’s validation set that is included in the calibration buffer for calibration
optimisation. Values for Val. inclusion (%) were chosen per dataset to reflect dataset size and class
balance; small datasets or imbalanced biomedical datasets use larger fractions to ensure sufficient
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calibration samples. For standard benchmarks, the value is chosen to match the size of the memory
buffer. An ablation study for the percentage value is reported in Table 7.

Table 4: Hyperparameter selection for each dataset.
NF |M| Patience Val. inclusion (%)

CIFAR10 20 1000 10 10
CIFAR100 32 4000 20 40
TinyImageNet 64 1000 50 20
SkinLesions 64 200 20 50
BloodCell 20 200 50 50

A.4 EVALUATION METRICS

We adopt a set of standard metrics for CL together with additional measures specifically designed
to assess calibration in class-incremental learning (CIL) settings. Following standard practice, we
report the average values of the considered metrics across tasks at the end of training. In particular:

• Accuracy (Acc) evaluates predictive performance in terms of correct classifications.
• Negative Log-Likelihood (NLL) and Expected Calibration Error (ECE) serve as comple-

mentary measures of calibration quality: NLL captures the overall quality of the predictive
distribution, while ECE directly measures the alignment between predicted confidence and
empirical accuracy.

• ∆LECE and max∆ECE are additional metrics we introduce to assess the effect and ro-
bustness of calibration in CL settings.

A detailed definition of each metric follows.

- Average Accuracy (Acc): Let acct,i denote the accuracy on task i after learning task t.
Given the total number of tasks T , the average accuracy Acc is defined as:

Acc =
1

T

T∑
i=1

accT ,i. (10)

This metric summarizes the predictive performance across all tasks at the end of the training
procedure.

- Average Negative Log-Likelihood (NLL): The negative log-likelihood measures the quality
of the full predictive distribution. Lower values indicate that the predicted probabilities are
well aligned with the true labels, penalizing both overconfidence and underconfidence. Let
nllt,i denote the negative log-likelihood on task i after learning task t. The average NLL is
defined as:

NLL =
1

T

T∑
i=1

nllT ,i. (11)

- Average Expected Calibration Error (AECE): The expected calibration error measures the
discrepancy between predicted confidence and empirical accuracy, typically estimated via
binning. Lower values correspond to better-calibrated models. Let ecet,i denote the ECE
on task i after learning task t computed via Equation 3 with B = 10. The average ECE
(AECE) is defined as:

AECE =
1

T

T∑
i=1

eceT ,i. (12)

- Delta Last ECE (∆LECE): To assess the effect of the adopted calibration procedure on the
last task, we define the change in last-task ECE. Let ecet,t and ece-calt,t denote the ECE
on task t before and after calibration, respectively. Then:

∆LECE = ece-calT ,T − eceT ,T . (13)
This metric quantifies the direct impact of calibration on the most recently learned task.
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- Worst-case Delta ECE (max∆ECE): To evaluate the stability and robustness of a cali-
bration method across tasks, we consider the worst-case change in ECE. Let ∆eceT ,i =
ece-calT ,i − eceT ,i be the change in ECE for task i after calibration at the end of training.
The worst-case delta ECE is defined as:

max∆ECE = max
i∈{1,...,T }

∆eceT ,i. (14)

This metric captures the most adverse calibration effect across tasks, highlighting whether
re-calibration destabilizes the calibration performance across tasks.

For both ∆LECE and max∆ECE, negative values indicate that the considered approach reduces
miscalibration (improved calibration), while positive values indicate an increase in miscalibration.

A.5 ABLATION STUDY

In this section, we ablate different experimental choices to investigate the effectiveness and robust-
ness of our approach to different settings.

Execution time Table 5 reports the runtime of the calibration phase in seconds. As expected, RC
represents the lower bound since it simply applies TS on a calibration buffer without introducing ad-
ditional computation. Despite the extra steps required by our method, DATS remains competitively
fast compared to RC and considerably faster than T-CIL. Notably, the generative nature of T-CIL
induces substantial computational overhead leading to longer execution times across datasets.

Table 5: Execution time (in seconds) of the calibration phase after training. After the first task, the
value is the sum of the calibration procedure for each task up to the current one.

CIFAR10 CIFAR100 TinyImageNet Blood Cell Skin Lesions

Runtime (▼, in seconds)

RC 19.09 ± 2.06 23.76 ± 0.12 376.02 ± 18.11 3.37 ± 0.04 3.92 ± 0.00

T-CIL 230.88 ± 1.46 510.80 ± 21.49 1949.55 ± 55.38 38.52 ± 0.16 59.15 ± 0.36

Ours 22.15 ± 0.12 54.36 ± 7.87 479.61 ± 14.03 7.50 ± 0.17 9.88 ± 0.04

Coverage threshold As described in Section 3.3, at test time, we assign test samples to the clos-
est class embedding µc in the calibration buffer B. Considering that CL models are more prone to
be inaccurate (especially for past tasks), we decide to set the coverage threshold to 0.6 for all the
experiments as a good compromise between representativeness and coverage. In Table 6, we ablate
the coverage threshold (i.e, the percentage of samples in the test set that are used to infer the rep-
resentative classes). From the results, we can notice a clear trend; reducing the threshold improves
the final ECE in most of the cases. This effect is expected since, by reducing the threshold, we are
filtering out the least present classes and, most probably, the mismatch between the real and assigned
classes on the test set. This is particularly true for more challenging datasets like CIFAR100 and
TinyImageNet, where the overall accuracy is less than 50%. In general, we believe a value between
40% and 60% to be a good range for most of the cases.

Table 6: Effect of varying the coverage threshold on the calibration performance (ECE ▼). Best
results are typically obtained for thresholds between 40% and 60%

Threshold 0.4 0.5 0.6 0.7 0.8

ECE (▼)

CIFAR10 9.53 ± 0.60 8.80 ± 0.93 8.80 ± 0.93 9.40 ± 1.80 12.49 ± 2.040

CIFAR100 6.52 ± 0.62 6.73 ± 0.49 7.63 ± 0.84 8.38 ± 0.99 8.70 ± 0.35

TinyImageNet 10.31 ± 0.32 11.29 ± 0.48 11.84 ± 0.58 11.97 ± 0.40 12.32 ± 0.39

Validation inclusion percentage In Table 7, we analyse the effect of the size of the calibration
buffer B in terms of the percentage of each task’s validation set Dt,val included in B (Val. inclusion
(%)). For each validation set, samples are drawn uniformly at random. From the results, the per-
centage of samples included from Dt,val has only a minor impact on the calibration performance of
our approach.
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Table 7: Effect of varying the percentage of each task’s validation set (Val. inclusion (%)) on
the calibration performance (ECE ▼). Results in terms of ECE do not change considerably when
changing the percentage of samples selected from Dt,val.

Val. inclusion (%) 20 30 40 50

ECE (▼)

CIFAR10 8.85 ± 0.81 8.99 ± 0.68 9.02 ± 0.67 8.83 ± 0.75

CIFAR100 7.50 ± 0.55 7.44 ± 0.95 7.63 ± 0.84 7.81 ± 0.67

TinyImageNet 11.84 ± 0.58 11.56 ± 0.85 11.67 ± 0.81 11.46 ± 0.82

Backbone architecture In our experiments, we use a slim version of ResNet18 (SlimResNet) for
all the dataset. In Table 8, we report the results on the benchmark datasets when using a different
architecture for training, i.e., ResNet32 (He et al., 2016). We can see that changing the backbone
architecture does not affect the capabilities of our approach and the behaviour of all the considered
methods.

Table 8: Calibration performance when using ResNet32 as backbone architecture. Results are con-
sistent with those obtained using SlimResNet, confirming that our approach is not sensitive to the
choice of the backbone architecture.

CIFAR10 (Acc: 65.43 ± 2.09 ) CIFAR100 (Acc: 44.81 ± 2.43 ) TinyImageNet (Acc: 20.53 ± 1.45 )

NLL (▼) ECE (▼) ∆LECE (▼) NLL (▼) ECE (▼) ∆LECE (▼) NLL (▼) ECE (▼) ∆LECE (▼)
Uncal 2.12 ± 0.26 27.39 ± 2.20 ✗ 2.93 ± 0.26 4.63 ± 0.07 ✗ 4.63 ± 0.07 41.41 ± 0.30 ✗

RC 1.09 ± 0.07 10.70 ± 1.42 4.73 ± 1.55 2.24 ± 0.11 10.50 ± 1.10 4.20 ± 2.53 3.73 ± 0.07 13.80 ± 0.48 8.66 ± 2.98

T-CIL 1.09 ± 0.06 10.27 ± 1.01 5.33 ± 0.81 2.23 ± 0.10 9.14 ± 1.93 10.05 ± 7.17 3.74 ± 0.08 10.23 ± 1.34 19.52 ± 1.53

Ours 1.08 ± 0.06 8.38 ± 1.51 -0.78 ± 0.24 2.21 ± 0.11 8.38 ± 0.64 -1.07 ± 1.16 3.71 ± 0.07 12.18 ± 0.26 -4.17 ± 1.66
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A.6 PSEUDOCODE OF DATS

Algorithm 1 DATS training procedure.
1: Input fθ: trained model, Dt,val: validation set of task t, Bt: calibration buffer.
2: Notation t: current task, T : number of tasks; Ct: set of classes in the validation set of current

task; Cbuf : set of classes in the calibration buffer, S: distance matrix.
3:
4: Class Distance Score Assignment
5: for cbuf ∈ Cbuf do ▷ For each class in Bt
6: µcbuf

← GETCLASSPROTOTYPE(fθ, cbuf ) ▷ Compute class prototype with Eq. 4
7: end for
8: for ct ∈ Ct do ▷ For each class in Ct

9: µct ← GETCLASSPROTOTYPE(fθ, ct) ▷ Compute class prototype with Eq. 4
10: end for
11: for ct ∈ Ct do
12: for cbuf ∈ Cbuf do
13: S[ct, cbuf ]← DISTANCE(µct ,µcbuf

) ▷ Compute pairwise distance with Eq. 5
14: end for
15: end for
16: for cbuf ∈ Cbuf do ▷ For each class in Bt
17: dcbuf

← ASSIGNSCORE(cbuf ) ▷ Assign class distance score with Eq. 6
18: end for
19:
20: Distance-Aware Calibration
21: T (dc)← LEARNTEMPERATURE(dc, zc) ▷ Compute class-wise temperatures using Eq. 7
22:
23: Test-Time Calibration
24: Ĉtest ← ASSIGNNEARESTCLASSES(Dt,test, {µcbuf

}) ▷ Assign test sample to nearest µcbuf

25: Ĉtest ← KEEPFREQUENTCLASSES(Ĉtest, 0.6) ▷ Keep frequent classes with ≥ 60% coverage
26: dtest ← COMPUTETESTDISTANCE(Ĉtest, {dc}) ▷ Compute test distance with Eq. 8
27: APPLYCALIBRATION(Dt,test, dtest) ▷ Calibrate test logits based on dtest
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