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Abstract

Graph regression is a fundamental task that has gained significant attention in
various graph learning tasks. However, the inference process is often not easily
interpretable. Current explanation techniques are limited to understanding Graph
Neural Network (GNN) behaviors in classification tasks, leaving an explanation gap
for graph regression models. In this work, we propose a novel explanation method
to interpret the graph regression models (XAIG-R). Our method addresses the
distribution shifting problem and continuously ordered decision boundary issues
that hinder existing methods away from being applied in regression tasks. We
introduce a novel objective based on the graph information bottleneck theory (GIB)
and a new mix-up framework, which can support various GNNs and explainers
in a model-agnostic manner. Additionally, we present a self-supervised learning
strategy to tackle the continuously ordered labels in regression tasks. We evaluate
our proposed method on three benchmark datasets and a real-life dataset introduced
by us, and extensive experiments demonstrate its effectiveness in interpreting GNN
models in regression tasks.

1 Introduction

Graph Neural Networks [1] (GNNs) have become a powerful tool for learning knowledge from graph-
structure data and achieved remarkable performance in many areas, including social networks [2, 3],
molecular structures [4, 5], traffic flows [6–9], and recommendation systems [10–12]. Despite the
success, their popularity in sensitive fields such as fraud detection and drug discovery [13, 14]
requires an understanding of their decision-making processes. To address this challenge, some efforts
have been made to explain GNN’s predictions in a post-hoc manner, which aims to find a sub-graph
that preserves the information about the predicted label. On top of the intuitive principle, Graph
Information Bottleneck (GIB) [15, 16] maximizes the mutual information I(G∗;Y ) between the
target prediction label Y and the explanation G∗ while constraining the size of the explanation.

However, existing methods focus on the explanation of the classification tasks, leaving another funda-
mental task, explainable regression, unexplored. Graph regression tasks exist widely in nowadays
applications, such as predicting the molecular property [17] or traffic flow volume [18]. Explaining
the instance-level predictions of graph regression is challenging due to two main obstacles. First, in
the routinely adopted GIB framework, the mutual information between the explanation sub-graph
and label, I(G∗;Y ), is estimated with the Cross-Entropy between the predictions f(G∗) from GNN
model f and its prediction label Y . However, in the regression task, the regression label is the
continuous value, making the approximation unsuitable. Another challenge is the distribution shifting
problem in the usage of f(G∗), where the prediction of the explanation sub-graph made by the GNN
model f is unsafe. Usually, explanation sub-graphs have different topology and feature information
compared to the original graph. As a result, explanation sub-graphs are out-of-distribution of the
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original training graph dataset [19–21]. As shown in Figure 1, a GNN model f is trained on the
original graph training set and cannot be safely used to make predictions for sub-graphs.

Figure 1: Intuitive illustration of the distribution
shifting problem. The 3-dimensional map repre-
sents a trained GNN model f , where (h1, h2) rep-
resents the embedding distribution of the graph in
two dimensions, and Y represents the prediction
value of the graph through f . The red and blue
lines represent the distribution of the original train-
ing graph set and the corresponding explanation
sub-graph set, respectively. The distribution of G∗

shifts away from the original distribution, resulting
in shifted prediction values.

To fill the gap, in this paper, we propose
RegExplainer, to generate post-hoc instance-
level explanations for graph regression tasks.
Specifically, we formulate a theoretical-sound
objective for explainable regression based on
information theory. To further address the distri-
bution shifting issue, RegExplainer develops a
new mix-up approach with self-supervised learn-
ing. Our experiments show that RegExplainer
provides consistent and concise explanations
of GNN’s predictions on regression tasks. We
achieved up to 48.0% improvement when com-
pared to the alternative baselines in our experi-
ments. Our contributions can be summarized as
follows.

• To our best knowledge, we are the first to ex-
plain GNN predictions on graph regression tasks.
We addressed two challenges in explaining the
graph regression task: the mutual information
estimation in the GIB objective and the distribu-
tion shifting problem with continuous decision
boundaries.

• We proposed a novel model with self-
supervised learning and the mix-up approach,
which can address the two challenges more effectively, and better explain the graph model on the
regression tasks compared to other baselines.

•We designed three synthetic datasets, namely BA-Motif-Volume, BA-Motif-Counting and Triangles,
as well as a real-world dataset called Crippen, which can also be used in future works, to evaluate the
effectiveness of our regression task explanations. Comprehensive empirical studies on both synthetic
and real-world datasets demonstrate that our method can provide consistent and concise explanations
for graph regression tasks.

2 Related Work and Further Discussions

GNN Explainability The explanation methods for GNN models can be categorized into two types
based on their granularity: instance-level [22–25] and model-level [26], where the former methods
explain the prediction for each instance by identifying important sub-graphs, and the latter method
aims to understand the global decision rules captured by the GNN. These methods can also be
classified into two categories based on their methodology: self-explainable GNNs [27, 28] and
post-hoc explanation methods [23–25], where the former methods provide both predictions and
explanations, while the latter methods use an additional model or strategy to explain the target
GNN. Additionally, CGE [29] (cooperative explanation) generates the sub-graph explanation with
the sub-network simultaneously, by using cooperative learning. However, it has to treat the GNN
model as a white box, which is usually unavailable in the post-hoc explanation. Existing methods
have only partially addressed the explanation of graph regression tasks and have not fully considered
two important challenges: the distribution shifting problem and the limitations of the GIB objective,
both of which are key areas our work aims to tackle.

GIB Objective The Information Bottleneck (IB) [30, 31] provides an intuitive principle for learning
dense representations that an optimal representation should contain sufficient information for the
downstream prediction task with a minimal size. Based on IB, a recent work [32] unifies the most
existing post-hoc explanation methods for GNN, such as GNNExplainer [23], PGExplainer [24], with
the graph information bottleneck (GIB) principle [15, 16, 32]. Formally, the objective of explaining
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the prediction of f on G can be represented by

argmin
G∗

I(G;G∗)− αI(G∗;Y ), (1)

where G is the to-be-explained original graph, G∗ is the explanation sub-graph of G, Y is the
original ground-truth label of G, and α is a hyper-parameter to get the trade-off between minimal and
sufficient constraints. GIB uses the mutual information I(G;G∗) to select the minimal explanation
that inherits only the most indicative information from G to predict the label Y by maximizing
I(G∗;Y ), where I(G;G∗) avoids imposing potentially biased constraints, such as the size or the
connectivity of the selected sub-graphs [15]. Through the optimization of the sub-graph, G∗ provides
model interpretation. In graph classification task, a widely-adopted approximation to Eq. (1) in
previous methods [23, 24] is:

argmin
G∗

I(G;G∗) + αH(Y |G∗) ≈ argmin
G∗

I(G;G∗) + αCE(Y, Y ∗),

where Y and Y ∗, approximated by f(G) and f(G∗), is the predicted label of G and G∗ made
by the to-be-explained model f , and the cross-entropy CE(Y, Y ∗) between Y and Y ∗ is used to
approximate −I(G∗;Y ). The approximation is based on the definition of mutual information
I(G∗;Y ) = H(Y )−H(Y |G∗): with entropy H(Y ) being static and independent of the explanation
process, minimizing the mutual information between the explanation sub-graph G∗ and Y can be
reformulated as maximizing the conditional entropy of Y given G∗, which can be approximated by
CE(Y, Y ∗).

3 Preliminary

Notation and Problem Formulation We use G = (V, E ;X,A) to represent a graph from an
alphabet G, where V equals to {v1, v2, ..., vn} represents a set of n nodes and E ∈ V × V represents
the edge set. Each graph has a feature matrix X ∈ Rn×d for the nodes, wherein X , Xi ∈ R1×d is
the d-dimensional node feature of node vi. E is described by an adjacency matrix A ∈ {0, 1}n×n,
where Aij = 1 means that there is an edge between node vi and vj ; otherwise, Aij = 0. For the
graph prediction task, each graph Gk has a label Yk ∈ C, where k ∈ {1, ..., N}, N represents the
number of graphs in the dataset, C is the set of the classification categories or regression values in R,
with a GNN model f trained to make the prediction, i.e., f : (X,A) 7→ C.
Problem 1 (Post-hoc Instance-level GNN Explanation). Given a trained GNN model f , for an
arbitrary input graph G = (V, E ;X,A), the goal of post-hoc instance-level GNN explanation is to
find a sub-graph G∗ that can explain the prediction of f on G.

In non-graph structured data, the informative feature selection has been well studied [33], as well
as in traditional methods, such as concrete auto-encoder [34], which can be directly extended to
explain features in GNNs. In this paper, we focus on discovering the important sub-graph typologies
following the previous work [23, 24]. Specifically, the obtained explanation G∗ is depicted by a
binary mask M∗ ∈ {0, 1}n×n on the adjacency matrix, e.g., G∗ = (V, E ;X,A⊙M∗), ⊙ means
elements-wise multiplication. The mask highlights components of G which are essential for f to
make the prediction.

4 Methodology

In this section, we first introduce a new objective based on GIB for explaining graph regression tasks.
Then we showcase the distribution shifting problem in the objective for regression and propose a novel
framework with the mix-up approach to solve the distribution shifting problem, by incorporating the
mix-up approach with self-supervised contrastive learning.

4.1 GIB for Explaining Graph Regression

As introduced in Section 2, in the classification task, I(G∗;Y ) in Eq. (1) is commonly approximated
by cross-entropy CE(Y ∗, Y ) [35]. However, it is non-trivial to extend it for regression tasks because
Y is a continuous variable and it is intractable to compute the cross-entropy CE(Y ∗, Y ) or the mutual
information I(G∗;Y ), where G∗ is a graph variable with a continuous variable Y ∗ as its label.
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4.1.1 Optimizing the Lower Bound of I(G∗;Y )

To address the challenge of computing the mutual information I(G∗;Y ) with a continuous Y , we
propose a novel objective for explaining graph regression.

Instead of minimizing I(G∗;Y ) directly, we propose to maximize a lower bound for the mutual
information by including the prediction label of G∗, denoted by Y ∗, and approximate I(G∗;Y ) in
Eq. (1) with I(Y ∗;Y ):

argmin
G∗

I(G;G∗)− αI(Y ∗;Y ). (2)

I(Y ∗;Y ) has the following property, upon which we can approximate Eq. (2):

Property 1 I(Y ∗;Y ) is a lower bound of I(G∗;Y ).

Figure 2: Intuitive illustration about why
I(G∗;Y ) ≥ I(Y ∗;Y ). G∗ contains
more mutual information as having more
overlapping area with Y than the over-
lapping area between Y ∗ and Y .

Intuitively, the property of I(Y ∗;Y ) is guaranteed by the
chain rule for mutual information and the independence
between each explanation instance g∗ in G∗. An intuitive
demonstration is shown in Figure 2. The proof is shown
in the Appendix B.1.

4.1.2 Estimating I(Y ∗;Y ) with InfoNCE

Now the challenge becomes the estimation of the mutual
information I(Y ∗;Y ). Inspired by the model of Con-
trastive Predictive Coding [36], in which InfoNCE loss is
interpreted as a mutual information estimator, we further
adapt the objective function so that it can be applied with
InfoNCE loss in explaining graph regression. In our graph explanation scenario, the InfoNCE Loss
defined in Eq. (3) can also be utilized as a lower bound of I(Y ∗;Y ), as shown in the following
property with proofs:

Property 2 InfoNCE Loss is a lower bound of the I(Y ∗;Y ):

I(Y ∗;Y ) ≥ E
Y

[
log

sim (Y ∗, Y )
1
|Y|

∑
Y ′∈Y sim (Y ∗, Y ′)

]
, (3)

where Y ′ is the prediction label of the randomly sampled graph neighbors, Y is the set of the
neighbors’ prediction labels, and sim() estimates the similarity between Y ∗ and Y . The proof is
shown in the Appendix B.2. Therefore, we have the InfoNCE loss LNCE as the lower bound of the
I(Y ∗;Y ). We approximate Eq. (2) as:

argmin
G∗

I(G;G∗)− αE
Y

[
log

sim (Y ∗, Y )
1
|Y|

∑
Y ′∈Y sim (Y ∗, Y ′)

]
. (4)

4.2 Distribution Shifting Problem in Graph Regression

We include the prediction label Y ∗ in Eq. (4) to estimate similarity, which is approximated with
f(G∗) in previous work [23, 24]. However, we argue that f(G∗) cannot be safely obtained due to
the distribution shift problem [37, 19]. In classification tasks, a small shift may not cross the decision
boundaries, which can still lead to a correct prediction. However, due to the continuous decision
boundaries in regression, the distribution problem would cause serious prediction errors. Here in this
paper, the graph distribution is indicated by its regression label in the regression task.

Figure 3 shows the existence of distribution shifts between f(G∗) and f(G) in graph regression tasks.
For each dataset, we sort the indices of the data samples according to the value of their labels, and
visualize the label Y , prediction f(G) of the original graph from the trained GNN model f , and
prediction f(G∗) of the explanation sub-graph G∗ from f . As we can see in Figure 3, in all four graph
regression datasets, the red points are well distributed around the ground-truth blue points, indicating
that f(G) is close to Y . In comparison, the green points shift away from the red points, indicating the
shifts between f(G∗) and f(G). Especially in dataset BA-Motif-Counting, the sub-graph explanation
distribution was shifted extremely.
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Figure 3: Visualization of distribution shifting problem on four graph regression datasets. The points
represent the regression value, where the blue points mean ground truth label Y , red points mean
prediction f(G), and the green points mean prediction f(G∗) on the four datasets. The x-axis is the
indices of the graph, sorted by the value of the label Y .

Intuitively, this phenomenon indicates the GNN model f can make correct predictions only with
the original graph G yet can not predict the explanation sub-graph G∗ correctly. This is because the
GNN model f is trained with the original graph sets, whereas the explanation G∗ as the sub-graph is
different from the original graph sets. With the shift between f(G) and f(G∗), the optimal solution
in Eq. (4) is unlikely to work well.

4.3 Mix-up Approach with Contrastive Learning

To address this distribution-shifting problem in graph regression, we innovatively incorporate the
mix-up approach with a self-supervised contrastive learning strategy. Instead of calculating Y ∗ with
f(G∗) directly, we approximate with Y (mix) from f(G(mix)), which contains similar information as
G∗ but is in the same distribution with G. Specifically, our approach includes the following steps:

• Step 1 (Neighbor Sampling): Learning through the triplet instances can effectively reinforce the
ability of the explainer to learn the explanation self-supervised. For each target graph G with label Y
to be explained, we can define two randomly sampled graphs as positive neighbor G+ and negative
neighbor G−, where G+’s label Y + is closer to Y than G−’s label Y −, i.e., |Y + − Y | < |Y − − Y |.
Intuitively, the distance between the distributions of the positive pair ⟨G,G+⟩ should be smaller than
the distance between the distributions of the negative pair ⟨G,G−⟩.
• Step 2 (Mixup for G∗): Then we generate two mixup graphs G(mix)+ and G(mix)− by mixing
the sub-graph explanation G∗ with the label irrelevant sub-graph (G+)∆ = G+ − (G+)∗ from its
positive neighbor G+ and the label irrelevant sub-graph (G−)∆ = G− − (G−)∗ from negative
neighbor G− respectively. Specifically, the label mixup approach is calculated from:

G(mix)+ = G∗ + (G+)∆ = G∗ + (G+ − (G+)∗), G(mix)− = G∗ + (G−)∆ = G∗ + (G− − (G−)∗).

G(mix)+ and G(mix)− should have the similar information to G because they have the same label-
preserving sub-graphs G∗. Additionally, considering the following two pairs: (G(mix)+, G+) and
(G(mix)−, G−). The similarity between (G(mix)+, G+) should be larger than the similarity between
(G(mix)−, G−). Intuitively, since G(mix)+ and G(mix)− have the same label-preserving sub-graphs G∗

and |Y − − Y | > |Y + − Y |, we can have |f(G−) − f(G(mix)−)| > |f(G+) − f(G(mix)+)|, where
f(G) represents the prediction label of graph G.

• Step 3 (InfoNCE Loss Approximation): Then we can safely estimate the similarity with
sim(Y (mix), Y ). To save more information, we use the similarity of representation embedding to
approximate the similarity of the graph prediction label, where h(mix) represents the embedding for
G(mix) and h represents the embedding for G. We use H to represent the neighbors set accordingly.
Thus, we approximate Eq. (4) as:

argmin
G∗

I(G;G∗)− αE
H

[
log

sim
(
h(mix),h

)
1
|H|

∑
h′∈H sim (h(mix),h′)

]
. (5)

Different between Mix-up Approach in Classification Tasks The mix-up approach in previous
work [19] generates a mixed graph by simply mixing explanation sub-graph G∗ with a randomly
sampled label-irrelevant sub-graph G∆ [19], which can be formally written as G(mix)

a = G∗
a + (Gb −
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Figure 4: Illustration of RegExplainer. G is the to-be-explained graph, G+ and G− are the randomly
sampled positive and negative neighbors. The explanation of the graph is produced by the explainer
model. Then graph G∗ is mixed with (G+)∆ = G+−(G+)∗ and (G−)∆ = G−−(G−)∗ respectively
to produce G(mix)+ and G(mix)−. Then the graphs are fed into the trained GNN model to retrieve
the embedding vectors h+, h−, h(mix)+ and h(mix)−, where h(mix)+ ≈ h(mix)− due to the same
label-preserving sub-graph G∗. We use InfoNCE loss to minimize the distance between G(mix)+

and the positive sample and maximize the distance between G(mix)− and the negative sample. The
explainer is trained with the GIB objective and self-supervised contrastive loss.

G∗
b). However, it cann’t tackle the continuous decision boundaries in graph regression tasks. A

detailed description of the mix-up approach can be found in Appendix C.

4.4 Implementation

InfoNCE Loss After generating the mix-up explanation G(mix), we specify the InfoNCE loss to
further train the parameterized explainer with a triplet of graphs ⟨G,G+, G−⟩. In practice, G+ and
G− are randomly sampled from the graph dataset, upon which we calculate their similarity score
with the target graph G. The sample with a higher score would be the positive sample and the other
one would be the negative sample. Specifically, we use sim(h,h′) = h⊤h′ to compute the similarity
score, where G′ can be G+ or G−. h is generated by feeding G into the GNN model f and retrieving
the embedding vector before the dense layers.

Formally, given a target graph G, the sampled positive graph G+ and negative graph G−, we
formulate the InfoNCE loss in Eq. (5) as the following:

LNCE(G,G+, G−) = − log
exp((h(mix)+)⊤h)

exp((h(mix)+)⊤h+) + exp((h(mix)-)⊤h−)
, (6)

where exp(h⊤h) is used to instantiate the function sim, the denominator is a sum over the similarities
of both positive and negative samples.

Size Constraints We optimize I(G;G∗) in Eq. (5) to constraint the size of the explanation sub-
graph G∗. The upper bound of I(G;G∗) is optimized as the estimation of the KL-divergence
between the probabilistic distribution between the G∗ and G, where the KL-divergence term can
be divided into two parts as the entropy loss and size loss [16]. In practice, we follow the previous
work [23, 24, 38] to implement them. Specifically,

Lsize(G,G∗) = γ
∑

(i,j)∈E

(M∗
ij)− log σ((h∗)⊤h∗), (7)

where
∑

(i,j)∈E
(M∗

ij) means sum the weights of the existing edges in the edge weight mask M∗ for

the explanation G∗; h∗ is extracted from the embedding of the graph G∗ before the GNN model f
transforming it into prediction Y ∗, σ means the sigmoid function and γ is the weight for the size of
the masked graph. In implementation, we set γ = (0.0003, 0.3) following previous work [19].

Overall Objective Function In practice, the denominator in Eq. (5) works as a regularization to
avoid trivial solutions. Since the label Y is given and independent of the optimization process, we can
also employ the MSE loss between Y ∗ and Y additionally, regarding InfoNCE loss only estimates the
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Table 1: Illustration of the graph regression datasets together with the explanation faithfulness in terms
of AUC-ROC on edges under four datasets on RegExplainer and other baselines. The original graph
row visualizes the structure of the complete graph, the explanation row highlights the explanation
sub-graph of the corresponding original graph. In the Crippen dataset, different colors of the node
represent different kinds of atoms and the node feature is a one-hot vector to encode the atom type.

Dataset BA-Motif-Volume BA-Motif-Counting Triangles Crippen

Original Graph G

Explanation G∗

Node Feature Random Float Vector Fixed Ones Vector Fixed Ones Vector One-hot Vector
Regression Label Sum of Motif Value Number of Motifs Number of Triangles Chemical Property Value
Explanation Type Fix Size Sub-Graph Dynamic Size Sub-graph Dynamic Size Sub-graph Dynamic Size Sub-graph

Explanation AUC
GRAD 0.418± 0.000 0.527± 0.000 0.479± 0.000 0.426± 0.000
ATT 0.512± 0.005 0.521± 0.003 0.441± 0.004 0.502± 0.006
MixupExplainer 0.471± 0.0291 0.868± 0.127 0.663± 0.110 0.499± 0.002
GNNExplainer 0.501± 0.009 0.505± 0.004 0.500± 0.002 0.497± 0.005
+RegExplainer 0.588± 0.017 0.629± 0.001 0.537± 0.003 0.541± 0.011
PGExplainer 0.470± 0.057 0.798± 0.133 0.511± 0.028 0.448± 0.005
+RegExplainer 0.758± 0.177 0.989± 0.003 0.739± 0.008 0.553± 0.013

mutual information between the embeddings. Formally, the overall loss function can be implemented
as:

L = LGIB + βLMSE(f(G), f(G(mix)+)),where LGIB = Lsize(G,G∗)− αLNCE(G,G+, G−) (8)

G(mix)+ means mix G∗ with the positive sample G+ and α and β are hyper-parameters. The training
algorithm and description of it are put in Appendix D.

5 Experiments

In this section, we conduct experiments to demonstrate the performance of our proposed method1.
These experiments are mainly designed to explore the following research questions:

• RQ1: Can RegExplainer outperforms other baselines in explaining GNNs on regression tasks?

• RQ2: How does each part of RegExplainer and hyperparameters impact the overall performance in
generating explanations?

• RQ3: Does the distribution shifting exist in GNN explanation? Can RegExplainer alleviate it?

5.1 Experiment Settings

We formulate Three synthetic datasets and a real-world dataset, as is shown in Table 1, in order to
address the lack of graph regression datasets with ground-truth explanation. The datasets include:
BA-Motif-Volume and BA-Motif-Counting, which are based on BA-shapes [23], Triangles [39],
and Crippen [40]. We compared the proposed RegExplainer against a comprehensive set of baselines
in all datasets, including: GRAD [23], ATT [41], GNNExplainer [23], PGExplainer [24], and
MixupExplainer [19]. Detailed information about experiment setting are put in the Appendix E.
We elaborate on the measurement metric of methods as follows: (1) AUC-ROC: We use the AUC
score to evaluate the performance of our proposed methods against baseline methods regarding the
ground-truth explanation, which can be treated as a binary classification task. (2) We evaluate the
similarity of distribution of the graph with Cosine Similarity and Euclidean Distance.

5.2 Quantitative Evaluation (RQ1)

In this section, we evaluate the performance of our approach with other baselines. For GRAD
and GAT, we use the gradient-based and attention-based explanation, following the setting in the

1Our data and code are available at: https://github.com/jz48/RegExplainer
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previous work [23]. We take GCN as our to-be-explained model for all post-hoc explainers. For
GNNExplainer, PGExplainer, and MixupExplainer, which were previously used for the classification
task, we replace the Cross-Entropy loss with the MSE loss. We run and tune all the baselines on our
four datasets. We evaluate the explanation from all the methods with the AUC metric, as done in the
previous work. As we can see in Table 1, we take GNNExplainer and PGExplainer as backbones
and apply our framework as RegExplainer on both of them. The experiment results demonstrate the
effectiveness of our methods in explaining graph regression tasks, where our method achieves the
best performance compared to the baselines in all four datasets.

In Table 1, RegExplainer based on PGExplainer improves the second best baseline with 0.175/34.3%
on average and up to 0.246/48.0%. The comparison between RegExplainer and other baselines
indicates the advantages of our proposed approach. This improvement indicates the effectiveness of
our proposed method, showing that by incorporating the mix-up approach and contrastive learning,
we can generate more faithful explanations in the graph regression tasks. In the following sections,
we analyze the RegExplainer with PGExplainer as a backbone.

5.3 Ablation Study and Hyper-parameter Sensitivity Study (RQ2)

Figure 5: Ablation study of RegExplainer. We
evaluated the AUC performance of the original
RegExplainer and its variants that exclude the mix-
up approach, InfoNCE loss, or MSE loss, respec-
tively. The black solid line shows the standard
deviation.

We conducted an ablation study to show how
our proposed components, specifically, the mix-
up approach and self-supervised learning, con-
tribute to the final performance of RegExplainer.
To this end, we denote RegExplainer as RegE
and design three types of variants as follows:
(1) RegE−mix: We remove the mix-up process-
ing after generating the explanations and feed
the sub-graph G∗ into the objective function di-
rectly. (2) RegE−nce: We remove the InfoNCE
loss term but still maintain the mix-up process-
ing and MSE loss. (3) RegE−mse: We remove
the MSE loss computation item from the objec-
tive function.

Additionally, we set all variants with the same
configurations as original RegExplainer, includ-
ing learning rate, training epochs, and hyper-
parameters η, α, and β. We trained them on all
four datasets and conducted the results in Fig-
ure 5. We observed that the proposed RegExplainer outperforms its variants in all datasets, which
indicates that each component is necessary and the combination of them is effective.

Figure 6: Hyper-parameters study of α and β on
four datasets with RegExplainer. In both figures,
the x-axis is the value of different hyper-parameter
settings, and the y-axis is the value of the average
AUC score over ten runs with different random
seeds.

We also investigate the hyper-parameters of our
approach, which include α and β, across all four
datasets. The hyper-parameter α controls the
weight of the InfoNCE loss in the GIB objec-
tive while the β controls the weight of the MSE
loss. We determined the optimal values of α and
β with grid search. The experimental results
can be found in Figure 6. We fixed α and β
at 1 and changed another parameter to visual-
ize the change in model performance. Figure 6
illustrates that the model’s performance is ro-
bust to changes in hyper parameters within the
scope [0.001, 1000]. Our findings indicate that
our approach, RegExplainer, is stable and robust
when using different hyper-parameter settings,
as evidenced by consistent performance across
a range.
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Table 2: Prediction shifting study on the RMSE of (f(G), Y ), (f(G∗), Y ), (f(G), f(G∗)) respec-
tively.

Dataset (f(G), Y ) (f(G∗), Y ) (f(G), f(G∗))
BA-Motif-Volume 131.42 1432.07 1427.07

BA-Motif-Counting 2.06 7.43 7.22
Triangles 5.28 12.38 12.40
Crippen 1.13 1.54 1.17

5.4 Alleviating Distribution Shifts (RQ3)

In this section, we visualize the regression values of the graphs and calculate the prediction shifting
distance for each dataset and analyze their correlations to the distance of the decision boundaries. We
put our results into Figure 7 and Table 2.

We observed that in Figure 3, red points surround the blue points but green points are shifted away,
which indicates that the explanation sub-graph cann’t help GNNs make correct predictions. As
shown in Table 2, we calculate the RMSE score between the f(G) and Y , f(G∗) and Y , f(G)
and f(G∗) respectively, where f(G) is the prediction the original graph, f(G∗ is the prediction
of the explanation sub-graph, and Y is the regression label. We can observe that f(G∗) shows a
significant prediction shifting from f(G) and Y , indicating that the mutual information calculated
with (f(G∗), Y ) would be biased.

We further explore the relationship of the prediction shifting against the label value with dataset
BA-Motif-Volume, which represents the semantic decision boundary. This additional experiment
with Figure 7 can be found in Appendix F.1.

We also design experiments to illustrate how RegExplainer corrects the deviations: we calculate the
graph embeddings v and predictions p of the explanation sub-graphs and the mix-up graph. Then
we compare them to the ground truth and calculate the Euclidean or Cosine distance between the
vectors and RMSE between prediction labels. From the results in Table 3, we can observe that all the
performances of COS(vg, vm), EUC(vg, vm) and prediction errors are better than those of (vg, ve),
which indicates RegExplainer can effectively fix the distribution of sub-graph explanation G∗ and
reduce the embedding distance and prediction error.

Table 3: Table for measuring distribution repairing. vg, ve and vm are the embeddings from f of
original graph G, explanation subgraph G∗ and the mix-up explanation G(mix)+. pg, pe and pm are
the predicted labels for the original graph, explanation subgraph and the mix-up explanation. EUC
means Euclidean distance (↓, the smaller the better) and COS means cosine distance (↑, the larger the
better). RMSE means Root Mean Square Error (↓, the smaller the better).

BA-Motif-Volume BA-Motif-Counting Triangles Crippen
COS(vg , ve) 0.95 0.80 0.97 0.89
COS(vg , vm) 0.98 0.89 0.99 0.92
EUC(vg , ve) 0.46 0.68 0.19 0.67
EUC(vg , vm) 0.37 0.52 0.08 0.63
RMSE(pg , pe) 1427.07 7.22 12.40 1.17
RMSE(pg , pm) 393.26 2.73 8.22 0.68

6 Conclusion

We addressed the challenges in the explainability of graph regression tasks and proposed the Reg-
Explainer, a novel method for explaining the predictions of GNNs with the post-hoc explanation
sub-graph on graph regression task without requiring modification of the underlying GNN archi-
tecture or re-training. We showed how RegExplainer can leverage the mix-up approach to solve
the distribution shifting problem and adopt the GIB objective with the InfoNCE loss to migrate it
from graph classification tasks to graph regression tasks, while these existing challenges seriously
affect the performances of other explainers. We formulated four new datasets: BA-Motif-Volume,
BA-Motif-Counting, Triangles, and Crippen for evaluating the explainers on the graph regression
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task, which are aligned with the design of datasets in previous work. They can also benefit future
studies on the XAIG-R. While we acknowledge the effectiveness of our method, we also recognize
its limitations. Specifically, although our approach can be applied to explainers for graph regression
tasks in an explainer-agnostic manner, it cannot be easily applied to explainers built for explaining
the spatio-temporal graph due to the dynamic topology and node features of the STG. To overcome
this challenge, a potential solution is to incorporate cached dynamic embedding memories into the
framework.
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This work is primarily foundational in GNN explainability, focusing on expanding the GIB objective
function of the explainer framework from graph classification tasks to graph regression tasks. Its
primary aim is to contribute to the academic community by enhancing the explanation in graph
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outcomes of our research.
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A Symbols Table

Symbol Name Symbol Meaning
G Original to-be-explained graph
G∗ Optimized sub-graph explanation
Y Prediction label for G
Y ∗ Prediction label for G∗

I(·) Mutual Information
f(·) Prediction made by to-be-explained GNN model f

(h1, h2) The 2-dims representation of graph embeddings
α Hyper parameter for mutual information term in GIB

H(·) Information entropy
V Node set
E Edge set
X Feature matrix
A Adjacency matrix
G Graph set
v A node in graph
vi The i-th node in graph
n Number of nodes
d Dimension of feature
i The i-th node index
j The j-th node index
k The k-th graph index
Aij edge from node i to node j
C A set of classification categories or R for regression tasks

M∗ Edge mask which denotes G∗ in G
Y Set of neighbors’ prediction labels
Y ′ Prediction label of sampled graph neighbor
h Graph embedding for G
H Set of h
γ Hyper parameter for leveraging sum of edge weights
σ Sigmoid function
β Hyper parameter for MSE loss
vg Embedding vectors for graph G
ve Embedding vectors for explanation sub-graph G∗

vm Embedding vectors for mix-up graph G(mix)+

pg Prediction labels for graph G
pe Prediction labels for explanation sub-graph G∗

pm Prediction labels for mix-up graph G(mix)+

h(·) Mapping function from G∗ to Y ∗

y∗ An instance of Y ∗

g∗ An instance of G∗

Table 4: Important notations and symbols table.
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B Proof

B.1 Property 1

Proof. From the definition of Y ∗, we can make a safe assumption that there is a many-to-one map
(function), denoted by h, from G∗ to Y ∗ as Y ∗ is the prediction label for G∗. For simplicity, we
assume a finite number of explanation instances for each label y∗, and each explanation instance,
denoted by g∗, is generated independently. Then, we have p(y∗) =

∑
g∗∈G(y∗) p(g

∗), where
G(y∗) = {g|h(g) = y∗} is the set of explanations whose labels are y∗.

Based on the definition of mutual information, we have:

I(G∗;Y ) =

∫
y

∫
g∗

p(G∗,Y )(g
∗, y) log

p(G∗,Y )(g
∗, y)

pG∗(g∗)pY (y)
dg∗dy

=

∫
y

∫
g∗

p(G∗,Y ∗,Y )(g
∗, h(g∗), y)

log
p(G∗,Y ∗,Y )(g

∗, h(g∗), y)

pG∗(g∗)pY (y)
dg∗dy

=

∫
y

∫
g∗

p(G∗,Y ∗,Y )(g
∗, h(g∗), y)

log
p(G∗,Y ∗,Y )(g

∗, h(g∗), y)

p(G∗,Y ∗)(g∗, h(g∗))pY (y)
dg∗dy

=

∫
y

∫
y∗

∑
g∗∈G(y∗)

p(G∗,Y ∗,Y )(g
∗, y∗, y)

log
p(G∗,Y ∗,Y )(g

∗, y∗, y)

p(G∗,Y ∗)(g∗, y∗)pY (y)
dy∗dy

Based on our many-to-one assumption, while each g∗ is generated independently, we know that if
g /∈ G(y∗), then we have p(G∗,Y ∗,Y )(g

∗, y∗, y) = 0. Thus, we have:

I(G∗;Y ) = I(G∗;Y )

+

∫
y

∫
y∗

∑
g/∈G(y∗)

p(G∗,Y ∗,Y )(g
∗, y∗, y)

log
p(G∗,Y ∗,Y )(g

∗, y∗, y)

p(G∗,Y ∗)(g∗, y∗)pY (y)
dy∗dy

=

∫
y

∫
y∗

∫
g∗

p(G∗,Y ∗,Y )(g
∗, y∗, y)

log
p(G∗,Y ∗,Y )(g

∗, y∗, y)

p(G∗,Y ∗)(g∗, y∗)pY (y)
dg∗dy∗dy

= I(G∗, Y ∗;Y ).

With the chain rule for mutual information, we have I(G∗, Y ∗;Y ) = I(Y ∗;Y ) + I(G∗;Y |Y ∗).
Then due to the non-negativity of the mutual information, we have I(G∗, Y ∗;Y ) ≥ I(Y ∗;Y ).

B.2 Property 2

Proof. As in the InfoNCE method, the mutual information between Y ∗ and Y is defined as:

I(Y ∗;Y ) =
∑
Y ∗,Y

p(Y ∗, Y ) log
p(Y |Y ∗)

P (Y )
(9)

However, the ground truth joint distribution p(Y ∗, Y ) is not controllable, so, we turn to maximize the
similarity

sim (Y ∗, Y ) ∝ p(Y |Y ∗)

p(Y )
. (10)
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We want to put the representation function of mutual information into the NCE Loss

LN = −E
Y
log

[
sim (Y ∗, Y )∑
Y ′∈Y(Y

∗, Y ′)

]
, (11)

where LN denotes the NCE loss. By inserting the optimal sim (Y ∗, Y ) into Eq. (11), we can get:

LNCE = −E
Y
log

 p(Y |Y ∗)
p(Y )

p(Y |Y ∗)
p(Y ) +

∑
Y ′∈Yneg

p(Y ∗,Y ′)
p(Y ′)


= E

Y
log

1 + p(Y |Y ∗)

p(Y )

∑
Y ′∈Yneg

p(Y ∗, Y ′)

p(Y ′)


≈ E

Y
log

[
1 +

p(Y |Y ∗)

p(Y )
(N − 1)E

Y ′

p(Y ∗, Y ′)

p(Y ′)

]
= E

Y
log

[
1 +

p(Y |Y ∗)

p(Y )
(N − 1)

]
≥ E

Y
log

[
p(Y |Y ∗)

p(Y )
N

]
= −I(Y ∗, Y ) + log(N)

(12)

C Graph Mix-up Approach

To address the distribution shifting issue between f(G) and f(G∗) in the GIB objective, we introduce
the mix-up approach to reconstruct a within-distribution graph, G(mix), from the explanation graph G∗.
We follow [24] to make a widely-accepted assumption that a graph can be divided by G = G∗ +G∆,
where G∗ presents the underlying sub-graph that makes important contributions to GNN’s predictions,
which is the expected explanatory graph, and G∆ consists of the remaining label-independent edges
for predictions made by the GNN. Both G∗ and G∆ influence the distribution of G. Therefore, we
need a graph G(mix) that contains both G∗ and G∆, upon which we use the prediction of G(mix) made
by f to approximate Y ∗ and h∗.

Specifically, for a target graph Ga in the original graph set to be explained, we generate the explanation
sub-graph G∗

a = Ga−G∆
a from the explainer. To generate a graph in the same distribution of original

Ga, we can randomly sample a graph Gb from the original set, generate the explanation sub-graph
of G∗

b with the same explainer and retrieve its label-irrelevant graph G∆
b = Gb −G∗

b . Then we can
merge G∗

a together with G∆
b and produce the mix-up explanation G(mix)

a . Formally, we can have
G(mix)

a = G∗
a + (Gb −G∗

b).

Since we are using the edge weights mask to describe the explanation, we can denote Ga and
Gb with the adjacency matrices Aa and Ab, their edge weight mask matrices as Ma and Mb. If
Ga and Gb are aligned graphs with the same number of nodes, we can simply mix them up by
M (mix)

a = M∗
a + (Ib −M∗

b ), where M denotes the weight of the adjacency matrix and Ib denotes
the zero-ones matrix as weights of all edges in the adjacency matrix of Gb, where 1 represents the
existing edge and 0 represents there is no edge between the node pair.

If Ga and Gb are not aligned with the same number of nodes, we can use a connection adjacency ma-
trix Aconn and mask matrix Mconn to merge two graphs with different numbers of nodes. Specifically,
the mix-up adjacency matrix can be formed as:

A(mix)
a =

[
Aa Aconn
AT

conn Ab

]
. (13)

And the mix-up mask matrix can be formed as:

M (mix)
a =

[
M∗

a Mconn
MT

conn M∆
b

]
(14)
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Finally, we can form G(mix)
a as (X (mix),A(mix)

a ⊙M (mix)
a ), where X (mix) = [Xa;Xb]. The detailed

algorithm for mix-up is shown in Algorithm 1. In implantation, η = |E| ∗ 0.03.

Algorithm 1 Graph Mix-up Algorithm

Input: Target to-be-explained graph Ga = (Xa,Aa), Gb sampled from a set of graphs G, the
number of random connections η, explainer model E.

Output: Graph G(mix).
1: Generate mask matrix Ma = E(Ga)
2: Generate mask matrix Mb = E(Gb)
3: Sample η random connections between Ga and Gb as Aconn
4: Mix-up adjacency matrix A(mix)

a with Eq. (13)
5: Mix-up edge mask M (mix)

a with Eq. (14)
6: Mix-up node features X (mix) = [Xa;Xb]
7: return G(mix) = (X (mix),A(mix)

a ⊙M (mix)
a )

D Training Algorithm

Algorithm 2 Training Explainer

Input: A set of graphs G, trained GNN model f , explainer model E.
Output: Trained explainer E.

1: Initialize explainer model E.
2: for e ∈ epochs do
3: for G ∈ G do
4: Gb, Gc ← Randomly sample two graphs from G
5: G+, G− ← Compare similarity(Gb, Gc) to G
6: G(mix)+ ←Mix-up (G,G+)
7: G(mix)− ←Mix-up (G,G−)
8: Compute LNCE(G,G+, G−) with Eq. (6)
9: Compute LGIB and overall loss L with Eq. (8)

10: end for
11: Update E with back propagation.
12: end for
13: return Explainer E

Algorithm 2 shows the training procedure for our explainer. For each epoch and each to-be-explained
graph G, we first randomly sample two neighbors and decide the positive neighbor G+ and negative
neighbor G− according to the similarity between their embedding vectors respectively. The graph
with higher similarity to G is the positive neighbor G+. We generate the explanation for graphs and
mix G with G+ and G− respectively. We calculate the InfoNCE for triplet ⟨G,G+, G−⟩ with Eq. (6)
and the GIB loss, which contains the size loss and InfoNCE loss. We also calculate the MSE loss
between f(G(mix)+) and f(G). The overall loss is the sum of size loss, InfoNCE loss, and MSE loss.
We update the trainable parameters in the explainer with the overall loss.

E Implantation details

We provided implementation details for our experiments in this section. Data and code are available
in the Anumuous git repo and supplementary.

All experiments are conducted on a Linux machine (Ubuntu 16.04.4 LTS (GNU/Linux 4.4.0-210-
generic x86_64)) with 4 NVIDIA TITAN Xp (12 GB) GPUs. CUDA version is 11.8 and the Driver
version is 520.56.06. All codes are written with the Python version 3.8.13 with PyTorch 1.12.1 and
PyTorch Geometric (PyG) 2.1.0.post1, torch-scatter 2.0.9, and torch-sparse 0.6.15. We adopt the
Adam optimizer throughout all experiments. Overall, for each dataset, a GCN regression model is
well-trained first, where we take a three-layer GCN model as the backbone. Then the explainers
take the to-be-explained GNN and original graph and generate explanations for its prediction on the
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dataset. After that, we evaluate the performance of the explanation. We split the dataset into 8:1:1,
where we train the GNN base model with 8 folds, and train and test explainer models with 1 fold
respectively. The hyper-parameters are illustrated in the paper correspondingly.

E.1 Datasets

We formulate Three synthetic datasets and a real-world dataset, as is shown in Table 1, in order to
address the lack of graph regression datasets with ground-truth explanations. (1) BA-Motif-Volume:
This dataset is based on the BA-shapes [23] and makes a modification, which is adding random float
values from [0.00, 100.00] as the node feature. We then sum the node values on the motif as the
regression label of the whole graph, which means the GNNs should recognize the [house] motif and
then sum features to make the prediction. (2) BA-Motif-Counting: Different from BA-Motif-Volume,
where node features are summarized, in this dataset, we attach various numbers of motifs to the base
BA random graph and pad all graphs to equal size. The number of motifs is counted as the regression
label. Additionally, we pad base graphs to dynamic size to prevent the GNNs from making trivial
predictions based on the total number of nodes. (3) Triangles: We follow the previous work [39] to
construct this dataset. The dataset is a set of 5000 Erdős–Rényi random graphs denoted as ER(m, p),
where m = 30 is the number of nodes in each graph and p = 0.2 is the probability for an edge to
exist. The size of 5000 was chosen to match the previous work. The regression label for this dataset
is the number of triangles in a graph and GNNs are trained to count the triangles. (4) Crippen: The
Crippen dataset is a real-life dataset that was initially used to evaluate the graph regression task.
The dataset has 1127 graphs reported in the Delaney solubility dataset [40] and has weights of each
node assigned by the Crippen model [42], which is an empirical chemistry model predicting the
water-actual partition coefficient. We adopt this dataset, firstly shown in the previous work [43], and
construct edge weights by taking the average of the two connected nodes’ weights.

E.2 Baselines

We compared the proposed RegExplainer against a comprehensive set of baselines in all datasets,
including: (1) GRAD [23]: GRAD is a gradient-based method that learns weight vectors of edges by
computing gradients of the GNN’s objective function. (2) ATT [41]: ATT is a graph attention network
(GAT) that learns attention weights for edges in the input graph. These weights can be utilized as a
proxy measure of edge importance. (3) GNNExplainer [23]: GNNExplainer is a model-agnostic
method that learns an adjacency matrix mask by maximizing the mutual information between the
predictions of the GNN and the distribution of possible sub-graph structures. (4) PGExplainer [24]:
PGExplainer adopts a deep neural network to parameterize the generation process of explanations,
which facilitates a comprehensive understanding of the predictions made by GNNs. It also produces
sub-graph explanations with edge importance masks. (5) MixupExplainer [19]: MixupExplainer
adopts the graph mix-up approach with PGExplainer and address the Out-Of-Distribution problem in
graph classification tasks.

F Additional Experiments

F.1 Correlation between Prediction Shifting and the Label Value

In Figure 7, each point represents a graph instance, where Y represents the ground-truth label, and ∆
represents the absolute value difference. It’s clear that both the ∆(f(G∗), Y ) and ∆(f(G), f(G∗))
strongly correlated to Y with statistical significance, indicating the prediction shifting problem is
related to the continuous ordered decision boundary, which is present in regression tasks.
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Figure 7: Correlations between the predictions and their shifting on BA-Motif-Volume. The value of
r indicates the Pearson Correlation Coefficient, and the values with * indicate statistical significance
for correlation, where *** indicates the p-value for testing non-correlation p ≤ 0.001. Each point
represents one graph instance.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We discussed the background scope and introduced our contributions in
abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We provided the discussion about the limitations at the end of conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provided assumptions and proofs to our theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provided the hyper-parameters setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided code and data in supplementary.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is presented in the paper and The full details can be
found in the appendix and supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We conduct our experiments in 10 random seeds and report the mean and std
values in the performance table.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the information of computing resources in the section of imple-
mentation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: Our research doesn’t have a concern about the ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed, other than helping human
beings better understand the black-box GNNs models.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We produce the data by ourselves and the original papers we refer to are cited.
The baseline model we used are also cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provided the details about our new proposed datasets in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with899 human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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