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Abstract
We present Belief Embedding Tree Search (BETS), a novel planning algorithm for Par-
tially Observable Markov Decision Processes (POMDPs). Effective planning hinges
on accurately approximating the agent’s belief state, yet existing methods become pro-
hibitively expensive as belief states grow. BETS addresses this by compressing beliefs
into fixed-length embeddings that are updated with each new observation. Condition-
ing a generative model on these embeddings enables Monte-Carlo planning over the
approximate belief states. An initial evaluation in the standard benchmark PocMan—
restricted to a reduced grid size—shows promising results compared to similarly bud-
geted particle filtering baselines. This highlights the potential for BETS to scale online
planning to larger POMDPs.

1 Introduction

Computing posterior distributions over hidden states is crucial for planning in partially observ-
able environments. Given observations, some planning algorithms for Partially Observable Markov
Decision Processes (POMDPs) compute these beliefs with full Bayesian updates by exhaustively
traversing the state space (Ross et al., 2008). Sample-based algorithms, such as Partially Observable
Monte-Carlo Planning (POMCP) (Silver & Veness, 2010), scale better by sampling from approxi-
mate beliefs to evaluate candidate action sequences. However, in some cases, maintaining accurate
belief approximations is computationally costly and dominates the algorithm’s decision-time plan-
ning budget, leading to low search depth and breadth and suboptimal action selection.

Classical solutions approximate belief states with Bayesian filters: either lightweight with closed-
form updates and strong parametric assumptions (e.g. (Kalman, 1960)), or non-parametric but com-
putationally expensive particle filters (Doucet et al., 2009). Parametric filters with analytic posterior
updates impose strong assumptions that are violated in tasks with multimodal belief states (Kalman,
1960; Julier & Uhlmann, 2004). Particle filters approximate arbitrary target distributions but can
require an exponential number of particles (in the size of the state space) to avoid impoverishment
and poor filtering performance (Thrun, 2002). Poor belief state approximation is well-known to
have negative downstream effects on planning (Poupart & Boutilier, 2013).

Recently, Anonymous (2025) proposed Neural Bayesian Filtering (NBF), which models the set of
beliefs induced by a task as a latent space. Latent vectors correspond to belief distributions and are
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computed directly from samples. A generative model enables posterior computation in the latent
space by simulating the environment one step upon a new observation. Crucially for planning, NBF
approximates rich sets of belief distributions at a modest computational cost compared to particle
filtering (Anonymous, 2025).

In this paper, we introduce Belief Embedding Tree Search (BETS). BETS is a planning algorithm
that operates in a latent approximation of the belief states induced by a POMDP. It integrates NBF
into a novel Monte Carlo planning algorithm, offering potentially significant scalability improve-
ments over state-of-the-art approaches like POMCP. We demonstrate its performance empirically in
PocMan (Silver & Veness, 2010), a standard POMDP planning benchmark.

2 Background
Before discussing the algorithm, we introduce some notation and concepts related to belief states
and planning in POMDPs.

A POMDP is a tuple G = (X,A, Y, T,H,R, γ). Here, X is a set of discrete states, A is a finite
set of actions, and Y is a set of observations. At each timestep the agent chooses an action a ∈ A
and moves from some state x to x′, x, x′ ∈ X . The transition function T : X × A → ∆X
outputs the probability of transitioning to any x ∈ X , given a state-action pair. The observation
function H : X × A ×X → ∆Y outputs the probability of all observations upon some transition.
R : X × A×X → R is the reward function that indicates an agent’s reward upon a transition, and
γ is the discount factor. We assume γ = 1.

A belief state is a distribution over the Markov states at time t, conditional on actions and obser-
vations: pt(x)

def
= p(x|a(1)y(1), . . . , a(t)y(t)). In POMDPs, the agent chooses actions from belief

states rather than ground truth states x ∈ X . Thus, an agent’s policy π is a mapping from belief
states to distributions over A. In this paper, we consider only finite-horizon POMDPs, which means
the agent’s goal is choose a policy that maximizes expected reward EG,π[

∑T
t=1R(xt, at, xt+1)]

over episodes of the form (x1, a1, x2, a2, . . . , xT , aT ). Planning algorithms interact with G by per-
forming simulations to select action sequences that approximate the optimal policy π∗.

Particle filters (Doucet et al., 2009) are non-parametric methods for approximating belief states.
They represent arbitrary target distributions as sets of weighted particles. Upon receiving an obser-
vation, posterior beliefs are computed by simulating transitions in the POMDP for each particle and
updating its weight accordingly. More concretely, given a policy π, action a, and observation y:

For each particle xi and particle weight wi, i ∈ 1, . . . , n:

1. Simulate transition x′i ∼ T (xi, a)
2. Update weight w′

i ← wi · π(x)[a] ·H(xi, a, x
′
i)[y]

When the weights of many particles become too small, particle filters typically resample by duplicat-
ing particles with higher probability and discarding others. Impoverishment occurs when too many
particle weights become small and new particles cannot be resampled from outside x1:n. This re-
sults in a degenerate approximation of pt(x) and significant errors in the expected reward estimates
used for planning (Poupart & Boutilier, 2013). Protecting against impoverishment can require an
exponential number of particles in the size of the state space (Thrun, 2002).

3 Belief Embedding Tree Search
PO-UCT performs simulations that require ground truth samples from the root belief state. POMCP
(Silver & Veness, 2010) maintains an approximation of the relevant belief state with a particle filter.
Methods for mitigating particle impoverishment exist, but are computationally expensive or only
resample particles from within the originally sampled set (Sokota et al., 2022).

Neural Bayesian Filtering (NBF) (Anonymous, 2025) 1 mitigates impoverishment by computing
posteriors in the embedding space of a belief embedding model. Each posterior update consists of

1NBF is under review. For further details, see the supplementary material.
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Algorithm 1: Belief Embedding Tree Search

1 Function Search(θ, n, k)
2 τ ← InitTree() // Track action values, visit counts, θ
3 for i = 1 to k do
4 θleaf, a1:t, y1:t, τ ← SimAndExpand(θ, τ, n) // Add new leaf
5 q ← Evaluate(θleaf, n) // e.g. random rollouts
6 τ ← Backup(τ, q, a1:t, y1:t)
7 end
8 return BestActionAtRoot(τ)

9 Function UpdateBeliefs(θ, n, a, y)
10 x1:n ← NBF.generate(θ, n) // Run NBF to update and
11 x′1:n, w1:n ← NBF.update(x1:n, a, y) // weigh samples given a and y
12 θ′ ← NBF.embed(x′1:n, w1:n)
13 return θ′

sampling particles from a generative model conditioned by the current belief embedding θ, simulat-
ing them forward, and then computing a new weighted embedding from the result.

Belief Embedding Tree Search (BETS) (Algorithm 1) performs search in the embedding space. The
algorithm has two main functions: returning an action given an embedding of a belief state, and
updating a belief embedding given an action and observation. The function Search plans in the
embedding space via PO-UCT to estimate the best action at the input belief state θ. It uses a fixed
budget of k iterations and n particles. UpdateBeliefs is called by SimAndExpand to compute
embeddings for leaf nodes. After search, the agent executes the recommended action, receives an
observation, and calls UpdateBeliefs to maintain beliefs for the next time it needs to act.

4 Experiments

We validate BETS in a small variant of PocMan (Silver & Veness, 2010). PocMan is a partially
observable adaptation of the popular arcade game Pac-Man. Our version follows a similar design
as Silver & Veness (2010), except we use fewer ghosts and power pills (2 instead of 4), a smaller
grid (7x7 instead of 17x19) with 4 internal “pillars” as walls, and a randomized, unknown player
location. Player and ghost locations are selected randomly every episode.

Belief model training. We train the belief embedding model for NBF offline. Trajectories are
generated via biased random walks in the game, while a particle filter with 256 particles approxi-
mates the beliefs. Random walks are biased towards moving away from ghosts (except under the
effect of the power pill) and towards food pellets. Particle sets from the particle filter are treated as
samples from the target belief state and form a single training example in our training set. During
training, each particle set is split, with half used to compute the embedding and the other half used
to compute the training objective. The embedding network used to compute θ consists of 3 hidden
layers with 128 units each. Its output is size 32 and conditions a Normalizing Flow (Papamakarios
et al., 2021), with 5 coupling layers (Dinh et al., 2016) of size 32, for particle generation and a vari-
ational dequantization (Hoogeboom et al., 2020) layer to handle discrete data. The model is trained
by maximizing the negative log-likelihood of the particle sets.

Results. We compare BETS against the baseline of using a particle filter in conjunction with PO-
UCT (Silver & Veness, 2010). We label these baselines as PF-n, where n is the number of particles.
Table 1 shows the average reward of BETS compared to these baselines after 500 episodes, with
standard error computed over 20 random seeds. A separate belief embedding model was trained and
evaluated against the baselines for each random seed. PO-UCT was given simulation budgets of 50,
100, and 250 search iterations at every decision point and a maximum rollout depth of 100.
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Table 1: Average Reward in 7x7 PocMan with no internal walls.

PO-UCT iters. PF-32 PF-64 PF-128 BETS-32 BETS-64

50 -0.09 ± 4.81 22.83 ± 5.22 50.23 ± 5.60 48.50 ± 6.54 84.01 ± 6.94
100 1.60 ± 4.94 24.05 ± 5.33 52.02 ± 5.64 50.13 ± 6.63 82.82 ± 6.91
250 1.45 ± 4.91 27.52 ± 5.47 54.20 ± 5.76 51.30 ± 6.60 86.23 ± 7.05

Increasing the number of particles helps particle filtering variants of PO-UCT perform better in
planning across all simulation budgets. This is likely due to the effect of particle impoverishment.
BETS matches all particle filtering variants of PO-UCT with only 32 particles and significantly out-
performs them with 64 particles across all three simulation budgets. This demonstrates its potential
and motivates further experiments in POMDPs with high-dimensional belief states.

5 Discussion and Future Work

BETS is a work in progress. The following are some key directions for future work related to
algorithmic improvements and model training that could have a significant impact on performance.

Online Belief Model Training. BETS currently requires a pre-trained belief embedding model to
track the belief state with NBF. Data for this model is generated via random walks while tracking the
belief state with a particle filter. Computational budgets for offline training are often significantly
higher than decision time budgets (e.g., Silver et al. (2016)), so tracking the belief state using a
more computationally expensive filter is valid, though vulnerable to impoverishment given long
trajectories. Another issue is that the training dataset is generated by following a (biased) random
walk; there is no guarantee that the belief states encountered during training are representative of
those that will be reached by following a PO-UCT policy. Training, or fine-tuning, the belief model
online by generating the relevant data with BETS has the potential to solve both of these problems.

Policies and Value Functions on the Embedding Space. UCT (Kocsis & Szepesvári, 2006) and
PO-UCT estimate leaf values with random rollouts and select actions based on action value estimates
and visit counts. While extensions like PUCT (Rosin, 2011) and replacing random rollouts with
neural network-based leaf evaluations led to landmark results in settings with fully-observable states
(Silver et al., 2016), applying the same principles to particle-based approximations of belief states
is not straightforward because it requires learning value functions and policies over sets of particles.
Belief embeddings can potentially enable value and policy learning over large belief states.

Model Architecture. This iteration of BETS copies the embedding and generative model archi-
tecture used in Anonymous (2025). Incorporating recent advances in generative modeling, such as
Flow Matching (Lipman et al., 2022; Tong et al., 2023), and experimenting with different embedding
architectures could significantly impact belief model accuracy and planning performance.

6 Conclusion

This paper introduced Belief Embedding Tree Search (BETS), a Monte-Carlo planning algorithm
that replaces particle filters with Neural Bayesian Filtering to maintain compact, expressive beliefs
during planning. On the small variant of PocMan we examined, BETS significantly outperformed or
matched Particle Filtering PO-UCT with the same or higher particle budgets. Although our results
are limited to small domains, they are promising in light of the algorithm’s potential scalability.
Future work will explore algorithmic improvements to BETS, and scale it to full-sized PocMan and
other high-dimensional POMDPs.
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7 Neural Bayesian Filtering

Neural Bayesian filtering is an algorithm for tracking belief embeddings over a sequence of obser-
vations. It updates the input belief embedding by generating and then simulating n particles for a
single step. These particles are weighed according to the probability of input observation y given
the chosen action a, policy π, and environment dynamics.

Algorithm 2: Neural Bayesian Filtering
input : θ — Belief Embedding, y — Observation, a — Action, (ψ, ϕ) — Model Parameters, n

— Number of Particles, π — Policy
output: θ′ — Updated Belief Embedding

1 z1:n
iid∼ N (0d, Id) // n samples of d-dimensional Gaussian noise

2 x1:n ← fψ(z1:n; θ) // Generate particles from belief embedding
3 for i← 1 . . . n do
4 x′i ∼ T (xi, a)
5 w′

i ← wi · π(x)[a] ·H(xi, a, x
′
i)[y]

6 end
7 return Eϕ(x′1:n,normalize(w1:n)) // Output embedding

In addition to the input embedding θ, observation, and action, the algorithm requires a generative
model fψ conditioned on θ, and a permutation-invariant embedding function Eϕ that maps a set of
weighted particles to an embedding. UpdateBeliefs in Algorithm 1 uses the same procedures
to generate particles and updates embeddings for BETS.


