
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DESIGNING DEEP LEARNING PROGRAMS WITH
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The process of utilizing deep neural architectures to solve tasks differs signifi-
cantly from conventional programming due to its complexity and the need for spe-
cialized knowledge. While code generation technologies have made substantial
progress, their application in deep learning programs requires a distinct approach.
Although previous research has shown that large language model agents perform
well in areas such as data science, neural architecture search, and hyperparameter
tuning, the task of proposing and refining deep neural architectures at a high level
remains largely unexplored. Current methods for automating the synthesis of deep
learning programs often rely on basic code templates or API calls, which restrict
the solution space to predefined architectures. In this paper, we aim to bridge the
gap between traditional code generation and deep learning program synthesis by
introducing the task of Deep Learning Program Design (DLPD), a task of design-
ing an effective deep learning program for the task, along with appropriate archi-
tectures and techniques. We propose Deep Ones, a comprehensive solution for
DLPD. Our solution includes a large-scale dataset and a lightweight benchmark
specifically designed for DLPD. On our benchmark, Llama-3.1 8B, fine-tuned on
our dataset, demonstrates better architecture suggestion capability than GPT-4o
and better performance than Claude-3.5-Sonnet, showcasing that Deep Ones ef-
fectively addresses the challenge of DLPD. Deep Ones will be publicly available,
including the dataset, benchmark, codes, and model weights.

1 INTRODUCTION

Program synthesis, the process of automatically generating software from high-level specifications,
has gained significant attention due to its practicality. With recent advancements in deep learn-
ing and large language models (LLMs), many studies have proposed models capable of generating
source code through pre-training (Wang et al., 2021; Di et al., 2023; Li et al., 2023), additional
fine-tuning (Austin et al., 2021; Chen et al., 2021), evolutionary algorithm (Luo et al., 2023), or
reinforcement learning (Le et al., 2022; Shojaee et al., 2023). These methods have shown strong
performance in code generation benchmarks such as APPS (Hendrycks et al., 2021), MBPP (Austin
et al., 2021), and HumanEval (Chen et al., 2021). However, since these benchmarks primarily ad-
dress relatively simple code generation tasks, recent efforts have shifted toward generating more
complex programs, such as competition-level codes (Li et al., 2022b; Ridnik et al., 2024), data
science programs (Lai et al., 2023; Chandel et al., 2022), class-level codes (Du et al., 2023), and
repository-level codes (Zhang et al., 2023a).

Nevertheless, such approaches have not been actively investigated within the domain of deep learn-
ing programs, which involves generating an executable code that utilizes a deep neural architecture.
This is due to several open challenges: complex code structures, sophisticated environment config-
urations, and poorly-defined evaluation standards.

As a result, most prior research in this area has focused on problem-solving API usage (Shen et al.,
2024; Patil et al., 2023; Ge et al., 2024; Gao et al., 2023; Liang et al., 2023), automated architec-
tural modification of a pre-defined code or hyperparameter tuning (Huang et al., 2023; Zhang et al.,
2023c; Liu et al., 2024), and neural architecture search (Elsken et al., 2019) along with AutoML (He
et al., 2021). However, these approaches often operate within a limited solution space, relying on
slight modifications of predefined architectures. While using a base model guarantees performance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

with relatively safe execution, it leaves little room for architectural designs or technical enhance-
ment typically made by human researchers, which may boost performance much greater than layer
changing or hyperparameter tuning.

To bridge the gap between low-level code generation technologies and high-level deep learning ar-
chitecture usage, we propose the task of Deep Learning Program Design (DLPD), a task of designing
an effective deep learning program for the task utilizing appropriate architectures and techniques.
Additionally, to cope with the aforementioned challenges, we present DeepOnes, a comprehensive
solution for DLPD. DeepOnes consists of a large-scale dataset, a multiple-choice QA benchmark,
and a lightweight benchmark specifically tailored for evaluating the program design capabilities. We
coin these components as DeepData, DeepQA, and DeepBench, respectively.

For effective program design, we assume that large language models must possess extensive knowl-
edge of various architectures and techniques for flexible improvement. However, to the best of our
knowledge, no existing dataset comprehensively covers deep neural architectures and their asso-
ciated techniques. To address this gap, we introduce DeepData, a novel dataset comprising rich
information extracted from arXiv papers and corresponding implementations on GitHub. Inspired
by biomolecular knowledge tasks from Mol-Instructions (Fang et al., 2023), we organize the data
into various categories, including description generation, combination prediction, property predic-
tion, reasoning, mathematical expression, name guessing, and more. We further process the data for
DLPD, by articulating the tasks of requirement-based model suggestion, property-based improve-
ment suggestion, and hyperparameter prediction. For a 0.01% subset of these papers, we also collect
multiple-choice questions to evaluate the knowledge of current LLMs in the domain of deep learning
techniques.

To further evaluate models and establish benchmarks, we present DeepBench, a benchmark that
consists of 10 deep learning tasks collected from Papers with Code (PWC)1, spanning text, image,
and audio modalities. DeepBench evaluates a model’s program designing ability by generating
a fully executable deep learning program based on the given design. The benchmark utilizes a
generate-then-improve framework to evaluate if LLM can truly make an appropriate architectural
or technical improvement, not merely repeating the existing solution.

In summary, our contributions are as follows:

• To bridge the gap between low-level code generation technologies and high-level deep
learning architecture usage, we propose the task of deep learning program design and Deep-
Ones, a comprehensive solution to this task.

• We introduce DeepData, the first dataset tailored for the task of DLPD. This includes syn-
thetic data created from research papers and corresponding GitHub repositories, augmented
using LLMs.

• From a small portion of research papers used for DeepData, we collect DeepQA, the first
multiple choice question-answering benchmark for the topics on artificial intelligence. We
evaluate several open-source and closed-source LLMs on DeepQA to analyze the amount
of knowledge they possess and we show that the model trained on DeepData outperforms
all the other baselines.

• We create the DeepBench benchmark, comprised of 10 general deep learning tasks across
several modalities, collected from Papers With Code. This includes the pipeline that syn-
thesizes a fully-executable deep learning program from a natural language task description.

• We release all the datasets, codes, model weights, and benchmark so that the open-source
community can make improvements in the field of DLPD.

2 RELATED WORK

2.1 PROGRAM SYNTHESIS

Program synthesis is defined as automating the software development process from declarative
specification (Kreitz, 1998). Earlier work mostly focused on utilizing theorem-proving tech-
niques (Green, 1981; Waldinger & Lee, 1969; Stark & Ireland, 1999). Since the emergence of

1https://paperswithcode.com/

2

https://paperswithcode.com/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Pipeline for generating DeepData and DeepQA

LLMs with strong language capabilities (Devlin et al., 2016; Brown et al., 2020; Raffel et al., 2020),
there have been increased interest in understanding and generating source code using LLMs (Feng
et al., 2020; Lu et al., 2021; Ahmad et al., 2021; Wang et al., 2021; Chen et al., 2021; Di et al., 2023;
Li et al., 2023; Luo et al., 2023). Recently, LLMs have demonstrated impressive performance not
only on the function-level, but also on the class-level (Du et al., 2023), the repository-level (Zhang
et al., 2023a), or on the Jupyter Notebook-level (Chandel et al., 2022). Nonetheless, the technolo-
gies are rarely applied for deep learning codes due to the huge domain difference and the lack of test
cases.

2.2 LLMS FOR AUTOMATED MACHINE LEARNING

Recently, since the introduction of high-performing LLMs, there have been studies exploring the
automation of machine learning pipeline using them. AutoML-GPT (Zhang et al., 2023c) and Agen-
tHPO (Liu et al., 2024) provides LLMs with rich information through model cards and data cards,
allowing LLMs to predict better hyperparameters even for the unseen tasks. MLCopilot (Zhang
et al., 2023b) designs a two-stage strategy of an information-gathering offline stage and retrieval-
augmented task solving online stage. MLAgentBench (Huang et al., 2023) proposes a benchmark
to evaluate an LLM agent’s ability to improve a starter code’s performance on various tasks, and
employs an LLM agent with pre-action thoughts such as reflection, research plan, status, and fact
check. On the other hand, some other works focus on integrating LLMs with a set of APIs as tools.
HuggingGPT (Shen et al., 2024), Gorilla (Patil et al., 2023), and OpenAGI (Ge et al., 2024) take
advantage of famous API storage, such as Huggingface, Tensorflow-hub, Pytorch-hub, Github, or
Langchain, while AssistGPT (Gao et al., 2023) focuses more on utilizing predefined tools. Recent
researches even attempt to automate the data-driven discovery (Gu et al., 2024; Majumder et al.,
2024; Guo et al., 2024), but they focus on data science analysis rather than the deep learning ar-
chitecture itself. No study on automated machine learning focuses on designing or modifying the
architecture itself, mostly taking advantage of retrieval or API.

3 DEEPDATA: DATASET FOR DEEP NEURAL ARCHITECTURE DESGIN

We introduce DeepData, a novel dataset specifically designed for DLPD. DeepData consists of
1,346,051 instruction data points and 2,080,274 DLPD data points, gathered from 325,301 research
papers related to artificial intelligence. This dataset is derived from research papers and correspond-
ing code implementations, which we collected from the Papers with Code (PWC) platform2 and
Github3 repositories. PWC provides links to research papers on arXiv and associated Github reposi-
tories that implement the methods discussed in the papers. Our dataset includes research papers and

2https://paperswithcode.com/
3https://github.com/

3

https://paperswithcode.com/
https://github.com/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Samples of DeepData and DeepQA Data on the left side is instruction-style DeepData
and data on the right side is multiple-choice question-style DeepQA. Full examples are available on
the Appendix B.2

Figure 3: Samples of DLPD DeepData. Three categories of DLPD-tuning data are included in
DeepData: requirement-based architecture proposal, property-based architecture imporvement, and
hyperparameter prediction.

code repositories from January 2013 to July 2024. Due to the limitation in space, we only showcase
brief samples of data in the Figure 2. Full examples can be found in the Appendix B.2, while full
prompts used for processing the dataset can be found in the supplementary material. We mainly
used GPT-4o-mini (Achiam et al., 2023) to extract and synthesize the data. The pipeline for dataset
synthesis is visualized on the Figure 1.

3.1 RESEARCH PAPERS

Although PWC is a platform that includes a large amount of AI-related papers, non-AI papers are
also in the database. Thus, using GPT-4o-mini, we first extracted only the research papers relevant
to AI-related technology by providing the abstract of a paper. Then, we parsed .tex files of the arXiv
research papers using the unarXive (Saier et al., 2023) to retrieve clean text including the math-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

ematical equations. Further using GPT-4o-mini, we have extracted (1) contributions, (2) paper’s
contribution represented as a diagram (3) properties of each node in a diagram (4) requirements
such as GPU or time, (5) instruction data, and for small portion, (6) multiple-choice questions de-
scribed in the section 3.4. Instruction data and multiple choice questions are categorized as several
categories, including description generation, combination prediction, property prediction, reason-
ing, mathematical expressions, name guessing, and more. The distribution of each category can be
found in the AppendixA.

3.2 GITHUB REPOSITORY

In addition to research papers, we have used the Github API to retrieve repositories linked from the
papers. From each repository, we extracted only functions and classes, assuming that the contribu-
tions proposed in the papers are mostly implemented as functions or classes. To reduce excessive
number of tokens, we further filtered the functions and classes using GPT-4o-mini to identify only
classes and functions that are potentially relevant to the paper’s abstract. We make a mapping be-
tween the extracted codes and each node in a diagram using GPT-4o-mini, For example, the node
<MODEL>CNN may be mapped to the function def CNN. Finally, GPT-4o-mini converts the class
or function into pseudocode, focusing on high-level functionality of it. This is because raw code
snippets include a lot of noises, which does not relate to the main functionality and make a relatively
small LLM hard to learn from it.

3.3 PREPROCESSING FOR ARCHITECTURE DESIGN

Using the data collected from research papers, we created an additional synthetic dataset tailored
for DLPD. Neural architectures are often developed by combining, modifying, or replacing exist-
ing components based on their properties. For example, ResNet (He et al., 2016) improved the
performance of CNNs by introducing residual connections.

Motivated by this idea, we categorized the program designing task into three subtasks: (1) propos-
ing existing architectures based on requirements (e.g., GPU, time, or task), (2) modifying archi-
tectures based on component properties, and (3) selecting appropriate hyperparameters. The first
dataset consists of requirement-model pairs, the second of component-property pairs (e.g., “residual
connections improve performance and reduce overfitting”), and the third of model-hyperparameter
pairs. The examples are available on the Figure 3.

As a result, DeepData includes two types of data pairs to fine-tune models. We first fine-tune the
LLMs on instruction-style data to inject enough background knowledge on AI-related technologies.
Then, we further fine-tune using DLPD-style data to train it to effectively perform program design
and even generate corresponding pseudocode which guides the programmer model to implement it.

3.4 DEEPQA

On the process of extracting DeepData’s instruction data, for 1% of the papers, we additionally
synthesized multiple-choice questions based on the papers. Being consistent with instruction data,
we collect the question categories of description generation, combination prediction, property pre-
diction, reasoning, mathematical expressions, name guessing, and others. We have collected 8,851
multiple choice questions until 2023 December. On the Figure 4, we show that GPT-4o has already
learned most of the AI-related knowledge, while Claude 3.5 Sonnet has a poor capability compara-
ble to 8B open-source models. DeepLlama-8B, a Llama-3.1-8B trained on DeepData, outperforms
all the other baselines, demonstrating that the model successfully learns AI-related knowledge from
the dataset. The examples of the questions are on the Figure 2, while full examples are on Ap-
pendix B.2.

4 DEEPBENCH

In this section, we introduce a new benchmark DeepBench to evaluate our pipeline on the task of
DLPD. This benchmark includes 10 popular tasks collected from PWC, ranging different modalities.
We pair it with a relatively popular and small datasets for rapid evaluation and assign one metric for
simplicity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Evaluation on DeepQA While GPT-4o already possesses most of the knowledge, Claude
3.5 Sonnet and Llama3.1 8B-Instruct fails to solve the problems in many cases. DeepLlama, which
is Llama 3.1 8B fine-tuned on our instruction dataset, shows the best scores in all the categories.

Task Modality Dataset Metric PWC SOTA
image classification Image CIFAR-10 (Krizhevsky et al., 2009) Accuracy (↑) 99.61 (Bruno et al., 2022)

text-to-image generation Text, Image MS COCOmini (Lin et al., 2014) FID (↓) 3.22 (Yu et al., 2022)
image captioning Image MS COCOmini (Lin et al., 2014) BLEU-4 (↑) 46.5 (Li et al., 2022a)
object detection Image MS COCOmini (Lin et al., 2014) Box Average Precision (↑) 58.1 (Hou et al., 2024)
face recognition Image LFW (Huang et al., 2008) Accuracy (↑) 99.87 (Alansari et al., 2023)

question answering Text GLUE QNLI (Wang, 2018) Accuracy (↑) 99.2 (Lan, 2019)
sentiment classification Text GLUE SST2 (Wang, 2018) Accuracy (↑) 94.38 (Huang et al., 2020)

natural language inference Text GLUE MNLI (Wang, 2018) Accuracy (↑) 92.0 (Jiang et al., 2019)
recommendation system Text MovieLens-100K (Harper & Konstan, 2015) RMSE (↓) 0.887 (Darban & Valipour, 2022)

speech recognition Audio LibriSepechmini (Panayotov et al., 2015) Word Error Rate (↓) 0.0134 (Zhang et al., 2020)

Table 1: Tasks included in DeepBench. Datasets denoted by mini are the datasets reduced to
10,000 training set and 1,000 validation set due to massive size. PWC SOTA does not represent
SOTA on such cases.

4.1 TASK DESCRIPTION

In DeepBench, the description of the task includes information on three components: the task to
solve, the dataset to train and test the model on, and the metric to be used for evaluation. Since the
tasks and metrics are basic and LLMs are expected to understand well, we only include a simple
description of the task, e.g. ”image classification task on CIFAR-10 dataset” and ”The performance
must be evaluated using accuracy”. For loading the datasets, we provide two sources of the datasets:
local storage and huggingface. In either case, we provide detailed information of the structure of
the path and the dataset, as shown in the example of Figure 5. The types of tasks and corresponding
metrics are specified on the Table 1.

4.2 EXECUTION ENVIRONMENTS

To minimize the effect of the debugger and to solely focus on the ability to generate high-performing
architecture, we provide an experimental environment of a temporary Conda4 virtual environment.
Virtual environment for the execution of the program includes basic external packages like Tensor-
flow or Pytorch. By providing a compatible environment for most cases, we lower the possibility of
falling into the pitfalls of environmental problem.

4https://conda.io/

6

https://conda.io/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 5: Overview of DeepBench evaluation scheme for the task of image classification on
CIFAR-10 dataset: MA is an architect model which designs, proposes, or improve the deep neural
architecture. On the other hand, MP is a programmer agent which has a lot of knowledge in AI and
programming capability - here we uniformly use GPT-4o. Once the architecture generated by MA

is successfully implemented and validated through small portion of data and 1 epoch, MA suggests
a set of optimal hyperparameters for the model. Then the code is tested in a scaled-up scenario.

4.3 EVALUATION PIPELINE

In this section, we discuss each stage in our evaluation pipeline. Whole pipeline is visualized on
Figure 5, while generated examples are available in the Appendix B.3.

4.3.1 TASK SPECIFICATION

To assess the model’s ability to design programs, we generate a fully executable implementation
of the proposed design, which we refer to as deep learning program synthesis. The task of deep
learning program synthesis can be formally defined as:

P, S = M(T) (1)

where the program P and the metric score S is generated from the natural language description of
the task T .

In our evaluation pipeline, we break down this mapping into three key stages: requirement-based
architecture proposal, architecture improvement, and evaluation. Each of these steps is explained
below.

4.3.2 REQUIREMENT-BASED ARCHITECTURE PROPOSAL

In practical scenarios where we want to apply deep learning programs, the task is not the only
consideration; we often face constraints related to GPU resources and time. The initial step involves
proposing a base model that can address the task while adhering to the constraints of time and
GPU availability. Thus, we provide the designer model MD with the task to be solved and the
relevant constraints regarding GPU and time. Based on this information, MD determines the most
appropriate backbone model architecture AB to use. This process is formalized as:

AB = MD(T) where T = {task description, requirements} (2)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3.3 ARCHITECTURE IMPROVEMENT

Proposing an architecture is appropriate for evaluating the model’s proposal capability, but not for
program designing capability. We instruct MD to modify AB to enhance performance and efficiency,
resulting in an improved architecture AI . This approach mirrors the typical process used by most
researchers, where they modify existing models to their own uses. This is expected to have a more
significant impact than simple layer modifications or hyperparameter tuning performed in previous
works. Additionally, our models generate reference Python code or Python-style pseudocode Cr to
facilitate the next step of implementation. This process is formalized as:

AI , CR = MD(AB) (3)

4.3.4 ARCHITECTURE IMPLEMENTATION

Using the detailed description of the improved architecture, the programmer model MP tries to
implement it by writing an executable Python code C0. Since testing the validity of C0 with
the entire dataset can take a long time, we start with a small subset of the data for training and
run just one epoch training. This lets us quickly check whether C0 is written correctly and can
run without issues. If C0 is invalid, MP goes through a process of iterative debugging, where
each step is labeled as i, to produce the i-th debugged implementation Ci. We provide rich
information for debugging, including the original task description T , error-causing code Ci−1,
standard output Oi−1, standard error Ei−1, and debugging log Li−1. The debugging log is created
and updated for every debugging step with a simple prompt summarize the problem and
your solution in one line natural language sentence, like Syntax
Error -> changed the line ‘print("hello world"‘ to ‘print("hello
world")‘. This memory prevents MP repeating the same debugging which does not resolve
a problem. Once a numeric score Si is successfully recorded in the log file, we consider Ci is
validated. This process can be expressed as:

C0 = MP (T,AI) (Implementation) (4)
Ci, Si, Li = MP (T,Ci−1, Oi−1, Ei−1, L1, ..., Li−1) (debugging) (5)

4.3.5 PROGRAM EVALUATION

After validation, MP updates the code to use the full dataset and the best hyperparameters based
on the recommendations from MD regarding the set of optimal hyperparameters HO. As a result,
we obtain a correctly implemented architecture along with the training and testing code, namely CO

that includes suitable hyperparameters. In addition, we emphasize the time requirements so that the
code stops training and starts evaluation after the predefined time limitation is past.

HO = MD(T,AI , Ci) (Hyperparameter Recommendation) (6)
CO = MP (Ci, HO, T) (Complete Evaluation Code) (7)

5 EXPERIMENT

5.1 MODEL TRAINING

We use Llama3.1-8B as our base model. We train Llama3.1-8B on DeepData, with two-stage train-
ing. On the first stage, we train it on a general instruction data. On the second stage, given that
the model has sufficiently learned AI-realated knowledge, we further train it on DLPD data, which
includes requirement-based architecture proposing, property-based architecture improvement, and
hyperparameter prediction. For instruction-tuning stage, we have used the batch size of 16, while for
DLPD-tuning stage, we have used the batch size of 4 due to long data. In addition, for DLPD-tuning
stage, we replayed randomly sampled 1% of instruction data to prevent catastrophic forgetting. For
both training stages, we trained the models for 2 epochs, using 1 percent of the dataset for warmup
steps, learning rate of 3e-4, cosine learning rate decay, and Adam-mini (Zhang et al., 2024) opti-
mizer. This took around 3 days on 4 NVIDIA A6000 GPUs. Furthermore, to accelerate training and
inference speeds and to reduce the memory usage of LLMs, we have applied several techniques. We
employed LLaMA-Factory (Zheng et al., 2024), flash attention 2 (Dao, 2023), unsloth5, and lora
plus (Hayou et al., 2024) for acceleration.

5https://github.com/unslothai/unsloth

8

https://github.com/unslothai/unsloth

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.2 EXPERIMENTAL DETAILS

In our experiment, we compare DeepLlama-8B, Llama3.1-8B fine-tuned on DeepData, to Llama3.1-
8B-Instruct, GPT-4o and Claude3.5-Sonnet. As an agent for implementation and debugging, we
utilize GPT-4o uniformly. Following the setting of MLAgentBench (Huang et al., 2023), we itera-
tively run the experiment for 8 times to mitigate the randomness of LLMs. We use single NVIDIA
A40 GPU with 48GB for each run, with 4200 seconds of a program execuion time limit and 3600
seconds of training time limit, and the limit of 20 debugging phases.

Task DeepLlama-8B DeepLlama-8B+ Llama3.1-8B-Instruct Llama3.1-8B-Instruct+ GPT-4o GPT-4o+ Claude 3.5 Sonnet Claude 3.5 Sonnet+
image classification (↑) 68.66 64.33 61.73 81.93 71.02 10.00 49.47 70.23

best/worst 96.31/37.50 85.84/45.64 94.21/10.59 89.68/74.35 95.75/9.33 10.00/10.00 84.73/13.69 71.16/69.08
execution time of the best run (sec) 4200.35 3634.73 1588.68 600.65 3686.25 4191.70 513.48 110.15

success rate (%) 62.50 87.50 75.00 62.50 100.00 12.50 37.50 37.50
text-to-image generation (↓) - - 397.29 533.33 - - - -

best/worst - - 397.29/397.29 533.33/533.33 - - - -
execution time of the best run (sec) - - 3318.77 1795.38 - - - -

success rate (%) - - 12.50 12.50 - - - -
image captioning (↑) - - 0.07 - - 0.62 - 0.08

best/worst - - 0.07/0.07 - - 0.62/0.62 - 0.08/0.08
execution time of the best run (sec) - - 1256.49 - - 3722.14 - 4178.90

success rate (%) - - 12.50 - - 12.50 - 12.50
object detection (↑) - 55.77 - - - - - 0.06

best/worst - 55.77/55.77 - - - - - 0.06/0.06
execution time of the best run (sec) - 3765.00 - - - - - 3677.12

success rate (%) - 12.50 - - - - - 12.50
face recognition (↑) 3.49 3.98 4.01 7.04 24.41 4.97 19.88 38.36

best/worst 5.78/1.77 4.46/3.51 4.01/4.01 10.05/4.04 74.53/4.19 4.97/4.97 39.67/0.08 89.25/5.78
execution time of the best run (sec) 51.61 848.49 2132.60 1005.46 842.44 3675.96 2799.42 2048.41

success rate (%) 62.50 25.00 12.50 25.00 62.50 12.50 25.00 62.50
question answering (↑) 45.62 90.87 79.72 69.35 88.47 88.92 87.05 66.09

best/worst 45.62/45.62 91.12/90.48 92.33/50.54 88.17/50.54 88.63/88.28 89.46/88.58 88.27/85.83 89.09/50.54
execution time of the best run (sec) 150.22 3626.00 3741.63 1173.90 875.21 2525.95 1431.99 3648.07

success rate (%) 12.50 50.00 50.00 25.00 37.50 37.50 25.00 50.00
sentiment classification (↑) 81.54 86.80 91.29 90.33 90.14 64.18 72.22 84.24

best/worst 93.69/50.80 94.27/50.92 94.50/89.68 95.07/83.60 91.97/87.96 90.48/50.92 95.30/50.92 94.38/63.42
execution time of the best run (sec) 1286.53 863.23 2064.33 4200.30 1045.23 1387.49 3629.44 2937.68

success rate (%) 50.00 87.50 37.50 37.50 75.00 37.50 50.00 62.50
natural language inference (↑) 83.00 67.40 70.92 31.82 78.70 79.35 65.63 80.66

best/worst 84.20/81.79 87.77/32.59 87.06/35.41 31.82/31.82 82.50/74.81 80.23/78.47 82.52/40.79 89.19/64.68
execution time of the best run (sec) 2251.26 107.68 3658.84 4200.53 3221.65 3555.39 3703.65 4028.57

success rate (%) 25.00 75.00 50.00 12.50 50.00 25.00 37.50 50.00
recommendation system (↓) 1.10 1.02 1.90 1.07 1.04 437.11 0.97 1.11

best/worst 0.96/1.41 0.97/1.07 0.98/2.86 1.07/1.07 0.95/1.28 0.95/1309.36 0.97/0.97 1.11/1.11
execution time of the best run (sec) 925.31 1267.56 52.89 73.40 12.20 537.82 120.45 259.78

success rate (%) 75.00 62.50 50.00 12.50 50.00 37.50 12.50 12.50
speech recognition (↓) - - - - - - - -

best/worst - - - - - - - -
execution time of the best run (sec) - - - - - - - -

success rate (%) - - - - - - - -

Table 2: Comparison of the baselines. A + sign indicates architectural improvement has been
additionally performed. The first row of each task shows the mean value of each assigned metric. A
bold score represents the best result, while an underlined score represents the second best. Success
rates are calculated over 8 iterations. Scores highlighted in red indicate a performance decrease
due to architectural improvements, while scores highlighted in blue indicate a performance increase
resulting from these improvements. Darker color indicates greater performance increase or decrease.

5.3 RESULTS AND ANALYSIS

5.3.1 QUANTITATIVE ANALYSIS

Table 2 displays the performance of the designed architecture across 8 different scenarios. The mod-
els DeepLlama-8B, Llama3.1-8B-Instruct, GPT-4o, and Claude-3.5-Sonnet are first evaluated based
on their proposed architectures, which are mostly existing ones. In this initial trial, DeepLlama-8B,
GPT-4o, Claude-3.5-Sonnet show comparable performance in both mean metrics and best metrics,
while Llama-8B-Instruct is far behind. To evaluate whether the models truly understand the ar-
chitectures, we instruct them to enhance both performance and efficiency through improvements.
Llama3.1-8B-Instruct and GPT-4o mostly fails to improve the architectures in terms of mean score,
best score, execution time, and success rate, implying it is not proposing valid improvements to the
architecture. In contrast, DeepLlama-8B and Claude-3.5-Sonnet succeed in improving both metric
scores and efficiency in many cases.

5.3.2 QUALITATIVE ANALYSIS

Quality of Architecture Design The choice of backbone model significantly impacts performance
in many cases. For instance, a ViT model without modifications can outperform a heavily modified
ResNet. Here, we examine the backbone models proposed by each architectural model. Table 3
shows that DeepLlama introduces cutting-edge technologies such as Mamba Blocks, LLaVA, and
RAVEN. Since these models are known to operate under the constraints of the experiment with a
single A40 and 48 VRAM, suggestions are quite reasonable.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Task Category DeepLlama-8B Llama3.1-8B-Instruct GPT-4o Claude 3.5 Sonnet

image classification

most common model Vision Transformer EfficientNet EfficientNet EfficientNet
most common improvement Mamba Blocks Self-Attention Mixed Precision Squeeze-and-Excitation Blocks

best case Vision Transformer EfficientNet EfficientNet-B1 EfficientNet-B0
- - - -

text-to-image-generation

most common model Stable Diffusion DALL-E 2 Stable Diffusion ControlNet
most common improvement Textual Inversion Hierarchical Transformer Encoder Mixed Precision Attention Mechanism

best case - Stable Diffusion Stable Diffusion -
- - BERT text encoder -

image captioning

most common model LLaVA-1.5 Vision Transformer CLIP BLIP
most common improvement RAVEN Knowledge Distillation Mixed Precision Self-Attention

best case - - Transformer ViT + GPT-2
- - EfficientNet Feature Extractor Additional Attention

object detection

most common model YOLOv8 YOLOv8 YOLOv8 YOLOv5
most common improvement Attention Mechanism Multi-Scale Feature Fusion Mixed Precision Feature Pyramid Network

best case YOLOv8 - - -
Multi-scale Testing, MobileNet V3 Backbone - - -

face recognition

most common model FaceNet ArcFace ArcFace ArcFace
most common improvement Group Convolution Knowledge Distillation Mixed Precision Attention Mechanism

best case ResNet ResNet ResNet-50 ArcFace
Hierarchical Constrastive Function Knoweldge Distillation - MobileNet-V3 Feature Extractor

question answering

most common model ChatGPT DistilBERT DistilBERT DistilBERT
most common improvement Pruning Knowledge Distillation Mixed Precision Ensemble Learning

best case BERT DistilBERT DistilBERT DistilBERT
Auxiliary Task Learning - Knowledge Distillation Ensemble Knowledge Distillation

sentiment classification

most common model GPT2 DistilBERT DistilBERT DistilBERT
most common improvement Lightweight Attention Knowledge Distillation Mixed Precision Progressive Layer Dropping

best case DeBERTa-V3 DistilBERT BERT DistilBERT
Layer Normalization Knowledge Distillation - -

natural language inference

most common model LLaMA-2-7B BERT DistilBERT DistilBERT
most common improvement Multi-task Learning Multi-Task Learning Mixed Precision Progressive Layer Dropping

best case RoBERTa DistilBERT DistilBERT DeBERTa-V3
Chain-of-Thoughts, Few-shot - - Attention Fusion, Progressive Unfreezing

recommendation system

most common model Llama-2-7B Neural Collaborative Filtering LightFM LightGCN
most common improvement QLora Attention Mechanism Mixed Precision Attention Mechanism

best case KATRec Neural Collaborative Filtering Neural Collaborative Filtering Neural Collaborative Filtering
Integration with BERT - -

speech recognition

most common model Whisper Wav2Vec Wav2Vec Wav2Vec
most common improvement Attention Mechanism Attention Mechanism Mixed Precision Attention Mechanism

best case - - - -
- - - -

Table 3: Models and improvements suggested by the designer models. Most common models and
most common improvements are investigated over 8 runs. If there are multiple most-common ones
found, we denoted the one with better performance.

On the other hand, GPT-4o exhibits a bias towards mixed precision, while Llama3.1-8B-Instruct
proposes knowledge distillation as an improvement for most of the tasks. In contrast, DeepLlama
and Claude-3.5-Sonnet generate a wider variety of improvements, effectively improving the model
performance at the same time.

Implementation’s Correspondence to the Proposed Program Design Although the quality of
designed architecture is reasonable, the Table 3 shows that the best case occurs mostly using classi-
cal models, like BERT variants. This is mostly due to the discrepancy of implementation capabilities
of the programmer model, GPT-4o. As shown in the Figure 4 suggests, GPT-4o already has substan-
tial knowledge in AI-related technologies. Nevertheless, we observed that GPT-4o lacks knowledge
on implementations of several recent techniques. For example, GPT-4o fails to apply common sug-
gestions from DeepLlama, such as Mamba, LLaVA, or Llama. This affects DeepLlama negatively,
as its initial suggestions are more relevant to cutting-edge technologies. Thus, while DeepBench
effectively evaluates the model’s ability to understand the architecture and generate appropriate im-
provements, the evaluation on architectural proposals appears limited.

6 CONCLUSION AND LIMITATIONS

In this paper, we introduce a comprehensive solution for the task of deep learning program design,
by proposing a novel dataset and two benchmarks. Through the evaluation on DeepBench, we
showcase that DeepData is effective for training a LLM to obtain a broad knowledge on architectures
and techniques. Along with a quantitative and qualitative analysis and open-sourcing, we believe
that this contributes to the more active research on the task of deep learning program design.

Limitations Even we have shown DeepData and DeepBench’s strength, there remains some limi-
tations to be resolved. First, as mentioned in the qualitative study, GPT-4o often fails in implement-
ing recent knowledge, even though it possesses one of the best code generation capabilities. This
may lead to a distorted evaluation of the model’s capability on architecture proposal. In addition, we
rely on a closed-source models for code generation, which is extremely costly. In future works, we
would like to suggest lightweight open-source models that can replace GPT-4o in deep learning pro-
gramming task. These limitations pose the need for more investigations on the task of deep learning
program design.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training
for program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.

Mohamad Alansari, Oussama Abdul Hay, Sajid Javed, Abdulhadi Shoufan, Yahya Zweiri, and
Naoufel Werghi. Ghostfacenets: Lightweight face recognition model from cheap operations.
IEEE Access, 11:35429–35446, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Antonio Bruno, Davide Moroni, and Massimo Martinelli. Efficient adaptive ensembling for image
classification. arXiv preprint arXiv:2206.07394, 2022.

Shubham Chandel, Colin B Clement, Guillermo Serrato, and Neel Sundaresan. Training and evalu-
ating a jupyter notebook data science assistant. arXiv preprint arXiv:2201.12901, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Zahra Zamanzadeh Darban and Mohammad Hadi Valipour. Ghrs: Graph-based hybrid recommen-
dation system with application to movie recommendation. Expert Systems with Applications, 200:
116850, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Bidirectional encoder
representations from transformers. 2016.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
Hongwei Chen, Liang Chen, et al. Codefuse-13b: A pretrained multi-lingual code large language
model. arXiv preprint arXiv:2310.06266, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1–21, 2019.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
models. arXiv preprint arXiv:2306.08018, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
Openagi: When llm meets domain experts. Advances in Neural Information Processing Systems,
36, 2024.

Cordell Green. Application of theorem proving to problem solving. In Readings in Artificial Intel-
ligence, pp. 202–222. Elsevier, 1981.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
Youran Pan, Teng Wu, Jiaqian Yu, et al. Blade: Benchmarking language model agents for data-
driven science. arXiv preprint arXiv:2408.09667, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen, and Xuguang Lan. Relation detr:
Exploring explicit position relation prior for object detection. arXiv preprint arXiv:2407.11699,
2024.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. In Workshop on faces
in’Real-Life’Images: detection, alignment, and recognition, 2008.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as
ai research agents. arXiv preprint arXiv:2310.03302, 2023.

Zhiheng Huang, Peng Xu, Davis Liang, Ajay Mishra, and Bing Xiang. Trans-blstm: Transformer
with bidirectional lstm for language understanding. arXiv preprint arXiv:2003.07000, 2020.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. arXiv preprint arXiv:1911.03437, 2019.

Christoph Kreitz. Program synthesis. In Automated Deduction—A Basis for Applications: Volume
III Applications, pp. 105–134. Springer, 1998.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Z Lan. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314–21328, 2022.

Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang, Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen,
Guohai Xu, Zheng Cao, et al. mplug: Effective and efficient vision-language learning by cross-
modal skip-connections. arXiv preprint arXiv:2205.12005, 2022a.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092–1097, 2022b.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Sanchaita Hazra, Ashish Sab-
harwal, and Peter Clark. Data-driven discovery with large generative models. arXiv preprint
arXiv:2402.13610, 2024.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 5206–5210. IEEE, 2015.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Tarek Saier, Johan Krause, and Michael Färber. unarxive 2022: All arxiv publications pre-processed
for nlp, including structured full-text and citation network. In 2023 ACM/IEEE Joint Conference
on Digital Libraries (JCDL), pp. 66–70. IEEE, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jamie Stark and Andrew Ireland. Towards automatic imperative program synthesis through proof
planning. In 14th IEEE International Conference on Automated Software Engineering, pp. 44–51.
IEEE, 1999.

Richard J Waldinger and Richard CT Lee. Prow: A step toward automatic program writing. In
Proceedings of the 1st international joint conference on Artificial intelligence, pp. 241–252, 1969.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. arXiv preprint arXiv:2303.12570, 2023a.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleash-
ing the power of large language models in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023b.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt:
Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023c.

Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V Le, and
Yonghui Wu. Pushing the limits of semi-supervised learning for automatic speech recognition.
arXiv preprint arXiv:2010.10504, 2020.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A CATEGORY DISTRIBUTION

(a) Category distribution of DeepData. (b) Category distribution of DeepQA.

Figure 6: Category distributions of DeepData and DeepQA.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Error ratio of the models. GPT-4o primarily encounters ModuleNotFoundError, indi-
cating a significant environmental configuration issue. Notably, GPT-4o displays a contrasting error
pattern compared to DeepLlama and Claude-3.5-Sonnet, as the occurrence of ModuleNotFoundEr-
ror increases substantially when it attempts to enhance the architecture.

B EXPERIMENTAL DETAILS

B.1 ERROR ANALYSIS

Figure 7 shows the percentage of errors encountered during the debugging process. A key obser-
vation is that GPT-4o encounters more instances of ModuleNotFoundError when trying to improve
the architecture. This suggests that it relies heavily on external packages or libraries for its enhance-
ments. In comparison, DeepLlama and Claude-3.5-Sonnet generate more RuntimeError, Attribu-
teError, ValueError, and TypeError, which are mainly due to implementation issues. This indicates
that while DeepLlama and Claude-3.5-Sonnet propose valid architectural improvements, GPT-4o
primarily tries to use existing methods.

B.2 FULL EXAMPLES

B.2.1 DEEPDATA

Description Generation

Could you explain the Glimpse-Based Actor-Critic (GBAC) model?
=> GBAC is a reinforcement learning model that integrates a hard

attention mechanism into its architecture to process visual
input more efficiently. Unlike conventional RL models that
analyze the entire image, GBAC focuses on ’glimpses’-specific,
high-resolution sections of the input frame. This allows GBAC
to achieve significant computational advantages while

maintaining competitive performance on tasks like video game
environments. The architecture consists of three main networks
: the Glimpse Network, which extracts features from the
selected glimpse, the Action Network, which determines the
action to execute, and the Location Network, which selects the
next coordinates to observe.

Combination Prediction

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

How can we combine the Dynamic Grained Encoder with other
transformer frameworks?

=> To combine the Dynamic Grained Encoder (DGE) with other
transformer frameworks, one would typically integrate the DGE
block into the existing architecture, replacing traditional
encoder blocks with the adaptive mechanism in DGE. This not
only hones the query generation based on region-specific
features but also allows for performance optimization across
tasks such as image classification or object detection. The
synergy comes from DGE’s ability to adjust its processing
based on real-time input, allowing existing frameworks to
become more efficient without necessitating a complete
overhaul of their structures.

Property Prediction

What benefits does the hard attention mechanism provide in GBAC?
=> The hard attention mechanism in GBAC allows the model to

stochastically select which parts of the frame to process,
focusing computational resources on the most important visual
stimuli. This results in improved efficiency since the model
does not waste resources analyzing irrelevant details outside
the selected glimpses. This strategy not only simulates human-
like selective attention but also enables the model to operate
effectively with less input data, thus speeding up training

and reducing the overall computational burden required.

Reasoning

Explain how the GBAC model can match the performance of PPO
despite processing fewer pixels.

=> GBAC matches the performance of the PPO model by intelligently
selecting and focusing on relevant glimpses of the input frame
, leading to enhanced training efficiency without sacrificing
performance. By filtering out less relevant information, GBAC
not only reduces the noise present in the input but also
improves learning signals by allowing the model to concentrate
on critical visual details essential for decision-making.

This strategic processing allows GBAC to achieve competitive
results even while handling a substantially reduced pixel
count.

Mathematical Expression

Describe the Proximal Policy Optimization (PPO) algorithm
mathematically.

=> The objective of the PPO algorithm is represented as follows: L
ˆ{CLIP}(\theta) = \\hat{\\mathbb{E}}_{t} \\Big[\\min(r_{t}(\
theta)\\hat{A}_{t}, \\mathrm{clip}(r_{t}(\theta), 1 - \\
epsilon, 1 + \\epsilon)\\hat{A}_{t}) \\Big]. Here, r_{t}(\
theta) is the probability ratio of the action probabilities
under the new policy to those under the old policy. \\hat{A}_{
t} is the advantage function estimator. The clipping mechanism
helps to prevent large updates in the policy, allowing for

stable training by keeping the updates small and controlled.

Name Guess

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Is there a technique that combines hard attention and
reinforcement learning with efficient computation?

=> Yes, the Glimpse-Based Actor-Critic (GBAC) model exemplifies a
technique that combines a hard attention mechanism with model-
free reinforcement learning, specifically using the PPO
algorithm. The key aspects of GBAC allow for efficient visual
processing through selective attention while maintaining the
core reinforcement learning principles of action selection and
learning from the environment. This approach ensures that the
performance does not heavily rely on the size of input images
but rather on the strategically chosen glimpses that carry

relevant information.

Miscellaneous

What are potential applications of measuring game distance in
Ludii?

=> Applications of measuring game distance in Ludii include
improving the performance of game-playing agents by leveraging
established knowledge from similar games, recommending new

games to users based on their preferences, and conducting
transfer learning across games with similar dynamics. These
applications facilitate a deeper understanding of the Ludii
framework and enhance user engagement by suggesting games
aligned with players’ interests.

B.2.2 DEEPQA

Description Generation

What is the main function of TASD in natural language processing?
A. To improve data compression techniques.
B. To generate natural language descriptions from tables.
C. To translate languages.
D. To summarize long texts.
E. To develop new table structures
=> B. To generate natural language descriptions from tables.

Combination Prediction

Which of the following is a method to reduce localization errors
in AUVs?

A. Utilizing only visual information.
B. Implementing high-cost INS systems.
C. Using cooperative localization strategies.
D. Relying solely on dead reckoning.
E. Employing long-range sonar without additional sensors
=> C. Using cooperative localization strategies.

Property Prediction

What advantage does relaxed-LSS provide over traditional leverage
score sampling?

A. It incorporates low-leverage data points for improved
robustness.

B. It is computationally more intensive than traditional methods.
C. It only selects high-leverage points.
D. It samples data independently of their characteristics.
E. It offers no significant change from leverage score sampling

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

=> A. It incorporates low-leverage data points for improved
robustness.

Reasoning

How does focal loss improve model performance in classification
tasks?

A. It reduces training time significantly.
B. It increases the weight of well-classified examples.
C. It focuses on hard-to-classify cases in imbalanced datasets.
D. It simplifies the model architecture.
E. It applies only to binary classification tasks
=> C. It focuses on hard-to-classify cases in imbalanced datasets.

Mathematical Expression

What theoretical dimension bound is necessary for reliably
estimating set intersections in VSAs?

A. m = O(n log(d))
B. m = O(n)
C. m = O(n log(M/\epsilon))
D. m = O(\sqrt{n})
E. m = O(dˆ2)
=> C. m = O(n log(M/\epsilon))

Name Guess

Which method does FewSOME utilize to prevent representational
collapse?

A. Augmenting training data with noise.
B. Introducing a batch normalization technique.
C. A Loss Function named Stop Loss (L_{stop}).
D. Increasing the architecture depth.
E. Applying dropout layers
=> C. A Loss Function named Stop Loss (L_{stop}).

Miscellaneous

What is the result of using the proposed relational network on the
visual XOR task?

A. The network is unable to learn the task.
B. The network achieves high error rates.
C. The network successfully generalizes relationships.
D. The network performs poorly compared to STDP approaches.
E. The network requires extensive parameter tuning
=> C. The network successfully generalizes relationships.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.3 EXAMPLE RUN OF DEEPLLAMA-8B

B.3.1 REQUIREMENT-BASED ARCHITECTURE PROPOSAL

One of the most advanced models for natural language inference is
InstructGPT. It InstructGPT is an instruction-tuned large
language model that can perform various nlp tasks, including
natural language inference, and it has been shown to achieve
superior performance on this task compared to other models
like GPT-3.5 and GPT-4.

Here is a Python code snippet for natural language inference using
InstructGPT:

‘‘‘pseudocode
class InstructGPT:

function __init__(tokenizer, model_name_or_path, max_len=512,
max_query_len=64, max_context_len=512, temperature=1.0,
top_k=100, top_p=0.1, top_n=10, num_queries=20,
num_contexts=5, num_answers=5, device="cuda", logger=None)
:
Initialize model parameters
set device to the specified device
set logger to the specified logger
initialize tokenizer with the provided tokenizer
set max_len to the provided maximum length
set max_query_len to the provided maximum query length
set max_context_len to the provided maximum context length
set temperature to the provided temperature
set top_k to the provided top k value
set top_p to the provided top p value
set top_n to the provided top n value
set num_queries to the provided number of queries
set num_contexts to the provided number of contexts
set num_answers to the provided number of answers

Load the model from the specified path
load model using the specified model_name_or_path
move model to the specified device
set model to evaluation mode
set tokenizer to evaluation mode

Load a sample context from a specified path
load sample context from the provided path

Initialize contexts and queries as empty lists
initialize contexts as empty list
initialize queries as empty list

Create a template for the context and queries
create context template with num_contexts and num_answers
create query template with num_queries

Initialize answer template
create answer template

Prepare context and query lists
generate context examples and append them to contexts
generate query examples and append them to queries

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Save generated contexts and queries to files
save contexts to the specified file
save queries to the specified file

Prepare the prompt for the model
create prompt with context template, query template, and

answer template
set prompt to the model’s prefix

Log the number of contexts and queries generated
log the count of generated contexts
log the count of generated queries

function __call__(context, query):
Convert context and query to tokenized format
convert context to tokenized format
convert query to tokenized format

Combine context and query to form the complete prompt
create complete prompt by concatenating context and query

Evaluate the model with the prompt and get the output
output = evaluate model using complete prompt and

temperature

Tokenize output and return it
return tokenized output

‘‘‘

B.3.2 ARCHITECTURE IMPROVEMENT

One creative architectural improvement to boost performance is the
use of Chain-of-Thought (CoT) prompting. This method involves
prompting the model to provide step-by-step reasoning before

arriving at a conclusion, which helps improve accuracy.
Additionally, using a chain-of-thought prompt can be combined
with other techniques like few-shot learning to further
enhance performance.

class InstructGPT:
"""Class to interact with InstructGPT API."""

function __init__(prompt, num_prompt_retries=1, **kwargs):
"""Initialize the InstructGPT model with the given prompt

and optional retries."""
self._prompt = prompt
self._num_prompt_retries = num_prompt_retries
self._kwargs = kwargs

function _call_api(api_key, prompt, num_prompt_retries):
"""Call the InstructGPT API with the provided prompt and

retry settings."""
if num_prompt_retries is None:

num_prompt_retries = self._num_prompt_retries

try:
response = call InstructGPT API with the provided API

key, prompt, and retry settings
return response

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

except Exception as e:
log error and retry num_prompt_retries times, then

raise the exception

function call_api(prompt):
"""Call the InstructGPT API with the given prompt."""
return _call_api(self.api_key, self._prompt, self.

_num_prompt_retries)

function call_few_shot(prompt, few_shot_prompts):
"""Call the InstructGPT API with a few-shot prompt and

provided examples."""
if few_shot_prompts is None:

few_shot_prompts = list of few-shot prompts

return _call_api(self.api_key, prompt with few-shot
examples, self._num_prompt_retries)

function call_chain_of_thought(prompt, chain_of_thought_prompt
):
"""Call the InstructGPT API with a chain-of-thought prompt

."""
return _call_api(self.api_key, prompt with chain-of-

thought reasoning, self._num_prompt_retries)
‘‘‘

B.3.3 ARCHITECTURE IMPLEMENTATION

import torch
from transformers import pipeline,

AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
import os
from sklearn.metrics import accuracy_score

Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")

Load dataset
dataset = load_dataset(’glue’, ’mnli’)

Function to get a small slice of the dataset for quick testing
def get_small_dataset_slice(dataset, split=’train’, size=100):

return dataset[split].select(range(size))

train_dataset = get_small_dataset_slice(dataset, ’train’)
validation_dataset = get_small_dataset_slice(dataset, ’

validation_matched’)

Load pre-trained model and tokenizer
model_name = "roberta-large-mnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(

model_name).to(device)

Preparing the inference pipeline with the model on GPU

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

nlp = pipeline("text-classification", model=model, tokenizer=
tokenizer, device=0)

Function for Chain-of-Thought (CoT) prompting
def chain_of_thought_prompts(premise, hypothesis):

return f"Given the premise and hypothesis below, provide the
reasoning chain leading to the conclusion:\nPremise: {
premise}\nHypothesis: {hypothesis}\nReasoning:"

Few-shot learning examples
few_shot_examples = [

"Premise: A soccer game with multiple males playing.\
nHypothesis: Some men are playing a sport.\nLabel:
entailment\n",

"Premise: An older and younger man smiling.\nHypothesis: Two
men are smiling and laughing at the cats playing on the
floor.\nLabel: neutral\n",

"Premise: A man inspects the uniform of a figure in some East
Asian country.\nHypothesis: The man is sleeping.\nLabel:
contradiction\n"

]

Early stopping criteria
early_stopping_patience = 1 # Minimal as we aim for quick test
epochs = 1 # Only one epoch for quick testing

Training loop mockup (assuming the InstructGPT API works
similarly for demonstration)

best_accuracy = 0
patience_counter = 0

for epoch in range(epochs):
preds = []
labels = []

Validation step
for i, data in enumerate(validation_dataset):

premise = data[’premise’]
hypothesis = data[’hypothesis’]
label = data[’label’]

cot_prompt = chain_of_thought_prompts(premise, hypothesis)
cot_reasoning = "Reasoning: Considering the premise and

hypothesis logically...\n" # Simplified CoT

prompt = cot_prompt + cot_reasoning

few_shot_prompt = "".join(few_shot_examples) + prompt

Using model to get the output (mockup InstructGPT call)
result = nlp(premise + " " + hypothesis)
pred_label = result[0][’label’]

Convert label to expected format (0: entailment, 1:
neutral, 2: contradiction)

if pred_label == "ENTAILMENT":
pred = 0

elif pred_label == "NEUTRAL":
pred = 1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

else:
pred = 2

preds.append(pred)
labels.append(label)

current_accuracy = accuracy_score(labels, preds)
if current_accuracy > best_accuracy:

best_accuracy = current_accuracy
patience_counter = 0

else:
patience_counter += 1

if patience_counter >= early_stopping_patience:
break

Log the final accuracy
with open(’./metric.log’, ’w’) as f:

f.write(f"{best_accuracy:.4f}")

print(f"Final logged accuracy: {best_accuracy:.4f}")

B.3.4 GENERATING FULL CODE WITH OPTIMAL HYPERPARAMETERS

import torch
from transformers import pipeline,

AutoModelForSequenceClassification, AutoTokenizer
from datasets import load_dataset
import os
from sklearn.metrics import accuracy_score
import time

Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")

Load dataset
dataset = load_dataset(’glue’, ’mnli’)
train_dataset = dataset[’train’]
validation_dataset = dataset[’validation_matched’]

Load pre-trained model and tokenizer
model_name = "roberta-large-mnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(

model_name).to(device)

Preparing the inference pipeline with the model on GPU
nlp = pipeline("text-classification", model=model, tokenizer=

tokenizer, device=0)

Function for Chain-of-Thought (CoT) prompting
def chain_of_thought_prompts(premise, hypothesis):

return f"Given the premise and hypothesis below, provide the
reasoning chain leading to the conclusion:\nPremise: {
premise}\nHypothesis: {hypothesis}\nReasoning:"

Few-shot learning examples

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

few_shot_examples = [
"Premise: A soccer game with multiple males playing.\

nHypothesis: Some men are playing a sport.\nLabel:
entailment\n",

"Premise: An older and younger man smiling.\nHypothesis: Two
men are smiling and laughing at the cats playing on the
floor.\nLabel: neutral\n",

"Premise: A man inspects the uniform of a figure in some East
Asian country.\nHypothesis: The man is sleeping.\nLabel:
contradiction\n"

]

Early stopping criteria
learning_rate = 0.0005 # Effective for fine-tuning transformer

models
early_stopping_patience = 1 # Stop after one epoch without

improvement
epochs = 1 # One epoch for quick testing

Training settings
best_accuracy = 0
patience_counter = 0

start_time = time.time()
for epoch in range(epochs):

preds = []
labels = []

Validation step
for i, data in enumerate(validation_dataset):

premise = data[’premise’]
hypothesis = data[’hypothesis’]
label = data[’label’]

cot_prompt = chain_of_thought_prompts(premise, hypothesis)
cot_reasoning = "Reasoning: Considering the premise and

hypothesis logically...\n" # Simplified CoT

prompt = cot_prompt + cot_reasoning

few_shot_prompt = "".join(few_shot_examples) + prompt

Using model to get the output (mockup InstructGPT call)
result = nlp(premise + " " + hypothesis)
pred_label = result[0][’label’]

Convert label to expected format (0: entailment, 1:
neutral, 2: contradiction)

if pred_label == "ENTAILMENT":
pred = 0

elif pred_label == "NEUTRAL":
pred = 1

else:
pred = 2

preds.append(pred)
labels.append(label)

current_accuracy = accuracy_score(labels, preds)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
patience_counter = 0

else:
patience_counter += 1

if patience_counter >= early_stopping_patience:
break

Check if training time exceeds 3600 seconds
current_time = time.time()
if current_time - start_time > 3600:

print("Training exceeded 3600 seconds. Stopping early.")
break

Log the final accuracy
with open(’./metric.log’, ’w’) as f:

f.write(f"{best_accuracy:.4f}")

print(f"Final logged accuracy: {best_accuracy:.4f}")

26

	Introduction
	Related Work
	Program Synthesis
	LLMs for Automated Machine Learning

	DeepData: Dataset for Deep Neural Architecture Desgin
	Research Papers
	Github Repository
	Preprocessing for Architecture Design
	DeepQA

	DeepBench
	Task Description
	Execution Environments
	Evaluation Pipeline
	Task Specification
	Requirement-based Architecture Proposal
	Architecture Improvement
	Architecture Implementation
	Program Evaluation

	Experiment
	Model Training
	Experimental Details
	Results and Analysis
	Quantitative Analysis
	Qualitative Analysis

	Conclusion and Limitations
	Category Distribution
	Experimental Details
	Error Analysis
	Full Examples
	DeepData
	DeepQA

	Example Run of DeepLlama-8B
	Requirement-based architecture proposal
	Architecture Improvement
	Architecture Implementation
	Generating Full Code with Optimal Hyperparameters

