Under review as a conference paper at ICLR 2025

DESIGNING DEEP LEARNING PROGRAMS WITH
LLARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The process of utilizing deep neural architectures to solve tasks differs signifi-
cantly from conventional programming due to its complexity and the need for spe-
cialized knowledge. While code generation technologies have made substantial
progress, their application in deep learning programs requires a distinct approach.
Although previous research has shown that large language model agents perform
well in areas such as data science, neural architecture search, and hyperparameter
tuning, the task of proposing and refining deep neural architectures at a high level
remains largely unexplored. Current methods for automating the synthesis of deep
learning programs often rely on basic code templates or API calls, which restrict
the solution space to predefined architectures. In this paper, we aim to bridge the
gap between traditional code generation and deep learning program synthesis by
introducing the task of Deep Learning Program Design (DLPD), a task of design-
ing an effective deep learning program for the task, along with appropriate archi-
tectures and techniques. We propose Deep Ones, a comprehensive solution for
DLPD. Our solution includes a large-scale dataset and a lightweight benchmark
specifically designed for DLPD. On our benchmark, Llama-3.1 8B, fine-tuned on
our dataset, demonstrates better architecture suggestion capability than GPT-40
and better performance than Claude-3.5-Sonnet, showcasing that Deep Ones ef-
fectively addresses the challenge of DLPD. Deep Ones will be publicly available,
including the dataset, benchmark, codes, and model weights.

1 INTRODUCTION

Program synthesis, the process of automatically generating software from high-level specifications,
has gained significant attention due to its practicality. With recent advancements in deep learn-
ing and large language models (LLMs), many studies have proposed models capable of generating
source code through pre-training (Wang et al., 2021 D1 et al., 2023} |Li1 et al., 2023), additional
fine-tuning (Austin et al., 2021; |Chen et al., 2021), evolutionary algorithm (Luo et al., [2023)), or
reinforcement learning (Le et al.l 2022} [Shojaee et al., [2023). These methods have shown strong
performance in code generation benchmarks such as APPS (Hendrycks et al., 2021), MBPP (Austin
et al., [2021), and HumanEval (Chen et al., 2021). However, since these benchmarks primarily ad-
dress relatively simple code generation tasks, recent efforts have shifted toward generating more
complex programs, such as competition-level codes (L1 et al., 2022b; Ridnik et al.| |2024), data
science programs (Lai et al.| 2023} [Chandel et al.| 2022), class-level codes (Du et al.| [2023)), and
repository-level codes (Zhang et al., 2023al).

Nevertheless, such approaches have not been actively investigated within the domain of deep learn-
ing programs, which involves generating an executable code that utilizes a deep neural architecture.
This is due to several open challenges: complex code structures, sophisticated environment config-
urations, and poorly-defined evaluation standards.

As a result, most prior research in this area has focused on problem-solving API usage (Shen et al.,
2024 Patil et al., 2023} |Ge et al.|, 2024} |Gao et al., [2023} [Liang et al.l 2023)), automated architec-
tural modification of a pre-defined code or hyperparameter tuning (Huang et al., 2023; Zhang et al.,
2023c} |Liu et al.|[2024), and neural architecture search (Elsken et al.l[2019) along with AutoML (He
et al., 2021). However, these approaches often operate within a limited solution space, relying on
slight modifications of predefined architectures. While using a base model guarantees performance

Under review as a conference paper at ICLR 2025

with relatively safe execution, it leaves little room for architectural designs or technical enhance-
ment typically made by human researchers, which may boost performance much greater than layer
changing or hyperparameter tuning.

To bridge the gap between low-level code generation technologies and high-level deep learning ar-
chitecture usage, we propose the task of Deep Learning Program Design (DLPD), a task of designing
an effective deep learning program for the task utilizing appropriate architectures and techniques.
Additionally, to cope with the aforementioned challenges, we present DeepOnes, a comprehensive
solution for DLPD. DeepOnes consists of a large-scale dataset, a multiple-choice QA benchmark,
and a lightweight benchmark specifically tailored for evaluating the program design capabilities. We
coin these components as DeepData, DeepQA, and DeepBench, respectively.

For effective program design, we assume that large language models must possess extensive knowl-
edge of various architectures and techniques for flexible improvement. However, to the best of our
knowledge, no existing dataset comprehensively covers deep neural architectures and their asso-
ciated techniques. To address this gap, we introduce DeepData, a novel dataset comprising rich
information extracted from arXiv papers and corresponding implementations on GitHub. Inspired
by biomolecular knowledge tasks from Mol-Instructions (Fang et al., 2023), we organize the data
into various categories, including description generation, combination prediction, property predic-
tion, reasoning, mathematical expression, name guessing, and more. We further process the data for
DLPD, by articulating the tasks of requirement-based model suggestion, property-based improve-
ment suggestion, and hyperparameter prediction. For a 0.01% subset of these papers, we also collect
multiple-choice questions to evaluate the knowledge of current LLMs in the domain of deep learning
techniques.

To further evaluate models and establish benchmarks, we present DeepBench, a benchmark that
consists of 10 deep learning tasks collected from Papers with Code (PWCﬂ spanning text, image,
and audio modalities. DeepBench evaluates a model’s program designing ability by generating
a fully executable deep learning program based on the given design. The benchmark utilizes a
generate-then-improve framework to evaluate if LLM can truly make an appropriate architectural
or technical improvement, not merely repeating the existing solution.

In summary, our contributions are as follows:

* To bridge the gap between low-level code generation technologies and high-level deep
learning architecture usage, we propose the task of deep learning program design and Deep-
Ones, a comprehensive solution to this task.

* We introduce DeepData, the first dataset tailored for the task of DLPD. This includes syn-
thetic data created from research papers and corresponding GitHub repositories, augmented
using LLMs.

* From a small portion of research papers used for DeepData, we collect DeepQA, the first
multiple choice question-answering benchmark for the topics on artificial intelligence. We
evaluate several open-source and closed-source LLMs on DeepQA to analyze the amount
of knowledge they possess and we show that the model trained on DeepData outperforms
all the other baselines.

* We create the DeepBench benchmark, comprised of 10 general deep learning tasks across
several modalities, collected from Papers With Code. This includes the pipeline that syn-
thesizes a fully-executable deep learning program from a natural language task description.

* We release all the datasets, codes, model weights, and benchmark so that the open-source
community can make improvements in the field of DLPD.

2 RELATED WORK

2.1 PROGRAM SYNTHESIS

Program synthesis is defined as automating the software development process from declarative
specification (Kreitz, [1998). Earlier work mostly focused on utilizing theorem-proving tech-
niques (Green, [1981; [Waldinger & Leel |1969; Stark & Ireland| [1999). Since the emergence of

'https://paperswithcode.com/

https://paperswithcode.com/

Under review as a conference paper at ICLR 2025

Paper Collection Code Data Collection

arXiv
e = e = B o
Papers With Code GitHub GPT-4omini o,

Collect all the linked Given Class/Function names and

Collect all the linked papers Github Repositories GGG Gi7 G (75, e il Converted to Pseudocode.
potentially relevant names

GPT-40 mini

Instruction Data / Multiple Choice QA Collection

Map Each Contribution to the
Class/Function Name

Contributions and Properties:

Filter non-ATI related papers

| -
N L
E =) GPT-40 mini

Information Extraction

o
8
g
o
=)
8
8
g
&

Rule-based slicing

Figure 1: Pipeline for generating DeepData and DeepQA

LLMs with strong language capabilities (Devlin et al., 2016; |Brown et al., |2020; Raffel et al.,|2020),
there have been increased interest in understanding and generating source code using LL.Ms (Feng
et al.,[2020; |Lu et al.l|2021;|Ahmad et al., 2021} Wang et al., 2021} |Chen et al.}, 2021; D1 et al.,2023;
Li et al., 2023} [Luo et al., 2023). Recently, LLMs have demonstrated impressive performance not
only on the function-level, but also on the class-level (Du et al.| 2023)), the repository-level (Zhang
et al.,|2023a), or on the Jupyter Notebook-level (Chandel et al.,|2022). Nonetheless, the technolo-
gies are rarely applied for deep learning codes due to the huge domain difference and the lack of test
cases.

2.2 LLMS FOR AUTOMATED MACHINE LEARNING

Recently, since the introduction of high-performing LLMs, there have been studies exploring the
automation of machine learning pipeline using them. AutoML-GPT (Zhang et al.,2023c) and Agen-
tHPO (Liu et al., 2024) provides LLMs with rich information through model cards and data cards,
allowing LLMs to predict better hyperparameters even for the unseen tasks. MLCopilot (Zhang
et al., |2023b)) designs a two-stage strategy of an information-gathering offline stage and retrieval-
augmented task solving online stage. MLAgentBench (Huang et al., 2023) proposes a benchmark
to evaluate an LLM agent’s ability to improve a starter code’s performance on various tasks, and
employs an LLM agent with pre-action thoughts such as reflection, research plan, status, and fact
check. On the other hand, some other works focus on integrating LLMs with a set of APIs as tools.
HuggingGPT (Shen et al., 2024), Gorilla (Patil et al| |[2023), and OpenAGI (Ge et al., 2024) take
advantage of famous API storage, such as Huggingface, Tensorflow-hub, Pytorch-hub, Github, or
Langchain, while AssistGPT (Gao et al., |2023) focuses more on utilizing predefined tools. Recent
researches even attempt to automate the data-driven discovery (Gu et al.l 2024; Majumder et al.|
2024; |Guo et al., [2024), but they focus on data science analysis rather than the deep learning ar-
chitecture itself. No study on automated machine learning focuses on designing or modifying the
architecture itself, mostly taking advantage of retrieval or APL

3 DEEPDATA: DATASET FOR DEEP NEURAL ARCHITECTURE DESGIN

We introduce DeepData, a novel dataset specifically designed for DLPD. DeepData consists of
1,346,051 instruction data points and 2,080,274 DLPD data points, gathered from 325,301 research
papers related to artificial intelligence. This dataset is derived from research papers and correspond-
ing code implementations, which we collected from the Papers with Code (PWC) platfo and
Githutﬂ repositories. PWC provides links to research papers on arXiv and associated Github reposi-
tories that implement the methods discussed in the papers. Our dataset includes research papers and

https://paperswithcode.com/
*https://github.com/

https://paperswithcode.com/
https://github.com/

Under review as a conference paper at ICLR 2025

(- . N - . R

Description Generation . | Description Generation

Could you explain the Glimpse-Based Actor-Critic (GBAC) ! | What is the main function of TASD in natural language

model? i | processing?
. J i\l J
fCombinaﬁon Prediction N ; /Combinaﬁon Prediction N

How can we combine the Dynamic Grained Encoder with i | Which of the following is a method to reduce localization

other transformer frameworks? i | errors in AUVs?

Property Prediction Property Prediction

What benefits does the hard attention mechanism provide What advantage does relaxed-LSS provide over traditional
Qn GBAC? / ! Qeverage score sampling? /
/ Reasoning N : (F Reasoning N

Explain how the GBAC model can match the performance i | How does focal loss improve model performance in

of PPO despite processing fewer pixels. i | classification tasks?

Mathematical Expression Mathematical Expression

Describe the Proximal Policy Optimization (PPO) algorithm i | What theoretical dimension bound is necessary for reliably
\mathematically. / ! \\estimating set intersections in VSAs? /
f Name Guess N 3 O Name Guess N\

Is there a technique that combines hard attention and i | Which method does FewSOME utilize to prevent

reinforcement learning with efficient computation? i | representational collapse?

Miscellaneous Miscellaneous

What are potential applications of measuring game distance | | | What is the result of using the proposed relational network
Qn Ludii? (Application Prediction) j ' Q)n the visual XOR task? (Score) j

Figure 2: Samples of DeepData and DeepQA Data on the left side is instruction-style DeepData
and data on the right side is multiple-choice question-style DeepQA. Full examples are available on

the Appendix

fkequiremem—based Architecture Proposal \
What would be the model that integrates novel word orders based on dependency parsing for downstream nlp tasks under

these constraints?

- gpu memory: Uses approximately 15GB of GPU memory for training.

- train time: Requires around 10 hours for training with optimizations.

- inference time: Achieves inference in less than 1 second per example.

=> One possible model is WordOrderOptimizer. It integrates novel word orders based on dependency parsing for downstream
Qp tasks, and utilizes a combinatorial optimization framework to ensure effective representation of natural language structure.j

~

Property-based Architecture Improvement

What would be the block that improves sensitivity to border features crucial for accurately detecting rotated objects?

=> One possible block is rotation-aware deformable convolution. It enhances feature extraction by adapting the convolution
sampling points based on object orientation, and improves sensitivity to border features crucial for accurately detecting rotated

objects.
AN /)
N

Hyperparameter Prediction
What is a recommended learning rate for COMBO Architecture?
\=> 0.002

J

Figure 3: Samples of DLPD DeepData. Three categories of DLPD-tuning data are included in
DeepData: requirement-based architecture proposal, property-based architecture imporvement, and
hyperparameter prediction.

code repositories from January 2013 to July 2024. Due to the limitation in space, we only showcase
brief samples of data in the Figure [2| Full examples can be found in the Appendix while full
prompts used for processing the dataset can be found in the supplementary material. We mainly
used GPT-40-mini (Achiam et al.,[2023)) to extract and synthesize the data. The pipeline for dataset
synthesis is visualized on the Figure

3.1 RESEARCH PAPERS

Although PWC is a platform that includes a large amount of Al-related papers, non-Al papers are
also in the database. Thus, using GPT-40-mini, we first extracted only the research papers relevant
to Al-related technology by providing the abstract of a paper. Then, we parsed .tex files of the arXiv
research papers using the unarXive (Saier et al.l [2023) to retrieve clean text including the math-

Under review as a conference paper at ICLR 2025

ematical equations. Further using GPT-40-mini, we have extracted (1) contributions, (2) paper’s
contribution represented as a diagram (3) properties of each node in a diagram (4) requirements
such as GPU or time, (5) instruction data, and for small portion, (6) multiple-choice questions de-
scribed in the section [3.4] Instruction data and multiple choice questions are categorized as several
categories, including description generation, combination prediction, property prediction, reason-
ing, mathematical expressions, name guessing, and more. The distribution of each category can be
found in the AppendixA]

3.2 GITHUB REPOSITORY

In addition to research papers, we have used the Github API to retrieve repositories linked from the
papers. From each repository, we extracted only functions and classes, assuming that the contribu-
tions proposed in the papers are mostly implemented as functions or classes. To reduce excessive
number of tokens, we further filtered the functions and classes using GPT-40-mini to identify only
classes and functions that are potentially relevant to the paper’s abstract. We make a mapping be-
tween the extracted codes and each node in a diagram using GPT-40-mini, For example, the node
<MODEL>CNN may be mapped to the function def CNN. Finally, GPT-40-mini converts the class
or function into pseudocode, focusing on high-level functionality of it. This is because raw code
snippets include a lot of noises, which does not relate to the main functionality and make a relatively
small LLM hard to learn from it.

3.3 PREPROCESSING FOR ARCHITECTURE DESIGN

Using the data collected from research papers, we created an additional synthetic dataset tailored
for DLPD. Neural architectures are often developed by combining, modifying, or replacing exist-
ing components based on their properties. For example, ResNet (He et al.| 2016) improved the
performance of CNNs by introducing residual connections.

Motivated by this idea, we categorized the program designing task into three subtasks: (1) propos-
ing existing architectures based on requirements (e.g., GPU, time, or task), (2) modifying archi-
tectures based on component properties, and (3) selecting appropriate hyperparameters. The first
dataset consists of requirement-model pairs, the second of component-property pairs (e.g., “residual
connections improve performance and reduce overfitting”), and the third of model-hyperparameter
pairs. The examples are available on the Figure[3]

As a result, DeepData includes two types of data pairs to fine-tune models. We first fine-tune the
LLMs on instruction-style data to inject enough background knowledge on Al-related technologies.
Then, we further fine-tune using DLPD-style data to train it to effectively perform program design
and even generate corresponding pseudocode which guides the programmer model to implement it.

3.4 DEEPQA

On the process of extracting DeepData’s instruction data, for 1% of the papers, we additionally
synthesized multiple-choice questions based on the papers. Being consistent with instruction data,
we collect the question categories of description generation, combination prediction, property pre-
diction, reasoning, mathematical expressions, name guessing, and others. We have collected 8,851
multiple choice questions until 2023 December. On the Figure 4 we show that GPT-40 has already
learned most of the Al-related knowledge, while Claude 3.5 Sonnet has a poor capability compara-
ble to 8B open-source models. DeepLlama-8B, a Llama-3.1-8B trained on DeepData, outperforms
all the other baselines, demonstrating that the model successfully learns Al-related knowledge from
the dataset. The examples of the questions are on the Figure 2] while full examples are on Ap-

pendix [B.2]
4 DEEPBENCH

In this section, we introduce a new benchmark DeepBench to evaluate our pipeline on the task of
DLPD. This benchmark includes 10 popular tasks collected from PWC, ranging different modalities.
We pair it with a relatively popular and small datasets for rapid evaluation and assign one metric for
simplicity.

Under review as a conference paper at ICLR 2025

DeepQA Comparison Across the Models

Models
Deepllama-8B
GPT-40
Claude-3.5-Sonnet
0.8 4 Llama3.1-8B-Instruct
5 0.6 4
2
]
-5
=
o
£
S 0.4+
0.24
0.0 T T T T T T T T
N o .
2
o (\e‘a‘\ . % 56\('\\0 o O . 3 - zg“ee
N
o “o“Q « N @ p 2 et v—,ﬁ‘
o o Q‘oﬂ e@a“
& o «@ﬂo
Categories

Figure 4: Evaluation on DeepQA While GPT-40 already possesses most of the knowledge, Claude
3.5 Sonnet and Llama3.1 8B-Instruct fails to solve the problems in many cases. DeepLlama, which
is Llama 3.1 8B fine-tuned on our instruction dataset, shows the best scores in all the categories.

Task Modality Dataset Metric PWC SOTA
image classification Tmage CIFAR-10 (Krizhevsky et al.[[2009] Accuracy (1) 99.61 (Bruno et al.[[2022]
text-to-image generation | Text, Image MS COCO,,in; (Lin et al.[2014) FID (]) 3.22 (Yu et al.| 2022}
image captioning Image MS COCO,,,; (Lin et al.|2014) BLEU-4 (1) 46.5 (L1 et al.[|[2022a)
object detection Image MS COCO,,;p; (Lin et al.|2014) Box Average Precision (1) 58.1 (Hou et al.;[2024)
face recognition Image LFW (Huang et al.||2008) Accuracy (1) 99.87 (Alansari et al.|[2023)
question answering Text GLUE QNLI (Wang|[2018) Accuracy (1) 99.2 (Lan]2019)
sentiment classification Text GLUE SST2 (Wang|[2018) Accuracy (1) 94.38 (Huang et al.![2020)
natural language inference Text GLUE MNLI (Wang/[2018) Accuracy (1) 92.0 (Jiang et al.[[2019}
recommendation system Text MovieLens-100K (Harper & Konstan{[2015} RMSE () 0.887 (Darban & Valipour|[2022)
speech recognition Audio LibriSepech,,;,; (Panayotov et al.||2015}) Word Error Rate (].) 0.0134 (Zhang et al.[[2020)

Table 1: Tasks included in DeepBench. Datasets denoted by ,,;,; are the datasets reduced to
10,000 training set and 1,000 validation set due to massive size. PWC SOTA does not represent
SOTA on such cases.

4.1 TASK DESCRIPTION

In DeepBench, the description of the task includes information on three components: the task to
solve, the dataset to train and test the model on, and the metric to be used for evaluation. Since the
tasks and metrics are basic and LLMs are expected to understand well, we only include a simple
description of the task, e.g. ”image classification task on CIFAR-10 dataset” and ’The performance
must be evaluated using accuracy”. For loading the datasets, we provide two sources of the datasets:
local storage and huggingface. In either case, we provide detailed information of the structure of
the path and the dataset, as shown in the example of Figure[5] The types of tasks and corresponding
metrics are specified on the Table|[T]

4.2 EXECUTION ENVIRONMENTS

To minimize the effect of the debugger and to solely focus on the ability to generate high-performing
architecture, we provide an experimental environment of a temporary Condd?| virtual environment.
Virtual environment for the execution of the program includes basic external packages like Tensor-
flow or Pytorch. By providing a compatible environment for most cases, we lower the possibility of
falling into the pitfalls of environmental problem.

*https://conda.io/

https://conda.io/

Under review as a conference paper at ICLR 2025

Task e o M ¥
- D
Task Description 7' B 4
Image classification task on - Concatenated Prompt
CIFAR-10 dataset. P
You can use a single A40 e
B iomiE i s o o -7 You are a professional Al programmer. You will be given (1)
a0k b00kecondEs Proposal ! . Mp e The task that the code is trying to solve (2) The error-causing
I —— . code (3) The standard output of the execution (4) The
Dataset Ap - standard error of the execution (5) Summarized previous
Cifar-10 dataset i placed at .- debugging log. Your ob is to fx the error-causing code so that
* Ideepbench/cifar10/". The T‘r’:‘ea'g“:s' govaced ""h‘;“tﬂ;:’ . the code works correctly. You can run “pip install' within shell
directory looks like: ERC scripts, rewrite python code, or do both to fix the error. Make
./deepbenchicifar10 BTG B e Mp sure to use GPU. Remember, you must not change the
L cifar-10-batches-py Viciom VT, It high-level functionality the neural architecture in the code; only
—.. s Improved Architecture A7 implementation fixes for the debugging purpose is allowed. .
D *pseudocode || One creative architectural '
Metric Description o e (1) task: Image classification on CIFAR-10 dataset. You have
The performance must be e poviomandels to Implamenta ...(1) use a very small siced dataset (2) set epoch to only 1
evaluated using accuracy... = more complex attention AvcitoctursImplomentaion with 8 () include eary stopping. CIFAR-10 dalaset s placed at
- mechanism, such as the ‘Small Dataset and 1 Epoch Dex D 10/". The directory
Prae cross-attention looks like:
e mechanism... Implementation Cy
G; import os (2) Error-causing code:
import torch
class CIFAR10Dataset B hmeaaD
o import torch.optim as optim...
class VisionTransformer
(3) Standard output
@ Architecture Implementation with num_epochs = 1
Optimized Hyperparameters
. (N2 (4) Standard error:
Mp Code To i mat1 and mat2 shapes cannot be multiplied
.. (128x3072 and 1x10)
@)) [. = class VisionTransformer
Debugging N (5) Debugging log
patch _size =4 Debugging step 1: ValueError due to incorrect train and
Execution num_classes = 10 — validation dataset split fixed by ensuring that the sum of
d_model = 64 train_size and val_size does not exceed the dataset length.
d_head = 64 Debugging step 2: Fixed variable scope issue for ‘best_loss’
nm. heads = 8) and resolved deprecated warnings for pretrained weights and
— @ > = Final Score mixed precision functions.

Figure 5: Overview of DeepBench evaluation scheme for the task of image classification on
CIFAR-10 dataset: M 4 is an architect model which designs, proposes, or improve the deep neural
architecture. On the other hand, Mp is a programmer agent which has a lot of knowledge in Al and
programming capability - here we uniformly use GPT-40. Once the architecture generated by M 4
is successfully implemented and validated through small portion of data and 1 epoch, M 4 suggests
a set of optimal hyperparameters for the model. Then the code is tested in a scaled-up scenario.

4.3 EVALUATION PIPELINE

In this section, we discuss each stage in our evaluation pipeline. Whole pipeline is visualized on
Figure[5] while generated examples are available in the Appendix B3]

4.3.1 TASK SPECIFICATION

To assess the model’s ability to design programs, we generate a fully executable implementation
of the proposed design, which we refer to as deep learning program synthesis. The task of deep
learning program synthesis can be formally defined as:

P,S = M(T) (1)
where the program P and the metric score S is generated from the natural language description of
the task 7.

In our evaluation pipeline, we break down this mapping into three key stages: requirement-based
architecture proposal, architecture improvement, and evaluation. Each of these steps is explained
below.

4.3.2 REQUIREMENT-BASED ARCHITECTURE PROPOSAL

In practical scenarios where we want to apply deep learning programs, the task is not the only
consideration; we often face constraints related to GPU resources and time. The initial step involves
proposing a base model that can address the task while adhering to the constraints of time and
GPU availability. Thus, we provide the designer model Mp with the task to be solved and the
relevant constraints regarding GPU and time. Based on this information, Mp determines the most
appropriate backbone model architecture A to use. This process is formalized as:

2)

Ap = Mp(T) where T = {task description, requirements}

Under review as a conference paper at ICLR 2025

4.3.3 ARCHITECTURE IMPROVEMENT

Proposing an architecture is appropriate for evaluating the model’s proposal capability, but not for
program designing capability. We instruct M p to modify A g to enhance performance and efficiency,
resulting in an improved architecture A;. This approach mirrors the typical process used by most
researchers, where they modify existing models to their own uses. This is expected to have a more
significant impact than simple layer modifications or hyperparameter tuning performed in previous
works. Additionally, our models generate reference Python code or Python-style pseudocode C. to
facilitate the next step of implementation. This process is formalized as:

Ar,Cr = Mp(Ap) 3)
4.3.4 ARCHITECTURE IMPLEMENTATION

Using the detailed description of the improved architecture, the programmer model Mp tries to
implement it by writing an executable Python code C. Since testing the validity of Cy with
the entire dataset can take a long time, we start with a small subset of the data for training and
run just one epoch training. This lets us quickly check whether Cy is written correctly and can
run without issues. If Cj is invalid, Mp goes through a process of iterative debugging, where
each step is labeled as 4, to produce the i-th debugged implementation C;. We provide rich
information for debugging, including the original task description T, error-causing code C;_1,
standard output O;_1, standard error F;_;, and debugging log L;_;. The debugging log is created
and updated for every debugging step with a simple prompt summarize the problem and
your solution in one line natural language sentence, like Syntax
Error —-> changed the line ‘print ("hello world"' to ‘print ("hello
world") ‘. This memory prevents Mp repeating the same debugging which does not resolve
a problem. Once a numeric score S; is successfully recorded in the log file, we consider C; is
validated. This process can be expressed as:

Co = Mp(T,A;) (Implementation) ()
CivsivLi = MP(T7 C’L‘*lvoifleiflale"'7Li71) (debugglng) (5)

4.3.5 PROGRAM EVALUATION

After validation, M p updates the code to use the full dataset and the best hyperparameters based
on the recommendations from M p regarding the set of optimal hyperparameters Hp. As a result,
we obtain a correctly implemented architecture along with the training and testing code, namely Cp
that includes suitable hyperparameters. In addition, we emphasize the time requirements so that the
code stops training and starts evaluation after the predefined time limitation is past.

Ho = Mp(T,Ar,C;) (Hyperparameter Recommendation) (6)
Co = Mp(C;,Ho,T) (Complete Evaluation Code) @)

5 EXPERIMENT

5.1 MODEL TRAINING

We use Llama3.1-8B as our base model. We train Llama3.1-8B on DeepData, with two-stage train-
ing. On the first stage, we train it on a general instruction data. On the second stage, given that
the model has sufficiently learned Al-realated knowledge, we further train it on DLPD data, which
includes requirement-based architecture proposing, property-based architecture improvement, and
hyperparameter prediction. For instruction-tuning stage, we have used the batch size of 16, while for
DLPD-tuning stage, we have used the batch size of 4 due to long data. In addition, for DLPD-tuning
stage, we replayed randomly sampled 1% of instruction data to prevent catastrophic forgetting. For
both training stages, we trained the models for 2 epochs, using 1 percent of the dataset for warmup
steps, learning rate of 3e-4, cosine learning rate decay, and Adam-mini (Zhang et al., [2024) opti-
mizer. This took around 3 days on 4 NVIDIA A6000 GPUs. Furthermore, to accelerate training and
inference speeds and to reduce the memory usage of LLMs, we have applied several techniques. We
employed LLaMA-Factory (Zheng et al., |2024), flash attention 2 (Daol 2023)), unslotl‘E], and lora
plus (Hayou et al., 2024)) for acceleration.

*https://github.com/unslothai/unsloth

https://github.com/unslothai/unsloth

Under review as a conference paper at ICLR 2025

5.2 EXPERIMENTAL DETAILS

In our experiment, we compare DeepLlama-8B, Llama3.1-8B fine-tuned on DeepData, to Llama3.1-
8B-Instruct, GPT-40 and Claude3.5-Sonnet. As an agent for implementation and debugging, we
utilize GPT-40 uniformly. Following the setting of MLAgentBench (Huang et al} 2023), we itera-
tively run the experiment for 8 times to mitigate the randomness of LLMs. We use single NVIDIA
A40 GPU with 48GB for each run, with 4200 seconds of a program execuion time limit and 3600
seconds of training time limit, and the limit of 20 debugging phases.

Task DeepLlama-8B DeepLlama-8B+ Llama3.1-8B-Instruct Llama3.1-8B-Instruct+ - GPT-40+ Claude 3.5 Sonnet Claude 3.5 Sonnet+
image classification (T) 68.66 64.33 61.73 81.93 K 49.47 70.23
best/worst 96.31/37.50 85.84/45.64 94.21/10.59 89.68/74.35 95.75/9.33 84.73/13.69 71.16/69.08
execution time of the best run (sec) 420035 NSGIETSIN 1588.68 3686.25 513.48
success rate (%) 62.50 87.50 75.00 62.50 100.00 37.50 37.50
text-to-image generation () - - 397.29 - -
best/worst - - 397.29/397.29
execution time of the best run (sec) - - 3318.77
success rate (%) - - 12.50 -
image captioning (1) - - 0.07 0.08
best/worst - - 0.07/0.07 0.08/0.08
execution time of the best run (sec) - - 1256.49 4178.90
success rate (%) - - 12.50 12.50
object detection (T) - 55.77 - - - - 0.06
best/worst - 55.77/55.77 - - - - - 0.06/0.06
execution time of the best run (sec) - 3765.00 - - - - - 3677.12
success rate (%) B 12.50 - - = B - 12.50
face recognition () 3.49 3.98 4.01 7.04 24.41 4.97 19.88 38.36
best/worst 5.78/1.77 4.46/3.51 4.01/4.01 10.05/4.04 74.53/4.19 39.67/0.08
execution time of the best run (sec) 51.61 | B4g49 2132.60 842.44 2799.42
success rate (%) 62.50 25.00 12.50 25.00 62.50 12.50 25.00 62.50
question answering (1) 45.62 79.72 69.35 88.47 88.92 87.05 66.09
best/worst 45.62/45.62 92.33/50.54 88.17/50.54 88.63/88.28 ~ 89.46/88.58 88.27/85.83 89.09/50.54
execution time of the best run (sec) 150.22 3741.63 87521 143199 [NSEAS07I
success rate (%) 12.50 50.00 50.00 25.00 37.50 37.50 25.00 50.00
sentiment classification (1) 81.54 86.80 91.29 90.33 90.14 64.18 7222 84.24
best/worst 93.69/50.80 94.27/50.92 94.50/89.68 95.07/83.60 91.97/87.96 90.48/50.92 95.30/50.92 94.38/63.42
execution time of the best run (sec) 128653 [NSG323N 2064.33 42008000 104523 1887490 3629.44 [293768 |
success rate (%) 50.00 87.50 37.50 37.50 75.00 37.50 50.00 62.50
natural language inference (T) 83.00 67.40 70.92 31.82 78.70 79.35 65.63 80.66
best/worst 84.20/81.79 87.717/32.59 87.06/35.41 31.82/31.82 82.50/74.81 80.23/78.47 82.52/40.79 89.19/64.68
execution time of the best run (sec) 2251.26 3658.84 3221.65 3703.65 | 402857
success rate (%) 25.00 50.00 12.50 50.00 25.00 37.50 50.00
recommendation system (1) .10 1.02 1.90 1.07 (2 <7 A 0.9 Il
best/worst 0.96/1.41 0.97/1.07 0.98/2.86 1.07/1.07 0.95/1.28 0.95/1309.36 0.97/0.97 1.11/1.11
execution time of the best run (sec) 92531 52.89 73.40 1220 12045 . 25978
success rate (%) 75.00 62.50 50.00 12.50 50.00 37.50 12.50 12.50
speech recognition (1) B B B - B - B B
best/worst
execution time of the best run (sec)
success rate (%)

Table 2: Comparison of the baselines. A + sign indicates architectural improvement has been
additionally performed. The first row of each task shows the mean value of each assigned metric. A
bold score represents the best result, while an underlined score represents the second best. Success
rates are calculated over 8 iterations. Scores highlighted in red indicate a performance decrease
due to architectural improvements, while scores highlighted in blue indicate a performance increase
resulting from these improvements. Darker color indicates greater performance increase or decrease.

5.3 RESULTS AND ANALYSIS

5.3.1 QUANTITATIVE ANALYSIS

Table[2]displays the performance of the designed architecture across 8 different scenarios. The mod-
els DeepLlama-8B, Llama3.1-8B-Instruct, GPT-40, and Claude-3.5-Sonnet are first evaluated based
on their proposed architectures, which are mostly existing ones. In this initial trial, DeepL.lama-8B,
GPT-40, Claude-3.5-Sonnet show comparable performance in both mean metrics and best metrics,
while Llama-8B-Instruct is far behind. To evaluate whether the models truly understand the ar-
chitectures, we instruct them to enhance both performance and efficiency through improvements.
Llama3.1-8B-Instruct and GPT-40 mostly fails to improve the architectures in terms of mean score,
best score, execution time, and success rate, implying it is not proposing valid improvements to the
architecture. In contrast, DeepLlama-8B and Claude-3.5-Sonnet succeed in improving both metric
scores and efficiency in many cases.

5.3.2 QUALITATIVE ANALYSIS

Quality of Architecture Design The choice of backbone model significantly impacts performance
in many cases. For instance, a ViT model without modifications can outperform a heavily modified
ResNet. Here, we examine the backbone models proposed by each architectural model. Table [3]
shows that DeepLlama introduces cutting-edge technologies such as Mamba Blocks, LLaVA, and
RAVEN. Since these models are known to operate under the constraints of the experiment with a
single A40 and 48 VRAM, suggestions are quite reasonable.

Under review as a conference paper at ICLR 2025

Task Category DeepLlama-8B Llama3.1-8B-Instruct GPT-4o Claude 3.5 Sonnet
‘most common model Vision Transformer EfficientNet EfficientNet EfficientNet
image most common improvement Mamba Blocks Self-Attention Mixed Precision Squeeze-and-Excitation Blocks
Vision Transformer’ EfficientNet EfficientNet-BT EfficientNet-B0
best case “ ¢ " "
most common model Stable Diffusion DALL-E 2 Stable Diffusion ControlNet
" most common improvement Textual Inversion T Encoder Mixed Precision Attention i
best case - Stable Diffusion Stable Diffusion -
C - - BERT text encoder -
most common model LLaVA-1.5 Vision Transformer CLIP BLIP
image captioning most common improvement RAVEN Knowledge Distillation Mixed Precision Self-Attention
best case - - Transformer ViT + GPT-2
) - - EfficientNet Feature Extractor Additional Attention
most common model YOLOvS YOLOvS YOLOvV8 YOLOvS

object detection

‘most common improvement

Attention

Multi-Scale Feature Fusion

Mixed Precision

Feature Pyramid Network

YOLOvS

best case Multi-scale Testing, MobileNet V3 Backbone - - -
‘most common model FaceNet ArcFace ArcFace ArcFace
face most common improvement Group Convolution Knowledge Distillation Mixed Precision Attention
best case ~ ResNet ResNet ResNet-50 - ArcFace
Hierarchical Constrastive Function Knoweldge Distillation - MobileNet-V3 Feature Extractor
‘most common model ChatGPT DistIBERT DisuIBERT DisuIBERT
question answering most common improvement Pruning Knowledge Distillation Mixed Precision Ensemble Learning
best case BERT DistIBERT DisuIBERT DisGIBERT
seas Auxiliary Task Learning - Knowledge Distillation Ensemble Knowledge Distillation
‘most common model GPT2 DistiIBERT DistIBERT DistIBERT
sentiment most common improvement Lightweight Attention Knowledge Distillation Mixed Precision Progressive Layer Dropping
best case DeBERTa-V3 DistIBERT BERT DisuIBERT
Layer Knowledge Distillation - -
‘most common model LLaMA-2-7B BERT DistlBERT DistIBERT
natural language inference | MOSL common improvement Multi-task Learning Multi-Task Learning Mixed Precision Progressive Layer Dropping
& best case “RoBERTa DistIBERT DisGIBERT — DeBERTa-V3
o Chain-of-Thoughts, Few-shot - - Attention Fusion, Progressive Unfreezing
most common model Tlama-2-7B Neural Collaborative Filtering LightFM LightGCN
ion system | TOst common improvement QLora Attention i Mixed Precision Attention i
best case KATRec Neural Collaborative Filtering Neural Collaborative Filtering

Integration with BERT

Neural Collaborative Filtering

‘most common model
‘most common improvement

Whisper

‘Wav2Vec
Attention i

‘Wav2Vec

‘Wav2Vec
Attention i

speech

Attention

Mixed Precision

best case

Table 3: Models and improvements suggested by the designer models. Most common models and
most common improvements are investigated over 8 runs. If there are multiple most-common ones
found, we denoted the one with better performance.

On the other hand, GPT-40 exhibits a bias towards mixed precision, while Llama3.1-8B-Instruct
proposes knowledge distillation as an improvement for most of the tasks. In contrast, DeepLlama
and Claude-3.5-Sonnet generate a wider variety of improvements, effectively improving the model
performance at the same time.

Implementation’s Correspondence to the Proposed Program Design Although the quality of
designed architecture is reasonable, the Table [3|shows that the best case occurs mostly using classi-
cal models, like BERT variants. This is mostly due to the discrepancy of implementation capabilities
of the programmer model, GPT-40. As shown in the Figure[d]suggests, GPT-4o already has substan-
tial knowledge in Al-related technologies. Nevertheless, we observed that GPT-40 lacks knowledge
on implementations of several recent techniques. For example, GPT-4o fails to apply common sug-
gestions from DeepLlama, such as Mamba, LLaVA, or Llama. This affects DeepLlama negatively,
as its initial suggestions are more relevant to cutting-edge technologies. Thus, while DeepBench
effectively evaluates the model’s ability to understand the architecture and generate appropriate im-
provements, the evaluation on architectural proposals appears limited.

6 CONCLUSION AND LIMITATIONS

In this paper, we introduce a comprehensive solution for the task of deep learning program design,
by proposing a novel dataset and two benchmarks. Through the evaluation on DeepBench, we
showcase that DeepData is effective for training a LLM to obtain a broad knowledge on architectures
and techniques. Along with a quantitative and qualitative analysis and open-sourcing, we believe
that this contributes to the more active research on the task of deep learning program design.

Limitations Even we have shown DeepData and DeepBench’s strength, there remains some limi-
tations to be resolved. First, as mentioned in the qualitative study, GPT-40 often fails in implement-
ing recent knowledge, even though it possesses one of the best code generation capabilities. This
may lead to a distorted evaluation of the model’s capability on architecture proposal. In addition, we
rely on a closed-source models for code generation, which is extremely costly. In future works, we
would like to suggest lightweight open-source models that can replace GPT-40 in deep learning pro-
gramming task. These limitations pose the need for more investigations on the task of deep learning
program design.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-training
for program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.

Mohamad Alansari, Oussama Abdul Hay, Sajid Javed, Abdulhadi Shoufan, Yahya Zweiri, and
Naoufel Werghi. Ghostfacenets: Lightweight face recognition model from cheap operations.
IEEFE Access, 11:35429-35446, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Antonio Bruno, Davide Moroni, and Massimo Martinelli. Efficient adaptive ensembling for image
classification. arXiv preprint arXiv:2206.07394, 2022.

Shubham Chandel, Colin B Clement, Guillermo Serrato, and Neel Sundaresan. Training and evalu-
ating a jupyter notebook data science assistant. arXiv preprint arXiv:2201.12901, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Zahra Zamanzadeh Darban and Mohammad Hadi Valipour. Ghrs: Graph-based hybrid recommen-
dation system with application to movie recommendation. Expert Systems with Applications, 200:
116850, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Bidirectional encoder
representations from transformers. 2016.

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting Cai, Yang Cao, Chaoyu Chen, Dajun Chen,
Hongwei Chen, Liang Chen, et al. Codefuse-13b: A pretrained multi-lingual code large language
model. arXiv preprint arXiv:2310.06266, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing Ilms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1-21, 2019.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and
Huajun Chen. Mol-instructions: A large-scale biomolecular instruction dataset for large language
models. arXiv preprint arXiv:2306.08018, 2023.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155, 2020.

Difei Gao, Lei Ji, Luowei Zhou, Kevin Qinghong Lin, Joya Chen, Zihan Fan, and Mike Zheng
Shou. Assistgpt: A general multi-modal assistant that can plan, execute, inspect, and learn. arXiv
preprint arXiv:2306.08640, 2023.

11

Under review as a conference paper at ICLR 2025

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
Openagi: When Ilm meets domain experts. Advances in Neural Information Processing Systems,
36, 2024.

Cordell Green. Application of theorem proving to problem solving. In Readings in Artificial Intel-
ligence, pp. 202-222. Elsevier, 1981.

Ken Gu, Ruoxi Shang, Ruien Jiang, Keying Kuang, Richard-John Lin, Donghe Lyu, Yue Mao,
Youran Pan, Teng Wu, Jiagian Yu, et al. Blade: Benchmarking language model agents for data-
driven science. arXiv preprint arXiv:2408.09667, 2024.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
based systems, 212:106622, 2021.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, Badong Chen, and Xuguang Lan. Relation detr:
Exploring explicit position relation prior for object detection. arXiv preprint arXiv:2407.11699,
2024.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. In Workshop on faces
in’Real-Life’Images: detection, alignment, and recognition, 2008.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Benchmarking large language models as
ai research agents. arXiv preprint arXiv:2310.03302, 2023.

Zhiheng Huang, Peng Xu, Davis Liang, Ajay Mishra, and Bing Xiang. Trans-blstm: Transformer
with bidirectional Istm for language understanding. arXiv preprint arXiv:2003.07000, 2020.

Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Tuo Zhao. Smart:
Robust and efficient fine-tuning for pre-trained natural language models through principled regu-
larized optimization. arXiv preprint arXiv:1911.03437,2019.

Christoph Kreitz. Program synthesis. In Automated Deduction—A Basis for Applications: Volume
III Applications, pp. 105-134. Springer, 1998.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319-18345.
PMLR, 2023.

Z Lan. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

12

Under review as a conference paper at ICLR 2025

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Chu Hong Hoi. Coderl:
Mastering code generation through pretrained models and deep reinforcement learning. Advances
in Neural Information Processing Systems, 35:21314-21328, 2022.

Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang, Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen,
Guohai Xu, Zheng Cao, et al. mplug: Effective and efficient vision-language learning by cross-
modal skip-connections. arXiv preprint arXiv:2205.12005, 2022a.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092—-1097, 2022b.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu, Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, et al. Taskmatrix. ai: Completing tasks by connecting foundation models with
millions of apis. arXiv preprint arXiv:2303.16434, 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Siyi Liu, Chen Gao, and Yong Li. Large language model agent for hyper-parameter optimization.
arXiv preprint arXiv:2402.01881, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Sanchaita Hazra, Ashish Sab-
harwal, and Peter Clark. Data-driven discovery with large generative models. arXiv preprint
arXiv:2402.13610, 2024.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 5206-5210. IEEE, 2015.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv preprint arXiv:2305.15334, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint arXiv:2401.08500, 2024.

Tarek Saier, Johan Krause, and Michael Féarber. unarxive 2022: All arxiv publications pre-processed
for nlp, including structured full-text and citation network. In 2023 ACM/IEEE Joint Conference
on Digital Libraries (JCDL), pp. 66-70. IEEE, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and Chandan K Reddy. Execution-based code
generation using deep reinforcement learning. arXiv preprint arXiv:2301.13816, 2023.

13

Under review as a conference paper at ICLR 2025

Jamie Stark and Andrew Ireland. Towards automatic imperative program synthesis through proof
planning. In /4th IEEE International Conference on Automated Software Engineering, pp. 44-51.
IEEE, 1999.

Richard J Waldinger and Richard CT Lee. Prow: A step toward automatic program writing. In
Proceedings of the 1st international joint conference on Artificial intelligence, pp. 241-252, 1969.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. arXiv preprint arXiv:2303.12570, 2023a.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleash-
ing the power of large language models in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023b.

Shujian Zhang, Chengyue Gong, Lemeng Wu, Xingchao Liu, and Mingyuan Zhou. Automl-gpt:
Automatic machine learning with gpt. arXiv preprint arXiv:2305.02499, 2023c.

Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V Le, and
Yonghui Wu. Pushing the limits of semi-supervised learning for automatic speech recognition.
arXiv preprint arXiv:2010.10504, 2020.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A CATEGORY DISTRIBUTION

DeepData Instruction Data Category Distribution DeepQA Category Distribution

description generation

mathematical expression oo o

description generation

property prediction

property prediction

(a) Category distribution of DeepData. (b) Category distribution of DeepQA.

Figure 6: Category distributions of DeepData and DeepQA.

15

mathematical expression

Under review as a conference paper at ICLR 2025

Error Ratios for GPT-40 Error Ratios for DeepLlama Error Ratios for Claude-3-5-Sonnet

rrrrrrrr

16.9%

nnnnnnnnnnnn

Valuegrmor

Error Ratios for GPT-40+ Error Ratios for DeepLlama+ Error Ratios for Claude-3-5-Sonnet+
v ather other

AutributeErtor ather

267%

Figure 7: Error ratio of the models. GPT-40 primarily encounters ModuleNotFoundError, indi-
cating a significant environmental configuration issue. Notably, GPT-40 displays a contrasting error
pattern compared to DeepLlama and Claude-3.5-Sonnet, as the occurrence of ModuleNotFoundEr-
ror increases substantially when it attempts to enhance the architecture.

B EXPERIMENTAL DETAILS

B.1 ERROR ANALYSIS

Figure [7| shows the percentage of errors encountered during the debugging process. A key obser-
vation is that GPT-40 encounters more instances of ModuleNotFoundError when trying to improve
the architecture. This suggests that it relies heavily on external packages or libraries for its enhance-
ments. In comparison, DeepLlama and Claude-3.5-Sonnet generate more RuntimeError, Attribu-
teError, ValueError, and TypeError, which are mainly due to implementation issues. This indicates
that while DeepLlama and Claude-3.5-Sonnet propose valid architectural improvements, GPT-40
primarily tries to use existing methods.

B.2 FULL EXAMPLES

B.2.1 DEEPDATA

Description Generation

Could you explain the Glimpse-Based Actor-Critic (GBAC) model?
=> GBAC is a reinforcement learning model that integrates a hard
attention mechanism into its architecture to process visual
input more efficiently. Unlike conventional RL models that
analyze the entire image, GBAC focuses on ’'glimpses’-specific,
high-resolution sections of the input frame. This allows GBAC
to achieve significant computational advantages while
maintaining competitive performance on tasks like video game
environments. The architecture consists of three main networks
the Glimpse Network, which extracts features from the
selected glimpse, the Action Network, which determines the
action to execute, and the Location Network, which selects the
next coordinates to observe.

Combination Prediction

T

16

Under review as a conference paper at ICLR 2025

How can we combine the Dynamic Grained Encoder with other
transformer frameworks?

=> To combine the Dynamic Grained Encoder (DGE) with other
transformer frameworks, one would typically integrate the DGE
block into the existing architecture, replacing traditional
encoder blocks with the adaptive mechanism in DGE. This not
only hones the query generation based on region-specific
features but also allows for performance optimization across
tasks such as image classification or object detection. The
synergy comes from DGE’s ability to adjust its processing
based on real-time input, allowing existing frameworks to
become more efficient without necessitating a complete
overhaul of their structures.

Property Prediction

What benefits does the hard attention mechanism provide in GBAC?

=> The hard attention mechanism in GBAC allows the model to
stochastically select which parts of the frame to process,
focusing computational resources on the most important visual
stimuli. This results in improved efficiency since the model
does not waste resources analyzing irrelevant details outside
the selected glimpses. This strategy not only simulates human-
like selective attention but also enables the model to operate
effectively with less input data, thus speeding up training
and reducing the overall computational burden required.

Reasoning

Explain how the GBAC model can match the performance of PPO
despite processing fewer pixels.

=> GBAC matches the performance of the PPO model by intelligently
selecting and focusing on relevant glimpses of the input frame
, leading to enhanced training efficiency without sacrificing
performance. By filtering out less relevant information, GBAC
not only reduces the noise present in the input but also
improves learning signals by allowing the model to concentrate
on critical visual details essential for decision-making.
This strategic processing allows GBAC to achieve competitive
results even while handling a substantially reduced pixel
count.

Mathematical Expression

Describe the Proximal Policy Optimization (PPO) algorithm
mathematically.

=> The objective of the PPO algorithm is represented as follows: L
“{CLIP} (\theta) = \\hat{\\mathbb{E}}_{t} \\Big[\\min(r_{t} (\
theta)\\hat{A}_{t}, \\mathrm{clip} (r_{t} (\theta), 1 - \\
epsilon, 1 + \\epsilon)\\hat{A}_{t}) \\Big]. Here, r_{t} (\
theta) is the probability ratio of the action probabilities
under the new policy to those under the old policy. \\hat{A}_{
t} is the advantage function estimator. The clipping mechanism
helps to prevent large updates in the policy, allowing for
stable training by keeping the updates small and controlled.

Name Guess

T

17

Under review as a conference paper at ICLR 2025

Is there a technique that combines hard attention and
reinforcement learning with efficient computation?

=> Yes, the Glimpse-Based Actor-Critic (GBAC) model exemplifies a
technique that combines a hard attention mechanism with model-
free reinforcement learning, specifically using the PPO
algorithm. The key aspects of GBAC allow for efficient visual
processing through selective attention while maintaining the
core reinforcement learning principles of action selection and
learning from the environment. This approach ensures that the
performance does not heavily rely on the size of input images
but rather on the strategically chosen glimpses that carry
relevant information.

Miscellaneous

What are potential applications of measuring game distance in
Ludii?

=> Applications of measuring game distance in Ludii include
improving the performance of game-playing agents by leveraging

established knowledge from similar games, recommending new

games to users based on their preferences, and conducting
transfer learning across games with similar dynamics. These
applications facilitate a deeper understanding of the Ludii
framework and enhance user engagement by suggesting games
aligned with players’ interests.

B.2.2 DEEPQA

Description Generation

What is the main function of TASD in natural language processing?
To improve data compression techniques.

To generate natural language descriptions from tables.

To translate languages.

To summarize long texts.

To develop new table structures

> B. To generate natural language descriptions from tables.

I =0 Qw»

Combination Prediction

Which of the following is a method to reduce localization errors
in AUVs?

Utilizing only visual information.

Implementing high-cost INS systems.

Using cooperative localization strategies.

Relying solely on dead reckoning.

Employing long-range sonar without additional sensors

=> C. Using cooperative localization strategies.

D‘JUOUU.'P

Property Prediction

What advantage does relaxed-LSS provide over traditional leverage
score sampling?

A. It incorporates low-leverage data points for improved

robustness.

It is computationally more intensive than traditional methods.

It only selects high-leverage points.

It samples data independently of their characteristics.

It offers no significant change from leverage score sampling

moaQw

18

Under review as a conference paper at ICLR 2025

=> A. It incorporates low-leverage data points for improved

robustness.

Reasoning

How does focal loss improve model performance in classification

= 90w

VA
Q

tasks?

It reduces training time significantly.

It increases the weight of well-classified examples.

It focuses on hard-to-classify cases in imbalanced datasets.

It simplifies the model architecture.

It applies only to binary classification tasks

It focuses on hard-to-classify cases in imbalanced datasets.

Mathematical Expression

What theoretical dimension bound is necessary for reliably

= oo

AVAEEY

estimating set intersections in VSAs?
m = O(n log(d))

O (n
O(n log (M/\epsilon))
= O(\sqrt{n})
o(d

03383 3
|

m O(n log (M/\epsilon))

Name Guess

Which method does FewSOME utilize to prevent representational

IILTJUOW'.P

>

collapse?

Augmenting training data with noise.
Introducing a batch normalization technique.
A Loss Function named Stop Loss (L_{stop}).
Increasing the architecture depth.

Applying dropout layers

C. A Loss Function named Stop Loss (L_{stop}).

Miscellaneous

What is the result of using the proposed relational network on the

= oQow»

>

visual XOR task?
The network is unable to learn the task.
The network achieves high error rates.
The network successfully generalizes relationships.
The network performs poorly compared to STDP approaches.
The network requires extensive parameter tuning
C. The network successfully generalizes relationships.

19

Under review as a conference paper at ICLR 2025

B.3 EXAMPLE RUN OF DEEPLLAMA-8B

B.3.1 REQUIREMENT-BASED ARCHITECTURE PROPOSAL

One of the most advanced models for natural language inference is
InstructGPT. It InstructGPT is an instruction-tuned large
language model that can perform various nlp tasks, including
natural language inference, and it has been shown to achieve
superior performance on this task compared to other models
like GPT-3.5 and GPT-4.

Here is a Python code snippet for natural language inference using

InstructGPT:

‘Y 'Ypseudocode
class InstructGPT:
function __init_ (tokenizer, model_name_or_path, max_len=512,
max_qgquery_len=64, max_context_len=512, temperature=1.0,
top_k=100, top_p=0.1, top_n=10, num_queries=20,
num_contexts=5, num_answers=5, device="cuda", logger=None)

Initialize model parameters

set device to the specified device

set logger to the specified logger

initialize tokenizer with the provided tokenizer

set max_len to the provided maximum length

set max_query_len to the provided maximum query length
set max_context_len to the provided maximum context length
set temperature to the provided temperature

set top_k to the provided top k value

set top_p to the provided top p value

set top_n to the provided top n value

set num_queries to the provided number of queries

set num_contexts to the provided number of contexts
set num_answers to the provided number of answers

Load the model from the specified path

load model using the specified model_name_or_path
move model to the specified device

set model to evaluation mode

set tokenizer to evaluation mode

Load a sample context from a specified path
load sample context from the provided path

Initialize contexts and queries as empty lists
initialize contexts as empty list
initialize queries as empty list

Create a template for the context and queries
create context template with num_contexts and num_answers
create query template with num_gueries

Initialize answer template
create answer template

Prepare context and query lists

generate context examples and append them to contexts
generate query examples and append them to queries

20

Under review as a conference paper at ICLR 2025

Save generated contexts and queries to files
save contexts to the specified file
save queries to the specified file

Prepare the prompt for the model

create prompt with context template, query template, and
answer template

set prompt to the model’s prefix

Log the number of contexts and queries generated
log the count of generated contexts
log the count of generated queries

function __call__ (context, query):

Convert context and query to tokenized format
convert context to tokenized format
convert query to tokenized format

Combine context and query to form the complete prompt
create complete prompt by concatenating context and query

Evaluate the model with the prompt and get the output
output = evaluate model using complete prompt and
temperature

Tokenize output and return it
return tokenized output

B.3.2 ARCHITECTURE IMPROVEMENT

One creative architectural improvement to boost performance is the

use of Chain-of-Thought (CoT) prompting. This method involves
prompting the model to provide step-by-step reasoning before

arriving at a conclusion, which helps improve accuracy.
Additionally, using a chain-of-thought prompt can be combined
with other techniques like few-shot learning to further
enhance performance.

class InstructGPT:

"""Class to interact with InstructGPT API."""

function __init__ (prompt, num_prompt_retries=1, *xkwargs):
"""Initialize the InstructGPT model with the given prompt
and optional retries."""
self._prompt = prompt
self._num_prompt_retries = num_prompt_retries
self._kwargs = kwargs

function _call_api (api_key, prompt, num_prompt_retries):
"""Call the InstructGPT API with the provided prompt and
retry settings."""
if num_prompt_retries is None:
num_prompt_retries = self._num_ prompt_retries

try:
response = call InstructGPT API with the provided API
key, prompt, and retry settings
return response

21

Under review as a conference paper at ICLR 2025

except Exception as e:
log error and retry num_prompt_retries times, then
raise the exception

function call_api (prompt) :
"""Call the InstructGPT API with the given prompt."""
return _call_api(self.api_key, self._prompt, self.
_num_prompt_retries)

function call_few_shot (prompt, few_shot_prompts) :
"""Call the InstructGPT API with a few-shot prompt and
provided examples."""
if few_shot_prompts is None:
few_shot_prompts = list of few-shot prompts

return _call_api(self.api_key, prompt with few-shot
examples, self._num_prompt_retries)

function call_chain_of_thought (prompt, chain_of_thought_prompt

)t
"""Call the InstructGPT API with a chain-of-thought prompt
nmman
return _call_api(self.api_key, prompt with chain-of-
thought reasoning, self._num prompt_retries)

B.3.3 ARCHITECTURE IMPLEMENTATION

import torch

from transformers import pipeline,
AutoModelForSequenceClassification, AutoTokenizer

from datasets import load_dataset

import os

from sklearn.metrics import accuracy_score

Set up device
device = torch.device("cuda" if torch.cuda.is_available() else
cpu n)

Load dataset
dataset = load_dataset ('glue’, 'mnli’)

Function to get a small slice of the dataset for quick testing
def get_small_dataset_slice(dataset, split='train’, size=100):
return dataset[split].select (range(size))

train_dataset = get_small_dataset_slice(dataset, ’'train’)
validation_dataset = get_small_dataset_slice (dataset, '
validation_matched’)

Load pre-trained model and tokenizer

model_name = "roberta-large-mnli"

tokenizer = AutoTokenizer.from_pretrained (model_name)

model = AutoModelForSequenceClassification.from_ pretrained(
model name) .to (device)

Preparing the inference pipeline with the model on GPU

22

Under review as a conference paper at ICLR 2025

nlp = pipeline ("text-classification", model=model, tokenizer=
tokenizer, device=0)

Function for Chain-of-Thought (CoT) prompting
def chain_of_thought_prompts (premise, hypothesis):
return f"Given the premise and hypothesis below, provide the
reasoning chain leading to the conclusion:\nPremise: {
premise}\nHypothesis: {hypothesis}\nReasoning:"

Few-shot learning examples
few_shot_examples = [

"Premise: A soccer game with multiple males playing.\
nHypothesis: Some men are playing a sport.\nLabel:
entailment\n",

"Premise: An older and younger man smiling.\nHypothesis: Two
men are smiling and laughing at the cats playing on the
floor.\nLabel: neutral\n",

"Premise: A man inspects the uniform of a figure in some East
Asian country.\nHypothesis: The man is sleeping.\nLabel:
contradiction\n"

]

Early stopping criteria
early_stopping patience = 1 # Minimal as we aim for quick test
epochs = 1 # Only one epoch for quick testing

Training loop mockup (assuming the InstructGPT API works
similarly for demonstration)

best_accuracy = 0

patience_counter = 0

for epoch in range (epochs):
preds = []
labels = []

Validation step

for i1, data in enumerate(validation_dataset):
premise = data[’premise’]
hypothesis = data[’hypothesis’]
label = datal[’label’]

cot_prompt = chain_of_thought_prompts (premise, hypothesis)

cot_reasoning = "Reasoning: Considering the premise and
hypothesis logically...\n" # Simplified CoT

prompt = cot_prompt + cot_reasoning

few_shot_prompt = "".join (few_shot_examples) + prompt

Using model to get the output (mockup InstructGPT call)

result = nlp(premise + " " + hypothesis)

pred_label = result[0]["label’]

Convert label to expected format (0: entailment, 1:
neutral, 2: contradiction)

if pred_label == "ENTAILMENT":
pred = 0

elif pred_label == "NEUTRAL":
pred =1

23

Under review as a conference paper at ICLR 2025

else:
pred = 2

preds.append (pred)
labels.append (label)

current_accuracy = accuracy_score (labels, preds)

if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
patience_counter = 0

else:
patience_counter += 1

if patience_counter >= early_stopping_patience:
break

Log the final accuracy
with open(’./metric.log’, 'w’) as f:

f.write (f" {best_accuracy:.4f}")

print (f"Final logged accuracy: {best_accuracy:.4f}")

B.3.4 GENERATING FULL CODE WITH OPTIMAL HYPERPARAMETERS

import torch

from transformers import pipeline,
AutoModelForSequenceClassification, AutoTokenizer

from datasets import load_dataset

import os

from sklearn.metrics import accuracy_score

import time

Set up device
device = torch.device("cuda" if torch.cuda.is_available() else
cpu ")

Load dataset

dataset = load_dataset ('glue’, ’'mnli’)
train_dataset = dataset[’train’]
validation_dataset = dataset[’validation_matched’]

Load pre-trained model and tokenizer

model_name = "roberta-large-mnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_ pretrained (

model_name) .to (device)

Preparing the inference pipeline with the model on GPU
nlp = pipeline ("text-classification", model=model, tokenizer=
tokenizer, device=0)

Function for Chain-of-Thought (CoT) prompting
def chain_of_ thought_prompts (premise, hypothesis):
return f"Given the premise and hypothesis below, provide the
reasoning chain leading to the conclusion:\nPremise: ({
premise}\nHypothesis: {hypothesis}\nReasoning:"

Few-shot learning examples

24

Under review as a conference paper at ICLR 2025

few_shot_examples = [
"Premise: A soccer game with multiple males playing.\

nHypothesis: Some men are playing a sport.\nLabel:
entailment\n",

"Premise: An older and younger man smiling.\nHypothesis: Two

men are smiling and laughing at the cats playing on the
floor.\nLabel: neutral\n",

"Premise: A man inspects the uniform of a figure in some East

]

Asian country.\nHypothesis: The man is sleeping.\nLabel:
contradiction\n"

Early stopping criteria

learning_rate = 0.0005 # Effective for fine-tuning transformer
models

early_stopping_patience = 1 # Stop after one epoch without
improvement

epochs = 1 # One epoch for quick testing

Training settings

best_accuracy = 0
patience_counter = 0
start_time = time.time ()
for epoch in range (epochs) :
preds = []
labels = []

Validation step
for i, data in enumerate(validation_dataset) :

premise = datal[’premise’]
hypothesis = data[’hypothesis’]
label = datal[’label’]

cot_prompt = chain_of_thought_prompts (premise, hypothesis)

cot_reasoning = "Reasoning: Considering the premise and
hypothesis logically...\n" # Simplified CoT

prompt = cot_prompt + cot_reasoning

few_shot_prompt = "".join (few_shot_examples) + prompt

Using model to get the output (mockup InstructGPT call)

result = nlp(premise + " " + hypothesis)

pred_label = result[0][’"label’]

Convert label to expected format (0: entailment, 1:
neutral, 2: contradiction)

if pred_label == "ENTAILMENT":
pred = 0

elif pred_label == "NEUTRAL":
pred =1

else:
pred = 2

preds.append (pred)
labels.append(label)

current_accuracy = accuracy_score (labels, preds)

25

Under review as a conference paper at ICLR 2025

if current_accuracy > best_accuracy:
best_accuracy = current_accuracy
patience_counter = 0

else:
patience_counter += 1

if patience_counter >= early_stopping_patience:
break

Check if training time exceeds 3600 seconds
current_time = time.time ()
if current_time - start_time > 3600:

print ("Training exceeded 3600 seconds. Stopping early.")

break
Log the final accuracy
with open(’./metric.log’, 'w’) as f:

f.write (f"{best_accuracy:.4f}")

print (f"Final logged accuracy: {best_accuracy:.4f}")

26

	Introduction
	Related Work
	Program Synthesis
	LLMs for Automated Machine Learning

	DeepData: Dataset for Deep Neural Architecture Desgin
	Research Papers
	Github Repository
	Preprocessing for Architecture Design
	DeepQA

	DeepBench
	Task Description
	Execution Environments
	Evaluation Pipeline
	Task Specification
	Requirement-based Architecture Proposal
	Architecture Improvement
	Architecture Implementation
	Program Evaluation

	Experiment
	Model Training
	Experimental Details
	Results and Analysis
	Quantitative Analysis
	Qualitative Analysis

	Conclusion and Limitations
	Category Distribution
	Experimental Details
	Error Analysis
	Full Examples
	DeepData
	DeepQA

	Example Run of DeepLlama-8B
	Requirement-based architecture proposal
	Architecture Improvement
	Architecture Implementation
	Generating Full Code with Optimal Hyperparameters

