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ABSTRACT

Pretraining and finetuning models has become increasingly popular in decision-
making. But there are still serious impediments in Imitation Learning from Obser-
vation (ILfO) with pretrained models. This study identifies two primary obstacles:
the Embodiment Knowledge Barrier (EKB) and the Demonstration Knowledge
Barrier (DKB). The EKB emerges due to the pretrained models’ limitations in han-
dling novel observations, which leads to inaccurate action inference. Conversely,
the DKB stems from the reliance on limited demonstration datasets, restricting
the model’s adaptability across diverse scenarios. We propose separate solutions
to overcome each barrier and apply them to Action Inference by Maximising
Evidence (AIME), a state-of-the-art algorithm. This new algorithm, AIME-NoB,
integrates online interactions and a data-driven regulariser to mitigate the EKB.
Additionally, it uses a surrogate reward function to broaden the policy’s supported
states, addressing the DKB. Our experiments on vision-based control tasks from
the DeepMind Control Suite and MetaWorld benchmarks show that AIME-NoB
significantly improves sample efficiency and converged performance, presenting a
robust framework for overcoming the challenges in ILfO with pretrained models.

1 INTRODUCTION

We have been going through a paradigm shift from learning from scratch to pretraining and finetuning,
in particular in Computer Vision (CV) (He et al., 2016; Radford et al., 2021; He et al., 2022) and
Natural Language Processing (NLP) (Devlin et al., 2019; Radford et al.; Ouyang et al., 2022; Touvron
et al., 2023a;b) fields due to the increasing availability of foundation models (Bommasani et al.,
2021) and ever-growing datasets. However, it is still unclear how to adapt this new paradigm into
decision-making, in particular what type of models we need to pretrain and how these models can be
adapted to solve downstream tasks. Recent work (Zhang et al., 2023; DeMoss et al., 2023; Sekar
et al., 2020; Rajeswar et al., 2023; Hansen et al., 2023a) showed that pretrained latent space world
models enable successful and efficient transfer to new tasks with either reinforcement learning (Sekar
et al., 2020; Rajeswar et al., 2023; Hansen et al., 2023a) or Imitation Learning from Observation
(ILfO) (Zhang et al., 2023; DeMoss et al., 2023). ILfO (Torabi et al., 2018; 2019; Baker et al., 2022;
Zhang et al., 2023; DeMoss et al., 2023; Liu et al., 2022a), especially from videos (Baker et al., 2022;
Zhang et al., 2023; Liu et al., 2022a; DeMoss et al., 2023), is a more promising approach in this new
paradigm since it does not require a handcrafted reward function which is hard to define for many
real-world tasks.

But there are challenges when using pretrained models in ILfO. To quantify these, we introduce
two new barriers, which we call the Embodiment Knowledge Barrier (EKB) and the Demonstration
Knowledge Barrier (DKB). The EKB describes the limitation of a pretrained model when confronted
with novel observations and actions beyond its training experience. The DKB describes the generali-
sation from a limited number of expert demonstrations in imitation learning (Ho & Ermon, 2016).
State-of-the-art approaches such as BCO(0) (Torabi et al., 2018) and AIME (Zhang et al., 2023)
typically suffer from these two knowledge barriers. First, these algorithms depend on the pretrained
model to infer missing actions from observation sequences. Thus, when the model has not seen a
specific observation before, it may not know enough about the embodiment to infer the correct action.
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Figure 1: Main idea of this paper. On the left, we plot the performance of BCO(0) and AIME together
with their oracle versions, which remove the EKB, w.r.t. different number of demonstrations on walker-
run task. The purple region between the oracle version and the expert is the Demonstration Knowledge
Barrier (DKB) while the orange region between the algorithm and its oracle version represents the
Embodiment Knowledge Barrier (EKB). On the right, we present the solutions proposed in this paper
to overcome the two barriers. The blue parts represent the original version of the algorithms that
suffer from the knowledge barriers. Orange parts demonstrate the solution for EKB, where the agent
is allowed to interact with the environment and use Donline together with Dbody to update the world
model. Purple parts show the solution for DKB, where a surrogate reward model is derived from
Ddemo and used to label Donline and then used as an RL signal for policy learning.

Second, if the policy optimisation is only guided by limited demonstrations, it can lead to a policy
that generalises poorly, working well in some states but not in others.

To better showcase the two barriers, in Figure 1, we evaluate both AIME (Zhang et al., 2023) and
BCO(0) (Torabi et al., 2018) and their oracle versions w.r.t. different number of demonstrations on
walker-run task. Both algorithms pretrain a model from a large embodiment dataset and use that to
infer the actions for the observation-only demonstrations. The oracle versions remove the need to
infer the missing actions by providing the algorithm with the true actions, thus removing the EKB.
As we can see from the figure, the two algorithms are always upper-bounded by the corresponding
oracle version, and the difference between them represents the EKB. On the other hand, even if given
the true actions of the expert, imitation performance may still be impacted by a limited number of
demonstrations providing insufficient coverage of the state space. Thus, the difference between the
oracle version and the expert performance represents the DKB.

In this paper, we study how to overcome these barriers to improve the performance of ILfO approaches
with pretrained models, in particular of AIME. For the EKB, we extend the setting from offline to
online by allowing the agent to further interact with the environment to gather more data to train the
world model. While for the DKB, we introduce a surrogate reward function to allow the policy to
essentially train on more data. We demonstrate that the proposed modifications effectively overcome
the two barriers and significantly improve the performance on nine tasks in DeepMind Control Suite
(DMC) (Tunyasuvunakool et al., 2020) and six tasks in MetaWorld (Yu et al., 2021).

We summarise our contributions as follows:

• We identify and thoroughly analyse the two knowledge barriers, namely EKB and DKB, in
the current pretrained-model-based ILfO methods.

• We propose AIME-NoB as an extension of the state-of-the art AIME algorithm by resolving
the two knowledge barriers. Specifically, AIME-NoB uses online interaction with a data-
driven regulariser to overcome the EKB and learn a surrogate reward function enlarging
state coverage to overcome the DKB.

• We evaluate AIME-NoB on 15 tasks from two vision-based benchmarks and the results
demonstrate AIME-NoB significantly outperforms previous state-of-the-art methods both
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in terms of final performance and sample efficiency. We also conduct thorough ablation
studies to show how the EKB and the DKB are overcome by the proposed modifications
and how different design choices influence the performance.

2 PRELIMINARY

We mostly follow the problem setup as described in Zhang et al. (2023). We consider a POMDP
problem defined by the tuple {S,A, T,R,O,Ω}, where S is the state space, A is the action space,
T : S × A → S is the dynamic function, R : S → R is the reward function, O is the observation
space, and Ω : S → O is the emission function. The goal is to find a policy π : S → A which
maximises the expected accumulated reward, or return, i.e. R(π) = Ea∼π[

∑
t rt]. Since in this work

we focus on imitation learning, this oracle reward is not available to the agent. We mainly use this
reward to quantify the performance of the learnt policies.

We presume the existence of three datasets of the same embodiment available to our agent. The
embodiment dataset Dbody contains trajectories {o0, a0, o1, a1 . . . } that represent past experiences
of interacting with the environment. This dataset provides information about the embodiment for the
algorithm to learn a world model. In addition, we also allow the agent to interact with the environment
to collect new data in a replay buffer Donline. Note that, although the simulator will give us the
reward information, the agent is not allowed to use them, and we only use the reward for evaluation
purposes. The demonstration dataset Ddemo contains a few expert trajectories {o0, o1, o2 . . . } of the
embodiment solving a certain task defined by Rdemo. The crucial difference between this dataset and
the other two datasets is that the actions are not provided anymore since they are not observable from
a third-person perspective. The goal of our agent is to learn a policy π from Ddemo which can solve
the task defined by Rdemo as well as the expert πdemo who generated Ddemo.

2.1 WORLD MODELS

A World Model (Ha & Schmidhuber, 2018) is a generative model which models a probability
distribution over sequences of observations, i.e. p(o1:T ). The model can be either unconditioned
or conditioned on other factors, such as previous observations or actions. When the actions taken
are known, they can be considered as the condition, i.e. p(o1:T |a0:T−1), and the model is called
embodied (Zhang et al., 2023). In this paper, we consider variational latent world models where
the observation is governed by a Markovian hidden state. This type of model is also referred to as
a State-Space Model (SSM) (Karl et al., 2017; Hafner et al., 2019b;a; Becker-Ehmck et al., 2019;
Klushyn et al., 2021). Such a variational latent world model involves four components, namely

encoder zt = fϕ(ot), posterior st ∼ qϕ(st|st−1, at−1, zt),

decoder ot ∼ pθ(ot|st), prior st ∼ pθ(st|st−1, at−1).

fϕ(ot) is the encoder to extract the features from the observation; qϕ(st|st−1, at−1, zt) and
pθ(st|st−1, at−1) are the posterior and the prior of the latent state variable; while pθ(ot|st) is
the decoder that decodes the observation distribution from the state. ϕ and θ represent the parameters
of the inference model and the generative model respectively.

Typically, the model is trained by maximising the Evidence Lower Bound (ELBO) which is a lower
bound of the log-likelihood, or evidence, of the observation sequence, i.e. log pθ(o1:T |a0:T−1). Given
a sequence of observations, actions, and states, the objective function can be computed as

ELBO =

T∑
t=1

J rec
t − JKL

t =

T∑
t=1

log pθ(ot|st)−DKL[qϕ||pθ]. (1)

The objective function is composed of two terms: the first term J rec is the likelihood of the observation
under the inferred state, which is usually called the reconstruction loss; while the second term JKL is
the KL divergence between the posterior and the prior distributions of the latent state. To compute
the objective function, we use the re-parameterisation trick (Kingma & Welling, 2022; Rezende et al.,
2014) to autoregressively sample the inferred states from the observation and action sequence.

In summary, a world model is trained by solving the optimisation problem as

ϕ∗, θ∗ = argmax
ϕ,θ

E{o,a}∼Dbody,s∼qϕ [ELBO]. (2)
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2.2 ACTION INFERENCE BY MAXIMISING EVIDENCE (AIME)

AIME is a state-of-the-art algorithm that uses a pretrained world model to solve ILfO in an offline
setting. Specifically, it uses the pretrained world model as an implicit inference model by solving
for the best action sequence that makes the demonstration most likely under the trained world
model. The imitation can be done jointly with the action inference using amortised inference and the
re-parameterisation trick by solving the following optimisation problem

ψ∗ = argmax
ψ

Eo∼Ddemo,s∼qϕ∗,θ∗ ,a∼πψ [ELBO], (3)

where ψ is the parameter for policy πψ(at|st). The resulting objective is very similar to Equation (2),
with a subtle difference of the sampling path. That is in the new objective, only the observations are
sampled from the dataset and both states and actions are sampled iteratively from the learned model
and the policy, respectively.

3 METHODOLOGY

In this section we will analyse the EKB and DKB for AIME. Based on the analysis we introduce
a solution for each knowledge barrier and combine them into AIME-NoB, where NoB stands for
No Barriers. The general framework of the solutions is shown in Figure 1 and the pseudocode of
AIME-NoB is provided in Algorithm 1 in Appendix A. Before diving into the analysis, we first
formally define EKB and DKB with EKB = R(πω∗)−R(πψ∗) and DKB = R(πdemo)−R(πω∗).
Let D := (Ddemo, Dbody, Donline), then ω∗ = argmaxω Jpolicy(p̂πdemo

(at|o1:T ), πω(at|o≤t),D)
represents the optimal policy parameters for maximising Jpolicy with the oracle; ψ∗ =
argmaxψ Jpolicy(qϕ∗(at|o1:T ), πψ(at|o≤t),D) represents the optimal policy parameters for max-
imising Jpolicy with the learned model; Jpolicy(q(at|o1:T ), π(at|o≤t),D) is the learning objective for
the policy depending on an action-inference model q(at|o1:T ). For behaviour cloning based methods
like BCO and AIME, it is essentially equivalent to −

∑
o1:T∈Ddemo

∑
tDKL(q(at|o1:T ) |π(at|o≤t));

ϕ∗ = argmaxϕ Jmodel(Dbody, Donline, ϕ) is the optimal parameter for maximising the model-
learning objective Jmodel; p̂πdemo

(at|o1:T ) is the ground truth of empirical distribution of the demon-
stration data that serves as an oracle.

3.1 OVERCOMING THE EKB

The most natural way to overcome the EKB is to allow the agent to further interact with the
environment, similar to how we humans practice for a novel skill. New experiences can minimise the
error in the pretrained model near the policy πψ and enhance task-specific embodiment knowledge.
Torabi et al. (2018) proposed a modified version of BCO(0) called BCO(α) introducing such an
interaction phase. However, empirical results show it did not overcome the EKB as a gap remains
with the BC oracle when the environment is complex. In fact, as we will show in the following, the
idea of adding online interactions is not straightforward to successfully implement in practice.

As shown in recent works in Offline RL, continuing training of an actor-critic from the offline phase
in the online phase requires certain measures to combat the shift of objective (Lee et al., 2022; Ball
et al., 2023; Nakamoto et al., 2023). A similar story also applies when extending AIME from purely
offline to online. The most dominant problem we found is overfitting to the newly collected dataset.

As the training progresses alternating between data collection, model training and policy training, in
the early phase of training there are only very few new trajectories available for training the model.
Because the world model is highly expressive, it may overly favour similar trajectories, especially the
action sequence, in the new data, leading to a high ELBO. Normally, this may not be a big problem
since, eventually, more and more data will be collected to combat this overfitting. But since AIME
also depends on the ELBO to train the policy, it quickly causes the policy training to diverge. That is
to say, when the model is extensively trained on a small amount of data, it not only maximises the
conditional likelihood log(o1:T |a0:T−1) but also maximises the marginal likelihood log(·|a0:T−1),
which diverges the likelihood-based action inference process.

In order to address the overfitting issue, we need a regulariser for model learning. Instead of designing
ad-hoc methods to regularise the model in the parameter space, we adopt a data-driven approach.
From the model’s perspective, the overfitting is caused by a sudden shift of the training data from a
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large and diverse pretraining dataset to a small and narrow replay buffer. To avoid this sudden shift,
the most straightforward method is to just append new data to a replay buffer that is pre-filled with
the pretraining dataset. However, this causes data efficiency problems since the newly collected data
is relatively little compared to the big pretraining dataset. Uniformly sampling from the joint replay
buffer hence overly limits usage of the new data. Instead, we suggest sampling separately from both
datasets. We modify the model-learning objective Jmodel in Equation (2) to

ϕ∗, θ∗ = argmax
ϕ,θ

αE{o,a}∼Dbody,s∼qϕ [ELBO] + (1− α)E{o,a}∼Donline,s∼qϕ [ELBO]. (4)

The amount of data we sample from the pretraining dataset is controlled by a hyper-parameter α,
which represents how much regularisation we put upon the model. Here we mainly consider setting
α = 0.5, so that we sample the data evenly from both datasets.

This finding contradicts Rajeswar et al. (2023) and Hansen et al. (2023a), where the pretrained world
models do not need such a data-driven regulariser. We conjecture that unlike AIME, these approaches
mainly use their world models purely as generative models to predict states and rewards given action
sequences, which is only indirectly influenced by overfitting the ELBO.

3.2 OVERCOMING THE DKB

Based on the discussion from the previous sections, the straightforward way of overcoming the
DKB is also to increase the number of demonstrations available to the agent. However, expert
demonstrations are difficult and expensive to collect. Increasing the size of the demonstration dataset
is not always feasible in real-world applications. In order to propose a more practical solution, we
need to look deeper into what is the real cause of the DKB.

The policy-learning part of the AIME algorithm is essentially behaviour cloning, and it is only
conducted on the demonstration dataset. So for the states covered in the demonstration dataset, the
policy is given clear guidance about what to do, while for other states, the behaviour is undefined.
AIME solely relies on the generalisation abilities of the learned latent state and the trained policy
network to extrapolate the correct behaviour. In particular for small demonstration datasets, this can
be unreliable or even impossible. Therefore, if we were able to enlarge the space of the covered states,
we should reduce the DKB (Ross et al., 2011).

Based on these insights, we propose to introduce a surrogate reward providing a guiding signal for
the agent on the replay buffer dataset, i.e. rsur0:T = Rν(o0:T ). Using this reward, we train the policy
with a dreamer-style actor-critic algorithm based on imagination in the latent space of the world
model (Hafner et al., 2019a). In order to do this, we first need to modify the reconstruction term in
Equation (1) by adding an extra term for decoding the surrogate reward, i.e. log pθ(rsurt |st). Then,
we further train a value estimator Vξ(st) using TD(λ)-return estimates, i.e.

V λξ (st) = (1− λ)

∞∑
n=1

λn−1V
(n)
ξ (st) (5)

with V (n)
ξ (st) =

t+n∑
t′=t+1

γt
′−t−1rsurt′ + γnVξ(st+n).

Using this estimate, we optimise our value function by minimising the MSE, i.e.

ξ∗ = argmin
ξ

(Vξ(st)− V λξ′ (st))
2. (6)

As is common practice, we use a target value network with parameters ξ′ to stabilise training, whose
parameters are updated using Polyak averaging with a learning rate τ in every iteration.

Using this value estimate, we extend the policy-learning objective Jpolicy of Equation (3) to

ψ∗ = argmax
ψ

Eo∼Ddemo,s∼qϕ,θ,a∼πψ [ELBO] + βE{o,a}∼Donline,s∼qϕ,a′∼πψ,s′∼pθ [V
λ
ξ′ (s

′)], (7)

where β is a hyper-parameter for balancing the two terms. We set β = 1.0 by default in this paper.

There could be many choices to derive this surrogate reward model. In this paper, we consider
three different types of surrogate reward, namely AIL, OT and VIPER. AIL (Ho & Ermon, 2016;
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Torabi et al., 2019) uses adversarial training to learn a discriminator to tell whether an observations is
generated by the expert, and uses the score from the discriminator as the reward. OT (Papagiannis &
Li, 2023; Haldar et al., 2022) uses optimal transport theory to measure the distance between a given
trajectory and a group of expert trajectories, and uses the negative distance as the reward. VIPER
(Escontrela et al., 2023) learns a video prediction model from the demonstration datasets and uses the
likelihood from the trained model as the reward. The detailed explanation of the three variants are in
Appendix B. We use AIL as the default variant for AIME-NoB.

4 EXPERIMENTS

In the experiments, we aim to answer the following questions: Q1: How does the proposed AIME-
NoB compare with state-of-the-art methods on common benchmarks? Q2: How well do the proposed
modifications overcome the EKB and the DKB? Q3: How do different design choices, components
and hyper-parameters influence the results? In order to answer these questions, we design our
experiments on DMC and MetaWorld benchmarks.

4.1 DATASETS AND TASKS

For the DMC benchmark, we choose nine tasks across six embodiments following Liu et al. (2022a)
and use the same published dataset (Haldar et al., 2022) as the demonstration datasets. Each dataset
contains only 10 trajectories to reflect the scarcity of expert demonstrations. For the embodiment
dataset, in order not to leak the task information from the pretraining phase, we follow Rajeswar et al.
(2023) and run a Plan2Explore (Sekar et al., 2020) agent for each embodiment with 2M environments
steps and use its replay buffer as the embodiment dataset. Different to them taking the model directly
from the Plan2Explore agent as the pretrained model, we follow Zhang et al. (2023) to retrain the
model for 200k gradient steps to get a better model. When evaluating the performance of the learned
policy on each task, we rollout the policy 10 times with the environment, and report the mean return.

For vision-based MetaWorld benchmark, we use the data from Hansen et al. (2023a). The embodiment
dataset was created from the replay buffer datasets. The open-sourced replay buffer datasets contain
40k trajectories for each of the 50 tasks with only state information. In order to fit to our image
observation setup, we render the images by resetting the environment to the initial state of each
trajectory and then executing the action sequence. The details can be found in Appendix F.

With respect to the embodiment dataset, following the idea of not leaking too much about the task
information, inspired by the common practice in offline RL benchmarks (Fu et al., 2021), we use the
first 200 trajectories from each replay buffer and form a dataset with 10k trajectories in total. We call
this dataset MW-mt50 and we use it for the benchmark on MetaWorld to compare AIME-NoB with
other algorithms. To further study the out-of-distribution transfer ability of the pretrained model, we
follow the difficulty classification of the tasks from (Seo et al., 2022a) and only use the 39 easy and
medium difficulty tasks to generate the datasets and use the 11 hard and very hard tasks as hold-out
tasks. We uniformly sample 250 trajectories from the first 10k trajectories from each of the 39 tasks
and form a dataset with 9750 trajectories in total. We refer to this dataset as MW-mt39.

For evaluating the algorithms, we choose four hard or very hard tasks, namely disassemble, assembly,
hand-insert and push; and two medium difficult tasks, namely sweep and hammer. As for the
demonstration datasets, we use the single-task policies open-sourced by TD-MPC2 and collect 50
trajectories for each task. We ensure that every trajectory in the demonstration dataset is successful.
For evaluation on each MetaWorld task, due to the noisy nature of the task, we rollout the policy
100 times with the environments, and report success only if the very last time step of an episode is
marked as successful by the environment (following Hansen et al. (2023a)).

4.2 IMPLEMENTATION

For the world model, we use the RSSM architecture (Hafner et al., 2019b) with the hyper-parameters
in Hafner et al. (2019a) for DMC tasks. In addition, we use the KL Balancing trick from Hafner et al.
(2020) to make the training more stable. For MetaWorld, since the visual scene is more complex, we
use the M size model from Hafner et al. (2023), but still with the continuous latent variable to be
aligned with other models used in this paper. The policy network is implemented with a two-layer
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Figure 2: Comparing AIME-NoB with other algorithms. The figures show aggregated IQM scores on
9 DMC tasks and 6 MetaWorld tasks. All the algorithms are evaluated with 5 seeds on each task and
the shaded region representing 95% CI.

MLP, with 128 neurons for each hidden layer. All the models are trained with Adam optimiser
(Kingma & Ba, 2017). More details on hyper-parameters are in Appendix D.

4.3 RESULTS

Q1: How does AIME-NoB compare with state-of-the-art methods on common benchmarks?
We compare the AIL variant of AIME-NoB with the representative state-of-the-art algorithms:

• AIME (Zhang et al., 2023) represents the base algorithm that we improve upon. The
algorithm uses pretrained world model offline, and suffers from both EKB and DKB.

• BCO(α) (Torabi et al., 2018) is an online extension of the popular BCO(0) algorithm, which
represents another line of methods that can use pretrained models. The online interactions
in BCO(α) can potentially overcome EKB from BCO(0).

• PatchAIL (Liu et al., 2022a) represents the Generative Adversarial Imitation Learning
(GAIL) styles of algorithms (Ho & Ermon, 2016; Torabi et al., 2019).

• OT (Haldar et al., 2022) represents the trajectory matching based algorithms.

The results of the benchmark are shown in Figure 2. We follow Agarwal et al. (2022) to report the
IQM score and 95% CI when aggregating over all the tasks in the same suite. For each DMC task,
the score is normalised using the average return of the expert, while for each MetaWorld task we
directly report the success rate. From the results, we can clearly see AIME-NoB achieves better
sample-efficiency and final performance on both of the benchmark suites comparing with all other
algorithms. Benefiting from the pretrained world model, AIME-NoB typically can reach near expert
performance within 100k environment steps on DMC tasks. This even matches the performance
in Rajeswar et al. (2023) where the true rewards are available. For the complete results of each
individual task please refer to Appendix I.

Q2: How well do the proposed methods overcome knowledge barriers? In order to show how
well AIME-NoB overcomes the two knowledge barriers, we conduct the same experiment as in
Figure 1 by providing the agent with different numbers of demonstrations on walker-run. We also run
an additional variant coined AIME-NoEKB where we only apply the solution for the EKB. The result
is shown in Figure 3. As we discussed before, MBBC as an oracle method that circumvents the EKB
is an upper bound for AIME. AIME-NoEKB matches and even slightly outperforms MBBC, which
implies the proposed solution completely overcomes the EKB. The fact that it slightly outperforms
MBBC is a bonus of the model choice – fine-tuning the latent variable world model improves the
generalization of the latent space which mitigates the DKB. AIME-NoB, which further addresses the
DKB, matches the expert performance even when given only 1 demonstration. This showcases that the
DKB has also been completely overcome using the surrogate reward. The difference between different
number of demonstrations is mainly on the sample-efficiency side, where the more demonstrations
we have the less online interactions we need to attain the expert performance.
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Figure 3: Performance of AIME-NoB, AIME-NoEKB, MBBC, AIME w.r.t. different number of
demonstrations on the walker-run task. For AIME-NoB, we do not show the result for more than 20
demonstrations since it is already saturated to the expert. All results are averaged across 5 seeds with
the shaded region representing a 95% CI.
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Figure 4: Ablations of different variants of AIME-NoB and choices of the embodiment datasets. All
the algorithms are evaluated with 5 seeds with the shaded region representing 95% CI.

Q3.1: Which variant of AIME-NoB performs the best? We run all the three AIME-NoB variants
with different surrogate rewards, i.e. AIL, OT and VIPER, on the two benchmark suites and aggregate
the results. From Figure 4a and 4b, we can see the AIL variant of AIME-NoB generally performs
the best on both suites. On the DMC suite, all the three variants managed to converge to the same
final performance, but the AIL variant is slightly more sample efficient. On the MetaWorld suite, the
distinction is larger between different variants, which highlights the supremacy of the AIL variant.
We hypothesise that AIL is the only variant that directly adapts the surrogate rewards online by
training the discriminator, while the other two variants have rather fixed surrogate rewards. This
adaptivity enables AIL to capture more pertinent signals during the imitation process. Based on these
results, we choose the AIL variant as the default implementation for AIME-NoB.

Q3.2: Which dataset can pretrain the better world model for AIME-NoB? The quality of the
pretrained models naturally depends on the quality of the pretraining datasets. In order to understand
what characteristics of the datasets influence the performance, we train all the AIME-NoB variants
with two different models pretrained separately on the MW-mt39 datasets and MW-mt50 datasets.
The aggregated result with each dataset is shown in Figure 4c. The result demonstrates that although
the size of the datasets is roughly the same, the model pretrained on MW-mt50 offers better results.
This may imply covering diverse behaviours and objects is more valuable than knowing the expert,
for example the mt50 dataset contains objects to be assembled while the mt39 does not.

Q3.3: How does different data regulariser ratio α influence the performance? We ablate the
regulariser ratio α from [0.0, 0.25, 0.5, 0.75]. Further, we compare to a simple append version
where the online dataset is appended to the embodiment dataset and treated as a singular dataset
for sampling. The append version can be also understood in this experiment as having an inverse
proportional schedule of α from 1.0 to 0.66 during the course of training. To isolate the effect on the
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Figure 5: Ablations of replay ratio α on walker-run task. AIME-NoB is running with 10 demonstra-
tions, while AIME-NoEKB is with 100 demonstrations. Action MSE is only shown for the first 105
env steps. All results are averaged across 5 seeds with the shaded region representing a 95% CI.
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Figure 6: Ablations of pretrained models, AIME loss and the weight of the value gradient loss β. All
the algorithms are evaluated with 5 seeds with the shaded region representing 95% CI.

EKB, we train both AIME-NoB and AIME-NoEKB. We show both the training curves of the return
and action MSE, which is the MSE between the inferred actions and the true actions, in Figure 5. For
AIME-NoEKB, as long as we enable the regulariser, i.e. set α > 0, we get reliable improvements
of returns over the course of training. But if we disable the regulariser by setting α = 0, the return
exhibits high variance. The cause is clear by looking at the action MSE. For α = 0 the action MSE
diverges in the beginning and cannot recover. For AIME-NoB, the story is more complicated. While
the action MSE still diverges in the beginning when α ≤ 0.5, the surrogate reward can guide the
policy back on track and even achieves lower action MSE after recovery. In this case, a small α helps
the algorithm make more use of the online dataset, resulting in higher sample efficiency.

Q3.4: How much benefit do we get from the pretrained world model and the dataset for
pretraining? One of the advantages of AIME-NoB over popular ILfO algorithms is that it can make
use of pretrained models and pre-collected datasets. Thus, we want to investigate how much AIME-
NoB benefits from having a pretrained model and a pre-collected dataset. We rerun AIME-NoB on
walker-run without the embodiment dataset and without the pretrained world model. As we can see
the result from Figure 6a, without the pretrained the world model, the sample-efficiency is largely
affected. Between the two components, the model is more important than the dataset.

Q3.5: How do different values of the gradient loss weight β influence the performance? We set
the weight β from [0.0, 0.1, 1.0, 10.0, 100.0] and plot the results in Figure 6c. As the result shows,
without the surrogate reward, i.e. β = 0, the agent cannot reach expert performance due to the DKB.
Having a small β slows learning progress toward convergence. On the other hand, setting β to a
much larger value will improve the sample-efficiency without causing instability. For the sample
efficiency, since we only have 10 demonstrations, the DKB dominates over the EKB as shown in
Figure 3. Thus, having a larger β will speed up learning. In terms of stability, as we discussed in 3.2,
AIME loss and the value gradient loss operate on different regions of the environment states. This
could make their influence on the policy independent of each other.
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Q3.6: Is surrogate reward all you need? Given the results above that AIME-NoB can work well
even when we lower the effect of the AIME loss by making either worse action inference, i.e. set α
to low value, or strengthen the value gradient loss, i.e. set β to high value, a natural question to ask is
whether the AIME loss is still needed in AIME-NoB or whether surrogate reward only is enough to
solve the imitation learning task. The AIME loss is used in two places in the AIME-NoB algorithm
– both for pretraining the policy offline and finetuning the policy online. We compare AIME-NoB
with variants that removes AIME from these parts. Form the results shown in Figure 6b, removing
AIME loss from either pretraining or finetuning will lower the sample efficiency. Removing from
both phases causes instability and convergence issues during training. Thus, AIME loss is still crucial
and cannot simply be replaced by surrogate rewards.

5 RELATED WORK

Imitation Learning from Observation. ILfO (Torabi et al., 2018; 2019; DeMoss et al., 2023; Li
et al., 2023; Baker et al., 2022; Zhang et al., 2023; Liu et al., 2022a) becomes more popular in recent
years due to their potential to utilise internet-scale videos for behaviour learning. Most of the previous
works (Torabi et al., 2018; 2019; Li et al., 2023; Kidambi et al., 2021) study the problem only with
the true state as observation. Recent works (DeMoss et al., 2023; Baker et al., 2022; Zhang et al.,
2023; Liu et al., 2022a) have started to shift toward image observations as a more general setting.
Only few works (Zhang et al., 2023; Torabi et al., 2018) can leverage pretrained models. Our work is
a continuation of this journey and further emphasise the performance benefit from pretrained models.

Pretrained Models for Decision-Making. Inspired by the tremendous progress made in recent years
in CV and NLP fields with the power of pretrained models, the decision-making community is also
trying to follow the trend. Most recent works focus on the use of Large Language Model (LLM) for
decision-making. A prompted model is used for producing trajectories and plans (Chen et al., 2024;
Huang et al., 2022; Ahn et al., 2022; Di Palo et al., 2023), code (Vemprala et al., 2023; Liang et al.,
2023; Singh et al., 2022; Chen et al., 2023; Huang et al., 2023) or for modifying the reward (Ma et al.,
2023; Mahmoudieh et al., 2022). There are also other people studying the benefit of pretrained visual
models for visuomotor tasks (Shah & Kumar, 2021; Majumdar et al., 2023; Hansen et al., 2023b;
Parisi et al., 2022) while others try to train large policy networks directly with transformers (Vaswani
et al., 2017) and huge datasets (Brohan et al., 2022; Brohan et al.; Reed et al., 2022). However, there
is only little attention being put on pretrained world models (Zhang et al., 2023; Rajeswar et al., 2023;
Sekar et al., 2020), which are natively developed by the model-based decision-making community
and perfectly fit into the pretraining and finetuning paradigm. Our work explores this overlooked
domain and showcases its potential.

6 DISCUSSION

In this paper, we identify two knowledge barriers, namely the EKB and the DKB, which limit the
performance of state-of-the-art ILfO methods using pretrained models. We thoroughly analyse the
underlying cause of each barrier and propose practical solutions. Specifically, we propose to use
online interaction with a data-driven regulariser to overcome the EKB and surrogate reward labelling
to reduce the DKB. Combining these solutions, we propose AIME-NoB and showcase its supreme
efficiency compared to SOTA ILfO methods. Our ablation studies show how each knowledge barrier
is addressed by the proposed solution and how different design choices influence the performance.

However, there are still limitations for the scope of this study. First, this work is mainly an empirical
study. Some theoretical results could enhance the understanding of the knowledge barriers. Second, as
suggested by the ablation study, a careful design for a schedule of α could further improve the sample
efficiency. Third, due to the high demand of computing resources, we only study the pretrained world
model on a rather small scale, i.e. the biggest model has only 20M parameters. It will be interesting
to study how well the algorithm scales to larger models. Lastly, although we have shown a single
pretrained world model can be used for multiple tasks, the power of pretrained world models are not
fully realized. It would be interesting to see how world models can be used to train a multi-tasks
policy. These limitations provide directions for future works.

We hope our work can shed some light on the future development of ILfO method and bring more
attention to the great potential of pretrained world models.
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A ALGORTIHM

The general pseudo code of AIME-NoB is shown in Algorithm 1.

Algorithm 1 AIME-NoB

Input: Embodiment dataset Dbody, Demonstration dataset Ddemo, Pretrained world model param-
eters ϕ, θ, Surrogate reward model Rν , Regulariser ratio α, Value gradient weight β, Batch size B

Initialise policy and critic parameters ψ, ξ randomly.
for i = 1 to policy pretraining iterations do

Draw a batch of demonstrations o1:T ∼ Ddemo.
Update policy parameters ψ with Equation (3).

end for
Initialize Donline → ∅.
for i = 1 to Environment Interaction budget do

Collect a new episode {o1:T , a1:T } with the current policy πψ
Update the surrogate reward model Rν if needed, e.g. for AIL.
Estimate reward using surrogate reward model rsur1:T = Rν(o1:T )
Append {o1:T , a1:T , rsur1:T } to Donline

# Update world model
Draw α · B samples bbody ∼ Dbody

Draw (1− α) · B samples bonline ∼ Donline

Define combined batch b = bbody ∪ bonline
Finetune model with batch b using Equation (4).
# Update policy
Sample a batch from Ddemo

Update policy parameters ψ with Equation (7).
Update value function parameters ξ with Equation (6).

end for

B IMPLEMENTATION DETAILS OF AIME-NOB VARIANTS

AIME-NoB with AIL rewards The idea of AIL (Ho & Ermon, 2016; Torabi et al., 2019) is to train a
discriminator Dν to classify whether the observation is from the expert demonstration or the agent’s
rollout. As the observation is an image in our case, we follow previous works (Haldar et al., 2022; Liu
et al., 2022a) to apply the discriminator upon the feature of an image encoder, for which we naturally
reuse the image encoder fϕ from the world model. In this way, the discriminator is trained by

ν∗ = argmin
ν

Eo−∼Dbody∪Donline,o+∼Ddemo,α∼U(0,1)

[Dν(fϕ(o
−))−Dν(fϕ(o

+)) + λ||∇νDν(αfϕ(o
−) + (1− α)fϕ(o

+)||22]. (8)

The first two terms in Equation (8) train the discriminator to put higher score on the observations
from the demonstrations while lower score on the observations generated by the agent. The last term
is a regulariser to smooth out the landscape of discriminator. The regulariser weight λ is set to 10.
Following previvous works (Haldar et al., 2022; Liu et al., 2022a), the discriminator is implemented
as a 3-layers MLP with 1024 hidden units for each layer and trained with Adam optimiser with
learning rate of 1e-4. With a trained discriminator, the AIL reward can be computed as

rAIL
T = logDν(fϕ(oT ))− log(1−Dν(fϕ(oT ))). (9)

Since the value of AIL rewards also depends on the image encoder fϕ, which is changing during the
course of training, previous works (Liu et al., 2022a; Haldar et al., 2022) maintain a slow-update
version of the image encoder to mitigate the non-stationary of the reward. But since our image
encoder is pretrained as part of the world model and finetuned with the data-driven regulariser, we
find its weight is stable during the course of training. Thus, we don’t apply this additional slow
encoder. In the experiments, we find the adverserial training is stable with the help of the world
model, as also shown in Rafailov et al. (2022).
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AIME-NoB with OT rewards OT (Papagiannis & Li, 2023; Haldar et al., 2022) was introduced to
imitation learning to alleviate the non-stationary reward and sensitive to hyper-parameters problems
in AIL. The idea is to use the optimal transport to measure the minimal effort of moving any trajectory
T = {o1:T } to a demonstration trajectory T d = {od1:Td}, where the length of the trajectory T and
Td can be different. The effort of moving the trajectory is measure by a Wasserstein distance, i.e.

g(µ, fϕ(T ), fϕ(T d), c) =

T∑
t=1

Td∑
t′=1

µt,t′c(fϕ(ot), fϕ(o
d
t′)), (10)

where µ ∈ RT×Td is the transportation matrix that satisfy µ1 = 1
T 1 and µT1 = 1

Td
1, fϕ is the

process function that map the raw observation to a metric space for which we reuse the image encoder
as in AIL, c is the cost function that measure the distance between two vectors in the metric space
for which we use the cosine distance. With the cost measure g, the optimal transport solve for the
optimal transportation matrix with

µ∗ = argmin
ψ

g(µ, fϕ(T ), fϕ(T d), c). (11)

With the optimal transportation matrix, the OT reward can be defined as

rOT
T = −λ

Td∑
t=1

µ∗
T,tc(fϕ(oT ), fϕ(o

d
t )). (12)

The λ is hyper-parameter to scale the OT reward to be easier for the agent to learn with. We follow
Haldar et al. (2022) to apply an adapted normalisation scheme where the scale factor is based on the
cost measure of the first trajectory we evaluate, i.e.

λ =
4

g(µ∗, fϕ(T (1)), fϕ(T d), c)
. (13)

When multiple demonstrations are available, we take the OT reward from the trajectory with the
lowest total transportation cost.

It may worth note that OT is the only variant that doesn’t requires to train a separate model for the
reward labelling. However, it is still changing during the course of training since the image encoder
fϕ gets finetuned.

AIME-NoB with VIPER rewards VIPER (Escontrela et al., 2023) trains a video prediction model
on the demonstration datasets and treats the likelihood of the video prediction model as the reward
for policy learning, i.e.

rVIPER
T = log pν(oT |ot<T ). (14)

In the original paper, the authors first pretrain a VQ-GAN (Esser et al., 2021) from a multi-tasks
expert dataset, and then train a GPT-style auto-regressive model in the quantised space for prediction.
For a fair comparison with other variant, we consider to only train the VIPER model on the single
demonstration dataset for the task. For simplicity of the implementation, in this paper, we consider
training an unconditioned latent world model as in Seo et al. (2022b) to model the VIPER reward.
We use the same RSSM architecture of the model learning for DMC, only removing the condition of
the actions, and we train the VIPER model for each task separately. Especially during training, we
find training such a powerful model from scratch on a small dataset can easily result in over-fitting.
Thus, we empirically choose to train the model only for 500 gradient steps for DMC models and
1000 gradient steps for MetaWorld models. We show evidence of overfitting in Appendix H.1. Due to
the large scale of the ELBO, we also apply symlog (Hafner et al., 2023) when computing the VIPER
reward. Another difference with the original VIPER paper is that we do not use intrinsic motivation
as the exploration bonus as the authors suggested, since the AIME loss for policy learning already
provides task-related guidance for exploration. We only apply an entropy regulariser to the policy as
is common practice. We further show the synergy between AIME and VIPER in Appendix J.

C COMPUTE RESOURCES

All the experiments are run on a local cluster with a few A100 and RTX8000 instances. All the
experiments are tuned to use less than 10GB of GPU memory so that they can run in A100 MIG.
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World models pretraining requires about 24 GPU hours, while VIPER models require negligible time
for training. Each DMC experiment requires about 40 GPU hours while each MetaWorld experiment
requires about 20 GPU hours.

D HYPER-PARAMETERS

Here, we document the detailed hyper-parameters for all the trained models in Table 1.

E SOURCE OF DATASETS

We use the expert trajectories from Haldar et al. (2022) at https://osf.io/4w69f/?view_
only=e29b9dc9ea474d038d533c2245754f0c. The authors didn’t provide a License for
their dataset. Further, we use the replay buffer dataset from Hansen et al. (2023a) at https://
huggingface.co/datasets/nicklashansen/tdmpc2/tree/main/mt80. The au-
thors provide the dataset under the MIT License. Moreover, we use the replay buffer dataset
from Zhang et al. (2023) at https://github.com/argmax-ai/aime/tree/main/
datasets. The authors provide the dataset under the CC BY 4.0 License.

F DETAILS FOR RESETTING METAWORLD TASKS

To generate the image observation datasets from the TD-MPC2 replay buffer (Hansen et al., 2023a),
we modify the MetaWorld codebase to reset the environment to the initial state of the trajectory from
the first observation. Luckily, the starting position of the robot arm is always the same for each task,
so that we do not need to apply inverse kinematics to solve for the initial pose of the robot arm. For
the object and the target position, for most of the tasks, the internal reset position can be computed by
making a constant shift on the object position and the target position in the observations. There are,
however, also a few edge cases which we handle differently.

In button-press-topdown and button-press-topdown-wall, the object’s true position only appears in
the observation upon the second time step, presumably due to some simulator delay in the resetting
process. So for these two tasks, the initial state is reset by the second observation.

For basketball and box-close, it seems like there is some internal collision detection that will alter
the object and robot position after the task is reset, so computing the exact reset value from the
observation is not possible. For these two tasks, we instead resort to a search-based method. To be
specific, we use a gradient-free optimiser from (Liu et al., 2022b) to search over the resetting space
of the object and find the reset position that minimises the L2 distance with the true observation.

More details of the implementation can be found in the code.

G DIFFERENCE BETWEEN COMPOUNDING ERROR AND DKB

For DKB, most literature (Ho & Ermon, 2016; Peng et al., 2021; Torabi et al., 2019; Liu et al., 2022a)
understand it as compounding error, in which the error is understood as when placing the policy
with the same initial states as the demonstration, the learned policy will gradually diverge from
the demonstrations due to error accumulation. Our DKB is a broader concept than compounding
error. DKB attributes the gap of perform to the lack of learning signal on unsupported space of
the demonstrations. In this way, EKB can explain more empirical successes in the literature than
compounding error can. For example, a recent work MAHALO (Li et al., 2023) shows evidence
of the importance of the size of the covered space. The authors studied a similar ILfO setup with
embodiment and demonstration datasets. They compared two variants: for one they train an Inverse
Dynamics Model (IDM) from the embodiment dataset and use it to label the demonstration dataset,
while for another they train a reward model from the demonstration dataset by labelling all time steps
with a reward of 1, and then use it to label the embodiment dataset. Finally, they run the same offline
RL algorithm on both labelled datasets. The results show the second variant attains a much better
performance even though the labelling from the reward model is not as meaningful as the actions
from the IDM.
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Table 1: AIME-NoB hyper-parameters use for each benchmark.

DMC METAWORLD

WORLD MODEL

CNN STRUCTURE HA & SCHMIDHUBER (2018) HAFNER ET AL. (2023)
CNN WIDTH 32 48

MLP HIDDEN SIZE 512 640
MLP HIDDEN LAYER 2 3
MLP ACTIVATIONS LAYERNORM + SWISH

DETERMINISTIC LATENT SIZE 512 1024
STOCHASTIC LATENT SIZE 30

FREE NATS 1.0
KL BALANCING 0.8

MODEL SIZE 8M 20M

POLICY

HIDDEN SIZE 128
HIDDEN LAYER 2

ACTIVATION ELU
DISTRIBUTION TANH-GAUSSIAN

VALUE NETWORK

HIDDEN SIZE 128
HIDDEN LAYER 2

ACTIVATION ELU
TARGET EMA DECAY 0.95

TRAINING

BATCH SIZE 50 16
HORIZON 50 64

TOTAL ENV STEPS 1M 500k
UPDATE RATIO 0.1
GRADIENT CLIP 100

POLICY ENTROPY REGULARISER WEIGHT 1e-4
MODEL LEARNING RATE 3e-4
POLICY LEARNING RATE 3e-4

VALUE NETWORK LEARNING RATE 8e-5
DISCOUNT FACTOR γ 0.99

TD-LAMBDA PARAMETER λ 0.95
IMAGINE HORIZON 15

AIME-NOB SPECIFIC

POLICY PRETRAINING ITERATIONS 2000
DATA-DRIVEN REGULARISER RATIO α 0.5

VALUE GRADIENT LOSS WEIGHT β 1.0

H LANDSCAPE OF THE SURROGATE REWARDS

To better understand the different types of surrogate reward and why one works better than the others,
we investigate the relevance between the surrogate reward and the true reward. We take the one seed
of the final model from each of the variant on walker-run task and evaluate the surrogate rewards on
both the expert dataset from PatchAIL, where the surrogate reward model is based on, and the replay
buffer dataset from Zhang et al. (2023).

As we can see from the results in Figure 7, all the surrogate rewards manage to put the expert
demonstrations with a higher reward than the trajectories in the replay buffer. Among them, AIL,
which performs the best, has a more linear correlation with the true reward and a higher slow for the
linear regression.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 200 400 600 800
True Return

3000

2000

1000

0
AI

L 
Re

tu
rn

AIL Returns on walker-run
walker-run-buffer
patchail-walker-run-expert
Linear Regression
(slope=3.26, R2=0.96)

0 200 400 600 800
True Return

1500

1000

500

0

OT
 R

et
ur

n

OT Returns on walker-run

walker-run-buffer
patchail-walker-run-expert
Linear Regression
(slope=1.38, R2=0.90)

0 200 400 600 800
True Return

2500

2250

2000

1750

1500

1250

VI
PE

R 
Re

tu
rn

VIPER Returns on walker-run
walker-run-buffer
patchail-walker-run-expert
Linear Regression
(slope=0.69, R2=0.75)

Figure 7: Correlation of surrogate rewards and true rewards on the walker-run task.

H.1 OVERFITTING OF THE VIPER MODEL
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Figure 8: Correlation of the VIPER reward and the real reward with models trained with different
numbers of gradient steps. Each point represents one trajectory. We can clearly see the model
gradually overfitting and losing the correlation with the real reward when training for more than 1000
gradient steps.

To better illustrate the overfitting problem for VIPER models and justify our choice of training
fewer iterations, we train the VIPER models for a varying number of gradient steps and evaluate the
correlations between the VIPER reward and the true reward. Specifically, we train the same VIPER
model with {100, 500, 1000, 2000, 5000, 100000} gradient steps and plot the result in Figure 8. As
we can clearly see, when training with less than or equal to 1000 gradient steps, VIPER reward has
a very nice correlation with the true reward, with the middle-range performance even like a linear
correlation. The best model could be selected from 500 and 1000 gradient steps. However, as we
train the model for longer, the VIPER reward for the expert trajectories is boosted even higher, and as
a side effect, it also relatively boosts up the VIPER reward for low-performance trajectories. This is
because, when overfitting the expert trajectories, the model increases the marginal likelihood of all the
observations in the expert trajectories to a higher value, which also includes a few frames of the robot
lying on the ground at the very beginning of each trajectory after reset. For these low-performance
trajectories, the robot remains mainly stuck around the initial position and struggles on the ground.
This artifact of the overfitted VIPER reward creates a sharp local maximum in the low-performance
region that the agent can hardly get away from.
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Figure 9: Comparing different variants of AIME-NoB with other algorithms. The figures show
aggregated IQM scores on 9 DMC tasks and 6 MetaWorld tasks. All the algorithms are evaluated
with 5 seeds with the shaded region representing 95% CI.
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Figure 10: Benchmark results on 9 DMC tasks. Return are calculated by running the policy 10 times
with the environment and taking the average return. The results are averaged across 5 seeds with the
shaded region representing 95% CI.

I FULL RESULTS OF THE BENCHMARK

In this section, we show the full results of all the variants on the 15 tasks on the two benchmark suites.
The aggregated results of all the variants are shown in Figure 9 and results on each individual tasks
are shown in Figure 10 and Figure 11 respectively for DMC and MetaWorld. We also summarised
the final performance after the interaction budget at Table 2 and Table 3 respectively for DMC and
MetaWorld.
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Figure 11: Benchmark results on 6 MetaWorld tasks. Trajectories are only counted as success when
it success at the last time steps and the success rates are calculated with 100 policy rollouts. The
results are averaged across 5 seeds with the shaded region representing 95% CI.

Table 2: Final returns on DMC tasks at 1M environment steps. The best performance on each task is
marked as bold.

cartpole-swingup cheetah-run finger-spin hopper-stand hopper-hop quadruped-run walker-stand walker-walk walker-run

Expert 856 888 974 937 318 546 968 959 776

AIME 177± 64 312± 78 518± 67 91± 127 10± 8 97± 43 616± 72 353± 84 56± 17
BCO(α) 206± 30 104± 31 154± 258 133± 113 7± 6 148± 106 286± 58 99± 41 25± 5
OT 795± 40 645± 54 976± 2 340± 552 143± 29 133± 75 830± 200 836± 311 373± 88
PatchAIL 569± 400 523± 92 979± 5 787± 36 129± 60 371± 101 831± 203 962± 5 378± 75

AIME-NoB w/ AIL (Ours) 177± 192 859± 8 976± 1 878± 31 308± 6 422± 114 981± 1 954± 5 771± 5
AIME-NoB w/ OT (Ours) 190± 23 856± 8 968± 13 897± 22 302± 9 336± 184 983± 3 952± 4 758± 1
AIME-NoB w/ VIPER (Ours) 141± 42 854± 11 977± 3 865± 30 304± 4 68± 29 978± 1 945± 12 759± 4
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Figure 12: Ablations of the size of the data-driven regulariser N on walker-run task. AIME-NoB is
running with 10 demonstrations, while AIME-NoEKB is with 100 demonstrations. Action MSE is
only shown for the first 105 env steps. All results are averaged across 5 seeds with the shaded region
representing a 95% CI.

J ADDITIONAL EXPERIMENTS

Do we need the whole embodiment datasets to establish the regulariser? Although the data-driven
regulariser is efficient, it requires to keep the entire embodiment datasets to build the regulariser. This
can be challenging when the world model is pretrained on an internet-scale dataset. Therefore, we
try to study if it is possible to use only a small portion of the dataset to establish the regulariser. We
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Table 3: Final success rate on MetaWorld tasks at 500K environment steps. The best performance on
each task is marked as bold.

disassemble assembly hand-insert push sweep hammer

AIME w/ mt39 0.00± 0.01 0.01± 0.01 0.00± 0.01 0.07± 0.06 0.06± 0.03 0.53± 0.13
AIME w/ mt50 0.32± 0.13 0.09± 0.07 0.08± 0.03 0.34± 0.05 0.18± 0.09 0.42± 0.07
BCO(α) w/ mt50 0.00± 0.00 0.03± 0.05 0.05± 0.03 0.06± 0.06 0.14± 0.09 0.57± 0.25
OT 0.00± 0.00 0.00± 0.00 0.05± 0.08 0.10± 0.05 0.04± 0.12 0.09± 0.10
PatchAIL 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

AIME-NoB w/ AIL w/ mt39 (Ours) 0.94± 0.03 0.41± 0.29 0.10± 0.14 0.42± 0.48 0.77± 0.16 0.96± 0.07
AIME-NoB w/ AIL w/ mt50 (Ours) 0.95± 0.03 0.68± 0.03 0.34± 0.08 0.52± 0.38 0.88± 0.09 0.99± 0.02
AIME-NoB w/ OT w/ mt39 (Ours) 0.82± 0.11 0.06± 0.12 0.05± 0.13 0.22± 0.39 0.07± 0.03 0.69± 0.52
AIME-NoB w/ OT w/ mt50 (Ours) 0.79± 0.12 0.60± 0.04 0.15± 0.07 0.24± 0.29 0.58± 0.21 0.98± 0.02
AIME-NoB w/ VIPER w/ mt39 (Ours) 0.59± 0.32 0.35± 0.25 0.04± 0.08 0.24± 0.32 0.55± 0.18 0.66± 0.47
AIME-NoB w/ VIPER w/ mt50 (Ours) 0.53± 0.30 0.52± 0.20 0.22± 0.07 0.49± 0.12 0.66± 0.09 0.97± 0.03

Figure 13: The first 100 frames of a cartpole swingup demonstration. The most important swingup
behaviour is happened outside the scene.
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Figure 14: Results on cartpole-swingup with additional variants of AIME-NoB with the true reward
and AIME-NoB with tuned hyper-parameters. Return are calculated by running the policy 10 times
with the environment and taking the average return. The results are averaged across 5 seeds with the
shaded region representing 95% CI.

randomly sample a subset of the embodiment dataset as the regularisor and the result is shown in
Figure 12. Surprisingly, the results show the action inference is even more stable when we only use
0.1% of the embodiment dataset, i.e. 2 trajectories, to establish the regulariser.

Improving AIME-NoB on cartpole-swingup. As shown in Figure 10, although AIME-NoB solves
8 out of 9 tasks, it still straggles at cartpole-swingup. We further investigate the cause of the low
performance. After examination, we find issues in both of the datasets. For the demonstration dataset,
we show the first 100 frames from 1 demonstration in Figure 13. As we can see, the initial position of
the cart is from the center of the image with the pole pointing downward. The expert demonstration
directly drive the cart to the left and then back to the right to swingup the pole and in the end balance
the pole in the middle. Due to the carmera setup in cartpole, when the cart continuously to the left,
the cart can move out of the scene, which makes the most important swing up process happen outside
of the scene. This pose a severe challenge to the action inference and results in poor performance of
AIME-NoB. We observe that all the policies from AIME-NoB learned to move left to go outside the
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Figure 15: Benchmark results on additional 4 hard and very hard MetaWorld tasks. Trajectories are
only counted as success when it success at the last time steps and the success rates are calculated
with 100 policy rollouts. The results are averaged across 5 seeds with the shaded region representing
95% CI.

scene in the beginning but comming back with an angle either not enough to push the pole to the
up-right position or too much that the pole swing down from the right. For the embodiment dataset, it
mainly contains data with a high speed rotating behaviour of the pole. Learning with imagination
from these states will not lead to a helpful signal for swingup.

In order to improve the performance, we need to have better emphasis on the role of the surrogate
rewards. We remove the data-driven regulariser, i.e. setting α = 0, since we know AIME loss won’t
help too much on this case and we want better utilisation of the online data. We further weaken the
effect of AIME loss with a weight of 0.01. In Figure 14, we show the tuned version of AIME-NoB
improve over the default hyper-parameters and can solve cartpole matching the best OT baseline.
But still both of them have a large variance during training. In order to further understand the upper
bound of this task, we also include a variant of AIME-NoB with true reward from the environment.
We can see that with the true reward the task can be solved reliably. This motivates a better design of
surrogate rewards in future works.

More challenging tasks. We extends our benchmarks with more challenging tasks. As from previous
results in Figure 10 and Figure 11, baselines BCO(α), OT and PatchAIL are not well-performed, so
we are not expecting them to be good on these even harder tasks. Thus, we mainly compare between
AIME-NoB with AIME.

For MetaWorld, we include four additional tasks, namely pick-place, shelf-place, stick-pull and
stick-push. According to Seo et al. (2022a), pick-place is a hard task and the other three are very hard
tasks. The results are shown in Figure 15. From the results, AIME-NoB reliably outperforms AIME.
Even in the very hard tasks stick-pull and stick-push, AIME-NoB manages around 60% success rates.
However, AIME-NoB doesn’t performs so well on pick-place and shelf-place. We conjecture it is
due to the visual difficulties of the tasks. It is known that the world models based on reconstruction
loss struggle at modeling small objects, which is the small cube we need to pick-up in these two
tasks. Improving the world models’ ability of modeling small objects or increase the resolutions of
the observations will likely improve the performance.

For DMC, we conduct additional experiments on the humanoid embodiment. Since the humanoid
embodiment is not in the initial list of the study, we essentially need to recollect the datasets on the
embodiment and pretrain the world model. For the embodiment dataset, we use the same setting in
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Figure 16: Results of AIME-NoB on 3 humanoid tasks. Returns are calculated by running the policy
10 times with the environment and taking the average return. AIME is average over 5 seeds; DrQ-v2
is over 10 seeds (Results from official repo https://github.com/facebookresearch/
drqv2/tree/main/curves); due to the time limit, we only run AIME-NoB for 3 seed. The
shaded region representing 95% CI.

the main benchmark to run Plan2Explore for 2M environment steps and use the 2000 trajectories
in the replay buffer as the embodiment dataset. The world model is pretrained on the embodiment
dataset for 200k gradient steps. For the demonstration dataset, we use the state-based policy from
TD-MPC2 to collect 100 trajectories, and render the images to fit to our vision-based setting. Since
humanoid is a very complex task, especially when using images as the observations, existing works
(Yarats et al., 2021; Hafner et al., 2020) run the tasks for at least 30M environment steps. Due to the
time limit, we only run AIME-NoB for 5M environment steps. We show the results in Figure 16.
We can clearly see AIME-NoB outperforms AIME and it has the potential to further improve if
training for more environment steps. Since there are no existing vision-based ILfO algorithms
have been tested on humanoid, we add an additional comparison with the official results in DrQ-v2
which is a state-of-the-art vision-based model-free RL algorithm. We can see AIME-NoB is more
sample-efficient than DrQ-v2 on all three tasks. To the best of our knowledge, this is the first time
that an ILfO algorithm shows progress on vision-based humanoid tasks.

Comparing with Dreamer. We further compare AIME-NoB with Dreamer which has access to the
true reward provided by the environments. We compare with two versions, one is training Dreamer
from scratch, one is training Dreamer but initialise the world model with the pretrained one, which
we denote Dreamer w/ pt. One thing worth noting is although the pretrained world model has most of
the components required for a new task, the reward decoder still needs to be trained from scratch
since it is task-specific.

For DMC, we report the results at Figure 17. As we can see from the results, AIME-NoB achieves
better sample efficiency on 8 out of 9 tasks except the problematic environment cartpole-swingup as
discussed in Appendix J. On hopper-hop and quadruped-run, AIME-NoB is surpassed by Dreamer in
the end. This is because as an imitation learning algorithm, AIME-NoB’s performance is limited by
the quality of the expert.

For MetaWorld, we report the results at Figure 18. As the manipulation tasks typically impose
challenges for exploration, we see that Dreamer with or without the help of the pretrained model
struggles to accomplish the task within the 500k environment steps. In the same time, with the help of
the demonstrations, it is much easier for AIME-NoB to explore the related regions in the observation
which results in a better sample efficient. This marks an advantage of using demonstrations over
using a scalar reward to define the task.
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Figure 17: Additional comparison between AIME-NoB and Dreamer on 9 DMC tasks. Returns
are calculated by running the policy 10 times with the environment and taking the average re-
turn. The results are averaged across 5 seeds (10 seeds for Dreamerv3 (official) from official repo
https://github.com/danijar/dreamerv3/tree/main/scores) with the shaded re-
gion representing 95% CI.
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Figure 18: Additional comparison between AIME-NoB and Dreamer on 6 MetaWorld tasks. Trajec-
tories are only counted as success when it is marked successful at the last time steps and the success
rates are calculated with 100 policy rollouts. The results are averaged across 5 seeds with the shaded
region representing 95% CI.

28


	Introduction
	Preliminary
	World Models
	Action Inference by Maximising Evidence (AIME)

	Methodology
	Overcoming the ekb
	Overcoming the dkb

	Experiments
	Datasets and Tasks
	Implementation
	Results

	Related Work
	Discussion
	Algortihm
	Implementation details of AIME-NoB variants
	Compute Resources
	Hyper-parameters
	Source of Datasets
	Details for Resetting MetaWorld Tasks
	Difference between compounding error and dkb
	Landscape of the surrogate rewards
	Overfitting of the VIPER model

	Full results of the benchmark
	Additional Experiments

