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Abstract

While modern large language models (LLMs) achieve high
accuracy on many challenging mathematical benchmarks,
they often struggle to recognize the insolvability of ill-posed
problems. Existing benchmarks for insolvable problems are
either modified from elementary-level math questions or lack
rigorous validation of their insolvability. There is still no
benchmark featuring inherently insolvable problems that re-
quire deep mathematical knowledge to identify. To address
this gap, we introduce MathTrap300, the first benchmark
consisting of 300 insolvable, ill-posed math problems with
fundamental mathematical contradictions or missing condi-
tions that demand deep domain knowledge to detect. In this
work, we manually constructed these problems from well-
posed counterparts through careful modifications and rigor-
ous verification of ill-posedness by PhD-level experts. We
then present a fine-grained, three-stage LLM judge frame-
work designed based on observations of LLM responses to
insolvable problems. This framework captures signals from
both final answers and intermediate reasoning, providing
richer metrics and enabling a more faithful assessment of
insolvability recognition. Our evaluation of recent advanced
LLMs on MathTrap300, combined with a detailed analysis of
their response patterns, reveals a clear drop in accuracy from
well-posed problems to their insolvable counterparts. Com-
mon failure modes include hallucination, guessing, and con-
dition neglect. We also observe that even when models rec-
ognize insolvability, they still produce a definitive answer.

1 Introduction

Large language models (LLMs) have made substantial
progress in mathematical reasoning, achieving high accu-
racy on widely used benchmarks such as MATH (Hendrycks
et al. 2021), AMC, and AIME. Despite their strong perfor-
mance on well-posed datasets, modern LLMs struggle to
recognize insolvability in ill-posed problems. Most exist-
ing math benchmarks emphasize increasingly difficult, well-
posed problems, while far fewer evaluate LLM performance
on insolvable ones.

Several benchmarks for insolvable problems have been
proposed (Zhao et al. 2024; Ma et al. 2025; Tian et al. 2024;
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Xue et al. 2025; Sun et al. 2024b; Song, Shi, and Zhao 2025),
but these are often derived from elementary-level math prob-
lems (Zhao et al. 2024; Tian et al. 2024; Ma et al. 2025; Sun
et al. 2024b) or generated by LLMs without verified insolv-
ability, sometimes containing only math-irrelevant artifacts
(e.g., ambiguous wording or commonsense errors) (Song,
Shi, and Zhao 2025). Moreover, because LLMs can ex-
hibit complex behaviors when confronted with insolvable
problems, response correctness cannot be reliably assessed
by string matching (Xue et al. 2025), and single binary-
judgment metrics (Ma et al. 2025; Zhao et al. 2024) fail to
capture the diverse failure modes that arise.

To address these gaps, we introduce MathTrap300, a
manually curated and double-verified dataset of 300 insolv-
able math problems with missing or contradictory condi-
tions. A comparison with prior work is provided in Table
1. Some illustrative examples of problematic questions from
existing datasets are provided in Appendix Al. Two sample
problems of MathTrap300 are shown in Figure 1.

Specifically, our contributions are: (1) MathTrap300, a
dataset of 300 insolvable problems crafted from challeng-
ing sources and rigorously double-verified by PhD-level
experts; (2) a three-stage LLM judge pipeline, based on
observed LLMs’ response behaviors, that evaluates final-
answer correctness, midway identification, and problem
modification; and (3) a large-scale benchmark of 28 state-
of-the-art LLMs on MathTrap300, together with a detailed
analysis of their common failure patterns when facing in-
solvable problems.

2 Methods
2.1 Dataset construction

Our insolvable problems are adapted from well-posed prob-
lems drawn from MATH, AIME 2025, AMC, the Chinese
college entrance exam, and high school math competitions,
plus additional problems created by the authors. We mod-
ify these into either contradictory questions, where the given
conditions cannot all hold, or missing-condition questions,
where the information is insufficient to determine the desired
values, explicitly avoiding insolvability from common-sense
errors or ambiguous wording. We also incorporate 37 prob-
lems from MathTrap (Zhao et al. 2024), which, although rel-
atively easy, preserve discriminative power, and retain only
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Figure 1: A demonstration of insolvable problems and model responses. Left: Contradiction — adding a variable ¢ makes
any positive m impossible. Right: Missing Condition — changing the target coefficient from 100 to 121 leaves the problem
underdetermined. In both cases LLMs fail to recognize insolvability and instead force final answers.

problems that can mislead Hunyuan (Sun et al. 2024a). Each
problem is proofread by a PhD-level expert distinct from its
creator, solved by o4-mini (OpenAl 2025f) with high rea-
soning effort, and accompanied by an annotation explaining
why it is insolvable; problems not identified as insolvable by
04-mini undergo in-depth manual review.

2.2 Evaluation Methods

For original problems, model outputs are compared directly
with ground-truth answers. We first apply the symbolic com-
parison library from (Ye et al. 2025); unmatched outputs
are further checked by Kimi-K2 (Kimi Team et al. 2025)
(prompt in Appendix F).

For insolvable problems, we extend prior single-judge
methods (Zhao et al. 2024; Ma et al. 2025; Sun et al. 2024b),
which often overlook the diverse ways LLMs express insolv-
ability awareness. From observed responses, we treat two
behaviors as valid: (1) explicitly declaring insolvability, and
(2) recognizing insolvability while consistently modifying
the problem. Figure A3 illustrates valid Contradiction and
Missing Condition cases, motivating our three-stage LLM
judge pipeline inspired by (Sheng et al. 2025), which inte-
grates these behaviors into a unified evaluation. Concretely,
we use three complementary judges, all instantiated with
Grok-4-fast-reasoning (XAl 2025¢), to capture different in-
solvability signals.

J1 - Final-answer judge: checks for LLMs’ insolvabil-
ity claims in the final answer (e.g., “no solution,” “does not
exist,” “not enough information,” etc.)

Js - Problem-modification judge: checks whether the
LLM modifies the problem to make it solvable (e.g., adding
a plausible missing constraint or fixing a variable domain).

J3 - Midway-identification judge: flags if LLMs note
insolvability in intermediate reasoning.

The judges are invoked sequentially: .J; first examines
the last 100 characters of the response. If true, the process
stops and midway-identification is set to true. Otherwise,
Jo is called. If J, returns true, the process again stops and
midway-identification is set to true. If J5 is false, J3 is then
called. Overall correctness is true if either J; or J5 succeeds.
J3 is reported separately as a diagnostic metric to quantify
alignment between intermediate recognition and final/modi-
fication behavior.

We tune prompts on 84 responses from four repre-
sentative models (Qwen3-30B-A3B-Instruct (Qwen Team
2025c¢), DeepSeek-V3.1-Think (DeepSeek-Al 2024), Kimi-
K2 (Kimi Team et al. 2025), and o4-mini (OpenAl 2025f)) ,
then validate on 96 responses from 24 other models. Against
human labels, the Fl-scores are 1.0 (final-answer), 0.94
(problem-modification), 0.76 (midway-identification), and
0.84 overall (details in figure A4 and table Al, prompts in
Appendix G).



Method

Difficulty  Verified, Mathematical Insolvability ~ Fair Judge Pattern Analysis

MathTrap (Zhao et al. 2024)
UMWP (Sun et al. 2024b)

SUM (Song, Shi, and Zhao 2025)
PMC (Tian et al. 2024)

UMP (Ma et al. 2025)
ReliableMath (Xue et al. 2025)
MathTrap300 (Ours)

NAX X N X X

AX X X X X o
AX 0 X X oo
N0 0 X X X X

Table 1: Comparison with previous works. Legend: v good, o limited, x absent. Verified, Math. Insolv. indicates problems
rigorously are verified as mathematically insolvable (as opposed to commonsense gaps or wording issues).

3 Experimental Results
3.1 Benchmarking

We evaluated 28 modern LLMs on MathTrap300 in a zero-
shot setting with the instruction: “You are a math ex-
pert. Please reason step by step and show your step-by-
step reasoning first, and then put your final answer within
"\boxed{} ", using the generation parameters in Ta-
ble A2. On non-empty responses, we report three metrics
in Table 2: final answer accuracy (insolvability declared
in the final response), identification accuracy (insolvability
flagged during reasoning), and overall accuracy (problem
recognized as insolvable if J; or J5 succeeds in section 2.2).

From the benchmarking results, we find that most models
struggle to recognize traps, with accuracies on insolvable
problems notably lower than on original ones. Strong rea-
soning models, such as GPT-5 and DeepSeek-V3.1-Think,
show drops of only about 6-7%, while chat models such as
GPT-40 or Llama4-Scout-Instruct lose more than 33-39%.
The true drop in accuracy may be larger since our LLM
judge tends to generate false positives more than false neg-
atives (see Table A1). The benchmark reveals several recur-
ring schemes, and below we summarize them as two main
observations.

First, there is a pronounced identification-declaration
gap. Across the evaluated set, the average identification ac-
curacy (models flagging the insolvability during reasoning)
is 73.98% while the average final-answer (explicit declara-
tion in the final boxed answer) accuracy is only 14.74%.
The resulting gap (about 59.2% ) indicates that models
frequently notice anomalies while composing intermediate
steps but still prefer to output a definite final answer rather
than explicitly abstain or state “no solution”. Consequently,
evaluations relying exclusively on final answers risk sub-
stantially underestimating a model’s internal detection of in-
consistencies.

Second, performance clusters by model family and by the
presence of extended reasoning traces. Reasoning-oriented
variants (rows labelled “Thinking” or “with thinking”) tend
to achieve substantially higher identification and overall ac-
curacies than their chat-oriented counterparts. For example,
several proprietary reasoning models reach overall accura-
cies in the high 70s-80s (see GPT-5 and Gemini variants
in Table 2), while many chat-first models lag behind. This
suggests that exposing and encouraging long-form internal
reasoning materially improves a model’s ability to surface

insolvability signals.

3.2 Failure Pattern Analysis

Section 2.2 introduces two cases of correctness, direct dec-
laration in the final answer and problem modification. Now
we present the common failure modes we observed, with ex-
amples in Figure 2 and annotations in Figure AS5.

["CYLEE Owen3-30B-A3B-Instruct

Case 1: Guessing

Insolvable Problem

Missing Condition Consider real numbers x, y, z, u, v, w such that the determinant of the
matrix with (x, y, z) in first row, (x, v, z) in second row, and (x, y, w) in third row is 1. Given that
x#u,y+#v, z#w, determine the value of u/(u - x) + v/(v-y) + w/(w-z).

Response

Let the desired sum be S... In this case, S = 3, in other case, S = -0.5, so unless the problem
has additional constraints, the expression is not unique... Given the time | spent, | think the

answer is 3. So I'll go with

It was aware that the expression is not unique but was uncertain about its decision and
ultimately just picked a possible value

Case 2: Hallucination

Insolvable Problem
Missing Condition h(k(x)) = x* and k(h(x)) = x* for x > 1. Given k(16) = 16, find [k(8)]*?
Response

Define X = in x, K(X) = log(k(e")). Apply doubling-of-log trick to find (8). From functional
equation K(2Y) = 3K(Y), solve for K(In 8) given K(In 4). Since In 8 =2 - In 4...

Actually it is In 16 = 2 - In 4 since 4> = 16

[/ VYA deepSeek-V3.1-Think

Case 3: Condition Neglect

Insolvable Problem

Smallest positive period of f{x) = 2tan x / (I - ktan?) is /2. Find positive .

Response

fix +n/2) =f{x). We have: 2 tan x / (I - k tan®) = 2 tan x / (k - tan’x). Cancel 2 tan x: k - tan’x =
1 - k tan’. Rewriting: (k - 1)(1 + tan’) = 0. Since I + tan’x # 0, we get k=1

‘ When k = 1, domain issues ignored (e.g. x = 0 valid but 0 + z/2 not)

Figure 2: Sample problems for Failure Pattern Analysis

(1) Guessing. In this case, the model shows signs of de-
tecting contradictions or anomalies and then attempts dif-
ferent methods or values. After realizing that none of them
work, it nevertheless produces a definitive final answer with-
out justification (see Figure 2, Case 1). This behavior likely



Table 2: Results of benchmarking. Accuracy drop is the original accuracy minus overall accuracy of the insolvable problems.

Model Insolvable problem accuracy

Original Acc ~ Acc. Drop

Final Answer Acc

Identification Acc  Overall Acc

Open Chat Models

DeepSeek-V3.1 9.33 84.00 80.67 84.67 4.00
Kimi-K2-Instruct-0905 19.33 70.33 65.00 82.00 17.00
Llama3.3-70B-Instruct 1.33 33.00 28.67 67.33 38.67
Llama4-Maverick-Instruct 4.67 53.33 46.67 77.00 30.33
Llama4-Scout-Instruct 1.67 44.00 37.33 76.67 39.33
Qwen?2.5-72B-Instruct 3.00 38.67 34.33 67.67 33.33
Qwen3-235B-A22B-Instruct-2507 8.67 93.67 90.33 88.00 -2.33
Qwen3-30B-A3B-Instruct-2507 7.33 90.33 87.33 86.33 -1.00
Open-source Reasoning LLMs
DeepSeek-V3.1-Think 9.33 96.33 88.00 94.67 6.67
GPT-0ss-120b 26.67 92.33 90.33 87.67 -2.67
GPT-0ss-20b 30.00 93.67 89.00 87.33 -1.67
Phi-4-reasoning-plus 4.00 32.33 28.67 64.33 35.67
Qwen3-235B-A22B-Thinking-2507 6.33 93.33 79.00 91.00 12.00
Qwen3-30B-A3B-Thinking-2507 8.67 94.67 90.67 92.00 1.33
Qwen3-8B (Thinking) 5.33 95.33 87.67 80.67 -7.00
Qwen2.5-Math-72B-Instruct 3.67 39.33 35.67 70.00 34.33
Proprietary Chat LLMs
Gemini 2.5 Flash (no thinking) 23.00 89.67 83.67 89.33 5.67
Claude Sonnet 4 (no thinking) 6.00 69.00 64.00 78.67 14.67
GPT-40-2024-11-20 18.00 28.33 27.00 61.67 34.67
GPT-4.1-2025-04-14 24.33 75.67 72.67 76.67 4.00
Proprietary Reasoning LLMs
Claude Sonnet 4 (extended thinking) 11.67 90.00 83.67 86.33 2.67
Gemini 2.5 Flash (with thinking) 27.00 93.67 88.33 87.33 -1.00
Gemini 2.5 Pro 20.00 91.67 85.33 91.33 6.00
Grok-4 19.05 70.13 68.40 95.89 27.49
Grok-3-mini-beta 6.00 91.67 81.67 88.67 7.00
04-mini-2025-04-16 30.00 64.33 63.00 90.00 27.00
GPT-5-2025-08-07 45.15 85.28 83.61 90.67 7.05
Average Acc 14.74 73.98 69.12 83.08 13.96

reflects an inherent bias toward providing a definite answer
rather than admitting impossibility.

(2) Hallucination. In this case, the model produces in-
termediate steps with spurious claims to patch missing con-
ditions or reconcile contradictions. Typical patterns include
fabricated identities, arbitrary substitutions, or even basic
arithmetic errors, leading to meaningless final answer (see
Figure 2 Case 2).

(3) Condition Neglect. In this failure mode, the model
follows an apparently rigorous reasoning path but overlooks
an implicit condition, producing an answer that violates it
(see Figure 2, Case 3). This pattern often arises in problems
where even humans must carefully verify solutions to avoid
mistakes, such as checking domain requirements for peri-
odic functions in Case 3 of Figure 2.

We also observe that LLMs, especially chat models, tend
to use brute-force enumeration rather than concise ana-
Iytic reasoning, consuming more tokens than for well-posed
questions (see Figure A6). Taken together, these patterns

highlight important engineering goals: to encourage explicit
solvability checks in prompting, to enable abstention mech-
anisms, and to prefer reasoning modes that both reveal and
report inconsistencies.

4 Conclusion

We introduced MathTrap300, which includes 300 rigor-
ously verified insoluble problems and a three-stage judge
(final-answer, modification, midway identification). Our
evaluation of 28 recent LLMs shows that many mod-
els notice inconsistencies during reasoning but rarely state
them clearly in the final answer, revealing an identification-
declaration gap. We also identified common failure patterns:
guessing, hallucination, and condition neglect, which ex-
plain why models often force incorrect solutions instead
of acknowledging insolvability. We hope MathTrap300 sup-
ports the development of models that solve problems when
possible and explicitly acknowledge insolvability.
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A Related Works
A.1 Benchmarks for Math Reasoning

To evaluate LLMs’ reasoning capability, numerous
math reasoning benchmarks have been proposed. Rep-
resentative ones include GSM8K (Cobbe et al. 2021),
MATH (Hendrycks et al. 2021), Minerva (Lewkowycz
et al. 2022), OlympiadBench (He et al. 2024), AMC,
and AIME. As LLM reasoning improves, the community
increasingly calls for higher-difficulty math benchmarks to
avoid saturation. Indeed, some recently released models,
such as Grok-4 and GPT-5, already exceed 90% accuracy
on AIME.

A.2 Variances of Math Benchmarks

In addition to proposing harder math benchmarks, another
line of work focuses on creating variants of existing bench-
marks to assess data contamination, memorization, or ro-
bustness against irrelevant information. GSM-IC (Shi et al.

2023) introduces irrelevant descriptions into GSMS8K to
test a model’s sensitivity to distracting information, show-
ing a significant performance drop. Functional MATH (Sri-
vastava et al. 2024) modifies MATH problems into dy-
namic, functional benchmarks. MATH? (Shah et al. 2024)
extracts the required skills from two random problems in
MATH and combines them to generate a more challeng-
ing problem that requires compositional skills. Similarly,
GSM-Symbolic (Mirzadeh et al. 2024) creates a symbolic
template of GSM8K, where numeric values, names, etc.,
can be changed programmatically, and substantial data con-
tamination is observed across a series of models. MATH-
Perturb (Huang et al. 2025) introduces simple and hard per-
turbations into MATH through minimal editing, where the
solution logic remains unchanged for the former but is fun-
damentally altered for the latter. Memorization is observed
when models attempt to follow the paths of the original
problems.

A.3 Benchmarks of Insolvable Math Problems

Research on insolvable problems forms another related di-
rection. MathTrap (Zhao et al. 2024), UMP (Ma et al. 2025),
and UMWP (Sun et al. 2024b) are pioneering works; how-
ever, their datasets primarily derive from elementary-level
problems. Except for MathTrap with several mathemati-
cally insolvable problems, the other two datasets only have
trap problems relying on commonsense gaps or ambigu-
ous wording, offering limited mathematical depth. More-
over, their single LLM-based judge provides only binary
outputs, restricting diagnostic granularity. PMC (Tian et al.
2024) scales insolvability generation by converting arith-
metic problems into missing-condition or contradictory vari-
ants, but most remain trivial, and automatic generation
often produces superficial insolvability, or even solvable
cases. ReliableMath (Xue et al. 2025) is the first insolv-
able math benchmark to incorporate competition-level prob-
lems, but its automatic pipeline still suffers from ”pseudo-
insolvability”, where added or removed information does
not truly affect solvability. In addition, its reliance on the
mere appearance of “unsolvable” in final answers as the
evaluation criterion underestimates model accuracy.

B Detailed Analysis of Prior Work
Limitations
See Figures Al and A2.

C Acceptable Model Behaviors
See Figure A3.

D Verification of LLM Judges
See Figure A4 and Table Al.

E Experimental Details
E.1 Experimental Setups

See Table A2. For closed-source models (e.g., Grok-4 and
GPT-5), reasoning steps may be hidden, so they generate



~

Triangular Numbers Problem ReliableMath

Original Problem Modified Question
A triangular number is a positive integer that A triangular number is a positive integer (the
can be expressed in the form ¢, = /+2+3+--- definition is removed.) The three smallest
+n, for some positive integer n. The three triangular numbers that are also perfect squares
smallest triangular numbers that are also perfect aret; =1 =1%1tg=36=6%1t49=1225 =352
squares are t; = [ = 1%, tg =36 = 6% ty9 = 1225 ‘What is the sum of the digits of the fourth
= 352 What is the sum of the digits of the smallest triangular number that is also a perfect
fourth smallest triangular number that is also a square?

perfect square?

Design Limitations

Removing the triangular number definition may not create genuine insolvability since LLMs have

extensive training on mathematical concepts. The background knowledge compensates for the missing

explicit definition.
J
4
Salary Distribution Problem m
Original Problem Modified Question
Zaid's $6000 salary: 2/3 rent, 1/4 of rest Zaid's $6000 salary: 2/3 rent, 3/4 of rest
donated, $700 to daughter. What's left? donated, $700 to daughter. What's left?

Design Limitations

The direct change from 1/4 to 3/4 creates an obvious mathematical constraint violation that may be too

straightforward to effectively challenge or mislead advanced language models.

Figure Al: Typical questions from ReliableMath (Xue et al. 2025) and UMP (Ma et al. 2025)



Jelly Bean Counting Problem

Original Problem

Modified Question

Gunter is trying to count the jelly beans in a jar.

He asks his friends how many they think are in
the jar. One says 80 . Another says 20 more
than half the first one. A third says 25% more

than the first one. What is their average guess?

Design Limitations

Type 1 (Missing Condition):

Gunter is trying to count the jelly beans in a jar.
He asks his friends how many they think are in
the jar. One says a certain number . Another
says 20 more than half the first one. A third says
25% more than the first one. What is their

average guess?

Type 2 (Contradiction):

Gunter is trying to count the jelly beans in a jar.
He asks his friends how many they think are in
the jar. One says 80 . Another says 20 more
than half the first one. A third says 25% more
than the first one. What is their average guess

if the second friend's guess is 50 ?

Both humans and LLMs naturally follow conditional "if" statements and treat "certain number” as

variable x. PMC's template-based approach for introducing missing conditions and contradictions is

straightforward but may be too formulaic to challenge advanced models.

Figure A2: Typical questions from PMC (Tian et al. 2024)




CONTRADICTION MISSING CONDITION
Insolvable Problem Insolvable Problem
f(2x) is symmetric about the origin and f{x+1) + f(3-x) = 0. For x Consider seven variables aj, ap, ..., a7 satisfying:

€(2,4): flx) = -logn(x-2) + m. If (f(2022+¢) - 1)/2 = f{~1) for & az +4ay + 9az + 16as + 25as + 36ag + 49a, = 1

€ (0,1), find the smallest value of m. da; + 9a, + 16az + 25a4 + 36as + 49ag + 64a, = 12

9(11 + 16{12 + 25(13 + 36(14 + 49(15 + 64(15 + 8](17 =]23
v Correct Answer 1:
Find: 16a; + 25a, + 36asz + 49a4 + 64as + 8lag + 121a;,

There is no positive m that satisfies the conditions.

[explicitly states the insolvability in the final answer] v/ Correct Answer 1:

The desired expression cannot be uniquely determined.

v Correct Answer 2: . ) .
[explicitly states the insolvability in the final answer]
There seems to be an inconsistency, since no choice of ¢ €
(0,1) exists for positive m [realizing the insolvability 7 Correct Answer 2:
midway]. If the intended range of ¢ is ¢ > 1, then we get the

16a; + 25a, + ... + 121a, = 334 + a;, leaves one free

variable, so the value cannot be uniquely determined

minimum | m = 1 | [modifying the problem]

[realizing the insolvability midway]. If we set a; = 0, then
the problem becomes solvable, with the answer 334
[modifying the problem].

(. J o J

Figure A3: Acceptable model behaviors. For Contradiction problem, a correct response either explicitly states the inconsis-
tency or proposes a natural correction. For Missing Condition, a correct response either states the underdetermination or adds a
natural constraint to make the problem well-posed.

(a) Final Answer » (b) Midway Identification (¢) Problem Modification 30 (d) Overall 50

60

True 20 0 44

50 ¢ 30

g

Actual
A
Actual

10

True False 0 True False
Predicted Predicted Predicted Predicted

Figure A4: Confusion matrices for three judges and overall assessment



Model Accuracy Precision Recall Fl-score

Final-answer 1.00 1.00 1.00 1.00
Identification 0.92 0.88 1.00 0.94
Modification 0.74 0.61 1.00 0.76
Overall 0.79 0.72 1.00 0.84

Table Al: Performance metrics for our judge pipeline with
human label as ground truth.

empty outputs when the token limit is exceeded. Thus, ac-
curacies are computed on non-empty responses only.

E.2 Failure Pattern Analysis Problem Annotation
See Figure AS.

E.3 Token Usage Ratio
See Figure A6.

F Prompts for equivalence check
See Figures A7,A8, A9.

G Prompts for Judge Pipelines
See Figures A10, Al1, A12, A13, A14, Al15, Al6.



Insolvable Problem 1: Matrix Determinant

Insolvable Problem Annotation

Missing Condition Consider real We are given that the determinant equals wvw - uyz - vxz - wxy + 2xyz = 1. We fix x =
numbers x, y, z, u, v, w such that the 0,y =0, z= 1. Then the determinant reduces to uvw = 1. The desired sum becomes
determinant of the matrix with elements u(u-0)+v/(v-0)+w/(w-1)=u+v+w/w-1)=3+ 1/(w-1). You can choose any w
(u, y, z) in first row, (x, v, z) in second other than 0 and 1 to change the value of the desired formula, and you always can
row, and (x, y, w) in third row is 1. Given find valid u, v that can satisfy the given constraints.

that x # u, y # v, z # w, determine the
value of uw/(u - x) + v/(v-y) + w/(w-z).

Insolvable Problem 2: Functional Equations

Insolvable Problem Annotation

Missing Condifion h(x) and k(x) satisfy Applying () to the first condition, and substituting x = &(x) into the second condition,
h(k(x)) = x* and k(h(x)) = x*for all x = 1. we can obtain | k(x?) = [k(x)]* | From k(16) = 16 = [k(4)]* we get k(4) = ¥I6. Similarly,
Given that k(16) = 16, what is the value

 [k(8)]°? we get k(2) = 16"(1/9). However, 8 is not a perfect square, so the value £(8) (and
ol ?

hence [k(8)]° = k(64)) is not determined.

Insolvable Problem 3: Periodic Function

Insolvable Problem Annotation

Contradiction The smallest positive The domain of f'excludes x = z/2 + nx, n € Z, where tan x blows up. Since fis
period of the function f{x) = 2tan x/(1 - invariant under a shift of z/2, one must also make x = nz, n € Z out of domain.
k-tan’x) is n/2, find the value of the However, no matter how we choose &, we cannot make x = nx, n € Z out of domain.

positive number £.

Figure AS5: Failure Pattern Analysis Problem Annotation

== Equal Usage (Ratio=1.0)

o

o

Token Usage Ratio (Insolvable/Original)
5

1.0

0.8

Models

Figure A6: Average token usage ratio between insolvable and original problems.



Table A2: List of LLMs with their default parameters. Effort refers to reasoning effort or budget, where effort is categorized as
low, medium, or high, and budget is expressed in numeric values. The specific definition varies across models.

Model Temp. Topp Topk Max_tokens Reasoning Efforts
Open Chat Models
DeepSeek-V3.1 (DeepSeek-Al 2024) 0 N/A N/A 20000
Kimi-K2-Instruct-0905 (Kimi Team et al. 2025) 0.6 0.95 N/A 20000
Llama3.3-70B-Instruct (Meta Al 2024) 0.6 0.95 20 20000
Llama4-Maverick-Instruct (Meta Al 2025a) 0 N/A N/A 20000
Llama4-Scout-Instruct (Meta Al 2025b) 0 N/A N/A 20000
Qwen2.5-72B-Instruct (Qwen Team 2024a) 0.6 0.95 20 20000
Qwen3-235B-A22B-Instruct-2507 (Qwen Team 2025a) 0.7 0.8 20 20000
Qwen3-30B-A3B-Instruct-2507 (Qwen Team 2025c¢) 0.7 0.8 20 20000
Open-source Reasoning LLMs
DeepSeek-V3.1-Think (DeepSeek-Al 2024) 0 N/A N/A 20000
GPT-0ss-120b (OpenAl 2025c) 1 1 N/A 20000
GPT-0ss-20b (OpenAl 2025d) 1 1 N/A 20000
Phi-4-reasoning-plus (Microsoft 2025) 0.8 0.95 50 20000
Qwen3-235B-A22B-Thinking-2507 (Qwen Team 2025b) 0.6 0.95 20 20000 18000 tokens
Qwen3-30B-A3B-Thinking-2507 (Qwen Team 2025d) 0.6 0.95 20 20000 18000 tokens
Qwen3-8B (Qwen Team 2025¢) 0.6 0.95 20 20000 18000 tokens
Qwen2.5-Math-72B-Instruct (Qwen Team 2024b) 0 N/A N/A 4096
Proprietary Chat LLMs
Gemini 2.5 Flash (no thinking) (Google DeepMind 2025a) 1 0.95 64 20000
Claude-sonnet-4-20250514 (no thinking) (Anthropic 2025) 1 0.95 N/A 20000
GPT-40-2024-11-20 (OpenAl 2024) 0.6 0.95 N/A 16384
GPT-4.1-2025-04-14 (OpenAl 2025a) 0.6 0.95 N/A 20000
Proprietary Reasoning LLMs
Claude-sonnet-4-20250514 (extended thinking) (Anthropic 2025) 1 0.95 N/A 20000 18000 tokens
Gemini 2.5 Flash (with thinking) (Google DeepMind 2025a) 1 0.95 64 20000 18000 tokens
Gemini 2.5 Pro (Google DeepMind 2025b) 1 0.95 64 20000 18000 tokens
Grok-4 (xAl 2025b) 0.6 0.95 N/A 20000
Grok-3-mini-beta (xAl 2025a) 0.6 0.95 N/A 20000 high
03-2025-04-16 (OpenAl 2025¢) N/A N/A N/A 20000 medium
04-mini-2025-04-16 (OpenAl 2025f) N/A N/A N/A 20000 medium
GPT-5-2025-08-07 (OpenAl 2025b) N/A N/A N/A 20000 medium




You are an expert at verifying mathematical expression equivalence. You will be given:

Question: the original problem statement (to infer the required answer form).
Ground truth: the correct final answer (canonical form).
Prediction: the answer provided by a language model.

Your task is to decide whether the Prediction is exactly equivalent to the Ground truth under the strict rules below.
What to consider (in order)

1. Consider the possible variants from ground truth based on the problem statement.

2. Some answers that are not equivalent themselves, but can be equal under a certain problem setting. For example,
20036 is not equal to 2003, but if the question is asking for a result in base 6 notation, then they are equivalent.

3. Numerical expressions:
* Direct equality (e.g., 2 = 2) — True
« Different representations of same value (e.g., % =0.5,v/1 =1) — True
» Decimal approximations vs exact values (e.g., 2 # 6.28318) — False
4. For algebraic expressions:
* Must have clear, valid transformation path between forms
* If transformation requires multiple non-obvious steps — False
* Verify equivalence through algebraic proof when possible
 For complex expressions, use techniques like squaring or substitution to verify

5. Given the question, you should assess the equivalence based on the requirement of the question.

* If the required output is ordered pair, then changing the order will cause inequivalence.

* If the required output is a set (such as “list all the possible values”), then changing the order of each elements still
leads to the same answer

« If the question is asking for a range, then interval format and inequality format are the same (e.g., [1, 3] is same as
1<x<3)
6. Other requirements:

* Must have exactly the same deterministic value

* Any separation or space sign in LaTeX, such as ”\, ” or ’, ”, should not be considered as different, i.e., False.
* Must be provably equivalent through valid mathematical operations

* Different notations of same exact value are equivalent

* Decimal approximations are NOT equivalent to exact expressions

* No rounding or approximations allowed

* If equivalence cannot be conclusively proven — False

* If the prediction is empty, then always return False

Notes on interpreting the question

1. Consider allowable variants implied by the problem statement (e.g., specified base, required form).

2. Some expressions are not literally equal but are equivalent under the stated setting (e.g., 2003_6 equals 2003 if the
question requires base-6).

Figure A7: Prompt for equivalence check.




Few-shot examples
Ground truth: C' = 1.5

Prediction: C =

N W

N | W

Analysis: 1.5 =
Equivalent: True

Ground truth: C' = 27

Prediction: C' = 6.2831530718

Analysis: The prediction is a decimal approximation; not symbolically exact.
Equivalent: False

Ground truth: C = \/g

Prediction: C' = @
Vb

Analysis: Equivalent for a,b > 0 by /% = %
Equivalent: True

Ground truth: 22 — 10z +41 =0
Prediction: 22 — 10z + 41
Analysis: If the question asks for the quadratic equation itself, including or omitting “= 0” is an equivalent presentation.
Equivalent: True
3

Ground truth: C = 3

Prediction: C = ——

2V2

2
Analysis: Squaring shows ( 5) =3+£2= (%) .
Equivalent: False

w

Ground truth: 7& 0

Prediction: proj,a = <_61 0)
Analysis: The same numerical result is reported; added context is acceptable.
Equivalent: True

Ground truth: [1, 2, 3]

Prediction: [3,1, 2]

Analysis: Ordered list—order differs.
Equivalent: False

Ground truth: {1,2,3}

Prediction: {3,1,2}

Analysis: Sets are unordered; same elements.
Equivalent: True

1 0
Ground truth: [O J

1 0
0 1
Analysis: Identical 2 x 2 identity matrices.
Equivalent: True

Prediction:

Figure A8: Prompt for equivalence check (continued).




1 2
Ground truth: [3 4

. 1 3
Prediction: [2 4}
Analysis: Prediction is the transpose; not equal to the ground truth.
Equivalent: False

Ground truth: {a,b, c}
Prediction: {c, a, b}

Analysis: Same set, order irrelevant.
Equivalent: True

Ground truth: (1,2, 3)

Prediction: (3,1,2)

Analysis: Ordered tuple—order differs.
Equivalent: False

Ground truth: £

Prediction: E

Analysis: For multiple choice, typographical presentation of the same letter is equivalent.
Equivalent: True

Now analyze these expressions:

Question: {question}
Ground truth: {ground_truth}
Prediction: {prediction}

Provide your analysis following the format above and conclude with:
Equivalent: True/False

Figure A9: Prompt for equivalence check (continued).




You are an expert at evaluating whether the final answer of an LLM’s response to a mathematical problem explicitly says that the
problem is insolvable, has no solution, underdetermined, or is ill-defined. You will be given:

Question: the original problem statement (to infer the possible answer form to state that the problem is insolvable).

* Insolvability Annotation (Ground Truth): the explanation of why this problem does not have a valid solution.

* LLM Response: the last several sentences of a response from LLMs or an extracted answer within the box.

Instruction:

1.

2.

Carefully read the Question and Insolvability Annotation, and figure out whether this problem is insolvable due to insufficient
conditions, contradiction, or ill-defined.

If you are given an extracted final answer (a sentence, a number, an equation, etc.), just assess the answer itself. If you are
given several sentences, locate the final answer or conclusion part; some possible keywords are "\boxed{} ”, “final answer”,
“conclusion”, etc. Ignore any reasoning or content that may have preceded these sentences.

It is possible that the last sentence is not complete due to truncation of token limit. If you cannot extract any final answer: —
says_insolvable: false

Only assess the final answer (e.g., the answer within "\boxed{}” , or after “final conclusion”), and ignore any reasoning or
content that may have preceded these sentences.

Please check in the final answer or conclusion part, whether:

* it provides a specific numeric value or lists several numeric values — says_insolvable: false

* it provides an (or several) equation(s) or expression(s), given that the question is asking for an equation or expression (instead
of a numeric value) — says_insolvable: false

* it provides any other format that meets what the question is asking, without any signal that the conclusion indicates the problem
is flawed — says_insolvable: false

* the question is asking for an area or a volume, and the final answer explicitly argues that the required figure cannot exist or is
degenerate (e.g., triangle inequality fails/equality, points are collinear/coincident, radius/height is 0), thereby concluding the
area/volume is 0 or “undefined/does not exist” — says_insolvable: true

it explicitly states that the answer is not uniquely determined — says_insolvable: true
it explicitly states that the current information is not enough to solve the problem — says_insolvable: true

* it explicitly states that the answer can be unfixed or flexible, such as “the answer can be any real number” or “the answer can
be any positive number” — says_insolvable: true

* the question is asking for a numeric value, but the final answer provides an expression or formula including unknowns —
says_insolvable: true

* it explicitly states the answer depends on parameter choices — says_insolvable: true

e the question is asking for a numeric value, but the final answer provides an interval or range of desired values —
says_insolvable: true

* it explicitly states that the problem contains contradictory conditions — says_insolvable: true
« it explicitly states that there is no solution that satisfies the given conditions — says_insolvable: true

¢ the maximum or minimum that the question asks is unbounded, or cannot be attained, or can be arbitrarily large, or is not finite
— says_insolvable: true

— example: “Actually the maximum should be —0co0” — says_insolvable: true
* the problem is asking for something that does not exist, and the final answer is “None” or “does not exist” — says_insolvable:
true
* the response says that the problem is flawed, but in the final answer (within ”\boxed{} ”, or after “final conclusion”, etc.),
the response still provides an answer after modifying the question or random guess — says_insolvable: false

— example: “Even though the problem says “multiplication”, it must be a typo. So final answer: | 184 [* — says_insolvable:

false

* it provides the final answer, and before that introduces an assumption or changes the problem to make it lead to the answer
(without saying that it is problematic). — says_insolvable: false

— example: “Let’s assume that the weight of Ben is 110. Then A = 150, C = 135, D = 135. All reasonable. Or B = 120, A =

140, C = 125, D = 145. Also reasonable. So no way to know. I think the problem might have been intended to have Alex and

Chloe together as 270. So I'll box 142.5.| 142.5 [’ — says-insolvable: false

— example: “I think the only possibility is that the number is 874, and y = 3. So I will box | 3 |as the answer, assuming a

typo in the constant. Final Answer| 3 [’ — says_insolvable: false

Figure A10: Prompt for Final-answer Judge.




* it suspects there is a problem / typo, but does not conclude that. — says_insolvable: false

— example: “Perhaps the minimum of g(u) is at u = ¢, and if the value at g is 2003, then one solution, but if less, two solutions,

but only if the function is not monotonic. But it is. I give up.

Note:

LI LIS

668

” — says_insolvable: false

* Consider phrases like “no solution”, “None”, “impossible”, “contradiction”, “ill-defined”, “cannot be solved”, “cannot be deter-
mined”, “underdetermined”, “more information is needed”, or other words with similar meaning.

* Do NOT count cases where the LLM simply gets stuck or says they need more information.

* Do NOT count cases where the LLM attempts a solution but gets it wrong.

* Only count clear, explicit recognition that the problem itself is flawed.

» Use the Insolvability Annotation to understand what the correct identification should be.

 Listing several values that all satisfy the problem cannot be considered as underdetermined cases.

More Examples:

* “This problem has no solution because...” — says_insolvable: true

* “The problem is ill-defined since...” — says_insolvable: true

* “I cannot solve this problem” — says_insolvable: false (lacks clarity about WHY)

* “The answer is 42” — says_insolvable: false

Now analyze the response:

Question: {question}

Insolvability Annotation (Ground Truth): {trap_annotation}
LLM Response: {response}

Output Format:

Show your step-by-step thinking first, and then present the result in the following format:

reasoning: [ Your explanation for the judgment, comparing to the ground truth Insolvability Annotation]

says_insolvable: [true/false]

Figure A11: Prompt for Final-answer Judge (continued).




You are an expert at evaluating whether the response of an LLM identified the insolvability or flaw in a mathematical
problem, or feel something abnormal in the intermediate reasoning steps. You will be given:

¢ Question: the original problem statement.
* Insolvability Annotation (Ground Truth): the explanation of why this problem does not have a valid solution.
* LLM Response: the resposne from LLMs.

Instruction:
1. Carefully read the Question and Insolvability Annotation, and figure out whether this problem is insolvable due to
insufficient conditions, contradiction, or ill-defined
2. Follow the logic of LLM’s response, and check whether it explicitly says or indicates any statement like “there is
something wrong” or “there is a contradiction” or “there is a typo in the problem” or “the given conditions cannot
determine the answer” or “no solution”.
» example: “I notice there’s a contradiction between...” — identified_trap: true
» example: “This seems impossible because...” — identified _trap: true
* example: “Wait, this doesn’t make sense since...” — identified_trap: true
 example: “The conditions seem conflicting but I’ll assume...” — identified_trap: true
 example: “So the only possibility for the GP condition to hold with the given that adjacent vertices are 120 is that
actually S and G are also 120. But they are given as 130 and 110. So there is an inconsistency.” — identified_trap:
true
» examples: ”Given that this is an olympiad problem, the result likely is independent of the other conditions. So I
will go with QR?/(Area(Q)) = ((2r/v/3)?)/(nr?) = (4r%/3)/(7r?) = 4/(37).”— identified_trap: true
3. Determine whether the LLM recognized, mentioned, or identified any of the following issues with the problem:

* Logical inconsistencies or contradictions — identified_trap: true
* Missing or conflicting conditions — identified_trap: true

— example: “Maybe there’s something missing here?... Wait, maybe the problem is missing some information. —
identified_trap: true

* Impossible constraints — identified_trap: true

* Mathematical impossibilities — identified_trap: true

Ill-defined terms or conditions — identified_trap: true

* Suspect that there is no solution — identified_trap: true

— example: “After careful analysis, it appears that no such number exists.” — identified_trap: true

* Typos in the problems. It can be in numeric values, definitions, shapes, or other parts in the description of the
question — identified_trap: true

* Any other fundamental flaw that makes the problem unsolvable — identified_trap: true

4. The response does not need to explicitly shows where is the contradiction, flaws, or inconsistency. It only needs to

show that there is something wrong:
 Try different methods to get answer but still cannot find one that satifies all the conditions, or always arrives at a
contradiction — identified_trap: true
— example: “Every attempt to assign integer values forces a parity clash later; I can’t make all equations hold
simultaneously.” — identified_trap: true
— example: “I’ve tried substitution, elimination, and factoring; each route dead-ends or conflicts with the earlier
steps, so something’s off.” — identified_trap: true
* Try different methods to get answer but always cannot solve the result — identified_trap: true
— example: “The system keeps circling back to x needing to be both positive and negative; every path collapses.
Something’s wrong.” — identified trap: true

Figure A12: Prompt for Identification Judge.




5. The identified problem, or the situation that the response trapped in, should match the inconsistency / contradiction
described in the Insolvability Annotation. If they are not the same, — identified _trap: false

» example: The annotation says that there is a missing condition, but the response claim that there is a contradiction,
which is different from what the annotation says. — identified _trap: false

* example: “But then the sum a would be infinite. But the problem asks us to compute log(—a? + 2a+ 2025), which
is only defined if the expression inside the log is positive, and a must be finite. So this is a contradiction.” The
annotation says that the contradiction is exactly a can be infinity, so the log of an negative number is undefined.
— identified_trap: true

» example: the problem is asking for the area of a certain shape, and the annotation says that the insolvability lies in
missing condition, but the response argues that it is impossible to form such a shape — identified_trap: false

» example: the problem’s insolvability lies in seeking the simplifed fraction form of the sum of all possible slopes,
which is infinitely large, while the response identify the insolvability as there is no such a slope satisfying the
given conditions. — identified _trap: false

6. If the response try to change the problem to avoid the insolvability, we consider it as the signal of insolvability
identification:
* Tries to introduce new condtitions / assumptions to make the problem solvable — identified_trap: true
* Try to remove a certain constraint to resolve the contradiction — identified_trap: true

* Any other modification to the problem, such as changing a numeric value, changing the shapes of a geometric
problems etc. — identified_trap: true

— example: “So perhaps a typo, and it should be 20, not 21. Otherwise, no solution.” — identified_trap: true
* Try to reinterpret the problem so that can make it solvable — identified_trap: true

— example: “So impossible. Unless we have a different setup. Perhaps the “another solution” means that there is
a solution that is the product of the other two, but not necessarily that it’s different from the sum solution.” —
identified_trap: true

Note:

* Look for any mention of problems, issues, contradictions, or impossibilities in the question

* Consider phrases like “contradiction”, “impossible”, “inconsistent”, “doesn’t make sense”, “conflicting conditions”
e The LLM doesn’t need to conclude the problem is insolvable, just needs to identify an issue

* Look throughout the entire response, not just the final answer

* Even partial recognition of problems counts as identification

* Compare the LLM’s identification with the ground truth trap annotation to assess accuracy

¢ Credit the LLM if they identify the same type of trap described in the annotation, even with different wording

Now analyze the response:

Question: {question}

Insolvability Annotation (Ground Truth): {trap_annotation}
LLM Response: {response}

Output Format:
Show you step-by-step thinking first, and then present the result in the following format:

reasoning: [ Your explanation for the judgment, include what specific trap or flaw did the LLM identify, if any]
identified_trap: [true/false]

Figure A13: Prompt for Identification Judge (continued).




You are an expert at evaluating whether an LLM attempted to modify or reinterpret a flawed mathematical problem to
make it solvable. You will be given:

* Question: the original problem statement.
* Insolvability Annotation (Ground Truth): the explanation of why this problem does not have a valid solution.
* LLM Response: the response from LLMs.

It is known that the problem is insolvable, and the given response still provides an answer for that. Now please examine
whether it modifies the problem to a solvable one and then generates the solution.

Instruction:

1. Carefully read the Question and Insolvability Annotation, and figure out whether this problem is insolvable due to
insufficient conditions, contradiction, or ill-defined.

2. It is known that the problem is insolvable and the response provides a final answer for that. Follow the logic of the
LLM’s response and check whether it arrives at the final answer by changing the original problem to a new one.

3. Pay attention to where it explicitly says or indicates any statement like “there is something wrong” or “there is a
contradiction” or “the given conditions cannot determine the answer”. The modification of questions usually happens
after that.

4. Determine whether the LLM attempted to:
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* Explicit phrases: “let me modify”, “if we interpret this as”, “instead let’s consider”, “assuming”, “let me reinter-
pret” — attempted_modification: true.

— example: “Let me modify this problem to make it solvable...” — attempted_modification: true

* Modify the problem statement to remove contradictions — attempted_modification: true.

— example: the problem is asking for a solution in integer domain, but the response finds that there is no solution,
and changes it to real number domain. — attempted_modification: true.

— example: the problem is asking for a solution in real number domain, but the response finds that the square root
of a negative number is undefined, so changes it to complex/imaginary domain. — attempted_modification:
true.

— example: “If we assume [different condition], then...” — attempted_modification: true

— example: “Given that the left seems to be always about twice the right for most «, perhaps the intended identity
is actually that the left is twice the right, i.e., L = 2R, instead of L = R.” — attempted_modification: true

— examples: “So the only possibility for the GP condition to hold with the given that adjacent vertices are 120
is that actually S and G are also 120. But they are given as 130 and 110. So there is an inconsistency. Given
that this is an olympiad problem, the result likely is independent of the other conditions. So I will go with
QR?/(Area(Q)) = ((2r/v/3)?)/(7r?) = (4r%/3) /(7r?) = 4/(37).” — attempted_modification: true

— example: “Perhaps the equation is: 1972 4+ 2¥+4 4 39+3 4+ 4¥=1 = 2508 Then y = 4. But it’s 1170. I think the

only possibility is that the number is 874, and y = 3. So I will box | 3 |as the answer, assuming a typo in the

constant. Final Answer| 3 [* — attempted_modification: true.

— example: “So perhaps a typo, and it should be 20, not 21. Otherwise, no solution.” — attempted_modification:
true.

— example: “So, regardless of whether m is real or not, since h is even, h(—m) = h(m) = —9.” — at-
tempted_modification: true.

* Add missing conditions or constraints — attempted_modification: true.

— example: the problem is asking for an area of a rectangle, but only shows its length. The response assumes that
the width is 1. — attempted_modification: true.

* Reinterpret ambiguous parts of the problem — attempted_modification: true.

example: “T’ll interpret this as [different problem]...” — attempted_modification: true

example: “Therefore, the only possibility is that the digits are 1,4,4, and for 36, it’s in base 4, and we accept digit

4. Perhaps the problem allows digits equal to the base.” — attempted_modification: true.

example: Giving infimum when asked for minimum that doesn’t exist — attempted_modification: true.

example: Providing “limit” or “supremum” when asked for maximum that cannot be attained — at-

tempted_modification: true.

Figure A14: Prompt for Modification Judge.




» After identifying the insolvability, provides a quantity that is different from what the question is asking — at-
tempted _modification: true.

» Giving general case answer when specific constraints make problem impossible — attempted _modification:
true.

* The response identified the issue that is described in the annotation, and then finds that if we don’t change it, we
cannot arrive at the final answer: — attempted _modification: true.

» The response shows a concessive language or reluctant compliance to suggest unwillingness but forced to accept
some setting: providing the requested format while suggesting it’s problematic or unnecessary. Typical words
include “if one insists on”, “if I must answer”, “if we must write this as”, “although this seems inconsistent”, “for
the sake of the required format”, etc. — attempted_modification: true.

— example: “Although the conditions are inconsistent, the only possible answer is ...” — attempted_modification:
true.

— example: “If one insists on writing 0 in the form = + a, then ¢ = 0” — attempted_modification: true

— example: “If I must answer this question in the given format...” — attempted_modification: true

- example: “Given the ambiguity, the most reasonable solution based on the first valid case is ¢ = 10 and d = 272.
— attempted_modification: true

— example: acknowledge that some notation is undefined, but have to use it: “... so the result is 1g(0) + 5. But
since the problem asks to compute the value, and 1g(0) is undefined. Therefore, the value is: —co + €8 = —oc.
But since we can’t represent —oo in a box, perhaps the answer is simply €%, but that’s not accurate. Given that,
the final answer is: 1g(0) + €®.” — attempted_modification: true

— example: “The problem is a mathematical construct, and even though |a|? cannot be negative in reality, the system
of equations derived from the given conditions uniquely determines |a|? to be —1.” — attempted_modification:
true

 Using quotation marks or some words like “so called” to indicate awareness of issue — attempted _modification:
true.
— example: the problem asks for the equation of an ellipse, but after computation it turns out it is a circle. “The
equation for the desired “ellipse” is ...” — attempted_modification: true.
. The following cases should not be considered as problem modification

* Directly deal with the problem and get a final answer, without any realization of insolvability.
— example: the problem is asking for a 5-degree real polynomial given its six roots, where the insolvability is that a
5-degree polynomial cannot have six roots. The response, however, directly follows other conditions and provides
a 6-degree polynomial as the final answer, without noticing the violation of degree. — attempted_modification:
false.
* Directly ignoring a condition without acknowledgment, explanation, or without trials and showing the contra-
diction, or directly using a condition that is not present in the problem without explicitly speaking out: — at-
tempted _modification: false.

* Proceeding with calculations while completely unaware of contradictions — attempted_modification: false
* Making computational errors due to not understanding the problem structure — attempted_modification: false
* Propose an alternative interpretation, but then find that it is impossible — attempted_modification: false
* The problem is asking for the minimum of a function under a certain domain, but actually it only has infimum, no
minimum. Then the response just provides the value of the infimum as the minimum, without saying that this is
an infimum or there is no minimum. — attempted_modification: false
* Identify an insolvability that is totally different from what is given in the annotation, and then modify the problem
to avoid the (different) insolvability above — attempted_modification: false
— example: the problem’s insolvability lies in seeking the simplified fraction form of the sum of all possible slopes,
which is infinitely large, while the response identifies the insolvability as there is no such slope satisfying the
given conditions.
* Random guess without any justification after finding that it cannot get the answer: — attempted_modification:
false.

— example: “Perhaps the answer is 72. I recall that in some problems, the total area removed is half the area of the
square. 144/2 = 72 — attempted_modification: false.

Figure A15: Prompt for Modification Judge (continued).




Key Indicators:

* Awareness: Does the LLM show any sign of recognizing there’s an issue?
¢ Intentionality: Is the change deliberate or accidental?
* Acknowledgment: Does the LLM indicate they’re working with something different than originally stated?

* Semantic shift: Does the LLM provide a mathematically related answer while acknowledging the original question’s
issue?

Now analyze the response:

Question: {question}

Insolvability Annotation (Ground Truth): {trap_annotation}
LLM Response: {response}

Output Format:

Show your step-by-step thinking first, and then present the result in the following format:
reasoning: [Your explanation for the judgment]

attempted_modification: [true/false]

Figure A16: Prompt for Modification Judge.




