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Abstract

Many recent named entity recognition (NER)001
studies criticize flat NER for its non-002
overlapping assumption, and switch to investi-003
gating nested NER. However, existing nested004
NER models heavily rely on training data anno-005
tated with nested entities, while labeling such006
data is costly. This study proposes a new sub-007
task, nested-from-flat NER, which corresponds008
to a realistic application scenario: given data009
annotated with flat entities only, one may still010
desire the trained model capable of recognizing011
nested entities.012

To address this task, we train span-based mod-013
els and deliberately ignore the spans nested014
inside labeled entities, since these spans are015
possibly unlabeled entities. With nested enti-016
ties removed from the training data, our model017
achieves 54.8%, 54.2% and 41.1% F1 scores on018
the subset of spans within entities on ACE 2004,019
ACE 2005 and GENIA, respectively. This sug-020
gests the effectiveness of our approach and021
the feasibility of the task. In addition, the022
model’s performance on flat entities is entirely023
unaffected. We further manually annotate the024
nested entities in the test set of CoNLL 2003,025
creating a nested-from-flat NER benchmark.1026
Analysis results show that the main challenges027
stem from the data and annotation inconsisten-028
cies between the flat and nested entities.029

1 Introduction030

Named entity recognition (NER) is a fundamen-031

tal natural language processing (NLP) task that032

requires detecting text spans of interest, and classi-033

fying them into pre-defined entity categories, e.g.,034

Person, Organization, Location. Researchers had035

been long-term investigating flat NER where en-036

tity spans are assumed non-overlapping (Collobert037

et al., 2011; Huang et al., 2015; Lample et al.,038

2016), while many recent studies criticize such039

flat setting and switch to nested NER that allows an040

1Our code and annotations will be publicly released.

entity to contain other entities inside it (Katiyar and 041

Cardie, 2018; Sohrab and Miwa, 2018; Yu et al., 042

2020; Yan et al., 2021). For example, a location 043

entity “New York” can be nested in an organization 044

entity “New York University”. In nested NER, the 045

two entities are equally considered from annota- 046

tion through evaluation, while flat NER focuses 047

on the outer entity but ignores the nested one en- 048

tirely (Tjong Kim Sang and De Meulder, 2003; 049

Finkel and Manning, 2009).2 Nested NER appears 050

a more general and realistic setting since nested 051

entities are ubiquitous in natural language. 052

Labeling nested entities is particularly labor- 053

intensive, complicated, and error-prone; for exam- 054

ple, Ringland et al. (2019) reported that entities 055

can be nested up to six layers. However, all ex- 056

isting nested NER systems heavily rely on nested 057

supervision, namely training on annotated nested 058

NER datasets, such as ACE 2004, ACE 2005 and 059

GENIA (Kim et al., 2003). Directly imposing flat 060

supervision would misguide the models to ignore 061

nested structures. This creates an obstacle for them 062

to utilize well-annotated flat NER resources, such 063

as CoNLL 2003 (Tjong Kim Sang and De Meulder, 064

2003) and OntoNotes 5. 065

This study proposes a new subtask, nested-from- 066

flat NER, which asks to train a nested NER model 067

with purely flat supervision. This corresponds to a 068

realistic application scenario: given training data 069

annotated with flat entities only, one may still de- 070

sire the trained model capable of extracting nested 071

entities from unseen text. 072

To address this challenging task, we exploit the 073

span-based NER framework which explicitly dis- 074

tinguishes positive samples (i.e., entity spans) from 075

negative samples (i.e., non-entity spans). When 076

training a span-based neural NER model, a stan- 077

2See CoNLL 2003 Annotation Guidelines
(https://www-nlpir.nist.gov/related_projects/
muc/proceedings/ne_task.html), Subsections 4.3 and
A.1.3.
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dard protocol regards all unannotated spans as neg-078

ative samples (Sohrab and Miwa, 2018; Yu et al.,079

2020; Zhu et al., 2022); however, we deliberately080

ignore the spans nested in any labeled entities, be-081

cause these spans are possibly unlabeled nested082

entities. When the trained model generalizes to083

all spans, it naturally predicts all possible entities,084

which may contain nested ones. This is theoreti-085

cally feasible because the recognizable patterns for086

flat entities should be to some extent transferable087

to nested entities.088

With nested entities removed from the training089

splits of ACE 2004, ACE 2005 and GENIA, the090

nested-from-flat model can achieve 54.8%, 54.2%091

and 41.1% F1 scores on the subset of spans within092

entities, respectively. Besides, the overall F1 scores093

reach 79.2%, 79.3% and 77.3%. Moreover, the094

model’s ability to recognize nested entities does095

not hurt its performance on flat entities. We fur-096

ther annotate the nested entities in the test split097

of CoNLL 2003, and analyze the recognition re-098

sults of our models. We find nested-from-flat NER099

a challenging task mainly because the annotation100

standards and data distributions are inconsistent101

between the flat and nested entities.102

This study contributes in threefold:103

• We propose nested-from-flat NER, a new sub-104

task with realistic application scenarios. Com-105

patibly, we design a metric – F1 score on the106

spans within entities, which dedicatedly eval-107

uates how well the model extracts nested enti-108

ties.109

• We provide a solution to nested-from-flat110

NER, which simply ignores the spans nested111

in entities during training. Experimental re-112

sults confirm its effectiveness, as well as the113

feasibility of this task.114

• We manually annotate the nested entities in115

the test split of CoNLL 2003, resulting in116

a nested-from-flat NER benchmark named117

CoNLL 2003 NFF.118

2 Related Work119

The NER task was originally proposed in a context120

where entities could be regarded as small chunks121

and thus detected by finite state models (Finkel122

and Manning, 2009). Hence, in the early years,123

NER corpus designers chose to annotate only the124

outermost entities, but ignore/remove the nested125

ones (Tjong Kim Sang and De Meulder, 2003; Col- 126

lier and Kim, 2004); and algorithm researchers 127

were focused on using sequence models, such as 128

the conditional random field (CRF) (Lafferty et al., 129

2001), to recognize flat entities. Facilitated by 130

the deep learning technologies (Krizhevsky et al., 131

2012; LeCun et al., 2015), neural sequence tagging 132

models with an optional linear-chain CRF became 133

the de facto standard solution to flat NER (Col- 134

lobert et al., 2011; Huang et al., 2015; Lample 135

et al., 2016; Zhang and Yang, 2018; Devlin et al., 136

2019). 137

However, nested entities are ubiquitous in nat- 138

ural language. Many recent studies criticize the 139

flat assumption, and switch to a setting that allows 140

nested entities (Finkel and Manning, 2009). This 141

also remarkably facilitates the progress in NER sys- 142

tem designs beyond the traditional sequence tag- 143

ging framework. Hypergraph-based models adopt 144

a tagging scheme that allows multiple tags for a sin- 145

gle token and multiple transitions between tags at 146

adjacent positions, and thus complies with nested 147

structures (Lu and Roth, 2015; Katiyar and Cardie, 148

2018). Span-based methods enumerate or propose 149

candidate spans, and then classify the spans into 150

entity categories (Sohrab and Miwa, 2018; Eberts 151

and Ulges, 2020; Yu et al., 2020; Shen et al., 2021). 152

Other approaches include stacked sequence tag- 153

ging models (Ju et al., 2018), reformulating NER 154

as a reading comprehension task (Li et al., 2020) 155

or a generation task (Yan et al., 2021), set pre- 156

diction (Tan et al., 2021; Shen et al., 2022), and 157

word-word relation prediction (Li et al., 2022). 158

Almost all the existing nested NER models heav- 159

ily rely on annotated nested NER resources, while 160

labeling nested entities is labor-intensive, compli- 161

cated and error-prone (Ringland et al., 2019). This 162

study proposes nested-from-flat NER, exploring 163

the possibility of training a nested NER model with 164

flatly annotated data. 165

3 Method 166

Span-based NER. Given a T -length sentence, 167

a span-based neural NER model enumerates all 168

possible spans, and builds a span representation 169

z ij ∈ Rd for each span (i, j), typically based on 170

the contextualized embeddings from a pretrained 171

language model (PLM). The span representations 172

are then fed into a classifier: 173

ŷ ij = softmax(Wz ij + b), (1) 174
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where W ∈ Rc×d and b ∈ Rc are learnable pa-175

rameters, and ŷ ij ∈ Rc is the estimated posterior176

probabilities over entity types (including an addi-177

tional “non-entity” type).178

Given the one-hot encoded ground truth y ij ∈179

Rc, the model can be trained by optimizing the180

cross-entropy loss for all spans:181

L = −
∑

0≤i≤j<T

yT
ij log(ŷ ij). (2)182

In the inference time, the spans predicted to183

be “non-entity” are discarded; while the remain-184

ing ones, together with their predicted types, are185

output as recognized entities.186

Nested-from-Flat NER. We start from an exam-187

ple sentence: “Mr. John Smith graduated from188

New York University last year”. In a typical nested189

NER annotation scheme, “John Smith”, “New York190

University” and “New York” should be labeled as191

Person, Organization and Location entities, respec-192

tively; while flat NER ignores any nested entities,193

namely “New York” in this example. Nested-from-194

flat NER asks: if only flat entities are available195

in the training data, how to develop a model that196

recognizes nested entities in unseen sentences?197

Formally, given a sentence annotated with flat198

entities, denote all the spans as a set A, and the199

entity spans as a set E . A standard span-based NER200

modeling protocol regards E as positive samples,201

and its complement A \ E as negative samples.202

However, unlabeled nested entities may exist in203

A \ E and thus be incorrectly treated as negative204

samples.205

To address this issue, we define the set of within-206

entity spans:207

I = {(s, e) | ∃ (s′, e′) ∈ E , s.t. s′ ≤ s ≤ e < e′

or s′ < s ≤ e ≤ e′},
(3)208

and the set of out-of-entity spans:209

O = A \ I. (4)210

Note that the two sets are mutually exclusive; and211

the entity spans belong to the out-of-entity spans,212

i.e., E ⊆ O. Figure 1 visualizes the two sets of213

spans of the aforementioned 10-token sentence,214

which cover the upper triangular area of the result-215

ing 10x10 matrix.216

Clearly, unlabeled nested entities can only ap-217

pear in the within-entity spans I, rather than the218
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Figure 1: Within-entity and out-of-entity spans for sen-
tence “Mr. John Smith graduated from New York Uni-
versity last year”. Within-entity spans are colored in
blue. Out-of-entity spans include the entity spans col-
ored in red, and those colored in gray. The span colored
in blue but hatched in red is an unlabeled nested entity.

out-of-entity spans O. Therefore, the supervisory 219

signals (positive vs. negative samples) are reliable 220

in O, but of high risk in I. 221

This leads to the key ingredient of our solution. 222

In the training time, we train the model with sam- 223

ples from O while ignore I: 224

L = −
∑

(i,j)∈O

yT
ij log(ŷ ij). (5) 225

Empirically, O contains substantially more span- 226

level samples than I. For example, the out-of- 227

entity spans are over 100 times more than the 228

within-entity spans in the CoNLL 2003 training 229

split. Hence, the out-of-entity spans are sufficient 230

for training the model. 231

In the inference time, we let the model generalize 232

to all spans of test sentences, predicting all possible 233

entities, regardless nested or not. If the model is 234

well-trained, it is able to recognize entities nested 235

within others. 236

Negative Sampling on Within-Entity Spans. 237

As aforementioned, in a standard protocol, the 238

within-entity spans I are all regarded as negative 239

samples because they are unlabeled. While in our 240

method for nested-from-flat NER, the spans in I 241

are entirely ignored in training. 242
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Inspired by Li et al. (2021), we find it sometimes243

beneficial to additionally sample a few spans from244

I and use them as negative samples. To formulate245

this trick, we introduce a hyperparameter γ, which246

represents the negative sampling rate for I. Thus,247

we have three schemes for the within-entity spans:248

• Full Negative (γ = 1): Using all spans in I249

as negative samples; this corresponds to the250

standard span-based NER training protocol.251

• Sampling (0 < γ < 1): Randomly sampling252

spans with probability γ from I as negative253

samples. Empirically, a relatively small sam-254

pling rate (e.g., γ = 0.01, our default) works255

much better than large rates.256

• Full Ignoring (γ = 0): Ignoring I in training.257

4 Experimental Settings258

Datasets. Although our model can be trained on259

flatly annotated data, it relies on test data with260

nested entities to evaluate the trained model. Hence,261

we first perform experiments on some nested NER262

benchmarks, i.e., ACE 20043, ACE 20054 and GE-263

NIA (Kim et al., 2003). Before training, we de-264

liberately remove all the nested entities but keep265

the outermost ones in the training and development266

splits (Finkel and Manning, 2009), which thus sat-267

isfies the nested-from-flat setting.268

In addition, we manually annotate the nested269

entities in the test split of CoNLL 2003 (Tjong270

Kim Sang and De Meulder, 2003). Three human271

experts were hired for this project, and they were272

asked to strictly follow the original CoNLL 2003273

Annotation Guidelines. The final annotation results274

are based on an additional round of manual valida-275

tion that resolves the disagreements between the276

annotators. The resulting dataset is named CoNLL277

2003 NFF, which dedicatedly serves as a nested-278

from-flat NER benchmark. More details on the279

data annotation, processing and descriptive statis-280

tics can be found in Appendix A.281

Evaluation. Same as in the standard NER, an282

entity is evaluated to be correct if both its predicted283

boundaries and category exactly match the ground284

truth. The evaluation metric is the micro F1 score285

on the test split. Unless otherwise noted, we run286

each experiment for 10 times and report the average287

F1 score with corresponding standard deviation.288

3https://catalog.ldc.upenn.edu/LDC2005T09.
4https://catalog.ldc.upenn.edu/LDC2006T06.

In addition to the overall F1 score that considers 289

all spans, we separately evaluate the trained model 290

on the within-entity spans I and the out-of-entity 291

spans O, yielding within-entity and out-of-entity 292

F1 scores, respectively. In this study, the within- 293

entity F1 score is the core metric, which reflects 294

how well the model recognizes nested entities. 295

Hyperparameters. In all experiments, we use 296

RoBERTa (Liu et al., 2019) of the base size (12 297

layers, 768 hidden size) as the PLM, followed by 298

a single-layer 400-dimensional LSTM (Hochre- 299

iter and Schmidhuber, 1997). We choose three 300

representative span-based NER decoders, i.e., 301

SpERT (Eberts and Ulges, 2020), biaffine (Yu et al., 302

2020) and DSpERT (Zhu et al., 2022), where the 303

DSpERT is specified with a 6-layered span Trans- 304

former. In addition, boundary smoothing regular- 305

ization (Zhu and Li, 2022) is applied with ϵ = 0.1. 306

The models are trained by the AdamW opti- 307

mizer (Loshchilov and Hutter, 2018) for 20 epochs 308

with batch size 48. Gradients are clipped at ℓ2- 309

norm of 5 (Pascanu et al., 2013). The learning rates 310

are 1.5e-5 and 2.5e-3 for pretrained weights and 311

randomly initialized weights, respectively; a sched- 312

uler of linear warmup is applied in the first 20% 313

epochs followed by linear decay. 314

Computational Cost. Based on the above con- 315

figurations, a DSpERT consists of 170.4M param- 316

eters; it takes about 5.6 hours to train a DSpERT 317

on ACE 2004/2005 and GENIA, and 1.3 hours on 318

CoNLL 2003 NFF. A SpERT/biaffine model has 319

126M parameters, and the training time is 1/5–1/3 320

of that for DSpERT. All the experiments are run on 321

NVIDIA RTX A6000 GPUs. 322

5 Results on Nested NER Datasets 323

Table 1 presents the evaluation results, i.e., within- 324

entity, out-of-entity and overall F1 scores of three 325

span-based models on ACE 2004, ACE 2005 and 326

GENIA. Full Negative, Sampling and Full Ignoring 327

are three training schemes described above, which 328

perform nested-from-flat experiments where the 329

nested entities are removed from the training and 330

development splits. Sampling uses a fixed rate 331

γ = 0.01. An exception is Gold Superv., which 332

retains and uses the ground-truth nested entities for 333

training; this serves as an empirical upper bound 334

for the nested-from-flat results. 335

DSpERT+Sampling appears the best configu- 336

ration for recognizing nested entities, achieving 337
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ACE 2004 ACE 2005 GENIA

Within Out Overall Within Out Overall Within Out Overall

SpERT
+ Full Negative 7.7±0.4 84.1±0.9 69.6±0.8 7.6±1.6 82.1±0.7 71.0±0.6 7.5±0.9 79.6±0.7 74.3±0.7
+ Sampling 17.3±1.1 86.3±0.4 71.4±0.6 23.8±2.0 84.8±0.2 72.9±0.5 26.7±1.8 80.8±0.5 74.8±0.5
+ Full Ignoring 21.2±1.1 86.4±0.5 65.0±1.1 27.2±0.7 84.7±0.4 69.1±0.8 28.2±1.8 80.5±0.3 74.4±0.3
+ Gold Superv. 77.2±1.3 84.5±0.8 82.3±0.7 73.8±0.9 83.2±0.2 80.9±0.3 51.9±0.5 81.0±0.5 77.7±0.4

Biaffine
+ Full Negative 9.1±0.4 86.9±0.3 72.3±0.2 9.9±1.3 84.4±0.4 73.5±0.3 15.4±1.1 82.6±0.2 77.1±0.2
+ Sampling 34.0±2.1 88.0±0.3 74.9±0.5 41.2±1.3 86.1±0.3 77.0±0.3 39.4±1.1 83.7±0.3 76.6±0.2
+ Full Ignoring 40.9±1.3 88.1±0.2 74.4±0.4 45.4±1.1 86.3±0.4 76.7±0.4 39.1±1.0 83.8±0.3 76.2±0.3
+ Gold Superv. 86.2±0.2 87.5±0.2 87.1±0.2 83.7±0.6 85.9±0.2 85.4±0.3 54.2±0.6 83.4±0.2 79.6±0.1

DSpERT
+ Full Negative 9.4±0.7 86.9±0.2 72.3±0.2 11.1±1.6 84.5±0.2 73.7±0.2 10.3±0.7 82.9±0.3 77.3±0.3
+ Sampling 54.8±1.3 88.6±0.1 79.2±0.4 54.2±1.2 86.7±0.2 79.3±0.2 41.1±0.9 83.7±0.6 76.6±0.5
+ Full Ignoring 39.4±2.5 85.9±1.4 65.6±2.0 39.6±3.6 84.9±1.3 68.5±2.6 40.9±1.1 83.3±0.7 76.0±0.4
+ Gold Superv. 87.0±0.3 88.0±0.3 87.7±0.2 85.6±0.6 86.0±0.2 85.9±0.2 55.9±0.8 83.7±0.1 80.3±0.1

Table 1: Results of nested-from-flat experiments on nested NER datasets. Reported are average F1 scores with
corresponding standard deviations of 10 independent runs. The normally styled rows are results by a nested-from-flat
setting where nested entities are removed from the training and development splits. The gray italicized rows (i.e.,
“Gold Superv.”) are results with nested entities retained and used in training; these serve as an empirical upper bound
for the nested-from-flat experiments. The best F1 scores are in bold for each model.

within-entity F1 scores of 54.8%, 54.2% and 41.1%338

on ACE 2004, ACE 2005 and GENIA, respectively.339

These scores are largely 2/3 – 3/4 of the correspond-340

ing “oracle” results (i.e., 87.0%, 85.6% and 55.9%)341

by gold supervision. Considering the unavailability342

of nested supervision, such performance is very en-343

couraging, suggesting the feasibility of the nested-344

from-flat NER task. In addition, Full Ignoring345

and Sampling significantly outperform the standard346

span-based NER training protocol, i.e., Full Nega-347

tive, across all models and datasets; this suggests348

the effectiveness of our proposed approach. As pre-349

viously analyzed, the within-entity spans probably350

contain unlabeled nested entities, so treating them351

all as negative samples strongly biases the model’s352

behavior in recognizing nested entities.353

For each model, the out-of-entity F1 scores are354

in general of similar magnitudes across different355

schemes. This means that the additional ability356

for recognizing nested entities is obtained for free,357

without any performance sacrifice on the flat (out-358

ermost) entities.359

The best overall F1 scores by the nested-from-360

flat models are 79.2%, 79.3% and 77.3% on ACE361

2004, ACE 2005 and GENIA, respectively. Such362

performance is also competitive, with 3.0 – 8.5363

percentage gaps to the upper bounds. Note that364

our results without any nested supervision are even365

comparable to the state-of-the-art nested NER per-366

formance reported several years ago (e.g., Katiyar367

and Cardie, 2018; Wang and Lu, 2018). 368

Effect of Negative Sampling. According to the 369

experimental results, DSpERT perform best with 370

Sampling (i.e., γ = 0.01), while SpERT and bi- 371

affine are more compatible with Full Ignoring (i.e., 372

γ = 0). To investigate the effect of negative sam- 373

pling, we plot the within-entity precision rates, re- 374

call rates and F1 scores for different negative sam- 375

pling rates in Figure 2. It shows that the resulting 376

patterns and thus the optimal values of γ signifi- 377

cantly differ across models and datasets. 378

As shown in Figures 2c–2f, without negative 379

sampling, the trained model may produce a recall 380

rate much higher than the precision rate. Nega- 381

tive sampling dynamically rebalances the preci- 382

sion and recall rates. In general, a higher negative 383

sampling rate γ guides the model to classify the 384

within-entity spans more likely as negative sam- 385

ples, which results in a higher precision but a lower 386

recall.5 Hence, the precision-recall balance can be 387

achieved by setting a good value for γ. For exam- 388

ple, DSpERT finds the optimal γ = 0.005 on ACE 389

2004/2005 (Figures 2d and 2e), and the optimal 390

γ = 0.05 on GENIA (Figure 2f). On the other 391

hand, in case that the precision and recall are bal- 392

anced when γ = 0 (Figures 2a and 2b), negative 393

sampling is unnecessary. 394

However, a higher within-entity F1 score from 395

5Empirically, the precision rate also turns to decrease after
γ exceeds a relatively large value, e.g., 0.1.
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(a) Biaffine, ACE 2004
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(b) Biaffine, ACE 2005
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(c) Biaffine, GENIA
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(d) DSpERT, ACE 2004
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(e) DSpERT, ACE 2005
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(f) DSpERT, GENIA

Figure 2: Precision, recall and F1 scores on within-entity spans by different sampling rates. All the results are
average scores of 10 independent runs; the error bars represent the corresponding standard deviations.

the precision-recall rebalance may not necessar-396

ily leads to a higher overall F1 score. Note that397

(1) I contains much less ground-truth entities than398

O, and (2) the predicted entities in I are always399

much less precise than those in O. Hence, a rela-400

tively high recall in I has very limited contribution401

to the overall recall, but yields many false posi-402

tive samples and thus results in a large drop in the403

overall precision. On the contrary, high-precision404

low-recall predicted entities in I would be a safe405

and preferred choice. This also explains why Full406

Negative can sometimes achieve high overall F1407

scores (e.g., DSpERT on GENIA, Table 1).408

Appendices B and C provide category-specific409

results and span representation visualizations, re-410

spectively.411

6 Results on CoNLL 2003 NFF412

Case Study. We start from a case study to in-413

tuitively demonstrate the results of nested-from-414

flat NER on the well-known CoNLL 2003 dataset.415

Specifically, we train DSpERT with Sampling416

(γ = 0.01) on the training split, and use the trained417

model to predict entities on the test split. As afore-418

mentioned, we have also annotated the nested enti- 419

ties in the test split. 420

Table 2 shows 10 example test sentences, marked 421

with the ground-truth and predicted entities. There 422

exist some successful cases that nested entities 423

are correctly recognized. For example, in Sen- 424

tences 1–4, “U.S.”, “Singapore”, “Melbourne” and 425

“Zimbabwe” are correctly predicted as LOC enti- 426

ties, each within another ORG, LOC or MISC entity; 427

in Sentences 5 and 6, “Albanian” and “Asian” are 428

correctly recognized as MISC entities, each within 429

another ORG or MISC entity. 430

The incorrect recognition results contain the fol- 431

lowing typical scenarios: 432

• The first or last name within a full person 433

name, as a false positive PER entity (e.g., Sen- 434

tences 2, 3, 7). 435

• A geopolitical concept within a specific lo- 436

cation name, as a false positive LOC or MISC 437

entity (e.g., Sentence 4, 6). 438

• The anchor word of an event/organization 439

name, as a false positive MISC/ORG entity (e.g., 440

Sentences 4, 6, 10). 441
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1. [Mills]PER is the 38th person to die in [Florida]LOC ’s electric chair since the [[U.S.]LOC Supreme Court]ORG reversed itself in
1976 and legalised the death penalty .

2. There is the international prestige [Singapore]LOC would enjoy , but “ more importantly there is a genuine national interest
in fostering better global free trade and an open market ” , said [[Tan]PER Kong Yam]PER , head of Business Policy at the
[National University of [Singapore]LOC]ORG .

3. [West Indies]LOC were 53 for two in 15 overs when rain stopped play at the [[Melbourne]LOC Cricket Ground]LOC after captain
[Courtney [Walsh]PER]PER won the toss and elected to bat .

4. [[Zimbabwe]LOC [Open]MISC]MISC on Saturday ( [South [African]MISC]MISC unless stated )

5. [FIFA]ORG had banned [Albania]LOC indefinitely after its sports ministry had ordered the suspension of [[Albanian]MISC
Football Association]ORG general secretary [Eduard Dervishi]PER and dissolved the executive committee .

6. [South [Korea]LOC]LOC made virtually certain of an [[Asian]MISC [Cup]MISC]MISC quarter-final spot with a 4-2 win over
[Indonesia]LOC in a Group A match on Saturday .

7. [Dutch]MISC forward [Reggie [Blinker]PER]PER had his indefinite suspension lifted by [FIFA]ORG on Friday and was set to
make his [[[Sheffield]LOC]ORG Wednesday]ORG comeback against [Liverpool]ORG on Saturday .

8. [[Bayer]ORG [Leverkusen]LOC]ORG ( [Germany]LOC )

9. Corrects headline from [NBA]ORG to [NHL]ORG and corrects team name in second result from [[La]LOC Clippers]ORG to
[[[Ny]LOC]ORG Islanders]ORG .

10. [Philadelphia]LOC , which fell from an [[NFC]MISC [East]MISC]MISC tie with the [[[Dallas]LOC]ORG [Cowboys]ORG]ORG and
[[[Washington]LOC]ORG [Redskins]ORG]ORG , go on the road against the [[New York]LOC [Jets]ORG]ORG and then entertain
[[Arizona]ORG]LOC .

Table 2: Example sentences with ground-truth and predicted entities from the test split of CoNLL 2003 NFF. The
green entities are true positive samples, the red ones are false negative, and the orange ones are false positive.

• A LOC entity mislabeled as ORG within an or-442

ganization name (e.g., Sentences 7, 9, 10).443

• Nested entities that rarely appear indepen-444

dently at the topmost level in the corpus (e.g.,445

Sentences 8, 10), especially for abbreviations446

(e.g., Sentence 9).447

Most scenarios are largely attributable to the an-448

notation inconsistency, i.e., the inconsistency of449

the annotation standards between the nested and450

flat entities. For example, (1) if an entity men-451

tion is nested within its full name in text, nested452

NER annotation guidelines (e.g., ACE; Doddington453

et al., 2004) typically label the full name only, but454

ignore the substring mention. This avoids redun-455

dancy, since the two mentions refer to a same entity456

concept. However, the same substring should be457

annotated if it appears at the topmost level in text.458

(2) CoNLL 2003 contains a large amount of sports459

news, where city/country names are ubiquitously460

used to refer to team names; such mentions should461

be annotated as ORG entities according to the guide-462

lines (Tjong Kim Sang and De Meulder, 2003).463

However, the same city/country mentions should464

be annotated as LOC entities if they appear within465

the full team names. Given such inconsistencies, a466

model trained by flat supervision plausibly learns467

patterns inapplicable to the nested entities. This re-468

sults in redundant or mislabeled entities, although 469

some of them might be acceptable in practice. 470

Some scenarios are associated with the data in- 471

consistency, i.e., the inconsistency of the data distri- 472

butions between the within-entity and out-of-entity 473

spans. Some nested entity mentions almost never 474

appear independently at the topmost level in text. 475

For example, some location abbreviations (e.g., 476

“NY” or “LA”) are always nested within other en- 477

tities in the corpus. This poses a very challenging 478

case for the nested-from-flat NER task, due to the 479

lack of supervision. Actually, a nested-from-flat 480

NER model may never succeed in that case unless 481

sufficient external knowledge is introduced and uti- 482

lized, such as knowledge databases (Wang et al., 483

2021; Geng et al., 2022) or more powerful PLMs. 484

Post Processing. Based on the above analysis, 485

we propose two post-processing operations on the 486

predicted entity set: 487

• If a PER entity is nested within another PER 488

entity, remove the nested one; because it is 489

probably a first/last name inside the full name. 490

• If an ORG entity is nested within another entity, 491

change the entity label to LOC; because it is 492

probably a location name used to refer to team 493

names in other context in the corpus. 494
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Within Out Overall

Full Negative 14.6±0.2 93.4±0.1 89.8±0.1
w/ Post Processing 14.6±0.2 – 89.7±0.1

Sampling 16.6±1.1 93.5±0.2 84.3±0.6
w/ Post Processing 33.2±1.0 – 88.6±0.3

Full Ignoring 8.7±0.4 92.9±0.4 70.3±0.9
w/ Post Processing 31.8±1.2 – 82.4±0.8

Table 3: Results of nested-from-flat experiments by
DSpERT on CoNLL 2003 NFF. Reported are average
F1 scores with corresponding standard deviations of 10
independent runs. The best F1 scores are in bold.

Table 3 lists the evaluation results of DSpERT on495

CoNLL 2003 NFF. With the help of post process-496

ing, DSpERT+Sampling achieves the best within-497

entity F1 score of 33.3%. This score seems low,498

relative to those on ACE 2004/2005 (i.e., 54%+).499

The main reason is that CoNLL 2003 specifies that500

named entities should be unique identifiers like501

proper names or acronyms (Tjong Kim Sang and502

De Meulder, 2003), while ACE additionally in-503

cludes pronouns or descriptions that refer to en-504

tities (Doddington et al., 2004). Note that the505

pronouns and descriptions can be labeled more506

consistently between the within-entity and out-of-507

entity spans, which lowers the difficulty of nested-508

from-flat NER on ACE 2004/2005. In other words,509

CoNLL 2003 NFF poses a more strict and challeng-510

ing benchmark of nested-from-flat NER.511

Similar to the results on other datasets, our512

model is trained to recognize nested entities with-513

out affecting the out-of-entity performance. Hence,514

compared to a model that predicts flat entities only,515

our method always has merit for the additional abil-516

ity of nested entity recognition.517

7 Discussion and Conclusion518

Although the NLP community has undertaken519

increasing efforts to investigate and develop520

nested NER models, many existing NER re-521

sources are flatly designed and annotated, es-522

pecially in languages other than English. For523

example, the widely-used Chinese NER bench-524

marks, e.g., OntoNotes 4, MSRA (Levow, 2006),525

Weibo NER (Peng and Dredze, 2015) and Resume526

NER (Zhang and Yang, 2018), are all flat; similar527

situation holds for Japanese (Iwakura et al., 2016),528

Korean (Jeong et al., 2020), Vietnamese (Truong529

et al., 2021), etc. Most domain-specific entity530

recognition datasets are also designed in a flat531

scheme (Uzuner et al., 2011; Albright et al., 2013;532

Jeong et al., 2020). 533

Nested-from-flat NER corresponds to a realis- 534

tic application scenario: given training data anno- 535

tated with flat entities only, one may still desire the 536

trained model capable of recognizing nested enti- 537

ties. This task is theoretically feasible, because the 538

recognizable patterns for outermost entities should 539

be, at least partially, transferable to nested entities. 540

To the best of our knowledge, this study is the first 541

to validate and investigate this mechanism. 542

On the other hand, nested-from-flat NER is a 543

challenging setting because of the data and annota- 544

tion inconsistencies between the within-entity and 545

out-of-entity spans. Hence, the models may learn 546

inapplicable or insufficient patterns when trans- 547

ferred to recognizing nested entities. 548

We choose the span-based NER framework be- 549

cause it explicitly distinguishes between positive 550

and negative spans, which allows us to flexibly ma- 551

nipulate the negative samples in the within-entity 552

area. Since the within-entity spans probably con- 553

tain unlabeled nested entities, it is straightforward 554

to ignore these spans in loss computation; while 555

we empirically find it beneficial to apply negative 556

sampling with a very small rate (i.e., 0.01). The 557

negative sampling is inspired by Li et al. (2021)’s 558

solution for unlabeled entity problem, but their op- 559

timal sampling rate is much larger (0.3 – 0.4). 560

In conclusion, this study proposes nested-from- 561

flat NER, a new subtask that asks to train a nested 562

NER model with flatly annotated data. We find a 563

simple but effective solution to this task. With 564

nested entities removed from the training data, 565

our model can achieve 54.8%, 54.2% and 41.1% 566

within-entity F1 scores on ACE 2004, ACE 2005 567

and GENIA, respectively. Moreover, the model’s 568

performance on flat entity recognition is completely 569

unaffected by its additional ability to recognize 570

nested entities. We further propose a nested-from- 571

flat NER benchmark, CoNLL 2003 NFF, which 572

consists of CoNLL 2003 and our annotations of 573

nested entities in the test set. With in-depth case 574

study, we find that the main challenges stem from 575

the data and annotation inconsistencies between 576

the flat and nested entities. 577

8 Limitations 578

We acknowledge that our modeling techniques per 579

se are simple, and the issue of data and annotation 580

inconsistencies between the within-entity and out- 581

of-entity spans has not be fully addressed in this 582
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study. In particular, the post processing used for583

CoNLL 2003 NFF is rule-based, and thus inapplica-584

ble to other corpora. However, simple approaches585

are straightforward, which allow us to clearly ver-586

ify the feasibility of nested-from-flat NER and en-587

sure the reproducibility of our results. The nested-588

from-flat NER performance can be promisingly589

improved by utilizing more external knowledge,590

either explicitly via knowledge databases (Wang591

et al., 2021; Geng et al., 2022) or implicitly with592

more powerful PLMs.593

In addition, the negative sampling rate γ signif-594

icantly affects the performance, while its optimal595

value differs across datasets. Hence, one has to tune596

this hyperparameter when she applies our approach597

to a new dataset.598
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A Datasets867

ACE 2004 and ACE 2005 are two English868

nested NER datasets created by the Automatic Con-869

tent Extraction (ACE) Program (Doddington et al.,870

2004). The corpus consists of broadcast transcripts,871

newswire and newspaper data; the entity types in-872

clude Person (PER), Organization (ORG), Facility873

(FAC), Location (LOC), Geo-political Entity (GPE),874

Vehicle (VEH), and Weapon (WEA). Our data process-875

ing and splits follow Lu and Roth (2015).876

As indicated by the annotation guidelines, ACE877

aims to recognize all mentions of entities, not just878

names. In other words, an entity mention can be879

a name, a description, or a pronoun, as long as it880

clearly refers to the entity.881

GENIA is a nested NER dataset on English bio-882

logical articles (Kim et al., 2003). There are five883

entity categories, i.e., DNA, RNA, Protein, Cell884

Line, and Cell Type. Our data processing follows885

Lu and Roth (2015), and data splits follow Yan886

et al. (2021) and Li et al. (2022).887

CoNLL 2003 NFF is a nested-from-flat NER888

benchmark that consists of the text data and flat889

NER annotations of CoNLL 2003 (Tjong Kim Sang890

and De Meulder, 2003), and our annotations of891

nested entities in the test split. The corpus consists892

of Reuters news stories in 1996 and 1997; the entity893

categories are Person (PER), Organization (ORG),894

Location (LOC), and Miscellaneous (MISC). We use895

the original data splits for experiments.896

In CoNLL 2003, named entities are limited897

to unique identifiers, such as proper names and898

acronyms. It excludes pronouns and descriptions899

that refer to entities.900

We hired three NLP experts to additionally anno-901

tate the nested entities in the test split. BRAT Rapid902

Annotation Tool (Stenetorp et al., 2012) was de-903

ployed to provide the annotation user interface. The904

annotators were asked to carefully read through the905

CoNLL 2003 Annotation Guidelines, and strictly906

follow the guidelines when manually labeling the907

nested entities that had been ignored in the original908

data. All the original annotations, even a few incor-909

rect ones (Wang et al., 2019), are retained without910

modification. Each annotator labeled all documents911

in the test set, and the final results are based on an912

additional round of manual validation that resolves913

the inter-annotator disagreements.914

Table 4 presents the descriptive statistics of the915

datasets.916

B Category-Specific Results 917

Table 5 lists the categorical results of within-entity 918

F1 scores on ACE 2004, ACE 2005 and GENIA. 919

The performance significantly varies across cate- 920

gories. Specifically, the categorical F1 scores range 921

from 38% to 60% on ACE 2004/2005, from 18% 922

to 51% on GENIA. In general, the model performs 923

better on categories that contain more entities, such 924

as PER and GPE in ACE 2004/2005, and the Pro- 925

tein type in GENIA. This is reasonable, since such 926

categories have more positive samples in the train- 927

ing data, which enable the model to learn more 928

accurate decision boundaries. 929

The categorical F1 scores by nested-from-flat 930

models are consistently lower than, and positively 931

correlated with the corresponding scores by gold 932

supervision. The Pearson correlation coefficients 933

between the categorical F1 scores are positive for 934

all the three datasets. One exception is the Cell 935

Type category in GENIA, where the nested-from- 936

flat model surprisingly outperforms its counterpart 937

with gold supervision; we conjecture that some 938

Cell Type entities are incorrectly annotated in the 939

training data and thus misguide the trained model. 940

C Visualization of Span Representations 941

Figure 3 presents the t-SNE visualizations (Van der 942

Maaten and Hinton, 2008) of the pre-logit span rep- 943

resentations. The representations are constructed 944

by DSpERT on the test sentences of ACE 2004. 945

For the model trained by flat supervision, the 946

within-entity span representations are largely clus- 947

tered by categories, but a part of negative samples 948

are mixed into the positive clusters, resulting in 949

unclear and ambiguous decision boundaries (Fig- 950

ure 3a). In contrast, the out-of-entity span repre- 951

sentations form clear and tight categorical clusters 952

(Figure 3b). However, if the model is trained on 953

data with nested annotations, both the within-entity 954

and out-of-entity representations are clearly clus- 955

tered by categories (Figures 3c, 3d). 956

Hence, the spans mixed across positive and neg- 957

ative clusters in Figure 3a lack supervision. As 958

suggested by the case study on CoNLL 2003 NFF, 959

these span samples probably correspond to the data 960

and annotation inconsistencies between the within- 961

entity and out-of-entity spans. They are particularly 962

difficult to discriminate in the nested-from-flat set- 963

ting. 964

12



ACE 2004 ACE 2005 GENIA CoNLL 2003 NFF

Train Dev. Test Train Dev. Test Train Dev. Test Train Dev. Test

#Sentence 6,799 829 879 7,336 958 1,047 15,023 1,669 1,854 14,987 3,466 3,684
Nested (%) 39.5 35.3 42.4 36.6 35.6 31.5 21.3 19.5 24.1 – – 11.3

#Entity 22,207 2,511 3,031 24,687 3,217 3,027 46,164 4,371 5,511 23,499 5,942 5,648
Nested (%) 28.2 27.2 29.1 24.4 22.2 23.8 9.5 9.6 11.4 – – 7.9
Ave. Len. 2.5 2.6 2.5 2.3 2.1 2.3 1.9 2.1 2.1 1.4 1.4 1.4
Max. Len. 57 35 43 49 30 27 17 18 15 10 10 6

Table 4: Descriptive statistics of datasets. “#Sentence” denotes the number of sentences, under which “Nested
(%)” denotes the proportion of sentences with nested entities. “#Entity” denotes the number of entities, under
which “Nested (%)” denotes the proportion of nested entities, “Ave. Len.” and “Max. Len.” denote the average and
maximum lengths of entities, respectively.

ACE 2004 ACE 2005

Sampling Gold S. Sampling Gold S.

PER 55.7±0.8 90.0±0.3 57.9±0.8 89.6±0.4

ORG 48.9±1.6 81.8±0.5 49.5±1.6 80.7±1.2

FAC 51.0±3.3 82.4±1.9 52.9±4.5 78.8±2.1

LOC 43.7±3.6 77.4±1.5 37.8±3.2 75.0±3.5

GPE 59.4±2.6 88.6±0.5 57.9±4.3 88.4±1.0

VEH 37.9±7.3 85.7±0.0 46.7±2.0 81.4±3.2

WEA 55.8±8.2 75.2±2.4 38.4±1.7 69.6±3.0

Correlation 0.203 0.909

GENIA

Sampling Gold S.

DNA 22.9±1.4 33.0±1.4

RNA – –
Protein 51.0±0.7 65.3±0.8

Cell Line 17.9±2.5 28.3±2.3

Cell Type 28.1±1.2 11.6±1.3

Correlation 0.788

Table 5: Categorical within-entity F1 scores by DSpERT
on nested NER datasets. Reported are average F1 scores
with corresponding standard deviations of 10 indepen-
dent runs. “Gold S.” indicates results with gold supervi-
sion. “–” means no ground-truth nested entities in the
test set.
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Figure 3: t-SNE visualization of pre-logit span representations by DSpERT on ACE 2004 test sentences. Each row
compares the within-entity and out-of-entity span representations from a same model, visualized by a shared t-SNE.
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