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Abstract

The hallmark of effective language use lies in con-
sistency: expressing similar meanings in similar
contexts and avoiding contradictions. While hu-
man communication naturally demonstrates this
principle, state-of-the-art language models (LMs)
struggle to maintain reliable consistency across
task- and domain-specific applications. Here we
examine the landscape of consistency research
in LMs, analyze current approaches to measure
aspects of consistency, and identify critical re-
search gaps. Our findings point to an urgent need
for quality benchmarks to measure and interdis-
ciplinary approaches to ensure consistency while
preserving utility.

1. Introduction
Consistency—broadly defined as using language similarly
in similar settings or avoiding contradictions when using
language—is among the most important forms of gener-
alization in the use of language. This ability to maintain
consistent outputs is essential for building reliable AI sys-
tems that users can trust and depend on. Consistency is
both a natural expectation that users have when interacting
with language technologies and a prerequisite to deploy-
ing them in high-stakes domains (Elazar et al., 2021; Jang
et al., 2022; Kim et al., 2025). However, most advanced
large language models (LLMs) struggle with consistency
and frequently demonstrate inconsistent behavior (Elazar
et al., 2021; Raj et al., 2025). Although such examples have
been documented in multiple studies, there are no standard
approaches to assessing model consistency. As such, there
is an ongoing risk of overestimating the performance of
state-of-the-art models, as well as of underestimating the
risks and potential harms elicited by them.
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Despite early attempts to measure and enhance the consis-
tency of language models (LM) and to understand the roots
of inconsistency, research on this topic faces multiple chal-
lenges. These include a lack of agreement on terminology
and evaluation metrics, and limitations on data and model
availability. In this paper, we present a review of current
research on consistency in LMs, highlight the most press-
ing challenges, and provide recommendations for future
research. We restrict our attention to text-only LMs, which
a majority of existing research is based on. See Appendix A
for a brief discussion on multimodal consistency.

2. A Review of Consistency Research
Consistency has connections to critical areas in AI re-
search: hallucination (generating made-up information con-
tradicting references), factuality (agreement with real-world
knowledge), misinformation (false claims misleading users),
and reasoning (logical coherence across statements). We
survey literature on consistency in LMs from 2019 to
2025, focusing on peer-reviewed publications and influ-
ential preprints that explicitly address consistency metrics,
theory, and enhancement.

Terminology The terminology used to describe the con-
sistency of LMs is often confusing, as there is not a single,
commonly agreed-upon definition of consistency. Authors
either come up with their own definition of the concept that
aligns best with the specifics of the work they focus on,
or use an overly broad definition, or sometimes just omit
defining the term altogether. As a result, existing studies
present multiple narrowly focused definitions of consistency
that often cover very different aspects of model behavior
and sometimes even contradict each other.

Given this interest in model behavior and the implications
for potential model applications, in this paper, we limit the
otherwise broader concept of consistency to behavioral con-
sistency. In psychology, behavioral consistency is closely
related to the predictability of behavior, which is equally
important for the applications of LMs. Based on how behav-
ioral consistency is approached in the literature, we catego-
rize the different types of consistency into two large groups:
logical/formal and nonlogical/informal.
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Logical consistency in LLMs was introduced by Jang et al.
(2022), as the ability of the model to make decisions without
logical contradiction. The rules and principles of formal
logic are applied to assess the behavior of a model in a
methodical way, allowing for standardized and intuitive
measurement. Based on these principles, Jang et al. (2022)
classified consistency into negational, symmetric, transi-
tive, and additive types. Negational consistency follows
the logical negation property (p is true ⇔ ¬p is false), i.e.
LM’s predictions should be opposite for texts with the op-
posite meanings. Symmetric consistency follows the rule
f(x, y) = f(y, x) and implies that the predictions of an
LM should be invariant to the input text swap. Transitive
consistency can measure deductive reasoning ability and
follows the property of transitive inference, represented as
X → Y ∧ Y → Z then X → Z. This type of consistency
was analyzed in natural language inference (NLI) tasks (Li
et al., 2019) and question-answering (Q&A) (Asai & Ha-
jishirzi, 2020b; Mitchell et al., 2022).

Semantic consistency, another subpart of the Jang et al.
(2022) definition, is one of the most widely used concepts in
existing consistency research studies. The idea of semantic
consistency is derived from the semantic equivalence prop-
erty, represented as f(X) = f(Y ) if X and Y mean the
same. Elazar et al. (2021), and multiple studies later on (Raj
et al., 2022; Ohmer et al., 2024), explored this as the ability
of a model to make consistent decisions in semantically
equivalent contexts.

Nonlogical or informal consistency covers all the other def-
initions that do not follow the rules of formal logic. For
example, Bonagiri et al. (2024) highlight the importance
of moral consistency, as the ability to preserve noncontra-
dictory moral values across different situations (Arvanitis
& Kalliris, 2020; Marcus, 1980), in LLM alignment. Their
approach consists of generating semantically equivalent sce-
narios and employing consistency checks to see if a target
LLM gets the same Semantic Graph Entropy (SaGE) score
while responding to these scenarios. Jain et al. (2025) in-
vestigated norm inconsistency, defined as the condition in
which LLMs apply different norms in similar situations, on
applying LLMs in high-risk domains.

Informational and/or factual consistency is another sub-
part of the Jang et al. (2022) definition frequently used in
consistency research. Manakul et al. (2023) used the term
informational consistency, without explaining or defining it
further, to develop a method for fact-checking the responses
of black-box models. The term factual consistency is of-
ten used in the context of automatic summarization (Wang
et al., 2020). Factual inconsistency is often referred to as
hallucinations and/or faithfulness, i.e., models that generate
new information that contradicts the source document (Tam
et al., 2023; Maynez et al., 2020). Definitions of factual

consistency are often not clearly specified, and instead are
replaced with human annotations.

A recent study (Parcalabescu & Frank, 2024) on natu-
ral language explanations contrasts faithfulness and self-
consistency. Self-consistency examines whether similar
inputs produce consistent explanations—essentially measur-
ing explanation stability across input variations. Faithful-
ness, meanwhile, evaluates whether the explanation behind
a certain model-generated answer accurately reflects the
model’s reasoning process to come up with that answer.
While related, they involve different evaluation approaches.
Self-consistency requires testing multiple input variations
(which may not generalize well across datasets) and does
not necessarily involve checking for accuracy of the expla-
nations. On the other hand, faithfulness focuses on the ac-
curacy of individual explanations without such constraints.

Analyzed Tasks A slim majority of studies on LM con-
sistency investigate well-established NLP tasks. Most com-
monly analyzed tasks include Q&A (Mündler et al., 2024;
Raj et al., 2022; Berglund et al., 2024; Li et al., 2023; Wang
et al., 2020; Asai & Hajishirzi, 2020a), summarization (West
et al., 2024; Cui et al., 2024; Tam et al., 2023; Wang et al.,
2020), NLI (Jang et al., 2022; Jang & Lukasiewicz, 2023;
Camburu et al., 2020; West et al., 2024; Dziri et al., 2019)
and reasoning (Zhang et al., 2024b; Liu et al., 2024b; Chen
et al., 2024; Wang et al., 2023) Approximately a third of
existing studies do not rely on standard NLP tasks, usu-
ally using custom tasks such as generating continuations of
sentences from Wikipedia (Mündler et al., 2024). A small
number of studies employ use-case specific approaches, for
example, measuring stock price prediction accuracy based
on textual information such as earnings calls and news arti-
cles (Yang et al., 2023).

Dataset Size and Availability The number of testing sam-
ples varies substantially across different studies, from a few
hundred to tens of thousands. One standard approach to
creating a test dataset for measuring consistency is to multi-
ply the prompts in one or more existing benchmarks using
perturbation rules or prompt templates (Jang et al., 2022;
Fierro & Søgaard, 2022). Another approach is to enhance
existing benchmarks with human- or LLM-generated anno-
tations (Liu et al., 2023). To do this, a common method is
to create paraphrases of an existing dataset using automatic
parahrasing methods (Bonagiri et al., 2024) and/or human
annotators (Elazar et al., 2021). The majority of testing
datasets are shared publicly, although in some cases the
authors only describe the dataset creation process without
providing access to the actual dataset.

Evaluated Models More than two-thirds of the studies
we examined use transformer-based generative LMs with
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decoder-only or encoder-decoder architectures, such as the
GPT and OPT series models, BART, and T5 (Jang et al.,
2022; Li et al., 2023; Jang & Lukasiewicz, 2023; West et al.,
2024; Berglund et al., 2024; Raj et al., 2022; Manakul et al.,
2023; Mündler et al., 2024; Zhang et al., 2024b; Liu et al.,
2024b; Zhang et al., 2024a; Cheng et al., 2024; Cui et al.,
2024; Tam et al., 2023; Wang et al., 2023; Chen et al., 2024;
Wang et al., 2020; Nie et al., 2021). The parameter sizes for
the models tested range from a few billion to hundreds of
billion. Slightly more than half of the papers test proprietary
models such as GPT-4 (Li et al., 2023; Jang & Lukasiewicz,
2023; West et al., 2024; Berglund et al., 2024; Mündler et al.,
2024; Zhang et al., 2024b; Liu et al., 2024b; Zhang et al.,
2024a; Cui et al., 2024; Chen et al., 2024), whose exact
sizes have not been publicly disclosed but in some cases are
rumored to exceed a trillion parameters. Some studies also
consider other types of LMs: about a quarter of papers (Jang
et al., 2022; Elazar et al., 2021; Asai & Hajishirzi, 2020a;
Yang et al., 2023; Nie et al., 2021; Qin et al., 2021) focus on
encoder-only, BERT-style models such as BERT, RoBERTa,
and ALBERT.

Evaluation of Consistency Consistency evaluation typi-
cally uses two approaches: (1) input-based sampling, creat-
ing paraphrases or equivalent prompts to test consistent re-
sponses to similar inputs, or (2) output-based sampling, gen-
erating multiple outputs from identical inputs. Output-based
sampling with high temperature may artificially inflate in-
consistency by forcing models to sample normally-avoided
tokens, potentially misrepresenting model behavior.

Metrics to measure different notions of consistency typically
depend on pairwise similarity metrics. They compute base
metrics such as BERTScore, ROUGE, Entailment, or Con-
tradiction for pairs of outputs given similar inputs and/or
context, and aggregate over multiple pairs. In earlier studies,
the base metrics were based on token-matching similarities
(Elazar et al., 2021). Later papers graduated to notions of se-
mantic similarity that are robust to syntactic variations that
can change the wording or structure of a phrase of text while
keeping the meaning the same or similar (Raj et al., 2022;
Rabinovich et al., 2023; Manakul et al., 2023). Aggregation
of a metric across pairs is typically done by simple averag-
ing, with the exception of Mündler et al. (2024), which uses
sequential aggregation of contradiction scores to measure
factual consistency, and Raj et al. (2025); Kuhn et al. (2023)
who use semantic entropy across the entire set of outputs.

Challenges Two important aspects of consistency remain
underresearched. First, current work tends to focus ex-
cessively on consistency in generations at decoding time.
In this process, it ignores encoder-only models and how
(in)consistent inputs shape the performance on downstream
standard NLP tasks like sentiment prediction. Another un-

derexplored direction is adversarial attacks to degrade con-
sistency. Despite extensive research on adversarial robust-
ness (e.g. the AdvGLUE benchmark (Wang et al., 2022))
and jailbreaks, very few studies explore how inconspicuous
or subtle manipulation of prompts can lead to inconsistent
LLM responses (Lin et al., 2024a). We do not yet fully
understand how much malicious perturbations coupled with
slightly different input text can degrade output quality.

The availability of model weights and training datasets—
allowing stronger transparency and reproducibility—aid in
investigating the root causes of inconsistency. Lin et al.
(2024b) showed that analyzing the internal state of the
model can improve the transparency of the model and lay
the foundation for mitigating hallucinations and inconsisten-
cies. Not only closed-weight models, but also unpublished
source code and datasets make it nearly impossible to re-
produce and verify claims and findings of some existing
publications (Semmelrock et al., 2023).

3. Discussion and Recommendations
As mentioned earlier, we need standardization of terms and
definitions for a better understanding of the progress of
consistent language model development. Beyond this, we
recommend the following focus areas for future research.

Multilingual Consistency Similarly to other topics in
NLP research, the overwhelming majority of studies on LM
consistency are English-based, significantly limiting our
understanding of the topic. To broaden this understanding,
more research is needed on both monolingual consistency in
non-English languages and on cross-language consistency
behaviors.

There is a substantial gap between the amount of training
data available for English and that available for all other
languages (Üstün et al., 2024). While more than 7,000 lan-
guages are spoken around the world today, an astounding
73% of the popular datasets used to train LLMs are primar-
ily or entirely English (Longpre et al., 2023). This severe
sampling bias in dataset construction results in disparities in
model performance between languages, even in well-studied
tasks (Lai et al., 2023). Inherent differences between lan-
guages may also significantly influence the consistency of
the LMs trained on them. Structural features such as word
order or inflectional morphology can vary in their stability
across languages (Dediu & Cysouw, 2013). These differ-
ences can make it more difficult to train models to produce
consistent output for certain languages, even when all lan-
guages are equally represented in the training data. More
research is necessary to understand the effect of linguistic
differences and limitations of multilingual training data on
consistency in non-English languages.

Recent work has demonstrated significant challenges in
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cross-lingual consistency, i.e., whether a model produces
compatible or equivalent outputs when the same query is
presented in different languages. Shen et al. (2024) found
that LLMs exhibit inconsistent safety behaviors across lan-
guages, with safety guardrails being more easily circum-
vented in non-English languages. Xing et al. (2024) ob-
served that LLMs produce inconsistent factual information
when asked about the same knowledge in different lan-
guages, suggesting knowledge representation gaps across
languages. Qi et al. (2023) examined factual consistency
across languages and found that languages more dissimilar
to English are less likely to reflect synthetically inserted
factual associations through model editing. Jin et al. (2023)
evaluated cross-lingual inconsistency specifically in health-
care questions and found discrepancies in medical advice
across languages. Zhou & Zhang (2024) explored how po-
litical biases manifest inconsistently in bilingual models,
revealing that models may express different political posi-
tions depending on the input language.

These findings collectively highlight a critical gap in current
LLM capabilities: the ability to maintain consistent factual
information, safety guardrails, and reasoning in different
languages. Cross-lingual consistency represents an impor-
tant direction for future research, especially as LLMs are
deployed globally across linguistic boundaries.

Consistency Evaluation Evaluating consistency has sev-
eral unique challenges. Most previous studies have used
automatic metrics alone to assess consistency in LMs. Al-
though automatic evaluation can ensure objectivity and fast
assessment, human evaluation is important to establish an
acceptable baseline, especially in highly sensitive or sub-
jective culture-specific applications (e.g. social appropri-
ateness), or when automatic metrics are sufficiently high.
Automatic metrics often struggle to capture the different
nuances of consistency (factual, logical, semantic), while
human evaluation suffers from subjectivity and cognitive
biases. The contextual nature of consistency requires eval-
uation across multiple responses, different phrasings, and
various contexts, making comprehensive assessment com-
putationally expensive and logistically challenging. Further
complicating matters, consistency evaluation interacts with
other dimensions such as factuality, helpfulness, and safety—
a model may be internally consistent but factually incorrect,
or it may sacrifice consistency to maintain safety.

While several consistency benchmarks have recently
emerged, there remains a need for more comprehensive
evaluation frameworks that measure all different aspects
of consistency in LMs across diverse tasks. Recent bench-
marks have made important contributions but typically focus
on specific consistency types or limited task domains (Jang
et al., 2022; Bonagiri et al., 2024; Cui et al., 2024; Liu
et al., 2024b; Paleka et al., 2024; Liu et al., 2024a; Gilhuly

& Shahzad, 2025). Future work should focus on develop-
ing more holistic benchmarks that address the breadth of
consistency challenges outlined above.

Impact Inconsistent output can cause users of language-
based systems to receive conflicting or incorrect information.
This is problematic in scenarios where factual accuracy
is crucial (Tam et al., 2023; Wang et al., 2024)—such as
in medical, legal, or financial contexts—especially when
such information is used for decision making. In critical
systems, such as autonomous vehicles or medical diagnosis
support, inconsistent responses can lead to critical safety
risks. In less critical applications, inconsistent responses
lead to poor user experience, cause frustration, and reduce
overall utility (Lazar et al., 2023; van Bergen et al., 2024;
Zhang et al., 2024a). Inconsistency can also reflect and
magnify the underlying societal biases and stereotypes in the
training data, leading to potentially discriminatory outcomes
for certain user groups, amplifying unfair use and causing
representational harm (Blodgett et al., 2020).

Inconsistency may have some advantages in specific situa-
tions. Lower degrees of consistency can lead to diverse and
creative outputs, which can be valuable in tasks requiring
originality or brainstorming. Inconsistency might reflect
the ability of a model to adapt to different contexts or user
needs, potentially providing more personalized responses.
Inconsistent outputs of a model prompt users to engage
more critically with generated content, avoid overreliance,
and seek additional verification. This can be beneficial in
educational applications, provided the level of possible in-
consistency is carefully calibrated.

Improving Consistency There are surprisingly few ap-
proaches that actually increase the consistency of LMs. Cur-
rent proposals to do so fall into two narrow categories. The
first approach employs fine-tuning to improve consistency
between multiple generations from a LM when supplied
with the same or similar inputs. Elazar et al. (2021) used
a custom loss function, Raj et al. (2025) used knowledge
distillation from more consistent teacher models, and Raj
et al. (2025); Zhao et al. (2024) used synthetic datasets of
groups of consistent input-outputs. The second approach
attempts to improve self-consistency, i.e. consistency be-
tween a model’s reasoning process and the final answer
(Deng et al., 2023; Wang et al., 2023; Wei et al., 2022).

Albeit promising, the above methods primarily address
symptoms rather than the fundamental causes of inconsis-
tency. There remains a critical need for research investi-
gating the structural basis of consistency in LMs’ represen-
tational spaces, consistency-oriented pre-training, and ar-
chitectures designed to maintain consistency across diverse
contexts. Such foundational approaches may eliminate the
trade-offs between consistency and other valuable properties
like creativity and diversity.
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4. Call to Action
We call on the research community to address several key
challenges: (1) developing standardized definitions and tax-
onomies of consistency types; (2) creating comprehensive,
multilingual, and cross-lingual benchmarks for consistency
evaluation; (3) establishing robust evaluation protocols that
combine automatic metrics with human evaluation; (4) in-
vestigating the relationship between consistency and other
important properties such as factuality, safety, and help-
fulness; and (5) developing efficient methods to enhance
consistency without sacrificing other beneficial model capa-
bilities. To this end, we emphasize the need for interdisci-
plinary collaboration, bringing together perspectives from
linguistics, psychology, philosophy, and ethics to better un-
derstand the multifaceted nature of consistency in human
and machine language use. By addressing these challenges
collectively, we can move toward LMs that exhibit more
reliable, trustworthy, and human-aligned behavior across
diverse contexts and applications.
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A. Appendix: Multimodal Consistency
Until 2022, every consistency study was analyzing robust-
ness of LMs to various text perturbations or to semantically
equivalent texts only. Starting in 2022, some interest in

8

https://aclanthology.org/2020.acl-main.450
https://aclanthology.org/2020.acl-main.450
https://arxiv.org/abs/2111.02840
https://arxiv.org/abs/2111.02840
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2402.02420
https://arxiv.org/abs/2402.02420
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=CF8H8MS5P8
https://api.semanticscholar.org/CorpusID:270870062
https://api.semanticscholar.org/CorpusID:270870062
https://aclanthology.org/2023.acl-long.769
https://aclanthology.org/2023.acl-long.769
https://aclanthology.org/2024.findings-eacl.16
https://aclanthology.org/2024.findings-eacl.16
https://aclanthology.org/2024.acl-long.197
https://aclanthology.org/2024.acl-long.197
https://arxiv.org/abs/2403.14221


Consistency in Language Models

non-textual modalities started to appear that comes primar-
ily from text-to-image model analysis. For example, Tan
et al. (2022) explores the challenge of generating consis-
tent and high-quality images from given texts in the task
of visual-language understanding and highlights the need
to design a better text-image consistency metric, a prob-
lem that remains under-explored in the community. In their
study, Tan et al. (2022) present a novel CLIP-based metric
named Semantic Similarity Distance (SSD) that leads to sig-
nificantly better text-image consistency while maintaining
decent image quality. The attempts to quantify the consis-
tency in text-to-image models are continued by Berglund
et al. (2024), which proposes a novel semantic consistency
score for image generation that has strong agreement with
human annotators. Recently, there was an attempt to eval-
uate the understanding capability of generative models in
both language and vision domains (West et al., 2024). West
et al. (2024) conducted interrogative evaluation of image
understanding models via visual question answering in an
open-ended setting. They investigated whether the models
produce consistent output when interrogated about the con-
tent of their generated image, and figured out that although
models can outperform humans in generation, they regularly
show evidence of inconsistency between their generation
and understanding performance.
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