
Unsupervised representation learning using
convolutional and stacked auto-encoders: a domain

and cross-domain feature space analysis

Gabriel B. Cavallari, Leonardo S. F. Ribeiro, Moacir A. Ponti
Institute of Mathematical and Computer Sciences (ICMC)

University of São Paulo (USP), São Carlos, SP, Brazil

Email: [gabriel.cavallari,leonardo.sampaio.ribeiro,ponti]@usp.br

Abstract—A feature learning task involves training models that
are capable of inferring good representations (transformations
of the original space) from input data alone. When working
with limited or unlabelled data, and also when multiple visual
domains are considered, methods that rely on large annotated
datasets, such as Convolutional Neural Networks (CNNs), cannot
be employed. In this paper we investigate different auto-encoder
(AE) architectures, which require no labels, and explore training
strategies to learn representations from images. The models
are evaluated considering both the reconstruction error of the
images and the feature spaces in terms of their discriminative
power. We study the role of dense and convolutional layers on
the results, as well as the depth and capacity of the networks,
since those are shown to affect both the dimensionality reduction
and the capability of generalising for different visual domains.
Classification results with AE features were as discriminative as
pre-trained CNN features. Our findings can be used as guidelines
for the design of unsupervised representation learning methods
within and across domains.

I. INTRODUCTION

Feature learning is a sub-field of machine learning where

trainable models should be capable of inferring good repre-

sentations (transformations of the original space) from input

data alone. Instead of designing hand-crafted methods to be

used in general-purpose scenarios, a model is trained using

some dataset so that it learns parameters that are adequate for

the data. Deep Learning methods were shown to be effective

for the purpose of feature learning, which most recently was

defined as representation learning [1].

For image data, Convolutional Neural Networks (CNNs)

with multiple layers were found to be particularly adequate.

After being trained for image classification tasks, those net-

work models were shown to be good extractors of low-level

(shapes, colour blobs and edges) at the initial layers, and high-

level features (textures and semantics) at deeper layers [2].

However, deep networks are difficult to train from scratch,

requiring a large number of annotated examples in order to

ensure learning, due to their high shattering coefficient [3]. In

the simplest form of feature extraction that require no labels,

off-the-shelf pre-trained CNN models already present a good

discriminative capacity [4], [5]. CNNs can also be used in a

triplet fashion in order to produce a feature embedding for

multiple visual domains provided a sufficiently large training

set [6]. If given enough network capacity, and enough data,

those methods are capable of fitting virtually any labelled

dataset, even pure noise sets, highlighting a known issue with

CNNs [7]. The generality of feature spaces is then put into

question, since small variations in the test set can lead to a

significant decrease in testing accuracy [8]. This limitation gets

worse when some models with enough capacity are able to

memorise a dataset, resulting in over-training [9] and poor

real-life performance.

Given the aforementioned drawbacks, CNNs are not ade-

quate in two scenarios: a) limited or unlabelled data, and b)

when multiple visual domains are considered. In the first case,

it is either the event that the dataset is not large enough to allow

learning or that the data is not labelled at all, preventing the

use of any classification-based training. In the second instance,

a convolutional network trained on a given dataset is well

fitted to represent it, while the learned feature space may not

generalise well for other datasets, especially if it comes from

a different visual domain.

In this paper we explore stacked and convolutional auto-

encoders as alternative methods for unsupervised feature learn-

ing. Auto-encoders (AEs) are methods that encode some input

into a representation with low dimensionality, known as code,

and then, via a decoding module, reconstruct this compact

representation to match as best as possible the original in-

put [2] and can be useful in many scenarios, in particular

for signal, image and video [10], [11] applications. The space

formed by the transformation of the input into the code is often

called latent space. Encoders and decoders are often linear

transformations that can be implemented using a dense layer

of a neural network in an unsupervised way [12]. Stacking

those layers may lead to deep stacked auto-encoders that carry

some of the interesting properties of deep models [13].

Based on the idea of self-taught learning that aims to

extract relevant features from some input data with little or

no annotation [14], we investigate different AE architectures

and training strategies to learn representations from images

and analyse the feature space in terms of their discriminative

capacity.

Although AEs are known to allow unsupervised learning for

a specific dataset, usually requiring less examples to converge

when compared to CNNs, the ability of those methods to

be able to learn latent spaces that can be generalised to

440

2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)

2377-5416/18/$31.00 ©2018 IEEE
DOI 10.1109/SIBGRAPI.2018.00063

other domains, as well as their comparison with features

extracted from pre-trained CNNs is still to be investigated.

In this paper we explore two datasets, MNIST [15] and

Fashion [16] in order to perform controlled experiments that

allow understanding of the potential different AE architectures

have in obtaining features that are discriminative not only on

the domain of the training dataset, but for other datasets in a

cross-domain setting. Note we assume no labels are available

for training, hence the unsupervised representation learning.

Features obtained with several AE architectures are compared

with features extracted from a pre-trained CNN.

II. RELATED WORK AND CONTRIBUTIONS

While Unsupervised Representation Learning is a well-

studied topic in the broad field of machine learning and

image understanding [14], not much work has been done

towards the analysis of those feature spaces when working

with cross-domain models. The problem we want to tackle

by studying the feature space in a cross-domain scenario can

be defined as a form of Transfer Learning task [17], where

one wants knowledge from one known domain to transfer and

consequently improve learning tasks within a different domain.

One of the few studies that leverage the use of auto-

encoders in a cross-domain adaptation problem comes from Li

et al [18]; the authors solved their low sample number problem

by training an auto-encoder on an unrelated dataset with many

samples and using the learned model to extract local features

on their target domain; finally, they concatenated those features

with a new set learned through usual CNN classifier setup

on the desired domain. This study showed the potential for

transfer learning with AE architectures but did not experiment

with an AE-only design for their models, an application we

address in this paper.

Consequently, our contribution includes the following: (i)

exploring different AE architectures including dense and con-

volutional layers, as well as independent and tied-weights

training settings (ii) a detailed study using both the reconstruc-

tion loss function and the discriminative capability of features

extracted using AEs; (iii) an analysis of the feature space on

a more extreme cross-domain scenario, in which the images

classes are disjoint and with dissimilar visual appearance;

(iv) comparison of the discriminative capability of features

obtained from AEs and a pre-trained CNN.

To our knowledge, this study is the first that analyses

feature spaces of AEs providing guidelines for future work

on unsupervised representation learning.

III. LEARNING FEATURE SPACES FOR IMAGES USING

AUTO-ENCODERS (AES)

An AE can be implemented as neural network designed to

learn an identity function; when an AE takes an example x
as input, it should output an x̂ that is as similar as possible

to the original x. From an architectural point of view, an AE

can be divided into two parts: an encoder f and a decoder g.

The encoder takes the original input and creates a restricted

representation of it – we call this representation code – that lies

in a space called latent space. Then, the decoder is responsible

for reconstruct the original input from the code. We illustrate

this concept in Figure 1, where the input is an image of a

hand-drawn digit.

Encoder Code Decoder

x g(z) = x̂f(x) = z

Fig. 1. General structure of AEs.

By restraining the code to be a compact representation

of the input data, the AE is forced to learn an encoding

transformation that contains the most valuable information

about the structure data so that the decoding part is able

to perform well in the reconstruction task. The AE cannot

however learn to literally copy its input, requiring restrictions

to be in place.

Latent spaces of so-called undercomplete AEs have lower

dimensionality than the original input, meaning that its code

cannot hold a complete copy of the input data and enforcing

that the model should learn how to represent the same data

with fewer dimensions. The loss function often used to train

an AE is the squared error function:

L(x, g(f(x))) = ||x− g(f(x))||2 (1)

where L is a loss function (e.g. mean squared error), x is

an input sample, f represents the encoder, g represents the

decoder, z = f(x) is the code generated by the encoder and

x̂ = g(f(x)) is the reconstructed input data. If functions f(.)
and g(.) are linear they can be written in the form:

f(x) = Wex+ be = z

g(z) = Wdz + bd = x̂,

were We is a weight matrix for the encoder, be is a vector

of bias terms for the encoder, while the Wd and bd are,

respectively the weight matrix and bias vector for the decoder.

We say the AE has tied weights when Wd = W t
e , i.e. the

AE tries to learn a single weight matrix that is assumed to

have an inverse transformation given by its transpose.

In summary, we say that an AE generalises well when it

understands the data-generating distribution – i.e. it has a low

reconstruction error for data generated by such mechanism,

while having a high reconstruction error for samples that were

not produced by it [1].

Let the decoder f(.) be linear, and L(.) computed for

all training examples be the mean squared error, then the

undercomplete AE is able to learn the same subspace as

the PCA (Principal Component Analysis), i.e. the principal

component subspace of the training data [2]. Because of this

type of behaviour AEs were often employed for dimension-

ality reduction. Therefore, a side-effect of learning how to

reconstruct the input images, the latent space represents a

441

feature embedding for the images that retains the most relevant

information about the visual content.

One can build Convolutional AEs by replacing dense layers

of a traditional AE with convolutional layers. Those models

are useful because they can be designed to obtain hierarchical

feature extraction via the auto-encoder architecture. Masci

et al. [19] described convolutional auto-encoders for both

unsupervised representation learning and also to initialise

weights of CNNs.

x, 28× 28× 1

Flatten x to 784× 1

Encoder 1: dense 128

code f(x) = z

Decoder 1: dense 784

Re-size to 28× 28× 1

Conv.L (4) 3× 3

Flatten to 3136× 1

Encoder 1: dense 392

Encoder 2: dense 196

code z

Decoder 1: dense 392

Decoder 2: dense 784

Tran.Conv.L (4) 3× 3

g(z) = x̂

Fig. 2. Illustrations of two undercomplete AE architectures with input x as
a 28 × 28 grayscale image. On the left hand side a dense auto-encoder is
employed: the image is flattened to a 784× 1 vector, then an encoding layer
reduce this to a 128-d code, which is then transformed back into a 784-d
vector. Finally, the result x̂ is re-sized back to 28 × 28. On the right hand
side, the AE is deeper and starts with a Convolutional layer with 4 filters 3×3
, generating 4 feature maps each with 28×28, which is flattened and given as
input to two encoding layers to generate the code. Then three decoding layers
(two dense, one transposed convolutional layer) are responsible to reconstruct
the image which is re-sized to its original 28× 28 size.

To illustrate different architectures, we show examples of

undercomplete AEs in Figure 2, in which the first has a single

layer as encoder and a single layer as decoder so that the

code is computed by z = f(x), and the output x̂ = g(z). The

second example includes a convolutional layer with 4 feature

maps. This has the effect to allow filtering the input image

in order to obtain a higher dimensional representation to be

flattened from 28×28×4 to 3136×1, obtaining an intermediate

representation x1 = f1(x). This is then offered to a two-

layer encoding process via two nested functions, producing the

code z = f3(f2(x1)). The code is then transformed by two

decoding functions, producing the output as x̂ = g2(g1(z)).
Each layer usually employ an activation function, allowing

the encoding/decoding functions to be non-linear. In this

paper we use Rectified Linear Units (ReLU) for Convolutional

layers, and Sigmoid functions for dense layers. Note that, by

allowing the functions to be nonlinear, and adding several

layers we are increasing the capacity of the AE. In those

scenarios, despite the fact that their code is smaller than the

input, undercomplete AE still can learn how to copy the input,

because they are given sufficient capacity.

In this paper we explore different AE architectures with the

objective of learning a latent space that can be used in unseen

images for feature extraction with eyes on later retrieval and

classification. Note that during the training process no label

information is used so this process is fully unsupervised. In

the next section we describe the investigated strategies and the

experimental setup.

IV. METHOD

A. Overall experimental setup

For each dataset, we use the training set only to train

the auto-encoders, since we investigate unsupervised learning

assuming no labels are available in the training set. The

test sets are used to evaluate, via classification accuracy, the

feature spaces formed by the auto-encoders as well as the

one from a pre-trained Convolutional Network. We do not

intent to compare our results with state-of-the art classification

methods, but rather to evaluate how discriminative are the

representations obtained from the different models.

B. Datasets

The images from MNIST and Fashion datasets were used

in our experiments. MNIST has numeric handwritten digits

with 60,000 training and 10,000 testing examples [15]. The

10 different class of digits (from 0 to 9) are centred in

grayscale images with fixed resolution of 28×28. The Fashion

dataset [16] was designed to be similar to MNIST in terms of

resolution and number of categories, but instead it has clothes

and accessories. Figure 3 shows examples of both datasets.

(a) MNIST

(b) Fashion

Fig. 3. Examples from the 10 categories of MNIST (a) and Fashion (b)

442

C. AE architectures

Several architectures and training strategies are investigated,

comprising convolutional and dense layers with different sizes.

We also vary the size of the code, i.e. the latent space, usually

between 256 to 32 dimensions. The different architectures

investigated are described as follows:

• 2-layer dense (2D): Encoder and decoder with 1 dense

layer each, latent space with size 128, 64 or 32: with and

without tied weights (total 2 hidden layers);

• 4-layer dense (4D): Encoder and decoder with 2 dense

layers each, intermediate representation with size 256,

latent space with size 128, 64 or 32: with and without

tied weights (total 4 hidden layers);

• 6-layer dense (6D): Encoder and decoder with 3 dense

layers each, intermediate representation with size 392,

then 192, latent space with size 128, 64 or 32: with and

without tied weights (total 6 hidden layers);

• 6-layer dense with conv.layer (6D+C): 1 convolutional

layer with 4 filters 3 × 3, encoder and decoder with 3

dense layers each, intermediate representation with size

392 a latent space with sizes 128, 64 or 32 (total 7 hidden

layers);

Network training: for all architectures the batch size is

100, with a total of 10,000 iterations on the backpropagation

algorithm. A fixed learning rate of 0.0025 was employed in

the optimisation algorithm RMSprop.

D. Evaluation

The training set of each dataset is only used to train the auto-

encoder. Then the test set is used to compute two evaluation

measures:

• Reconstruction error (AEs): the first evaluation measure

is the mean squared error (see Equation 1) on the test test

images. This is a measure of how well the AE is capable

of reconstructing unseen images.

• Classification accuracy (AEs and CNN): we employ

Support Vector Machine (SVM) classifiers to analyse the

linear separability of the latent space, i.e. the space of the

codes. Intuitively, a more adequate feature space performs

better in SVM, which finds the best as possible linear

discriminator with learning guarantees [20], [21]. This

way the classification accuracy can be seen as a feature

space quality measure [3]. A 10-fold cross validation

procedure on the test set is used to obtain mean and

standard deviation values of accuracy. This is a proxy

measure for the discriminant capability of the latent space

for unseen images, i.e. images not used to train the auto-

encoder or the CNN (we employed a CNN pre-trained

using ImageNet as comparison).

V. RESULTS AND DISCUSSION

The results are divided into subsections, in which we

analyse: the dimensionality reduction effect, i.e. the use of

different code sizes. Then we discuss usage of tied weights and

convolutional layers. Finally, we show how the AEs behave

when trained in one domain but used to reconstruct or extract

features from another dataset.

A. Dimensionality Reduction

The first attempt is to use the simplest architecture possible,

with just 2 dense layers (AE-2D). In Figure 4 we show

examples of images reconstructed using AE-2D architectures

with different code sizes. In Table I the quantitative measures

are shown, in which we see the reconstruction error (MSE)

increases when a more restricted code is used. For this

architecture, the use of tied weights does not look to help.

For MNIST, using AE-2D with no tied weighs with a 64 or

128-d code is enough to produce a 92% classification accuracy,

while Fashion’s best result, 84% was using a 128-d code.

TABLE I
CLASSIFICATION RESULTS FOR MNIST USING AE-2D ARCHITECTURE

MSE Train. MSE Test SVM Accuracy

Independent encoder/decoder

M
N

IS
T 32 0.02327 0.02385 0.88± 0.06

64 0.00941 0.00878 0.92± 0.05

128 0.00319 0.00362 0.92± 0.05

Tied Weights

M
N

IS
T 32 0.02569 0.02497 0.88± 0.06

64 0.01530 0.01533 0.90± 0.05

128 0.00765 0.00806 0.91± 0.05

MSE Train. MSE Test SVM Accuracy

Independent encoder/decoder

F
as

h
io

n 32 0.02619 0.02578 0.75± 0.02

64 0.01555 0.01637 0.82± 0.02

128 0.00868 0.01002 0.84± 0.02

Tied Weights

F
as

h
io

n 32 0.02377 0.02565 0.78± 0.02

64 0.01754 0.01746 0.82± 0.02

128 0.01105 0.01161 0.83± 0.02

The first question is whether increasing the AE capacity
allows to produce (i) a more compact code with the
same discriminative power and/or (ii) better classification
accuracy. To answer that question we trained a 4-layer dense

AE (AE-4D) with and without tied weights. The results are

in Table II, showing that it indeed helped on (i) but not

in (ii) since dimensionality reduction suffers less in terms

of classification accuracy, but overall no significant gain is

achieved. However, although we improved MNIST’s accuracy

by reaching ∼ 94% for 128-d code, which for many applica-

tions may be sufficient, the remaining results only improved

for smaller codes. In particular, we could not improve the 84%
accuracy for Fashion dataset. Since tied weights does not seem

to help even on AEs with larger capacity, we decided to not

use them in further experiments.

B. Convolutional layers

The second question is related to how a convolutional
layer would help creating a better feature space. In order

to increase further the capacity of the network we either

include a new dense encoding/decoding layer creating AE-6D,

443

128

64

32

(a) MNIST (b) Fashion

Fig. 4. Results of AE-2D (2-layer dense) for MNIST and Fashion datasets: first row includes test set images from each category and the remaning rows
reconstructions using AE-2D with latent spaces sizes 128, 64 and 32 dimensions

TABLE II
CLASSIFICATION RESULTS FOR MNIST USING AE-4D ARCHITECTURE

MSE Train. MSE Test SVM Accuracy

Independent encoder/decoder

M
N

IS
T 32 0.01148 0.01186 0.91± 0.04

64 0.00833 0.00917 0.93± 0.04

128 0.00673 0.00828 0.94± 0.04

Tied weights

M
N

IS
T 32 0.01534 0.01483 0.90± 0.06

64 0.01089 0.01083 0.91± 0.05

128 0.00708 0.00795 0.92± 0.04

MSE Train. MSE Test SVM Accuracy

Independent encoder/decoder

F
as

h
io

n 32 0.01610 0.01671 0.82± 0.02

64 0.01317 0.01365 0.83± 0.02

128 0.01200 0.01365 0.84± 0.02

Tied weights

F
as

h
io

n 32 0.01688 0.01663 0.81± 0.02

64 0.01262 0.01369 0.83± 0.02

128 0.01143 0.01185 0.84± 0.01

or replace one encoding dense layer with a convolutional layer

to create AE-6D+C. We experimented with latent spaces with

32, 64, 128 dimensions as before. Figure 5 shows examples of

reconstructed images: in general the convolutional layer seem

to have helped reconstructing some details such as the digits 8,

9 for MNIST, as well as for t-shirt, dress and shirt categories of

Fashion in terms of the object’s grayscale value and similarity

with the input image.

The classification accuracy results are shown in Table III,

in which we see that the convolutional layer was important

for learning a discriminative feature space for the datasets,

making it possible to use a 32-d code for both datasets with

small decrease in the accuracy.

C. Cross-domain analysis

In order to complement this analysis, we perform a cross-

domain experiment in which one dataset is used as “source” to

train the AE, which is then used to construct the feature space

of another “target” dataset, for which only the test images are

used.

Thus, in this section we try to answer a third question about

learning features: how well an AE trained in some dataset

TABLE III
CLASSIFICATION RESULTS FOR MNIST USING AE-6D ARCHITECTURE

MSE Train. MSE Test SVM Accuracy

Dense (AE-6D)

M
N

IS
T 32 0.02127 0.02254 0.92± 0.04

64 0.01639 0.01973 0.94± 0.04
128 0.01728 0.01674 0.95± 0.03

Convolutional

M
N

IS
T 32 0.01284 0.01288 0.93± 0.04

64 0.00898 0.00981 0.93± 0.05
128 0.00977 0.01012 0.94± 0.04

MSE Train. MSE Test SVM Accuracy

Dense (AE-6D)
F

as
h
io

n 32 0.02063 0.02108 0.78± 0.03
64 0.01922 0.02051 0.78± 0.02

128 0.01826 0.01873 0.80± 0.02

Convolutional

F
as

h
io

n 32 0.01349 0.01654 0.85± 0.02
64 0.01755 0.01604 0.87± 0.03

128 0.01189 0.01345 0.88± 0.02

is useful to other domains? This allows to understand if we

can rely on weights that are learned considering a specific

domain in order to obtain features that are still discriminative

for images with a different visual content. In order to answer

this question, two scenarios were considered:

• Fashion source (training set), MNIST target (test set): im-

age reconstruction results in Figure 6-(a), and quantitative

results in Table V,

• MNIST source (training set), Fashion target (test set): im-

age reconstruction results in Figure 6-(b), and quantitative

results in Table IV,

TABLE IV
RESULTS OF CROSS-DOMAIN FASHION TO MNIST

Encoder/decoder independentes

MSE Train. MSE Test SVM Accuracy

4D 0.00904 0.03498 0.94± 0.04

4D-TW 0.00776 0.02651 0.94± 0.03

6D 0.01423 0.05904 0.80± 0.06

6D+C 0.01298 0.04406 0.93± 0.04

The quantitative results indicate that an AE with less capac-

ity usually performs better considering both image reconstruc-

tion and classification accuracy. This corroborates the intuition

444

6D

6D+C

(a) MNIST (b) Fashion

Fig. 5. Results of AE-6D (6-layers dense) and AE-6D+C (6-layers with a conv.layer) for MNIST and Fashion datasets: first row includes test set images
from each category and the remaining rows the AE-6D and AE-6D+C reconstruction results

4D

4D-TW

6D

6D+C

(a) Fashion (training) to MNIST (testing) (b) MNIST (training) to Fashion (testing)

Fig. 6. Results of cross-domain experiments with AE-4D, AE-4D-TW (tied weights), AE-6D (6-layers dense) and AE-6D+C (6-layers with a conv.layer) for
MNIST and Fashion datasets: (a) training on Fashion and using the AE model to reconstruct images and obtain the MNIST representation, (b) training on
MNIST and using the AE model to reconstruct images and obtain the Fashion representation. The first row are the original images, and the ones below the
reconstructed versions considering the different AE architectures.

TABLE V
RESULTS OF CROSS-DOMAIN MNIST TO FASHION

MSE Train. MSE Test SVM Accuracy

4D 0.00527 0.07631 0.82± 0.02

4D-TW 0.00414 0.08374 0.82± 0.02

6D 0.01079 0.08630 0.78± 0.02

6D+C 0.00946 0.08772 0.83± 0.02

stated in [22] that says an AE with enough capacity could

learn a one-dimensional code such that every similar instance

is mapped to a single neuron in the bottleneck layer using the

encoder. This may be what happens when inspecting AE-6D

reconstructions from Fashion to MNIST (see Figure 6(a)), in

which the digits are reconstructed to resemble clothes, and

also from MNIST to Fashion (see Figure 6(b)) in which for

example the trousers (second image from left to right) is

reconstructed by the AE-6D almost as an ’8’ digit.

Even with imperfect reconstruction, Fashion dataset can be

used successfully to train an AE that serves as an MNIST

feature extraction, achieving 94% accuracy. As a comparison,

supervised CNNs trained with the whole 60k MNIST images

often produce around 98% accuracy on test set, while complex

semi-supervised approaches that learn with 3k labels produce

95−98% accuracy [23]. Considering we learn the embedding

using a different dataset, a 0.94% accuracy indicates the

potential of unsupervised representation learning.

The opposite way (from MNIST to Fashion) is more chal-

lenging: this is in fact expected since MNIST lacks object with

larger flat regions and texture, as well as different grayscales.

As a comparison, deep methods can achieve 87 − 91% ac-

curacy on Fashion dataset [16], [24]. Even using the limited

MNIST as training images, the latent space is still sufficient to

allow some degree of linear separability between the classes,

achieving 83% accuracy.

D. Unsupervised representations: AE versus pre-trained CNN

Since many studies employ pre-trained CNNs as a way to

obtain features often using the ImageNet weights, we per-

formed a comparison between the discriminative capability of

features: obtained from an auto-encoder and obtained from the

feature maps of the last convolutional layer of a ResNet50 [25]

that was trained with ImageNet. This allows to shed some

light on the question: how well does off-the-shelf CNN
features perform when compared with the AE features?
The results are shown in Table VI indicating that off-the-shelf

CNN features are no better than those obtained via AEs, in

particular those composed of both convolutional and dense

layers. For the Fashion dataset, in particular, the classification

accuracy of AE features are slightly higher when compared

with those computed with ResNet50.

VI. CONCLUSION

In this paper we show how AEs can be used to obtain

features and use those features across different visual domains.

First, the dimensionality of the code to be learned is dependent

on the capacity of the AE: a deeper AE seems to allow a

more compact latent space keeping the accuracy. Second, the

445

TABLE VI
COMPARISON BETWEEN THE AE (WITH CONVOLUTIONAL LAYER, 128
FEATURES), AE CROSS DOMAIN (WITH CONVOLUTIONAL LAYER, 256
FEATURES) AND PRE-TRAINED CNN (RESNET50, 2048 FEATURES).

SVM Accuracy
M

N
IS

T AE-Conv-128 0.94± 0.04

AE-CD-Conv-256 0.93± 0.04

ResNet50-2048 0.96± 0.03

SVM Accuracy

F
as

h
io

n AE-Conv-128 0.88± 0.02

AE-CD-Conv-256 0.83± 0.02

ResNet50-2048 0.83± 0.02

inclusion of convolutional layers allow a better overall result

in terms of both error of reconstruction and linear separability

of the feature space. The third conclusion is related to the

cross-domain experiments, in which the use of tied weights

helped achieving a lower MSE, also reflecting on a better

reconstruction of the images. With respect to the cross domain

feature extraction, one must either keep the AE with a limited

capacity, or include a convolutional layer to help filtering

spatial relationships between the pixels. Finally, those features

are comparable or slightly better when compared with the

features obtained with a state-of-the art CNN.

The use of AEs is convenient because it allows unsuper-

vised representation learning with a good degree of linear

separability, with potential to be transferred across different

domains. Future work might investigate the use of transfer

learning methods in order to improve cross-domain feature

embedding, as well as exploring other flavours of AEs, such

as the denoising, contractive and regularised versions.

VII. ACKNOWLEDGMENTS

The authors would like to thank FAPESP (grants

#2016/16111-4, #2017/22366-8) and CNPq (Researcher Fel-

lowship grant #307973/2017-4) for financial support. This

work is also partially supported by the CEPID-CeMEAI

(FAPESP grant #2013/07375-0).

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[2] M. Ponti, L. S. Ribeiro, T. S. Nazare, T. Bui, and J. Collomosse,
“Everything you wanted to know about deep learning for computer
vision but were afraid to ask,” in 30th SIBGRAPI Conference on
Graphics, Patterns and Images Tutorials (SIBGRAPI-T 2017), 2017, pp.
17–41.

[3] R. F. de Mello and M. A. Ponti, Machine Learning: A Practical
Approach on the Statistical Learning Theory. Springer, 2018.

[4] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features
off-the-shelf: an astounding baseline for recognition,” in Computer
Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Con-
ference on. IEEE, 2014, pp. 512–519.

[5] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox, “Dis-
criminative unsupervised feature learning with convolutional neural
networks,” in Advances in Neural Information Processing Systems, 2014,
pp. 766–774.

[6] T. Bui, L. Ribeiro, M. Ponti, and J. Collomosse, “Sketching out the de-
tails: Sketch-based image retrieval using convolutional neural networks
with multi-stage regression,” Computers & Graphics, vol. 71, pp. 77–87,
2018.

[7] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” in International
Conference on Learning Representations, 2017.

[8] T. Nazare, G. P. da Costa, W. Contato, and M. A. Ponti, “Deep
convolutional neural networks and noisy images,” in Iberoamerican
Conference on Pattern Recognition (CIARP 2017), vol. LNCS 10657,
2017.

[9] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio et al., “A closer look
at memorization in deep networks,” in International Conference on
Machine Learning, 2017, pp. 233–242.

[10] P. J. S. Vega, R. Q. Feitosa, V. H. A. Quirita, and P. N. Happ,
“Single sample face recognition from video via stacked supervised auto-
encoder,” in Graphics, Patterns and Images (SIBGRAPI), 2016 29th
SIBGRAPI Conference on. IEEE, 2016, pp. 96–103.

[11] H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach,
“Stacked autoencoders for unsupervised feature learning and multiple
organ detection in a pilot study using 4d patient data,” IEEE transactions
on pattern analysis and machine intelligence, vol. 35, no. 8, pp. 1930–
1943, 2013.

[12] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the fourteenth
international conference on artificial intelligence and statistics, 2011,
pp. 215–223.

[13] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, no. Dec, pp. 3371–3408, 2010.

[14] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: transfer learning from unlabeled data,” in Proceedings of the
24th international conference on Machine learning. ACM, 2007, pp.
759–766.

[15] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[16] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[17] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans-
actions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[18] Z. Li, Y. Fan, W. Liu, Z. Yu, and F. Wang, “Emotional textile image
classification based on cross-domain convolutional sparse autoencoders
with feature selection,” Journal of Electronic Imaging, vol. 26, no. 1, p.
013022, 2017.

[19] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolu-
tional auto-encoders for hierarchical feature extraction,” Artificial Neural
Networks and Machine Learning–ICANN 2011, pp. 52–59, 2011.

[20] V. N. Vapnik, “An overview of statistical learning theory,” IEEE trans-
actions on neural networks, vol. 10, no. 5, pp. 988–999, 1999.

[21] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[22] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[23] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-
supervised learning with deep generative models,” in Advances in Neural
Information Processing Systems, 2014, pp. 3581–3589.

[24] L. Rieger, “Separable explanations of neural network decisions,” in 31st
Conference on Neural Information Processing Systems, 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

446

