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Abstract

Graph Neural Networks (GNNs) have achieved remarkable performance in the
task of semi-supervised node classification. However, most existing GNN models
require sufficient labeled data for effective network training. Their performance
can be seriously degraded when labels are extremely limited. To address this
issue, we propose a new framework termed Contrastive Graph Poisson Networks
(CGPN) for node classification under extremely limited labeled data. Specifically,
our CGPN derives from variational inference; integrates a newly designed Graph
Poisson Network (GPN) to effectively propagate the limited labels to the entire
graph and a normal GNN, such as Graph Attention Network, that flexibly guides
the propagation of GPN; applies a contrastive objective to further exploit the
supervision information from the learning process of GPN and GNN models.
Essentially, our CGPN can enhance the learning performance of GNNs under
extremely limited labels by contrastively propagating the limited labels to the
entire graph. We conducted extensive experiments on different types of datasets to
demonstrate the superiority of CGPN.

1 Introduction

Graph-based Semi-Supervised Learning (SSL) refers to classifying unlabeled data based on a handful
of labeled data and a given graph structure indicating the connections between all data. Recently,
graph-based SSL has attracted increasing attention due to its solid mathematical foundation, and
satisfactory performance [1, 2, 3].

As the mainstream to solve graph-based SSL problems, Graph Neural Networks (GNNs), which
operate in the graph domain, have achieved impressive performance in recent years [4, 5, 6, 7].
Nevertheless, current GNNs, such as Graph Convolutional Networks (GCNs) [8] and graph attention
networks (GATs) [9], require sufficient labeled data to obtain satisfactory generalization abilities.
Unfortunately, the reliance on sufficient labeled data increases the burden of data collection, and the
number of labels can be extremely limited in some real-world scenarios. The performance of most
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current GNNs seriously declines as the label size shrinks, since the scarce supervision signals are
insufficient to train a model with satisfactory discriminative ability, see Figure 1. To the best of our
knowledge, few studies have focused on semi-supervised classification with GNNs at extremely low
label rates [10].
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Figure 1: Classification performance of GCN,
GAT, and our proposed CGPN with different
sizes of labeled data on Cora [11] dataset.

In line with the aforementioned observations, this
paper proposes a new framework termed Con-
trastive Graph Poisson Networks (CGPN) to ad-
dress the problem of semi-supervised node clas-
sification under extremely low label rates. Deriv-
ing from the variational inference [12, 13], our
proposed CGPN framework approximates the in-
tractable posterior with a surrogate distribution,
where two types of GNNs have been adopted for
instantiation.

Accordingly, we first design a new Graph Poisson
Network (GPN) to propagate the limited labels to
the entire graph effectively. Specifically, our GPN
is motivated by Poisson learning [14]; flexibly
models the Poisson label propagation based on
attention mechanism; and leverages the structural
information to better guide the propagation of labels. Meanwhile, we exploit another GNN, such as
GAT, together with the proposed GPN to model the approximated posterior according to variational
inference.

On this basis, we acquire predictions from two comparable views, where a contrastive objective can be
naturally incorporated to jointly refine the learning process of the GPN and GNN models. Moreover,
the supervision signals implicitly contained in the massive unlabeled data can be exploited with the
formulated contrastive loss. As a result, the model learning ability of our proposed framework can
be lifted. Experimental results on benchmark datasets confirm the strong benefits of our proposed
CGPN when dealing with semi-supervised node classification at very low label rates.

In summary, the contributions of this paper lie in three folds:

First, we propose a novel GNN framework termed CGPN to solve the semi-supervised node classifi-
cation with extremely limited labels. CGPN significantly outperforms the existing GNNs.

Second, we design a new Graph Poisson Network (GPN). Different from the Poisson learning
algorithm, our GPN incorporates graph-structure information and could be trained in an end-to-end
manner to guide the propagation of labels more flexibly.

Third, we integrate contrastive learning into the variational inference framework, so that extra
supervision information can be explored from the massive unlabeled data to help train our CGPN
framework.

2 Problem description

We start by formally introducing the problem of graph-based SSL. Given a set of n = l+ u examples
Ψ = {x1, · · · ,xl,xl+1, · · · ,xn}, where the first l examples are provided with the labels {yi}li=1 and
the remaining u examples constitute the unlabeled set with typically l≪ u. Let X ∈ Rn×d denote
the feature matrix with the i-th row formed by the feature vector xi, and Y ∈ Rn×c denote the label
matrix with its (i, j)-th element Yij = 1 if xi belongs to the j-th class and 0 otherwise. Here d is
the feature dimension and c is the number of classes. The dataset Φ is represented by an undirected
graph G = ⟨V, E⟩, where V represents the node set containing all examples and E is the edge set
modeling the similarity among the nodes/examples. The adjacency matrix of G is denoted as A,
where Aij = 1 if there exists an edge between xi and xj and Aij = 0, otherwise. In this paper, we
target transductive graph-based SSL which aims to find the labels yl+1, yl+2, · · · , yn of the unlabeled
examples xl+1,xl+2, · · · ,xn based on Ψ.
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3 Related work

3.1 Graph-based semi-supervised learning

SSL methods focus on training models with small amounts of labeled data as well as relatively large
amounts of unlabeled data for [15, 16, 17, 18, 19]. Graph-based SSL algorithms have been one of the
most popular research topics during the past decades. The early graph-based techniques are designed
based on the simple assumption that nearby nodes are likely to have the same label. This goal can
be achieved through the low-dimensional embeddings with Laplacian eigenmaps [20, 21], Markov
random walks [22], etc. Meanwhile, graph partition [23] offers another important line in graph-based
SSL. To further enhance the learning capacities, various techniques have been proposed to model
the data features and graph structure jointly, such as Planetoid [24], where the supervised classifier
is regularized with a Laplacian regularizer or an embedding-based regularizer. Recently, a set of
graph-based SSL approaches have been proposed to improve the performance of the above-mentioned
techniques, including [25, 14, 26].

3.2 Graph neural networks

In the past few years, increasing attention has been paid to GNN models [27, 28, 26, 29, 30, 31, 32].
Early-staged works aim to derive diverse types of graph convolution in spectral-domain based on
the graph spectral theory [8, 33, 4]. In [33], a general graph convolution framework based on
graph Laplacian is first proposed. Afterwards, Defferrard et al. [4] approximate the convolutional
filter via using a K-order Chebyshev polynomial, in order to avoid the intense calculations of
eigendecomposition of the normalized graph Laplacian. In addition to this, Kipf and Welling [8]
further simplify the graph convolution by a localized first-order approximation, which brings about
more efficient filtering operations than spectral CNNs. Another line of research efforts focus on
directly performing graph convolution in the spatial domain [5, 27, 34, 35]. In spatial GNN models,
the convolution operation is defined as a weighted average function over the neighbors of each node,
which characterizes the impact exerting to the target node from its neighboring ones. For instance,
Hamilton et al. [5] propose a general inductive framework called GraphSAGE, which is able to learn
an embedding function generalizing to previously unseen graph nodes. Besides, in [9], the graph
attention network (GAT) is devised by utilizing the attention mechanism, which assigns different
weights to the neighboring nodes and aggregates feature with discrimination. Although these models
exploit the inter-dependencies among labeled and unlabeled nodes, their performances can still
degrade dramatically when the number of labels is extremely limited.

3.3 Poisson learning

Poisson learning is motivated by the need to address the degeneracy of Laplacian SSL when label
information is very limited. To be concrete, traditional Laplacian learning algorithm [15] aims at
solving the following problem:{

Lu(xi) = 0, if l + 1 ≤ i ≤ n,
u(xi) = yi, if 1 ≤ i ≤ l,

, (1)

where L represents the unnormalized graph Laplacian and u(xi) ∈ Rc is the label vector of xi. Here,
the node xi belongs to the j-th class if the j-th component uj(xi) is the largest in u(xi). Although
Laplacian learning works very well for SSL tasks with a moderate number of labeled examples, the
performance becomes quite poor at very low label rates.

Different from Laplacian learning, where labels are imposed as boundary conditions, in Poisson
learning, labels appear as the source term. The solution of a Poisson equation can be computed as

Lu(xi) =

l∑
j=1

(yj − ȳ)δij for i = 1, ..., n (2)

satisfying
∑n

i=1 diu(xi) = 0, where δij = 1 if i = j and δij = 0, otherwise, ȳ = 1
lF1 with

F ∈ Rc×l denoting the label matrix of the l labeled nodes, and di =
∑n

j=1 Aij . The Poisson
equation (2) can be solved efficiently with a simple iteration, and the result of the (t+ 1)-th iteration
can be obtained as

U(t+1) ← U(t) +D−1(B⊤ − LU(t)), (3)
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where D is the diagonal matrix with Dii = di, L is the Laplacian matrix, and B = [F− ȳ,O] is the
source term. Here, O ∈ Rc×(n−l) indicates a zero matrix. After T iterations, the prediction can be
acquired as U(T ). The specific interpretation of Poisson learning algorithm can be found in [14].

4 Methodology

This section details our proposed CGPN framework. Specifically, we describe the critical components
of CGPN by explaining the variational inference framework, presenting the instantiation with GPN
and GNN models, and illustrating the contrastive label inference.

4.1 Inference framework

To infer the labels of the unlabeled nodes, i.e., YU , we need to estimate the posterior distribution given
the node features X, the observed labels YL, and the adjacency matrix A, namely pθ(YU |A,X,YL)
with parameters θ. Computation of this posterior is usually analytically intractable, so we resort to
approximate posterior inference methods. Inspired by the recent advances in scalable variational
inference [36, 37], we introduce a distribution qϕ(YU |A,X,YL) parameterized by ϕ to approximate
the true posterior pθ(YU |A,X,YL). Afterwards, we can write the Evidence Lower BOund (ELBO)
as

LELBO(θ, ϕ) = log pθ(YL|A,X)−DKL(qϕ(YU |A,X,YL)||pθ(YU |A,X)), (4)

where DKL(·||·) represents the Kullback-Leibler divergence between two distributions. For practical
use, it remains to specify the parametric forms of qϕ(YU |A,X,YL) and pθ(Y|A,X) with GNNs.

4.2 Instantiations

In this section, the instantiation of qϕ(Y|A,X,YL) and pθ(Y|A,X) will be illustrated.

4.2.1 Instantiation of qϕ(Y|A,X,YL) with Graph Poisson Networks

To approximate the posterior model qϕ(Y|A,X,YL), we need a strong function with the inputs
A, X, and YL and outputs the probability of Y. Due to the extremely scarce label information in
YL, most existing methods are ineffective here. Fortunately, the Poisson learning algorithm [14]
is recently proposed to address the scenarios with very limited labels. The superiority of Poisson
learning over traditional Laplacian learning has been proven both theoretically and experimentally
at very low label rates [14]. However, the graph structure has not been fully leveraged to guide the
propagation of labels in Poisson learning. Concretely, Poisson learning relies on a fixed graph which
can be noisy in reality, and thus the intrinsic relationships among graph nodes cannot be well explored.
Meanwhile, the structural information constituted by the neighboring node features has not been
exploited, since Poisson learning mainly emphasizes the propagation of the input label information.
As a consequence, inaccurate label predictions can be accumulated with iterative propagation, which
inevitably results in performance degradation. To handle these difficulties, we propose a more flexible
GNN model called ‘Graph Poisson Networks’ (GPN).

Inspired by GAT [9], we intend to adaptively capture the importance of the neighbors exerting to the
target node via attention mechanism. In this way, the graph information can be gradually refined via
network training, which makes the propagation of labels more reasonable. To be specific, we first
compute the attention coefficient eij between nodes xi and xj as

eij = a⃗⊤[Wxi;Wxj ], (5)

where a⃗ is a trainable weight vector, W is a trainable weight matrix, and [·; ·] denotes the concatena-
tion operation. The attention coefficient eij is usually normalized across the neighbors of xi with a
softmax function to make it comparable across nodes:

αij =
exp(eij)∑

k∈Ni
exp(eik)

, (6)

where Ni denotes the indices of xi’s neighbors. In our GPN, the normalized attention coefficient αij

is adopted to represent the edge weights of the input adjacency matrix A and can be further optimized
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via network training. In this way, improved edge weights can help guide the propagation of labels in a
more reasonable way. At this point, the output of our GPN can be obtained by the following iteration:

Ũ(t) ← Ũ(t−1) + D̃−1
(
B⊤ − L̃Ũ(t−1)

)
, (7)

where D̃ and L̃ represent the diagonal matrix and Laplacian matrix of the attention-based graph,
respectively, and Ũ(t) is the result of the t-th iteration.

Note that Eq. (7) fails to incorporate the structural information formed by the node features, as the
prediction in each iteration mainly relies on the label information. To capture the meaningful structural
information, a feature transformation module fFT is adopted to introduce feature information
explicitly. Specifically, the feature transformation module fFT predicts labels based on the node
features and can be expressed as a single-layer perceptron. Afterwards, by propagating the predictions
of fFT iteratively, the feature information within the neighborhood structure can be incorporated
correspondingly and further improve the final predictions. Therefore, we modify the output of the
(T − 2)-th iteration, namely Ũ(T−2), to

Ũ(T−2) ← Ũ(T−2) + fFT (X), (8)

where T denotes the number of iterations. By doing so, the involved feature information can be
further propagated and the extracted structural information can help refine the label predictions.
In addition, the feature transformation module can also accelerate the convergence of the iterative
process shown in Eq. (7). Note that the outcomes of fFT can only be propagated in the last two
iterations to avoid performance degradation which is caused by over-smoothing.

4.2.2 Instantiation of pθ(Y|A,X) with graph neural networks

For pθ(Y|A,X) in the ELBO obejective function, we can flexibly instantiate it with a GNN model
that takes A and X as the inputs and outputs the probability of Y. Note that most of the existing
GNN models are applicable. In this paper, the well-known Graph Convolutional Networks (GCN)
[8] and GAT [9] are considered for instantiation. Note that when we employ GAT to instantiate
pθ(Y|A,X), the attention coefficients are shared across GPN and GAT, so that the scale of network
parameters can be reduced. Additionally, the GAT can help guide the propagation of labels through
the shared attention coefficients.

4.3 Contrastive label inference

Furthermore, we intend to leverage the supervision signals beyond the limited labels. In this paper,
contrastive learning [38, 39] is utilized to explore extra supervision information from the massive
unlabeled data for model training, which can improve the performance of label inference. To be
specific, we maximize the agreement between the predictions of the same node that are generated
from qϕ(Y|A,X,YL) and pθ(Y|A,X), i.e., zi and z̃i. Meanwhile, we pull the predictions of
different node pairs away. As a result, the pairwise contrastive loss between zi and z̃i can be defined
as

LPC(zi, z̃i) = −log
exp(⟨zi, z̃i⟩ /τ)

exp(⟨zi, z̃i⟩ /τ) +
n∑

j=1

1[j ̸=i] exp(⟨zi, z̃j⟩ /τ) +
n∑

j=1

1[j ̸=i] exp(⟨zi, zj⟩ /τ)
,

(9)

where ⟨·, ·⟩ denotes the inner product and τ is a tunable temperature parameter. Based on Eq. (9), the
overall contrastive objective to be minimized is

LCont =
1

2n

n∑
i=1

(LPC(zi, z̃i) + LPC(z̃i, zi)). (10)

In addition to the contrastive loss, a standard multiclass softmax cross-entropy loss LCE should also
be applied to penalize the difference between the outcomes of qϕ(Y|A,X,YL) and the ground-truth
labels, i.e., ZL and YL. Hence, by assigning the weight hyperparameters λ1 and λ2 to LCE and
LCont correspondingly, we arrive at the total loss as

L(θ, ϕ) = −LELBO(θ, ϕ) + λ1LCE(ZL,YL) + λ2LCont, (11)
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Figure 2: The framework of our Contrastive Graph Poisson Networks (CGPN). qϕ(Y|A,X,YL)
and pθ(Y|A,X) are instantiated by GPN and GNN models, respectively. To approximate the true
posterior, the GPN and GNN models are jointly optimized based on the ELBO objective, where a
contrastive loss is also utilized to explore extra supervision signals for stable model training.

Table 1: Dataset statistics

Datasets Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Amazon Photo 7,650 119,081 745 8

where ZL is generated by the instantiated model qϕ(Y|A,X,YL) denoting the prediction of the
labeled examples XL. With the contrastive objective across the GPN and GNN models, the mutual
information can be exploited to improve the ability of label inference. The overall framework is
referred to as Contrastive Graph Poisson Networks (CGPN), of which the overview is exhibited in
Figure 2.

5 Experiments

To reveal the effectiveness of our proposed CGPN framework, extensive experiments have been
conducted on the task of semi-supervised node classification. We mainly focus on evaluating the
model performance under label-scarce settings.

5.1 Experimental settings

Datasets. The experiments are conducted on four commonly used benchmark datasets, including
three widely-used citation networks (i.e., Cora, CiteSeer, and PubMed) [11, 40], and one Amazon
product co-purchase networks (i.e., Amazon Photo) [41]. In the citation networks, the nodes represent
documents and their links refer to citations between documents, where each node is associated with
a bag-of-words feature vector and a ground-truth label. In the product co-purchase networks, the
nodes represent goods and the links indicate that two goods are frequently bought together, where
node features are bag-of-words encoded product reviews, and class labels correspond to the product
categories. The dataset statistics are summarized in Table 1.

Baselines. When we evaluate the performance of different methods in the label-scarce settings,
six state-of-the-art models are used for comparison, including GCN [8], GAT [9], Bayesian Graph
Convolutional Neural Networks (BGCN) [42], Multi-View Graph Representation Learning (MVGRL)
[43], Generalized PageRank Graph Neural Networks (GPRGNN) [44], and Approximate Personalized
Propagation of Neural Predictions (APPNP) [45]. BGCN enhances the learning ability of GNNs
by modeling the uncertainty of the graph structure. MVGRL explores the supervision information
contained in the unlabeled data by contrasting the encodings from two structural views of graphs.
GPRGNN jointly optimizes node feature and topological information extraction to obtain excellent
learning performance for label patterns. APPNP leverages a large and adjustable neighborhood for
convolution by using the relationship between GCN and PageRank. Besides, we also include the
Multi-Layer Perceptron (MLP) without using any graph information as a competitor, where the
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Table 2: Classification accuracy with different label rates on Cora dataset

# Labels per class 1 2 3 4

MLP 26.25±3.05 32.19±3.94 36.20±3.73 38.92±2.59
GCN [8] 44.73±9.16 58.73±7.29 62.38±5.59 67.41±4.09
GAT [9] 46.04±8.07 62.01±7.29 63.65±6.04 68.13±5.07

BGCN [42] 49.92±8.72 64.55±6.84 64.98±6.61 71.69±6.62
MVGRL [43] 56.02±7.04 68.30±4.86 71.39±5.08 73.79±4.29

GPRGNN [44] 51.65±11.61 62.56±6.36 68.54±7.28 71.69±6.62
APPNP [45] 53.52±12.05 62.07±4.46 62.02±9.34 70.92±3.79

CGPN-GCN 60.64±9.18 69.15±9.03 73.54±2.76 74.43±2.25
CGPN-GAT 61.17±7.77 69.93±7.01 73.19±4.35 75.60±1.65

Table 3: Classification accuracy with different label rates on CiteSeer dataset

# Labels per class 1 2 3 4

MLP 26.10±5.00 30.34±5.74 35.99±5.42 38.44±4.60
GCN [8] 32.00±9.77 43.11±4.89 50.44±5.88 56.14±3.24
GAT [9] 35.10±8.77 44.74±9.01 53.68±5.75 59.43±1.88

BGCN [42] 35.16±8.04 46.48±5.70 55.49±6.97 58.99±5.26
MVGRL [43] 42.65±7.89 56.66±5.78 61.70±3.70 63.70±2.33

GPRGNN [44] 32.30±11.41 46.38±9.46 52.60±5.14 59.59±4.30
APPNP [45] 47.94±10.46 56.59±9.22 58.61±11.04 62.34±5.47

CGPN-GCN 50.49±9.72 58.45±7.05 62.07±3.76 64.79±2.11
CGPN-GAT 52.68±9.25 58.52±6.16 62.02±3.88 65.21±2.76

number of layers is set to two. For the proposed CGPN framework, we implement two model variants
where GCN and GAT are used for instantiation, namely CPGN-GCN and CGPN-GAT.

Training details. For all the adopted datasets, we randomly choose one, two, three, and four
labeled nodes per class for training, respectively, in order to evaluate the model performance under
label-scarce settings. The hyperparameters, such as the number of hidden units and the learning rate,
are determined via grid search. In our experiments, the original architecture of GCN is adopted in both
the baselines and CGPN-GCN. In CGPN-GAT, the attention coefficients are shared between GPN
and GAT, where only the single-head attention mechanism is utilized for simplicity. The experiments
are conducted on a Linux server equipped with a Tesla P40 GPU.

5.2 Node classification results

Here, we present the classification results of our proposed CGPN framework (CGPN-GCN and
CGPN-GAT) and the baseline methods at different label rates. The experimental results on Cora,
CiteSeer, PubMed, and Amazon Photo datasets are shown in Tables 2, 3, 4, and 5, respectively,
where the highest record at each label rate is highlighted in bold. We observe that both CGPN-GCN
and CGPN-GAT achieve substantial performance gains at different label rates when compared with
the baselines. In particular, the margin between our proposed framework and the best baseline
method can exceed 4% on Cora and CiteSeer datasets given one labeled node per class, which
demonstrates that the CGPN framework could effectively enhance the learning performance of GNNs.
Although MVGRL utilizes the contrastive objective for graph representation learning, our proposed
CGPN-GCN and CGPN-GAT exhibit better classification results. We hypothesize that the gap
between MVGRL and our CGPN in accuracy is mainly due to that the devised GPN transfers as
much knowledge as possible from the limited labeled nodes to the massive unlabeled ones. Notably,
we could also find that the performance of the two variants, i.e., CGPN-GCN and CGPN-GAT,
seems quite similar since CGPN is a flexible framework and is insensitive to the choices of GNN
instantiations.
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Table 4: Classification accuracy with different label rates on PubMed dataset

# Labels per class 1 2 3 4

MLP 47.84±5.53 53.24±4.73 57.09±4.82 60.29±1.81
GCN [8] 55.40±6.69 62.31±5.89 64.48±5.57 69.34±4.19
GAT [9] 56.49±7.81 63.03±5.77 64.43±5.19 68.47±2.98

BGCN [42] 57.97±6.56 63.86±7.41 66.09±3.86 68.10±3.20
MVGRL [43] 52.20±12.93 60.79±8.74 64.51±8.06 67.69±7.67

GPRGNN [44] 58.36±10.20 61.30±6.59 64.77±8.05 69.73±4.50
APPNP [45] 48.89±15.50 63.74±7.55 66.82±9.76 69.27±4.70

CGPN-GCN 59.84±6.76 64.60±3.20 67.01±4.05 70.94±4.11
CGPN-GAT 61.85±5.60 65.18±3.87 68.67±4.36 70.58±3.87

Table 5: Classification accuracy with different label rates on Amazon Photo dataset

# Labels per class 1 2 3 4

MLP 36.84±9.12 42.67±5.17 55.96±7.02 55.54±5.39
GCN [8] 67.80±10.17 78.42±7.42 82.53±5.07 83.37±2.61
GAT [9] 60.68±12.93 74.59±6.96 78.70±3.78 81.64±3.04

BGCN [42] 53.69±14.43 69.76±12.67 78.26±8.23 79.66±4.49
MVGRL [43] 59.71±8.29 71.35±7.12 75.56±5.29 76.74±4.63

GPRGNN [44] 64.92±12.75 75.28±8.20 81.59±3.10 82.10±2.71
APPNP [45] 67.11±8.40 70.03±11.51 78.99±3.23 81.17±4.03

CGPN-GCN 71.17±8.94 79.54±5.18 84.09±3.98 84.43±1.84
CGPN-GAT 71.35±11.25 78.58±5.48 84.57±2.24 85.41±1.89

5.3 Parametric sensitivity

There are two important hyperparameters that should be manually tuned in our objective function
Eq. (11). The first is λ1 used to regularize the cross-entropy loss of GPN. Another is λ2 assigned
to the contrastive objective. By varying λ1 and λ2 from 0.1 to 1.5 with an interval of 0.2, the
corresponding parametric sensitivity is shown in Figure 3. We find that the behavior of the proposed
CGPN framework is relatively stable with the change of λ1 and λ2. We speculate that GPN and
contrastive modules are mutually beneficial and can collaborate to obtain promising results. Generally,
the two hyperparameters are not difficult to tune in practical applications.
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Figure 3: Parametric sensitivity of λ1 and λ2.

5.4 Ablation study

Inspired by the Poisson Learning (PL) algorithm, the devised GPN model learns to propagate the
limited labels to the entire graph with structural information in an end-to-end way. To shed light on
this critical component, we report the classification results obtained by using GPN and PL in Table 6
and 7, where the sizes of labeled nodes per class are kept identical to those in Sec. 5.2. The results
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Table 6: Classification accuracy of reduced models on Cora dataset

# Labels per class 1 2 3 4

PL [14] 46.23±7.96 60.84±6.50 63.24±5.84 65.59±5.36
GPN 49.26±8.66 64.45±6.09 66.90±5.85 67.40±5.81

CGPN-GCN 60.64±9.18 69.15±9.03 73.54±2.76 74.43±2.25
CGPN-GAT 61.17±7.77 69.93±7.01 73.19±4.35 75.60±1.65

Table 7: Classification accuracy of reduced models on Citeseer dataset

# Labels per class 1 2 3 4

PL [14] 36.43±7.25 40.69±4.87 43.44±5.39 45.33±1.85
GPN 37.64±7.70 48.24±7.73 51.27±5.56 53.40±4.62

CGPN-GCN 50.49±9.72 58.45±7.05 62.07±3.76 64.79±2.11
CGPN-GAT 52.68±9.25 58.52±6.16 62.02±3.88 65.21±2.76

show that our GPN model can effectively boost the performance of Poisson learning at extremely
limited label rates. Meanwhile, the margin between GPN and CGPN frameworks cannot be ignored,
which reveals the power of the extra supervision information explored from massive unlabeled data.

6 Conclusion

In this paper, we propose a novel CGPN framework for semi-supervised node classification with
extremely limited labels. To alleviate the performance degeneracy of the existing GNNs, we devise
a new model termed GPN, which can flexibly propagate the limited labels to the entire graph by
exploiting the structural information. Meanwhile, a contrastive objective is employed to extract
supervision information from massive unlabeled data. As a consequence, the performance of our
CGPN can be effectively enhanced by optimizing the overall objective function. Experimental results
reveal the superiority of our method when compared with various baseline methods. Note that how
to generalize our proposed method to inductive settings will be an interesting focus of study in the
future.

7 Broader impact

Our work could have the following positive impacts: (1) This paper provides a new framework for
SSL on graph-structured data. (2) Our proposed framework can improve the performance of GNNs,
especially when labeled data are extremely limited. (3) The proposed framework is compatible with
different types of GNNs (e.g., GAT and GCN).

Similar to many other machine learning algorithms, the proposed framework can be used for good
and also be used for harm at the same time. Note that GNNs and our method are not immune to such
misuse. Although we have no optimal solution to such a problem, we believe that this can be solved
in the future.

To sum up, we believe our proposed work can be beneficial to society since many important real-world
applications stand to benefit from CGPN when label information is very limited.
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