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Abstract

Online Continual Learning (OCL) models con-
tinuously adapt to nonstationary data streams,
usually without task information. These settings
are complex and many traditional CL methods
fail, while online methods (mainly replay-based)
suffer from instabilities after the task shift. To
address this issue, we formalize replay-based
OCL as a second-order online joint optimization
with explicit KL-divergence constraints on replay
data. We propose Online Curvature-Aware Re-
play (OCAR) to solve the problem: a method that
leverages second-order information of the loss
using a K-FAC approximation of the Fisher Infor-
mation Matrix (FIM) to precondition the gradient.
The FIM acts as a stabilizer to prevent forget-
ting while also accelerating the optimization in
non-interfering directions. We show how to adapt
the estimation of the FIM to a continual setting,
stabilizing second-order optimization for non-iid
data, uncovering the role of the Tikhonov damp-
ing in the stability-plasticity tradeoff. Empirical
results show that OCAR outperforms state-of-the-
art methods in continual metrics, achieving higher
average accuracy throughout the training process
in three different benchmarks.

1. Introduction
Online Continual Learning (OCL) models are trained contin-
uously on a nonstationary data stream. The goal is to obtain
a model that is accurate at any point in time, quickly adapts
to new data (i.e. plasticity), and does not forget old informa-
tion (i.e. stability), without any information about task start,
end, or identity. In this setting, many standard Continual
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Learning (CL) approaches cannot be applied (Aljundi et al.,
2019b; Mai et al., 2022). Many specific OCL methods have
been developed, nearly all replay-based (Yoo et al., 2024),
but several shortcomings still exist: (Soutif-Cormerais et al.,
2023) shows that most OCL methods have high forgetting
and fail to beat a simple replay baseline on some metrics;
(De Lange et al., 2023; Caccia et al., 2022) discovered the
stability gap, a sudden drop in performance at task bound-
aries; (Dohare et al., 2024) even observed loss of plasticity,
limiting the ability to learn in time.

These results suggest fundamental failures of the algorithms.
Most methods focus on preventing forgetting at the end
of a learning task, an approach that does not ensure stable
optimization throughout the entire stream (stability gap);
furthermore, stability is often optimized at the expense of
plasticity. We argue that a proper CL optimizer should seek
to maximize both stability and plasticity, assuming that the
model is large enough, at every step in time, interpreting it
as a continual filtering process (filter intended as in nonsta-
tionary time series literature (Durbin & Koopman, 2012)).

This paper proposes Online Curvature-Aware Replay
(OCAR), a novel method designed for replay-based on-
line continual learning, aiming at tackling the challenges in
both plasticity and stability inherent in this scenario with a
continual optimization approach at every step in time. We
formalize OCL as the joint optimization on past and new
data, with past data approximated using a limited replay
buffer, and adding an explicit constraint on the variation of
KL-divergence on previous information. The Fisher Infor-
mation Matrix (FIM) is used to capture the loss function’s
curvature, providing both plasticity and stability constraints
in the model distribution space. When the KL divergence
is used as a metric, the FIM has the additional value of
describing the curvature of the parameter space itself, be-
ing the Riemannian metric tensor of that space (Amari,
2016). We can directly adapt our gradient to the geometry
of the space in stark contrast with traditional CL meth-
ods that use the FIM as a penalization term (Kirkpatrick
et al., 2017). Kronecker-factored Approximate Curvature
(K-FAC) (Martens & Grosse, 2015) is used to efficiently ap-
proximate the FIM, with some critical adjustments to make
it work in OCL settings.
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The main contributions of this paper are: the design of On-
line Curvature-Aware Replay (OCAR) as a combination of
replay, second-order optimization, and information geom-
etry; the analysis of the Tikhonov damping and its ratio
with the learning rate in the stability-plasticity tradeoff; an
improvement of state-of-the-art performance in standard
computer vision benchmarks across all the stability and
plasticity metrics.

2. Related Work
Continual Stability and OCL: Most continual learning
methods assume that stability must be kept at the expense
of plasticity (Lange et al., 2022; Masana et al., 2023), the
so-called plasticity-stability tradeoff, and therefore are de-
signed to preserve knowledge about previous tasks to mit-
igate catastrophic forgetting (French, 1999). However, re-
cent evidence in (Lange et al., 2023; Caccia et al., 2022)
suggests that even the methods with high ”stability” mea-
sured at the end of tasks suffer from high instability and
forgetting immediately after the task switch, and they re-
cover the lost performance over time. (Kamath et al., 2024)
found evidence of the stability gap even in incremental i.i.d.
settings. In OCL settings, (Soutif-Cormerais et al., 2023)
showed that some state-of-the-art methods are unable to
outperform a simple reservoir sampling baseline on some
fundamental stability metrics. Furthermore, CL methods
also fail at keeping plasticity, and (Dohare et al., 2024) pro-
vides evidence of the loss of plasticity in deep continual
networks. Overall, the literature suggests that CL methods
fail at both stability and plasticity due to instabilities in the
learning dynamics. Recently, some methods such as On-
Pro (Wei et al., 2023) and OCM (Guo et al., 2022) proposed
novel self-supervised auxiliary losses and prototype-based
classifiers, two approaches orthogonal to our optimization-
based method. Regarding the latest works on OCL with
pre-trained models, (Moon et al., 2023) proposed Si-Blurry,
a more realistic scenario with stochastic and blurred bound-
aries, and introduced MVP, a prompt-based tuning method
that keeps the backbone frozen. Advancing on this, (Kang
et al., 2025) presented MISA, which introduced a forgetting-
aware initial session adaptation and a non-parametric logit
masking to alleviate forgetting. In our work instead, we
focus on the full training, not only finetuning.

Optimization in Continual Learning: Most CL optimiza-
tion algorithms are designed to prevent forgetting by re-
moving interfering updates. GEM (Lopez-Paz & Ranzato,
2017; Chaudhry et al., 2019a) models interference using the
dot product of the task gradients and constrains the model
updates to have positive dot products with the gradients of
previous tasks. Subsequent work explored orthogonal pro-
jection methods (Saha et al., 2021; Farajtabar et al., 2020)
that either extend the idea of interfering gradients or project

in the null space of the latent activations. (Mirzadeh et al.,
2020) discusses the relationship between the curvature of
the first task and the forgetting, proposing a hyperparameter
schedule that implicitly regularizes the curvature. More
recently, LPR(Yoo et al., 2024) exploits proximal optimiza-
tion in the L2 space of latent activations, and it is the only
projection-based optimizer compatible with replay. (Hess
et al., 2023) proposes a combination of GEM and replay as
a potential mitigation for the stability gap.

Natural Gradient and FIM in CL: Natural gradients can
be used to train neural networks thanks to efficient approxi-
mations of the Fisher Information Matrix (FIM) (Martens
& Sutskever, 2012), such as the K-FAC (Martens, 2020)
and E-KFAC (George et al., 2018). Interestingly, Benzing
(2022) showed that K-FAC seems to work better than the
full FIM in some empirical settings, which is connected to a
form of gradient descent on the neurons. In continual learn-
ing, the FIM is typically used to approximate the posterior
of the weights with a Laplace approximation. The result
is a quadratic regularizer that is combined with the loss on
new data, as introduced by EWC (Kirkpatrick et al., 2017)
and its several extensions (Chaudhry et al., 2018; Liu et al.,
2018; Huszár, 2017). Magistri et al. (2024) proposed to use
the FIM only for the final layer, which can be computed
efficiently with a closed-form equation. As an alternative,
FROMP (Pan et al., 2020) computes a Gaussian Process pos-
terior, which is also used to estimate the importance of sam-
ples in the replay buffer. Daxberger et al. (2023) proposes a
method that combines EWC, replay, and knowledge distil-
lation. More relevant to our work, NCL (Kao et al., 2021)
proposed a modified natural gradient step with a quadratic
posterior as in EWC. Here the Fisher is computed only at
the boundaries and the method does not support rehearsal,
making it difficult to implement in OCL.

Comparison with our work Most CL methods use the FIM
to compute a Laplace approximation of the posterior. This
is not possible in OCL because the model is never assumed
to be at a local minimum, not knowing task boundaries or
length. In general, in the CL literature, the FIM is often
restricted to its use in quadratic penalties. While quadratic
regularizers are easier to use, we show that the use of the
Fisher as a gradient preconditioner is a promising direction,
improving the optimization path. Many of the limitations
found for EWC and similar methods may be due to some
suboptimal choices in the use of the FIM, such as the use
of the empirical FIM, popular in the CL literature but with
different properties from the FIM (Kunstner et al., 2019).
Another difference with the literature is that our optimizer is
compatible with replay, unlike most projection-based meth-
ods. Furthermore, while most methods penalize plasticity
indirectly to prevent forgetting, our approach is designed to
improve both on learning speed and forgetting.
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3. Online Continual Learning
In continual learning (CL), the model learns incrementally
from nonstationary data. In most CL settings, we can
identify a sequence of tasks T1, . . . , TN , each one with
its own distribution. For example, in class-incremental
learning (van de Ven & Tolias, 2019), each task has dif-
ferent classes, and tasks are seen sequentially during train-
ing. The goal of the model is to learn all the tasks seen
during training. Given the model parameters wt learned
at time t, a loss function L, and a test set for each task
D1, . . . ,DN , we can evaluate the model with the average
task loss Lavg(t) =

∑N
i=1 L(wt,Di).

Online continual learning (OCL) requires some additional
constraints and desiderata (Soutif-Cormerais et al., 2023;
Yoo et al., 2024; Mai et al., 2022): (D1-Online training)
at each step, we do not have access to the whole training
dataset for the current task, but only a small minibatch,
which can be processed for a limited amount of time; (D2-
Anytime inference) the model should be ready for inference
at any point in time; Consequently, (D3-Continual stability)
the model must be stable at any point in time, instead of
only at the task boundaries; (D4-fast adaptation) the model
must also be able to learn quickly from new data.

There are similarities with the traditional Online Learning
(OL) approach: at each time t, a new observation is made
from an unknown task, a new loss is experienced, and the
final objective is to minimize the cumulative loss on a stream
of arbitrary length. The difference in OCL is that the aim
is also to minimize forgetting, hence having a model able
to perform well also on past data of the stream. To get this,
usually, access to some constrained past information (for
example, a small collection of past examples) is allowed.

Following the literature, we focus on replay-based methods,
which use a limited buffer of previous data for rehearsal by
combining new minibatches with samples from the buffer at
each iteration. This work assumes no access to knowledge
about task identities, boundaries, or length. Each single
observation in the stream can be sampled from different
distributions/tasks.

4. Online Curvature-Aware Replay
We now present the building process of our method, starting
from the standard ER optimization and expanding it to a
second-order method, which is then approximated using
FIM and followed by some final adjustments to enhance its
CL performance.

4.1. The optimization problem

Online continual learning (OCL) is an online learning prob-
lem in a nonstationary setting. Common optimizers in ma-

chine learning implicitly assume stationarity, which justifies
the gradient estimate from the minibatches (e.g.: ADAM
(Kingma & Ba, 2015), SGD). Instead, in OCL the distribu-
tion can change at any point in time (non i.i.d.). At each
step, the method can only use the current minibatch and,
in replay-based methods, an additional minibatch sampled
from a small buffer of old data.

First-order optimization: We define our learning process
as a sequence of local optimization problems (as in (Martens,
2020), section 7). Unlike in stationary settings, these prob-
lems can greatly change from one step to another, preventing
the use of more ”global” approaches (e.g., learning rate de-
cay and momentum (LeCun et al., 2015)). For example, the
previous gradient directions can be of little use after a task
change, making momentum detrimental to fast adaptation
to new data (Yuan et al., 2016). On the other hand, learning
rate decay would forcibly decrease plasticity in time, reach-
ing a point where no new task can be learned at all. Each
single step must be meaningful by itself. What is forgotten
or not learned could be lost forever.

The Kullback–Leibler (KL) divergence (Thomas & Joy,
2006; LeCun et al., 2015) is used as our objective,
aiming to minimize the ”distance” between the pre-
dicted and the real distribution. The KL is esti-
mated on the current batch of data K̂L(yD||fw(xD)) =
1
N

∑N
i KL(p̂(yD,i|fw∗(xD,i))||p(yD,i|fw(xD,i))). In our

notation D represents the batch of data, i the specific sample,
y the target variable dependent on the observed x. fw is the
model parametrized by w that is supposed to represent the
reality when w = w∗.The empirically observed distribution
is p̂(yD,i|fw∗(xD,i)).

Experience Replay (ER) (Chaudhry et al., 2019b) keeps a
small buffer B of past data and solves a joint optimization
on a batch Nt sampled from the unknown real current data
distribution and a batch Bt sampled from B :

min
δt

K̂L(yNt
|| fwt

(xNt
)) + K̂L(yBt

|| fwt
(xBt

))

subject to
1

2
||δ||22 ≤ ϵ,

(1)

where δt = wt − wt−1. Here and throughout the paper
we write a sum of the two KL divergences for visual ease.
Usually, and also in our experiments, the mean is taken,
combining the data in a single batch with no distinctions.
The KL divergence can be approximated by first-order Tay-
lor expansion:

K̂L(yDt
|| fw(xDt

)) ≈ K̂L(yDt
|| fw=wt−1

(xDt
)) + ∇⃗T

Dt
δt

where ∇⃗Dt
= ∇wK̂L(yDt

|| fw=wt−1
(xDt

)) is the gradi-
ent with respect to the weights w of the KL between the
targets and the model predictions, with∇ representing the
gradient operator and ∇⃗ the resulting vector. When comput-
ing this on newly observed data Dt = Nt, while for buffer
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data Dt = Bt. After approximation, the solution for prob-
lem 1 is δ∗t = − 1

λ (∇⃗Nt + ∇⃗Bt) where λ is the Lagrange
multiplier of the constraint. ER actively optimizes on the
buffer and the current data distributions with no distinctions
and no forgetting constraint. The only stability require-
ment is 1

λ (the learning rate), limiting the movement of the
weights in all directions, trading stability for plasticity.

Failure of ER with first-order optimization: Unfortu-
nately, the first-order information can be a poor approxima-
tion in CL. Often, information about the curvature is neces-
sary to avoid catastrophic forgetting. For example, at task
boundaries, the model is often close to a minimum for the
previous task. In that case, buffer gradients ∇⃗B ≈ 0, while
new gradients ∇⃗N can potentially be much higher, domi-
nating the update direction. This issue partially explains
the stability gap (De Lange et al., 2023). Second-order
methods can solve this problem by enlarging the ”sight” of
our optimizer with the local variation of the variation. The
second-order Taylor expansion of the KL divergence is:

K̂L(yDt
|| fw(xDt

)) ≈ K̂L(yDt
|| fw=wt−1

(xDt
))+

∇⃗T
Dt

δt +
1

2
δTt HDt

δt

where now HDt
= HwK̂L(yDt

|| fw=wt−1
(xDt

)) is the
Hessian of the KL computed on data Dt, withH represent-
ing the operator to compute the second-order derivatives
and H the resulting matrix. again, Dt it can be both Nt or
Bt. Using this expansion, the problem 1 is solved by

δ∗t = −(HNt
+HBt

+ τI)−1(∇⃗Nt
+ ∇⃗Bt

),

where the Lagrange multiplier τ , still related to the L2 regu-
larization imposed on the update, now acts as a Tikhonov
damping term (Martens & Sutskever, 2012). Unlike the
learning rate in SGD, τ has a different effect on the eigendi-
rections of the Hessian, which depends on their eigenvalues
(see Sec. 5).

Stability constraint: By using the Hessian matrix to pre-
condition the gradient, we expect faster learning on both
new and past data, in a Newton-like fashion. If we ”stretch”
the plasticity requirements to include new information in
both new and past data, we can consider this approach to
directly answer the fast-adaptation desiderata. What it still
lacks is an explicit stability constraint necessary for non-i.i.d.
settings to obtain the Continual Stability requirement. Com-
bining experience replay, second-order methods, an explicit
constraint for stability on past data, and L2 regularization
on the update, the problem becomes:

min
δ

K̂L(yNt || fwt(xNt)) + K̂L(yBt
|| fwt

(xBt
))

subject to K̂L(fwt−1
(xBt

) || fwt
(xBt

)) ≤ ρ

1

2
||δ||22 ≤ ϵ.

The term K̂L(fwt−1
(xBt

) || fwt
(xBt

)) measures the varia-
tion of the model predicted distribution on buffer data, and
its expansion around the pre-update parameters wt−1 will
have zero zeroth and first-order terms. The remaining term
is controlled by the Hessian of the KL-divergence evalu-
ated at w = wt−1, which is exactly the Fisher Information
Matrix (Ollivier et al., 2017) (Martens, 2020):

FBt,ij =
∂2K̂L(fwt−1

(xBt
) || fw(xBt

))

∂wi ∂wj

∣∣∣∣∣
w=wt−1

.

The optimization problem becomes

min
δ

∇⃗T
Nt

δ +
1

2
δTHNtδ + ∇⃗T

Bt
δ +

1

2
δTHBtδ

subject to
1

2
δTFBtδ ≤ ρ

1

2
||δ||22 ≤ ϵ,

(2)
which is solved by

δ∗t = −(HNt
+HBt

+ λFBt + τI)−1(∇⃗Nt
+ ∇⃗Bt

),

where λ controls the strength of the stability constraint,
ensuring that the predictions of the model remain stable,
while τ is the Tikhonov damping controlling directions of
maximum acceleration. As done in many second-order
methods (Martens, 2020; Martens & Sutskever, 2012), a
learning rate α can be used to uniformly control the step
size in all directions, making the final update be αδ∗t . As we
will show, the relation between α and τ has an important
impact on the learning dynamics and the stability-plasticity
tradeoff.

4.2. Estimations and approximations

Approximating the Hessians: Computing two Hessians
and one Fisher Information Matrix would be impractical and
inverting them unfeasible. Luckily, in the second-order opti-
mization literature, it has been shown how for some distri-
butions (including the multivariate normal and the multino-
mial), the FIM is equivalent to a Generalized Gauss-Newton
(GGN) matrix, both approximating the Hessian of the KL-
divergence (Martens, 2020). They are equal to the Hessian
when the model describes well the data (near optimum) and
the work of Martens (Martens, 2020) illustrates some gen-
eral advantages of these approximations over the Hessian
also when far from optimum.

Moreover, the use of the FIM has the additional interpre-
tation of describing the curvature of the parameter space
itself. In this space, each point represents a distribution,
requiring the use of the KL divergence as ”distance”. The
KL-divergence of infinitesimal displacements corresponds
to 1

2Fijdwidwj giving rise to the Fisher Information as the
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metric tensor used in this manifold (Amari, 2016). More
than a simple approximation of the Hessian, the FIM can be
used to correctly measure distances in the manifold where
we are performing the gradient descent if the steps are small
enough. Assuming a small learning rate, our method would
use the preconditioner not as in a Newton method (that
usually requires a learning rate of 1 to directly go the the
approximate optimum) but as a metric adaptation.

We believe these two results justify the use of the Fisher in-
formation in nonstationary settings as OCL. Following this,
we approximate the two Hessian matrices of our solution
with the FIM, greatly simplifying the computations. The
new optimal update becomes (including the learning rate):

δ∗t = −α(FNt
+ (1 + λ)FBt + τI)−1(∇⃗Nt

+ ∇⃗Bt
).

This implies the second-order information is now taken with
respect to the model prediction instead of the real targets as
also FNT

= Hw K̂L(fwt−1
(xNt

)||fw(xNt
)). The gradient

of our method corresponds to the usual gradient obtained
from the loss function when the loss is a derivation of the KL
divergence (negative log-likelihood, cross-entropy, etc...).
The weighted sum (or mean) of the two FIMs can now be
obtained by computing a single FIM on the batch, giving
more weight to the buffer data.

There is a deep connection between our method and Natural
Gradient (NG) (Amari, 1998). We have to underline that
our building process is much different from the one used for
the original NG, thought for stationary settings. Moreover,
our preconditioner is not really the FIM of the model, but a
modified and regularized version stemming from our OCL
second-order optimization with the use of replay. We then
cannot assume all benefits of NG would apply to our case.

The Empirical FIM: The Fisher is also defined as the
expected value of the squared score:

F =
∑
n

Ey∼p(y|fw(xn))

[
∇w log p(y|fw(xn))

· ∇w log p(y|fw(xn))
T
]
.

One could argue that a better preconditioner for the gradi-
ent would be the Empirical Fisher (EF) matrix, computed
using the real target y instead of the one sampled from the
predicted distribution, in particular for approximating the
Hessian of new data HNt . Besides getting us outside the
theory about Natural Gradient and Fisher/GGN equivalence,
it has been shown it is a questionable choice, even when the
model is not a good description of the data (Kunstner et al.,
2019). For these reasons, OCAR uses the ”real” Fisher,
unlike other traditional CL approaches (Kirkpatrick et al.,
2017).

K-FAC: This approach has theoretical advantages, but it re-
quires the inversion of an extremely large matrix, unfeasible

for large networks. While diagonal approximations are fre-
quently used (Kirkpatrick et al., 2017; Kingma & Ba, 2015),
given the particular challenges of OCL a more informative
approximation is needed. We rely on the Kronecker-factored
Approximate Curvature (K-FAC) in its block-diagonal ver-
sion to approximate the FIM (Martens & Grosse, 2015):

F̃ = diag(Ā0,0 ⊗G1,1, ..., Āl−1,l−1 ⊗Gl,l),

where each block corresponds to an approximation of the
covariance matrix of the score of a specific layer, obtained
by the Kronecker product of Āi,i = E[āiāTi ] and Gi,i =
E[gigTi ]. āi is the vector of the layer activations (with an
additional 1 appended for the bias) and gi the gradient of
the prediction with respect to the output of the layer before
the activation function. The expected values of both are
computed with an Exponential Moving Average (EMA)
of past values. The efficiency of this method relies on the
property of the Kronecker product (A⊗B)−1 = A−1⊗B−1

allowing us to invert much smaller matrices for each layer,
ignoring layer interactions.

4.3. Nuts and Bolts for OCL

To make the method work in practice, we found some ad-
justments are needed.

Hyperparameter optimization and τ scheduling: Usu-
ally, hyperparameter selection is done only on the first K
tasks of the stream, but it must generalize to longer streams
during training. Our method uses three hyperparameters:
the learning rate α, the Tikhonov damping strength τ , and
the parameter γ for the EMA used for Kronecker factors
estimation. In hyperparameter selection, we found it benefi-
cial to search for a value for the increase of τ instead of τ
itself. τ is then initialized at the same value of the learning
rate and increased by the selected value at each optimization
step improving long-term stability.

Estimate of K-FAC factors at boundaries: In class-
incremental settings, the shape of the classifier will grow
over time as new classes are observed. This means the K-
FAC factor Gl,l of the last layer will change shape, also
breaking the relations with the previously observed gra-
dients. To avoid keeping track of errors, if Gl,l changes
shape, the EMA of this factor is reset. This is not done for
the other factor of the last layer Āl−1,l−1. We assume the
model has consistent representations, and that the majority
of instability is happening on the classifier.

Scheduling of λ: The stability constraint of problem 2 is
estimated on the current batch extracted from the buffer, but
it should represent the whole buffer. As new experiences are
encountered in time, the information content of the buffer
will grow, with less redundancy. At the limit, we can get
a buffer where each example represent a different class or
domain. Being λ the Lagrange multiplier, it is directly
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(a) OCAR 2D projection of the learning trajectory.
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(b) ER 2D projection of the learning trajectory.

Figure 1. 2D projections of the training trajectories for ER and
OCAR on Split MNIST (5 Tasks). Loss surface on the first task
(left), second task (middle), and the average loss on all the 5 tasks
(right). The black stars highlight the task boundaries. More details
on the 2D projections and additional plots are available in the
Appendix.

connected with the constraint ρ. By decreasing ρ to have a
stronger constraint and save buffer information, we get an
increase in λ. For class-incremental problems, λ increases
with the number of different classes encountered. In domain-
incremental settings, it grows in time (as done with τ ).

The composition of all these pieces together forms the On-
line Curvature-Aware Replay (OCAR): at each step, the
method is the optimal step of a second-order replay-based
optimization problem, approximated with the FIM made
computationally viable via K-FAC, with some fundamental
adjustments to make it work in practice. The algorithm can
be found in the Appendix A.

5. Continual Stability in OCAR
In this section, we provide a qualitative analysis in a sim-
plified setting, showing how OCAR results in a smoother
continual optimization compared to ER and how α, τ , and
their ratio can be used to control stability and plasticity.

Loss landscape and model trajectories: We can visualize
the improvements in the optimization trajectory of OCAR
in a simple continual learning setting. We train a small feed-
forward network with ER and OCAR on Split MNIST (5
Tasks). Given the small size of the model, we can store the
entire training history of the model, which allows us to plot
2D projections of the model trajectory in the loss landscape
(Figure 1) (details in Appendix F).

Looking at their task-wise and joint loss surfaces in figures
1a and 1b, OCAR shows a much smoother model trajectory

across all analyzed loss landscapes (Task 1, Task 2, and
Average loss), which results in consistent improvements
over time (plasticity) and mild forgetting (stability). Second-
order information moves the optimization directly toward
the next minimum (black stars in the plots), in fewer steps.
On the other hand, ER always suffers from instability at the
task boundaries (right after black stars in the plots) which
results in an abrupt deviation from the optimal path. The
learning curves on the first task (Fig. 10b) and the average
of all tasks (Fig. 10a), available in Appendix G, confirm the
result. OCAR maintains a smoother learning path without
experiencing any stability gap on the first task and ending
the stream with higher overall accuracy. ER instead, while
still performing well in the basic MNIST setting, suffers
from much more instability during training.

Role of the Eigenvectors and Hyperparameters: One
approach to understand OCAR’s effect is to study how the
eigenvalues of the matrix α(FN + (1 + λ)FB + τI)−1 are
related to the hyperparameters α, λ, and τ . We can diag-
onalize F̄ = FN + (1 + λ)FB = QΣQT , where Q is a
unitary matrix whose columns are the eigenvectors and Σ
a diagonal matrix with the eigenvalues σi. Therefore, we
find that the eigenvalues of α(FN + (1 + λ)FB + τI)−1

are σ∗
i = α

σi+τ . In the new coordinate system defined by
the eigenvectors Q, we can interpret OCAR as slowing or
accelerating directions depending on their curvature. Direc-
tions with σ∗

i ≪ 1 (σ∗
i ≫ 1) correspond to directions with

high (low) curvature for some tasks. The learning rate α
and the Tikhonov damping strength τ rescale these eigen-
values (as shown in Figure 9 in Appendix). In particular,
a learning rate α < 1 decreases the step size. Conversely,
τ mitigates the acceleration caused by small eigenvalues.
When σi → 0, σ∗

i → α
τ , limiting the maximum acceleration

in each direction. When σi ≫ τ , we have σ∗
i ≈ α

σi
, which

is approximately independent of τ .

Empirically, we find that the spectrum spans several orders
of magnitude, with the smallest eigenvalues close to zero
and a small set of very large values around (104, 106) (con-
sistently with the common intuition behind methods such as
EWC, which expect few important parameters).

Stability-Plasticity tradeoff of OCAR hyperparameters:
An interpretation of OCAR hyperparameters in the stability-
plasticity tradeoff can be given. While higher λ gives more
importance to the FIM of the buffer (stability) and higher
values of α allow larger learning steps (plasticity), the role
of τ and α

τ is less intuitive. First, higher values of τ are
needed for the introduction of new classes, that creates
instability due to the FIM being the variance of gradients
(See the Appendix C for a detailed explanation). Figure 2
shows the results of a grid search on α and α

τ (Complete
figure in Appendix fig 11). We can make some empirically-
based speculations: (1) the ratio α

τ controls the learning
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Figure 2. Grid search over α and α
τ

: (left) forgetting on the first
task, (right) plasticity measured as the accuracy on the final task.
Metrics are computed on the test stream at the end of training.
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Figure 3. Left: Lp Cumulative loss of single batches. Right: Ls

Cumulative loss measured on all previous data of the stream.

plasticity. As a result, bottom-left elements in Figure 2 show
less plasticity; (2) α

τ controls the effective step size in the
eigendirections with small eigenvalues, problematic at task
boundaries. If the ratio is too low, OCAR may use updates
that are too large, resulting in instability (top-right); (3)
Decreasing α

τ consistently increases forgetting; (4) After a
sufficient number of steps after a task drift, the FIM becomes
more stable, and α

τ becomes less important in the learning
dynamics. At this point, small α will result in conservative
updates, with low plasticity and high stability. In the figure,
we notice that for equal values of the ratio, models may have
a similar accuracy but a different stability-plasticity tradeoff,
depending on their α (low=stability, high=plasticity).

6. Experiments
6.1. Comparison Between EWC, NGD, and OCAR in a

Convex Setting

First, we compare OCAR with alternative uses of the Fisher
Information, that are not commonly considered for OCL, in
a small-scale convex setting. In CL, EWC (Kirkpatrick et al.,
2017) generated a cascade of derived methods (Chaudhry
et al., 2018; Liu et al., 2018; Huszár, 2017) based on the idea
to add a quadratic regularization term to the loss, penalizing
the movement of the parameters from an optimal configura-
tion, weighted by the FIM. This approach finds some limi-

tations in OCL when no task boundaries are provided and
it’s not possible to select the previous task’s ”best” weights
(Mai et al., 2022), breaking the fundamental assumption be-
hind the Laplace approximation. Additionally, regularizing
the loss does not directly speed up non-important directions,
a non-optimal approach in OCL. On the other hand, outside
CL, the Natural Gradient Descent (NGD) (Amari, 1998)
uses the FIM as a preconditioner for the gradient, slowing
it down in the direction of high curvature and accelerating
it in others. We believe NGD can be well-suited for OCL
problems. The problem is that raw NGD is derived for i.i.d.
settings. OCAR, on the other hand, is an adaptation for
non-i.i.d. problems. To underline the differences, we tested
the three approaches in combination with ER in an online
stream of 10 small convex tasks (all details in Appendix
D). We measure the cumulative loss experienced on single
batches during the training Lp =

∑
t L(yt, ŷt) to measure

the ability to adapt to current data and the cumulative loss
experienced on all previous data Ls =

∑
t L(y0:t, ŷ0:t) to

measure the stability of the model. The results in figure 3
shows that, while NG is much more adaptable than EWC,
it is slightly less stable. EWC performance in OCL is very
similar to the one of basic ER, a result aligned with (Mai
et al., 2022). OCAR, thanks to its explicit memory con-
straint, and its dynamic hyperparameters is able to improve
both on the speed and on the stability, showing a slight
optimization superiority already in this very basic setting.

6.2. Literature benchmarks and SOTA comparison

To ensure reproducibility and a fair comparison we use the
same code and experimental setup in (Soutif-Cormerais
et al., 2023), later used by LPR (Yoo et al., 2024), an
ICML24 paper, that represents the SOTA in OCL and our
main ”competitor”. We use Avalanche (Carta et al., 2023)
and nngeometry (George, 2021). In line with the litera-
ture Split-CIFAR100 (20 tasks) and Split-TinyImageNet
(20 tasks), are used as task incremental benchmarks. Fol-
lowing (Yoo et al., 2024) we experimented also on On-
line CLEAR (10 tasks) (Lin et al., 2021), a domain in-
cremental scenario fundamentally different from the other
two datasets. All the methods use a reservoir sampling
buffer with 2000 samples for Split-CIFAR100 and online
CLEAR and 4000 for Split-TinyImageNet. More details
about the experimental setting are available in the Appendix
B with specific information for CLEAR in Appendix E. Our
entire code for the experiments can be found at https:
//github.com/edo-urettini/CL_stability.

We compare our approach with a large set of CL baselines
(Table 1), evaluated on 4 fundamental OCL metrics: WC-
Acc (De Lange et al., 2023): the worst-case accuracy is a
metric of the stability of the model, measuring a trade-off
between the model accuracy and the minimum accuracy
among all tasks encountered. It is measured as a weighted
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Method Split-Cifar100 (20 Tasks) Split-TinyImagenet (20 Tasks)
Acc ↑ AAAval ↑ WC-Acc val ↑ Probed Acc ↑ Acc ↑ AAAval ↑ WC-Acc val ↑ Probed Acc ↑

i.i.d 35.3± 1.5 - - 45.8± 0.6 26.5± 0.6 - - 34.3± 0.5

ER(Chaudhry et al., 2019b) 28.2± 1.2 36.6± 2.0 12.5± 0.6 44.9± 0.9 21.2± 0.6 33.9± 1.7 15.2± 0.5 35.6± 0.6
GDumb(Prabhu et al., 2020) 18.5± 0.5 - - - 13.1± 0.4 - - -
AGEM(Chaudhry et al., 2019a) 3.1± 0.2 10.4± 0.6 2.9± 0.3 18.7± 0.8 2.6± 0.2 7.3± 0.5 2.6± 0.2 23.3± 0.6
ER + LwF(Li & Hoiem, 2017) 30.4± 0.8 39.2± 2.0 15.3± 0.9 44.4± 0.8 22.7± 1.1 34.4± 2.4 17.0± 0.7 33.8± 0.9
MIR(Aljundi et al., 2019a) 29.4± 1.9 33.1± 3.2 11.6± 1.6 43.4± 0.7 21.3± 0.8 31.0± 1.8 15.2± 0.5 33.0± 0.4
RAR(Kumari et al., 2022) 28.2± 1.4 38.2± 1.6 14.9± 0.7 42.3± 0.9 15.7± 0.9 27.8± 2.8 10.1± 0.9 29.8± 0.9
DER++ (Buzzega et al., 2020) 29.3± 0.9 37.5± 2.5 13.4± 0.7 44.0± 0.8 22.9± 0.5 34.2± 4.0 16.3± 0.3 31.5± 0.9
ER-ACE (Caccia et al., 2022) 29.9± 0.6 38.5± 1.8 14.9± 0.9 42.4± 0.6 23.6± 0.7 35.0± 1.5 16.8± 0.7 34.2± 0.3
SCR(Mai et al., 2021) 28.3± 0.8 42.1± 2.1 20.3± 0.4 37.0± 0.3 16.9± 0.4 30.7± 1.5 12.3± 0.5 22.5± 0.4
OnPro(Wei et al., 2023) 31.7± 1.2 36.6± 2.5 12.2± 1.1 - 17.1± 1.5 24.2± 0.4 8.00± 0.8 -
OCM(Guo et al., 2022) 30.9± 0.7 33.3± 1.9 14.9± 0.4 - 20.6± 0.6 24.8± 1.1 10.9± 0.5 -
LPR (Yoo et al., 2024) 33.3± 0.6 42.5± 0.5 19.3± 0.3 - 23.1± 0.2 34.9± 0.4 16.2± 0.2 -
OCAR (ours) 34.9± 0.6 48.2± 1.2 25.0± 1.1 46.2± 0.6 21.7± 1.0 38.3± 1.4 17.4± 0.6 38.3± 0.6

OCAR-DER++ (ours) 34.3± 1.1 46.8± 1.7 25.4± 0.8 46.0± 0.8 - - - -
OCAR-ACE (ours) 35.6± 1.2 48.7± 1.7 26.5± 0.4 44.1± 0.7 25.6± 0.4 39.8± 2.0 21.5± 0.9 34.7± 0.3

Table 1. Results on Split CIFAR100 (20 Tasks) and Split Tiny ImageNet (20 Tasks). Best in bold for the base methods. Best underlined
for all methods included OCAR+OTHER.

sum between the accuracy of the current model on the cur-
rent task and the min-ACC. Min-ACC is the average of the
absolute minimum accuracy that has been reached on previ-
ous tasks after they have been learned. Hence, the metric is
worse the stronger the stability gap is. AAA (Caccia et al.,
2022): The Average Anytime Accuracy is a metric devel-
oped specifically for OCL, measuring the mean accuracy
of the model in time on all the encountered tasks. If we
evaluate the model on all encountered tasks at each time
step (as shown in the plots in Appendix G), the AAA is the
mean of these evaluations. It is a measure of the model’s
overall accuracy history. Acc (Lopez-Paz & Ranzato, 2017):
The final average accuracy is a snapshot of the accuracy
of the model at the end of the entire stream. If again we
evaluate at each step the model on all encountered tasks,
Acc would be equal to the last of these evaluations. Probed
Acc (Davari et al., 2022): The metric is the final accuracy
after freezing the feature extractor and retraining only the
linear classifier on all the training data. It is a measure of
the representation quality of the model.

6.3. Results

Using the same code and setup, all results of other methods
are taken from (Soutif-Cormerais et al., 2023) and (Yoo
et al., 2024) (for LPR), except for OnPro (Wei et al., 2023)
and OCM (Guo et al., 2022), where we reused the original
code and run the experiments following the setup in (Soutif-
Cormerais et al., 2023; Yoo et al., 2024). Everything is
evaluated on 5 runs (except LPR in 10).

Continual metrics: When evaluated at every step in time,
OCAR obtains the best AAA and WC-Acc among the meth-
ods in both benchmarks. This confirms OCAR as a robust,
continual optimization approach with high accuracy and

stability at every point in time. Both metrics have shown
significant improvement, with a jump of several points.

End of training accuracy: While in Split-Cifar100 OCAR
is able to achieve the best Acc among base models, ER-ACE
takes the crown in Tinyimagenet (Table 1). However, we
must point out that Acc is a very poor evaluation metric
for the OCL performance. Since it is evaluated at the very
final iteration, it badly represents the whole training and
can be affected by noise or overly stable methods. We
believe that ER-ACE and other methods have artificially
lower plasticity, learning less than OCAR from each task,
and that this approach can give an advantage at the very
end of the stream as we approach the ”learning limits” of
the model. Of course, this works only for a specific stream
length, while OCAR showed increased performance on the
overall stream (AAA and WC-Acc).

Probed Accuracy: OCAR obtains the best results on linear
probing in both benchmarks, underlying the optimization
improvements also on the feature extractor. This is a sig-
nificant result when compared to the i.i.d. case: while the
classifier suffers from forgetting, OCAR can learn a better
feature representation if compared to the i.i.d. case, confirm-
ing how it learns efficiently in nonstationary settings.

Integration with other methods: Being ER-ACE the
method with the best accuracy on Tinyimagenet, we try
a combination with it to see if OCAR can improve the re-
sults. Even if ER-ACE uses a slightly modified loss, the
integration with OCAR works very well. The combina-
tion OCAR-ACE beats all other methods (including base
OCAR) on Acc, AAA and WC-Acc. What is surprising is
that this combination is able to overcome even the i.i.d.
accuracy for Split-Cifar100 while being very near to it for
Split-TinyImagenet. Both ER-ACE and OCAR-ACE show a
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lower probing accuracy, which suggests again that ER-ACE
may be tuned to prefer stability over plasticity, learning
less transferable features despite the high accuracy. Pos-
sibly, the robustness of the classifier given by ER-ACE
slightly interferes with deeper feature learning. Following
this experiment, we also tried the combination with DER++.
Unfortunately, we have found OCAR-DER to be much less
stable (failing optimization on Tinyimagent), which we con-
jecture to be caused by the entropy regularization implicit in
the DER loss, which results in a loss that is ”too different”
from the KL divergence and breaks the assumption for the
use of the Fisher.

Online CLEAR The Online CLEAR benchmark is fun-
damentally different: no classes are added from task to
task, but all classes evolve in time, in a domain incremental
fashion. This puts much more importance on forward and
backward transfer and less on catastrophic forgetting due to
the similarities between tasks. For this reason, the final ac-
curacy is higher than AAA (see figure 8 in Appendix). This
setting, being more similar to the standard iid one, makes
the estimation and the stability of the FIM much easier,
making OCAR remarkably better than the previous SOTA
LPR (see table 2). This confirms OCAR robustness also
on domain incremental settings, underlying its optimization
improvements.

Method Online CLEAR (10 Tasks)
Acc ↑ AAAval ↑ WC-Acc val ↑

ER 63.1± 0.7 58.9± 0.8 47.7± 1.6
LPR 65.2± 0.9 63.5± 1.0 62.6± 0.7

OCAR(Ours) 75.3± 0.8 73.9± 0.5 70.3± 0.5

Table 2. Results on Online CLEAR (10 Tasks) domain incremental
setting. 2000 Buffer size. Best in bold.

Method Training Time (seconds)

ER 14
ER + LWF 15
MIR 31
ER-ACE 17
DER 17
RAR 72
SCR 131
LPR 213

OCAR (Ours) 38

Table 3. Training Time for the First Task on Split-CIFAR-100.

Final Comment: OCAR showed remarkable performance
across all continual metrics, improving both on task-

incremental and domain-incremental the previous SOTA
results, including the ICML24 paper LPR (Yoo et al., 2024),
using the same code, setting, and benchmarks. All of this
is done efficiently: in table 3 the first-task training times
are presented, showing how OCAR even improves on speed
with respect to some previous SOTA approaches (Appendix
B for more information). The method showed the possibility
of being combined with ER-ACE, obtaining even stronger
results.

7. Conclusion
In this paper, we revisit replay-based OCL as a sequence of
second-order optimizations with hard stability constraints
and information geometry rooting. The resulting method
OCAR shows consistent improvements in plasticity and
continual stability both in class incremental and domain
incremental scenarios, with clear hyperparameter interpreta-
tion in the stability-plasticity tradeoff. The combination of
OCAR and ER-ACE obtained even stronger results, being
also capable of reaching similar final accuracies as the i.i.d.
training in the class incremental setting. Future research
directions include the comparison of different approxima-
tions of the curvature (e.g. George et al. (2018)), alterna-
tive derivations for the optimization problem (e.g. Benzing
(2022)), and feasible dynamic adaptation of α and τ . We
believe OCAR can be the starting point for further improve-
ments towards a deeper understanding of continual learning
dynamics and the design of a flexible and general continual
optimizer.
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A. Algorithm

Algorithm 1. Online Curvature-Aware Replay (OCAR)
Input: network parameters w, learning rate α, per batch gradient steps count S, Tikhonov increase ∆τ , EMA parameter

αEMA.
Output: trained network parameters w.

1: Initialize replay buffer: B ← {}.
2: τ ← α
3: λ← 1
4: for t ∈ {1, ...,∞} do
5: Obtain new data batch Nt.
6: Sample buffer data batch Bt

7: for s ∈ {1, ..., S} do
8: Compute loss L(w) using Nt and Bt.
9: Compute loss gradient ∇L(w).

10: τ ← τ +∆τ
11: if Class Incremental then
12: Update known classes list with Nt

13: Increase λ with new classes
14: else
15: λ← λ+∆τ
16: end if
17: if s = 1 then
18: Compute K-FAC factors A and G with Nt and Bt (Bt influence weighted by λ)
19: for l ∈ 1, ..., L do
20: AEMA,l ← (1− αEMA)AEMA,l + αEMAAl

21: GEMA,l ← (1− αEMA)GEMA,l + αEMAGl

22: if l = L and L changed shape then
23: GEMA,l ← Gl

24: end if
25: end for
26: FEMA ← AEMA, GEMA

27: FINV ← (FEMA + τI)−1

28: end if
29: ∇̃L(w)← FINV∇L(w)
30: w ← w − α∇̃L(w)
31: end for
32: B ← Reservoir.update(B,Nt,maxsize)
33: end for

The K-FAC computations are done after weighting with λ the data related to the buffer.

B. Experimental Setup
Code The entire code used to perform the full experiments (CIFAR100, TinyImageNet e Clear) can be found in the
anonymous repository at https://github.com/edo-urettini/CL_stability. The anonymization process
could have removed some important parts of the code but this is highly unlikely. The code was built on a combination of the
repository for the OCL survey (Soutif-Cormerais et al., 2023) and the nngeometry repository (George, 2021).

Hardware The experiments were performed in a Linux cluster equipped with Nvidia Tesla V100 16GB GPUs and Intel
Xeon Gold 6140M CPUs. The training was not parallelized between the GPUs.
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Main training setup All the experiments have been performed as in (Soutif-Cormerais et al., 2023). We only report the
most important aspects here, referring to the original paper for all the additional details. The datasets used for the main
experiments are Split-CIFAR100 and Split-TinyImageNet. Both are class-incremental benchmarks, divided in 20 tasks,
with a number of new classes encountered at each new experience (5 in Split-CIFAR100 and 10 in Split-TinyImageNet).
The model used for the main experiments is a Slim-ResNet18 trained using SGD. SGD can help the model adapt faster
when new data are encountered after a task boundary, while ADAM (Kingma & Ba, 2015) will need some time to update its
running statistics. The batches are tiny, with 10 examples from the current portion of the stream and 10 from the replay
buffer. The replay buffer for Split-CIFAR100 was kept at 2000 samples, while for Split-TinyImageNet at 4000. The metrics
computed at the end of the training (cumulative accuracy and linear probing accuracy) are computed on a test stream. The
continual metrics (average anytime accuracy and worst-case accuracy) are computed after the training on each batch on a
heald-out validation set. The only additional information OCAR has access to is the number of classes on each experience
(5 for one and 10 for the other). This information is only used to increase the weight λ for the computation of the Fisher
Information on the buffer data. If the buffer data contains n classes and the number of classes observed in the current portion
of the stream is k, then the FIM of the buffer will weight n

k . While this information is useful, if it is not accessible, other
weighting procedures can be performed, or, it can simply be estimated by watching how many classes are observed in the
first few steps of the training. Usually few steps are enough to observe all the different classes present in the task.

The same setup has been used in (Yoo et al., 2024), with the only difference they used 10 seeds for their experiments instead
of only 5. There is also a possible difference in the hyperparameter selection. Given the equality of the training and validation
setup, we compared our methods’ performances directly with the results of (Yoo et al., 2024) and (Soutif-Cormerais et al.,
2023). This minimizes the probability of errors or bugs and uses the results obtained in the best conditions.

Training time We report the training time to complete a single task on Split-CIFAR100 of different methods. Since
OCAR and other OCL methods do not increase their computational cost over time, we report the training times on the first
task to avoid unnecessary retraining of all the methods. We train on the first task without the continual evaluation to remove
the evaluation overhead and provide a fair comparison between the methods.

Method Training Time (seconds)

ER 14
ER + LWF 15
MIR 31
ER-ACE 17
DER 17
RAR 72
SCR 131
LPR 213

OCAR(Ours) 38

Table 4. Training Time for the First Task on Split-CIFAR-100.

OCAR is about 3 times slower than standard ER, which does not perform any additional operations apart from the basic
SGD loop. It is also faster than other sophisticated methods such as MIR, SCR, and LPR. We underline that in our tests LPR
resulted much slower than what the authors found in their original paper (Yoo et al., 2024). We did not identify the cause of
this. It can be something related to our hardware or the implementation details of our code.

Hyperparameters selection As with everything else, the hyper-optimization is performed as in (Soutif-Cormerais et al.,
2023). The best configuration is selected as the best performing in the cumulative accuracy metrics on the validation set
at the end of the fourth experience. This approach is suboptimal when working on nonstationary data. We notice that in
our model, this shorter stream would select a combination of parameters prone to having high plasticity and lower stability.
For this reason, instead of selecting a fixed Tikhonov regularizer τ , we instead selected a speed of increase for τ . In this
way, we found a much more robust approach. Differently from (Soutif-Cormerais et al., 2023), all our hyperparameters for
OCAR have been selected after trying 100 combinations using the tree-structured Parzen estimator algorithm, instead of 200
trials used in the original survey. This can give our method a small disadvantage, but we found it to be sufficient to get good
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results. The only exception was OCAR-ACE on Split-TinyImageNet where 200 trials were needed due to the particular
complexity of using a loss function not derived from a KL divergence on a complex dataset as TinyImageNet. We want
to highlight that in the LPR paper (Yoo et al., 2024), it seems the hyperparameters selection is done by training on all the
experiences and selecting the best final accuracy. It is possible this can result in an advantage, avoiding the problem of the
short and partial stream used in (Soutif-Cormerais et al., 2023) and for our method.

C. Fisher Matrix Computations
The Fisher Information Matrix can be computed both as the variance of the score (the gradient of the log-likelihood) or as
the negative expected value of the curvature of the log-likelihood. For a classification problem we assume the model fw is
predicting a probability vector probability vector p = [p1, . . . , pK ] where each pk is the probability that yk = 1, such that
p = f(x;w). The distribution assumed is then a categorical distribution. On a single example x the FIM can be computed
as:

F (w) = Ey∼Cat(y|x;w)[∇2
w logCat(y|x;w)] = Ey∼Cat(y|x;w)[∇2

w

∑
k

yklogfw(x)k] =

= Ey∼Cat(y|xn;w)[


∑
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
Note how each element is a sum of the contribution from each class, weighted by the inverse predicted probability for
that class. The Fisher computed for a gradient composed of the sum (or mean) of gradients from multiple examples is
the sum (or mean) of the individual Fishers. This is due to the required assumption to compute the Fisher: being at the
optimum of the log-likelihood optimization, assuming the predicted parameters are the true ones. A consequence of this
assumption is that the correlations between gradients of different examples will be zero: V[∇(yi|xi;w) +∇(yj |xj ;w)] =
V[∇(yi|xi;w)] +V[∇(yj |xj ;w)]. Then, our λ to give more weight to the buffer data is easily implemented. For the same
assumption about the optimum, the variance of the score is computed as the expected value of the squared gradients: the
squared expected value would be equal to zero.

Last Layer FIM Focusing on the FIM of the last layer and ignoring all the correlations between the weights for a moment,
we can compute the diagonal element of a classifier’s weight. Assuming the loss L is a standard cross entropy loss:

∂L
∂wj,i

= hj(pi − yi)

where pi is the prediction for the class i and yi an indicator function for the real value. The variance of the score for this
weight is:

E

[(
∂L
∂wj,i

)2
]
= E[h2

j (pi − yi)
2] = h2

jpi(1− pi)

If we transform the partial derivative with the inverse variance:

E

[(
∂L
∂wj,i

)2
]−1

∂L
∂wj,i

=
1

hj

pi − yi
pi(1− pi)
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Figure 4. Ratio between the norm of the gradient after being transformed with OCAR and the norm of the original gradient when a small
τ is used

In class-incremental settings, at task boundaries, we can assume the probability predicted for the new classes will be pretty
low due to the random initialization of the weights. In this case, the gradient of the weights connected to this new unit will
be high while the variance of the gradient will be very low, greatly accelerating the gradient, and contributing to possible
instabilities due to the assumption of the Fisher of predicting the ”true” distribution while, particularly at task boundaries,
this is not true. Clearly this analysis ignores all the complex cross-correlations between the weights. To visualize the
complete effect, we plot in Figure 4 the ratio between the norm of the gradient after being transformed with OCAR and
the norm of the original cross-entropy gradient. We show only a subset of the training on Split-CIFAR100, using a small
τ (lr/100). All task boundaries are clearly visible, showing the great acceleration the FIM provides when new classes
arrive. This underlines the importance of the Tikhonov regularization (τ ) in class-incremental settings, where the Fisher can
exacerbate some instabilities when the predictions of the model are completely off.

D. Qualitative Experiment
The code of the qualitative experiment is included in our repository. We used a basic linear model with 10 inputs and a
single output trained to solve a simple linear regression problem with an MSE loss. 10 tasks with 1000 samples per task
are randomly generated. Each task has a different multivariate normal from which input data are sampled and different
real weights that should be estimated by the mode. The data are accessed as a stream, with a single pass per batch. The
Standard Vitter algorithm is used to keep a buffer of old data. Each method uses a batch composed of 10 new data and 10
data sampled from the buffer.

Natural Gradient is applied directly by estimating the full Fisher information of the model with an EMA of the FIM
computed on the single batches. This FIM after the EMA is used to precondition the gradient.

OCAR uses the exact same approach but uses a λ to give more weight to old data and uses a scheduling of both λ and τ (the
Tikhonov regularize) to increase them both in time. EWC is more tricky to implement in its basic form for online problems.
Our approach is very similar to what is done in (Mai et al., 2022), an online extension of the EWC++ strategy (Chaudhry
et al., 2018). The difference is that we use also replay data for computing the gradient. Namely, the loss is computed on
both old and new data, but the Fisher (being a penalization) is computed only on old data (an EMA is kept also in this case
for estimation). Given that no task boundaries are accessible, the penalization of the movement of the weights is done with
respect to the weights at the previous step in time. In this way, a more regularized descent should be followed, penalizing the
displacement from step to step using the Fisher Information of old data. The loss is a basic MSE but for analysis purposes,
the figure D shows the cumulative loss (simply the loss experienced in each batch accumulated in time) and the cumulative
loss on all previous data (at each step the loss on all previous data is computed after the optimization step and accumulated
in time). The first measure shows a general capability of fast adaptation while the second an ability to find an optimum
stable for the entire previous stream.

A hyperparameter selection is performed to select the best setting on the sum of the final value of both these stability and
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Figure 5. 2D projections of the training trajectories for ER and OCAR on Split MNIST (5 Tasks). The black stars highlight the task
boundaries, the red star the final model. We also show learning curves on each task separately.

plasticity measures. Then, on the same data, using the best hyperparameters, the results are averaged across 10 random
seeds to test fro training stability with different optimization paths.

E. Online CLEAR
Following the very recent work of (Yoo et al., 2024), we tested our method also on the Online CLEAR benchmark (Lin et al.,
2021), a domain incremental learning scenario. This scenario is fundamentally different from the class-incremental, with the
same classes that undergo some sort of evolution. The CL aspect is then less impactful, with much more forward/backward
transfer and less catastrophic forgetting due to the similarity of the tasks in different domains. We followed the same settings
as in LPR paper (Yoo et al., 2024), that are very similar to the standard approach used for our main experiments, but with
some differences: the use of the full ResNet18 instead of the Slim version and 10 gradient steps per batch. Unfortunately,
we encountered some bugs when their exact code was used in ours, requiring some slight modifications. Not being able to
ensure the exact same conditions, we rerun all the experiments. We decided to compare the baseline of Experience Replay,
the very recent LPR approach, and our method. ER-ACE is tailored for task-incremental settings, so we avoid its use. In this
scenario, we increase λ not with the number of classes in the buffer (as in class incremental), but we increase it in time as
new batches arrive. LPR was tested using 100 samples from the buffer to estimate its preconditioner.

F. Learning Trajectory on Split MNIST
The model is a small feedforward network with two hidden layers of 100 units and ReLU activations. The model is trained
online with 3 passes for each mini-batch with a small replay buffer of 100 elements, corresponding to 10 samples per class
by the end of training.

To plot the 2D learning projections in Figure 5, we follow a procedure similar to (Mirzadeh et al., 2021).
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We consider the 2D plane that intersects the model’s initialization w∗
0 , the model after the first task w∗

1 , and the final model
w∗

5 . Many other possibilities were considered before this choice (e.g. using different tasks or random directions), but they all
resulted in qualitatively similar plots. The coordinates system is obtained by orthonormalizing the directions u = w∗

1 − w∗
0

and v = w∗
5 − w∗

0 , obtaining ū = u
∥u∥ and v̄ = v−cos(u,v)u

∥v−cos(u,v)u∥ . Given a model w, its coordinates in the 2D space are the
unique ⟨x, y⟩ such that w = xū + yv̄ + w∗

0 . Notice that each method has different values for w∗
1 and w∗

5 , and therefore
different 2D planes and coordinate systems are chosen for each method. Since the coordinates are not meaningful and
cannot be compared across plots, we do not show them in Figure 5.

G. Additional Figures
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Figure 6. Accuracy over time on the validation set for Split-CIFAR100 experiment.
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Figure 7. Accuracy over time on the validation set for Split-TinyImagenet experiment.
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Figure 8. Accuracy over time on the validation set for Online CLEAR experiment.
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Figure 9. Effective step size against the FIM eigenvalues. The step size in the directions with small eigenvalues is regularized via τ , while
large eigenvalues are unaffected by it. The learning rate α affects all the directions equally.
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Figure 10. Learning curves on the first task (10b) and the average accuracy for all tasks (10a).
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Figure 11. Grid search over α and α
τ

: (left) average accuracy, (middle) forgetting on the first task, (right) plasticity measured as the
accuracy on the final task. Metrics are computed on the test stream at the end of training.
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