

# 000 001 002 003 004 005 006 007 008 009 THE UNSEEN FRONTIER: PUSHING THE LIMITS OF LLM SPARSITY WITH SURROGATE-FREE ADMM

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
**Anonymous authors**  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Paper under double-blind review

## ABSTRACT

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Neural network pruning is a promising technique to mitigate the excessive computational and memory requirements of large language models (LLMs). Despite its promise, however, progress in this area has diminished, as conventional methods are seemingly unable to surpass moderate sparsity levels (50-60%) without severely degrading model accuracy. This work breaks through the current impasse, presenting a principled and effective method called ELSA, which achieves extreme sparsity levels of up to 90% while retaining high model fidelity. This is done by identifying several limitations in current practice, all of which can be traced back to their reliance on a surrogate objective formulation. ELSA tackles this issue directly and effectively via standard and well-established constrained optimization techniques based on ADMM. Our extensive experiments across a wide range of models and scales show that ELSA achieves substantial improvements over existing methods; *e.g.*, it achieves  $7.8 \times$  less perplexity than the best existing method on LLaMA-2-7B at 90% sparsity. Furthermore, we present ELSA-L, a quantized variant that scales to extremely large models (27B), and establish its theoretical convergence guarantees. These results highlight meaningful progress in advancing the frontier of LLM sparsity, while promising that significant opportunities for further advancement may remain in directions that have so far attracted limited exploration.

## 1 INTRODUCTION

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Large language models (LLMs) have become indispensable tools across various fields, from creative industries to scientific research, but their immense size incurs a tremendous amount of memory, computation, and energy consumption, posing a significant challenge to their widespread deployment (Kaplan et al., 2020; Bommasani, 2021; Faiz et al., 2024). Neural network pruning can offer a viable solution to this problem by removing redundant parameters without compromising performance (LeCun et al., 1989; Han et al., 2015; Hoeferl et al., 2021). Indeed, the research community has responded to this challenge with a surge of innovative methodologies, demonstrating that LLMs can be made more compact and efficient through effective pruning techniques (Frantar & Alistarh, 2023; Sun et al., 2024; Boža, 2024; Meng et al., 2024; Fang et al., 2024; Liu et al., 2025; Lee et al., 2025).

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
However, the community is witnessing a major roadblock: current methodologies are failing to push beyond a moderate level of sparsity (roughly 50-60%) without a significant decline in model performance; for instance, prior works have highlighted this limitation with rather incremental improvements at high sparsity (Meng et al., 2024; Boža, 2024; Yin et al., 2024; Huang et al., 2025).

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
*Have we truly reached a plateau, or is there a path to continued progress?*

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
This work provides a positive answer. We demonstrate that it is possible to prune LLMs for very high sparsity levels—up to almost 90%—without significant performance degradation (see Figure 1).

010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
The key to our success is identifying and addressing potentially critical flaws in the current practice. Specifically, the majority of existing methods relies on the principle of sequential layerwise reconstruction error minimization, an approach proven effective in memory-constrained environments. However, this approach is inherently prone to propagating compounding errors while enforcing unnecessarily strong conditions and, in fact, seeks only local solutions by design based on a surrogate objective (Shin et al., 2024; Bai et al., 2024; Huang et al., 2025). On the other hand, we suggest finding more globally optimal solutions directly by formulating a sparsity-constrained optimization problem and developing a robust solver as a whole.

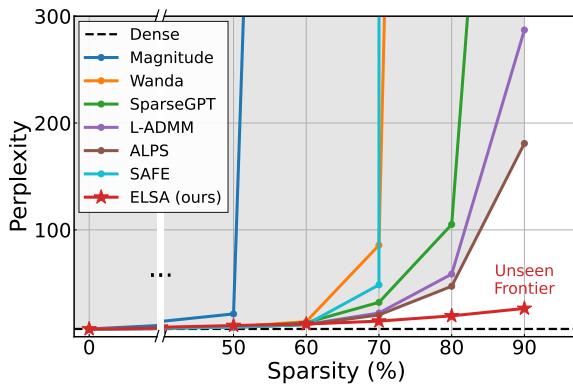


Figure 1: Perplexity ( $\downarrow$ ) vs. Sparsity ( $\uparrow$ ) curves for different pruning methods; it is measured on the C4 dataset for pruned LLaMA-2-7B models. While existing methods start to fail as sparsity increases, our approach (ELSA) stays stable without losing much performance, revealing the unseen frontier. Previously it was considered nearly impossible to achieve such high sparsity for LLMs or go beyond the “sparsity wall” formed around 50-60% sparsity levels. The same trend is observed consistently across different architectures and scales as we will show in Section 5—EXPERIMENTS.

We show that our approach can be applied to a wide range of LLM models and scales from 125M to 13B number of parameters. Our method significantly outperforms existing state-of-the-art techniques, achieving perplexity levels at least  $5\times$  and up to  $30\times$  lower, alongside zero-shot prediction accuracy improvements of nearly 6% on pruned models at 90% sparsity. We provide a flexible implementation as well, which incorporates memory-efficient designs including quantized optimizer states and enables pruning even for 27B-parameter models with 66% lower memory footprint, demonstrating extended potential at scale. Based on classic optimization theory, we also provide a convergence guarantee for our solver to ensure theoretical soundness alongside empirical findings.

The full extent of its limits is not yet fully understood. However, our work clearly demonstrates significant potential for further advancements in LLM pruning. We believe that this finding calls for a renewed focus on alternative strategies that more faithfully preserve model fidelity, which could include better ways to exchange efficiency for performance, providing practitioners with a wider range of options.

## 2 PROBLEM STATEMENT

The long-standing research of neural network pruning, aimed at enhancing the efficiency of large models (LeCun et al., 1989; Han et al., 2015), has recently made significant progress in its application to LLMs (Frantar & Alistarh, 2023; Sun et al., 2024; Boža, 2024; Liu et al., 2025). While effective, these methods decline sharply and fail to maintain performance beyond a moderate level of sparsity around 50-60%. For example, the recent study of Zhang et al. (2024) to evaluate these methods report that their performance begins to collapse after 70% sparsity. This deterioration is also evident in other recent works that, notwithstanding the relative advantage over existing methods, the majority still suffer from severely degraded performance in high-sparsity regimes, with perplexity often increased more than an order of magnitude (Boža, 2024; Meng et al., 2024). In fact, this stands in stark contrast to historical precedents, where extreme sparsity of say 90% or higher was commonly achieved (Frankle & Carbin, 2019; Lee et al., 2019). Consequently, researchers have begun to theorize the underlying causes, attributing the failure to compounding layer-wise errors and the explosion of reconstruction error (Shin et al., 2024; Huang et al., 2025).

These findings have collectively fostered a narrative that achieving high sparsity in language models is an illusional goal. We argue, however, that this “sparsity wall” is perhaps not an inherent limitation but rather an artifact of ill-defined problem formulation.

108 To analyze, let us begin by showing that pruning can be formulated most generally as a constrained  
 109 optimization problem as follows:

$$110 \quad x^* = \arg \min f(x) \quad \text{subject to} \quad \|x\|_0 \leq k \quad (1)$$

112 where  $x \in \mathbb{R}^d$  refers to the optimization variable (*i.e.*, parameters of a neural network),  $f$  denotes the  
 113 minimization objective (*e.g.*, cross-entropy loss for next token prediction), and  $k$  is the number of  
 114 parameters to preserve after pruning. *I.e.*, the successful processing of (1) will yield a solution  $x^*$   
 115 that is sparse and keeps prediction performance.

116 However, the majority of LLM pruning methods takes an approach of the following form:

$$117 \quad x^* = \{x_i^* \text{ for } i = 1, \dots, L\} \quad \text{where} \quad x_i^* = \arg \min \tilde{f}(x_i) \quad \text{subject to} \quad \|x_i\|_0 \leq k_i \quad (2)$$

118 where  $L$  refers to the number of some modularized parts of the network model—most typically  
 119 layers—and  $\tilde{f}$  denotes a module-wise surrogate objective that measures reconstruction error; precisely,  
 120 the reconstruction error here is defined to be

$$121 \quad \tilde{f} := \mathbb{E}_{\mathcal{D}} \|\tilde{x}_i^\top g(x_{i-1}; \mathcal{D}) - x_i^\top g(x_{i-1}; \mathcal{D})\|^2 \quad (3)$$

122 where  $g(x_{i-1}; \cdot)$  and  $\tilde{x}$  denote the activations of the previous layer and the  $i$ -th layer of the pre-trained  
 123 dense model, respectively, and  $\mathcal{D}$  refers to some calibration data. Thus, the model is split into  
 124 submodels, and each submodel is pruned so as to match or reconstruct the predictions of the dense  
 125 counterpart on some data, sequentially until the last submodel. The solution is then obtained by  
 126 simply stacking these sparse submodels.

127 We posit that this approach (2), so-called layer-wise reconstruction error minimization, introduces  
 128 non-trivial and potentially critical limitations. Specifically, we highlight three potential pitfalls: (i)  
 129 errors from approximate layer-wise solutions, (ii) suboptimality in model-wide reconstruction, and  
 130 (iii) the surrogacy in the objective. We elaborate these as below.

132 First of all, it is hard to solve (2) exactly without errors, in other words, the distance (3) cannot be  
 133 zero realistically. This is due to the high cost of exactly solving sparse linear regression (Natarajan,  
 134 1995). In fact, this leads to layer-wise solvers relying on saliency-based heuristics to find approximate  
 135 solutions (Frantar & Alistarh, 2023; Sun et al., 2024; Meng et al., 2024). Without zero layer-wise  
 136 reconstruction errors, even small errors from each layer can compound into large overall errors, which  
 137 has been observed to pose non-trivial harm to performance (Shin et al., 2024; Huang et al., 2025).

138 Also, its sequential, layer-wise design is naturally restrictive, potentially introducing suboptimality.  
 139 By enforcing the layer-wise features to match those of a pre-trained network, it effectively restricts  
 140 the search space of the potential solutions, even though no guarantee exists that the optimal sparse  
 141 model would necessarily respect this requirement. Further concern stems from its independent and  
 142 sequential nature; the layers are never jointly optimized, and notably, earlier layers will remain fixed  
 143 even when subsequent layers change regardless of the potential suboptimality it introduces.

144 Lastly—and perhaps quite fundamentally—its reliance on a surrogate objective  $\tilde{f}$  implies that one  
 145 cannot expect to obtain a solution on (1) even after perfectly solving (2). This stands in direct  
 146 opposition to the underlying goal of achieving a perfect, zero error solution on (2), whereas, in reality,  
 147 it may simply lead to overfitting, failing the true objective (1) of preserving the language modeling  
 148 capabilities. We expect these core issues to act as a barrier as we seek higher sparsity levels.

### 150 3 METHOD

152 We propose ELSA (Extreme LLM sparsity via Surrogate-free ADMM) to directly solve (1). We  
 153 ground our approach in optimization from both first-principle and advanced techniques in order to  
 154 better ensure that (1) is properly solved while enhancing effectiveness specifically for LLMs.

#### 156 3.1 SURROGATE-FREE LLM SPARSIFICATION VIA ADMM

158 We solve (1) using the alternating direction method of multipliers (ADMM, Boyd et al. (2011)), a  
 159 strategy involving variable splitting to decouple the intractable sparsity constraint  $\mathcal{S} = \{v \in \mathbb{R}^d \mid$   
 160  $\|v\|_0 \leq k\}$  from the training objective. This is done by introducing an auxiliary variable  $z$  in the  
 161 following manner:

$$161 \quad \min_{x,z} f(x) + I_{\mathcal{S}}(z) \quad \text{s.t.} \quad x = z, \quad (4)$$

162 where  $I_{\mathcal{S}}(z)$  is the indicator function for the set  $\mathcal{S}$ :  
 163

$$164 \quad I_{\mathcal{S}}(z) := \begin{cases} 0 & \text{if } z \in \mathcal{S} \\ 165 \quad \infty & \text{otherwise.} \end{cases} \quad (5)$$

166 In turn, we keep  $x$  constrained to be equal to  $z$ . This allows us to handle the model training and the  
 167 sparsity satisfaction somewhat separated, making both much easier to handle.  
 168

169 To solve for this new formulation, the augmented Lagrangian can be used:  
 170

$$171 \quad \mathcal{L}_{\lambda}(x, z, u) = f(x) + I_{\mathcal{S}}(z) + \frac{\lambda}{2} \|x - z + u\|_2^2 - \frac{\lambda}{2} \|u\|_2^2, \quad (6)$$

172 where  $\lambda$  is the hyperparameter for adjusting the strength of the proximal penalty, and  $u$  is a scaled  
 173 dual variable. ADMM solves this by alternating between minimizing the augmented Lagrangian over  
 174 the primal variables  $(x, z)$  and performing a dual ascent step on  $u$ . This decomposes the problem into  
 175 three manageable subproblems that are iterated until convergence:  
 176

$$177 \quad x^{t+1} = \arg \min_x \left( f(x) + \frac{\lambda}{2} \|x - z^t + u^t\|_2^2 \right), \quad (7)$$

$$179 \quad z^{t+1} = \arg \min_{z \in \mathcal{S}} \frac{\lambda}{2} \|x - z + u^t\|_2^2 = \Pi_{\mathcal{S}}(x^{t+1} + u^t), \quad (8)$$

$$181 \quad u^{t+1} = u^t + x^{t+1} - z^{t+1}. \quad (9)$$

182 The  $x$ -update (7) accounts for minimizing the training objective, and is iteratively minimized while  $x$   
 183 is pushed closer to the sparse  $z$ . The  $z$ -update (8) can be expressed as the projection  $\Pi_{\mathcal{S}}(x^{t+1} + u^t)$ .  
 184 Here, the objective associated with its  $\mathcal{S}$  is simplified to minimizing the Euclidean distance from  
 185  $x^{t+1} + u^t$ , effectively replacing the complex, non-convex  $f$  with a tractable, convex quadratic function.  
 186 As a result, this has an exact closed-form solution computable by zeroing out the  $(d - k)$ -entries  
 187 with the smallest magnitude (Lee et al., 2025). Finally, the scaled dual variable  $u$  is updated in (9) to  
 188 maximize the augmented Lagrangian via a single step of gradient ascent.  
 189

### 190 3.2 OBJECTIVE-AWARE PROJECTION

191 Closely inspecting the projection step in the  $z$ -update (8), one can see that the Euclidean distance is  
 192 far too removed from  $f$ . Thus, it is reasonable to expect that the sparse parameters obtained in  $z$  may  
 193 differ considerably from the actual sparse optima of  $f$ .  
 194

195 This motivates us to align the projection step with  $f$  by modifying its objective into the following  
 196 quadratic:  
 197

$$198 \quad z^{t+1} = \arg \min_{z \in \mathcal{S}} \frac{1}{2} (z - (x^{t+1} + u^t))^{\top} \mathbf{H} (z - (x^{t+1} + u^t)), \quad (10)$$

199 where  $\mathbf{H}$  is the Hessian of  $f$ . Equivalently, we project in the  $\mathbf{H}$  induced norm, aligning the step with  
 200 the second-order geometry of  $f$ . Placed once again in the context of pruning research, its advantages  
 201 would be akin to those of the family of approaches based on the Optimal Brain Surgeon algorithm  
 202 (LeCun et al., 1989).  
 203

204 In practice, two approximations are introduced. We notice that the procedural simplicity in the  
 205 Euclidean case stems from the objective being separable across entries. We found that using  $\text{Diag}(\mathbf{H})$   
 206 allows us to retain this simplicity while still keeping the benefits by zeroing the entries with the  
 207 smallest contribution to the objective rather than by their magnitudes. Also, we employ the Gauss-  
 208 Newton approximation of the Hessian or the empirical Fisher information matrix  $\hat{\mathbf{F}}$ , which allows us  
 209 to obtain a good approximation of the Hessian only by the outer products of the gradients (Martens,  
 210 Li et al., 2025). The results of these can be summarized into the following formula:  
 211

$$211 \quad z^{t+1} = \arg \min_{z \in \mathcal{S}} \sum_{i \leq d} \hat{\mathbf{F}}_{ii} (z_i - (x_i^{t+1} + u_i^t))^2, \quad (11)$$

212 where each coordinate  $i$  contributes independently to this new loss function. Luckily, the standard  
 213 Adam optimizer has already made  $\hat{\mathbf{F}}$  available for free via its second-moment estimates, requiring no  
 214 additional cost in implementing this enhancement. Overall, this tailors our algorithm ELSA to better  
 215 adapt to the complex objective of LLMs, and in a way that incurs negligible additional cost.  
 216

216 3.3 SCALABLE ADMM VIA LOW-PRECISION STATES  
217

218 We further enhance scalability by proposing ELSA<sub>L</sub>. Here, we rely on two core operations: a  
219 quantization operation,  $\mathcal{Q}$ , that maps high-precision tensors to a compact low-precision representation,  
220 and a dequantization operation,  $\mathcal{R}$ , that rematerializes them.

221 Formally, for a high-precision tensor  $z \in \mathbb{R}^d$ , the  $\mathcal{Q}$  operation produces a storable pair  $(z_q, s)$   
222 consisting of a quantized tensor and a scale:

$$223 \quad \mathcal{Q}(z) \triangleq (z_q, s), \quad \text{where } s = \max(|z|)/v_{\max} \text{ and } z_q = \text{round}(z/s). \quad (12)$$

224 Here,  $v_{\max}$  is the maximum representable absolute value of the target data type (e.g., 127 for signed  
225 INT8). Conversely, the  $\mathcal{R}$  operation rematerializes the high-precision tensor from the stored pair:

$$226 \quad \mathcal{D}(z_q, s) \triangleq s \cdot z_q. \quad (13)$$

227 These operations are applied in a cycle to manage the auxiliary variables. After a high-precision  
228 update yields an intermediate state, for instance  $z^{t+1} = \Pi_S(x^{t+1} + u^t)$ , it is quantized for efficient  
229 storage:  $(z_q^{t+1}, s^{t+1}) = \mathcal{Q}(z^{t+1})$ . This transition yields substantial memory savings; for instance,  
230 storing a state in FP8 (8 bits) reduces the memory footprint by 4 $\times$  compared to the standard FP32  
231 representation (32 bits). The overhead from the scale factor is negligible, as typically only a single  
232 32-bit scale value is stored for the entire tensor. For the subsequent computation, the state is first  
233 rematerialized to high precision:  $\hat{z}^{t+1} = \mathcal{R}(z_q^{t+1}, s^{t+1})$ .

234 This quant-dequant cycle, which bridges low-precision storage with high-precision updates via a  
235 dynamic, data-aware scale, is a general and established principle in low-precision deep learning  
236 (Gholami et al., 2022). The specific definitions in (12) can be adapted for various formats, including  
237 both 8-bit integers (INT8) (Jacob et al., 2018) and modern floating-point types like FP8, representing  
238 a cornerstone of efficient numerical methods (Micikevicius et al., 2022).

239 However, this introduces nontrivial changes into the algorithm, and thus, the guarantees of ADMM  
240 do not automatically extend. We therefore establish a proof to demonstrate that ELSA<sub>L</sub>, alongside  
241 with ELSA, will converge to the solution of (1) in the following section.

242 4 CONVERGENCE ANALYSIS  
243

244 We establish theoretical convergence for both ELSA and ELSA<sub>L</sub> to support their reliability in directly  
245 solving (1). Formally, we assume the following:

246 **Assumption 4.1.** (*Lower bounded on constraint*) The function  $f$  is lower bounded on  $\mathcal{S}$ . That is,  
247 there exists a constant  $f_{\min} := \min_{a \in \mathcal{S}} f(a)$  and  $f_{\min} > -\infty$ .

248 **Assumption 4.2.** ( $\beta$ -smoothness) The function  $f$  is differentiable, and its gradient is  $\beta$ -smooth. That  
249 is,  $\|\nabla f(x) - \nabla f(y)\| \leq \beta \|x - y\|$

250 **Assumption 4.3.** ( $\mu$ -weak convexity) There exists a constant  $\mu \geq 0$  such that  $f$  is  $\mu$ -weakly convex.  
251 i.e.,  $f(x) + \frac{\mu}{2} \|x\|^2$  is convex.

252 Also, we rely on the notion of  $\lambda$ -stationarity (Huang et al., 2021):

253 **Definition 4.4.** ( $\lambda$ -stationary point) We say a point  $\bar{x}$  is a  $\lambda$ -stationary point of the optimization  
254 problem (1) if  $\bar{x} \in \arg \min_{x \in \mathcal{S}} \|x - (\bar{x} - \lambda^{-1} \nabla f(\bar{x}))\|$ ,

255 i.e., the point  $\bar{x}$  cannot be locally improved using projected gradient descent with step-size  $\lambda^{-1}$ .

256 Given these, we present the convergence of ELSA and ELSA<sub>L</sub> as follows:

257 **Corollary 4.5.** (*Convergence of ELSA*) Suppose that Assumptions 4.1-4.3 hold. Assume further that  
258  $\lambda$  is chosen large enough so that  $\lambda^{-1} \beta^2 - (\lambda - \mu)/2 < 0$ . Let  $(\bar{x}, \bar{z}, \bar{u})$  be a limit point of ELSA  
259 algorithm. Then  $\bar{x}$  is a  $\lambda$ -stationary point of (1).

260 **Theorem 4.6.** (*Convergence of ELSA<sub>L</sub>*) Suppose that Assumptions 4.1-4.3 hold. Also assume that  
261 the iterates of ELSA<sub>L</sub> are bounded, and the constant  $\lambda$  and  $\gamma$  are chosen such that

$$262 \quad \frac{\beta^2}{\lambda} + \frac{\beta(\lambda + \beta)\gamma}{\lambda} + \frac{\gamma^2(\lambda + \beta)}{2} - \frac{(1 - \gamma)^2(\lambda - \mu)}{2} < 0.$$

263 Then, for any limit point  $(\bar{x}, \bar{z}, \bar{u})$  of the iterates,  $\bar{x}$  is a  $\lambda$ -stationary point of (1).

264 This demonstrates that ELSA and ELSA<sub>L</sub> converge to the stationary point of the sparsity-constrained  
265 optimization problem (1). The detailed proof for ELSA<sub>L</sub> is provided in Appendix A.

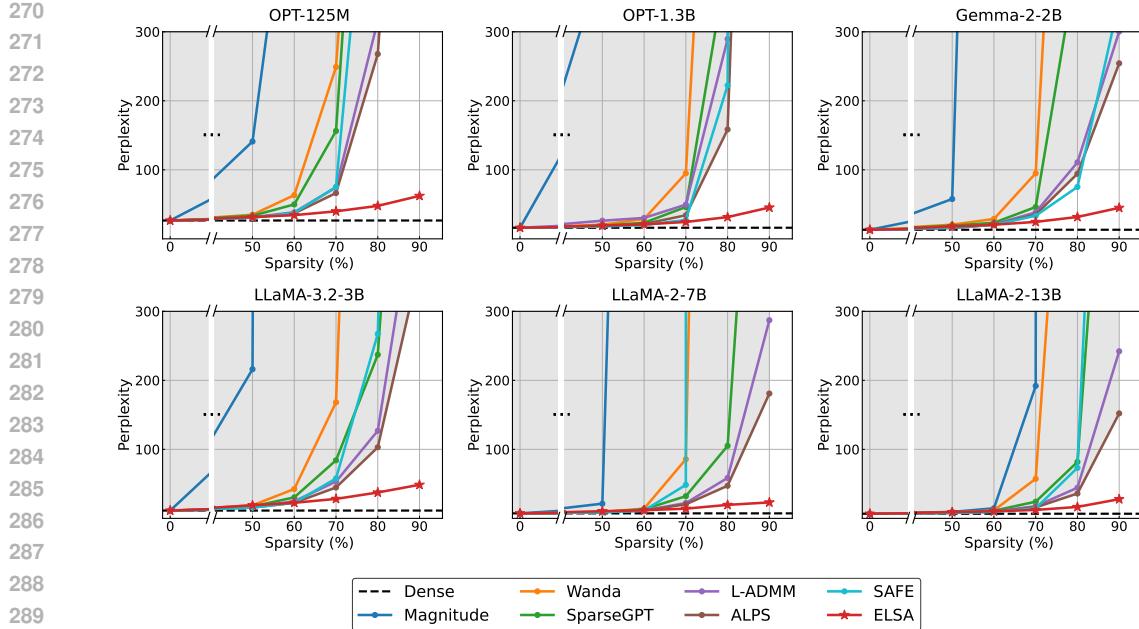


Figure 2: Perplexity vs. Sparsity plots for different models and scales. ELSA preserves much lower perplexity at high sparsity compared to other methods, consistently across a wide range of settings, showing its advantage and robustness. All numerical results are provided in Appendix C.

## 5 EXPERIMENTS

We present a series of concrete experiments to validate ELSA in this section. Specifically, we show that ELSA (i) effectively prunes models to extreme high sparsity levels across a wide range of models and scales (Section 5.1), (ii) scales efficiently to large models up to 27B (Section 5.2), and (iii) adapts to other sparsity patterns such as N:M semi-structured sparsity or non-uniform sparsity found by evolutionary strategies (Section 5.3). We also provide an ablation study on the choice of objective functions and generalized projection (Section 5.4).

We compare ELSA to the following methods: Magnitude (Han et al., 2015), SparseGPT (Frantar & Alistarh, 2023), Wanda (Sun et al., 2024), ALPS (Meng et al., 2024), L-ADMM (Layer-wise ADMM) (Boža, 2024), SAFE (Lee et al., 2025), and SparseLLM (Bai et al., 2024). These methods are applied to four different architectures including OPT (Zhang et al., 2022), Gemma-2 (Team et al., 2024), and LLaMA-2/3 (Touvron et al., 2023; Grattafiori et al., 2024) across a wide range of scales from 125M to 27B. We report perplexity and zero-shot prediction accuracy of pruned models. All experiment settings can be found in Appendix B, and source code to reproduce the results will be released upon publication.

### 5.1 MAIN RESULTS

Figure 2 reports C4 perplexity for various models across different sparsity levels from 50% to 90%. Existing methods deteriorate rapidly beyond 70%; for instance, SparseGPT on OPT-125M rises from 49.83 at 60% sparsity to over 1,000 at 80%. In contrast, ELSA remains stable, increasing only from 42.99 to 47.45 over the same range, and at 80% sparsity matches the perplexity of SparseGPT at 60%. This robustness holds across scales: on LLaMA-2-13B at 90% sparsity, ELSA achieves 27.84 perplexity, while most existing methods exceed the hundreds. Figure 3 further highlights this trend by plotting perplexity against the effective number of non-zero parameters. ELSA consistently sets the new Pareto frontier across scales, underscoring its robustness in extreme sparsity regimes.

This extends to downstream task performance, as shown in Figure 4. Each radar plot reports per-task accuracy at high sparsity (70–90%), with the enclosed area reflecting the average accuracy across tasks. At 70% sparsity, ELSA is competitive with leading methods, but a clear gap emerges as

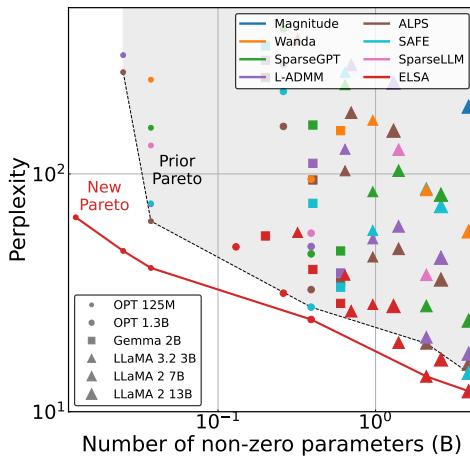


Figure 3: Pareto optimality of ELSA compared to prior works in terms of perplexity vs. number of non-zero parameters. ELSA displays its greater optimality across a broad spectrum of effective scales.

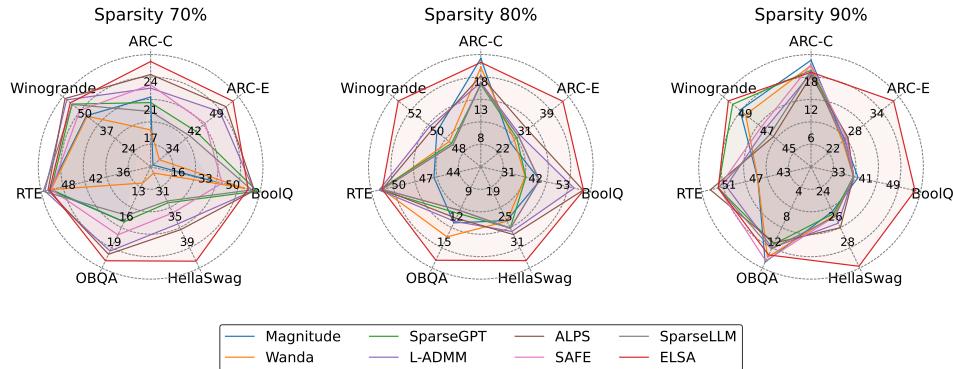


Figure 4: Zero-shot accuracy of pruned LLaMA-2-7B models. ELSA outperforms other methods for most tasks, with the performance gap widening as sparsity increases, highlighting its strong generalization capability. Full numerical results are provided in Table 7 of Appendix C.

sparsity increases. From 70% to 80% sparsity, other methods lose 10–20% p accuracy on tasks such as Winogrande and ARC-E, while ELSA degrades by less than half as much. At 90%, most methods collapse, whereas ELSA retains the highest accuracy on 6 out of 7 tasks, with an average margin of 6.06% p. This demonstrates that ELSA maintains generalization far better than existing methods at high sparsity.

We believe that these results collectively establish the effectiveness of ELSA for extreme sparsity.

## 5.2 SCALING TO LARGE-R MODELS

To further validate the scalability of our principle, we apply ELSA<sub>L</sub> to 27B-scale (Gemma-2-27B). Specifically, we employ the low-precision optimizer adam8bit for  $x$ -update Equation (7), and store the auxiliary variables ( $u, z$ ) in `(bf16, fp8)` precision (Kalamkar et al., 2019; Micikevicius et al., 2022). To save the states in low-precision, we apply quantization function  $Q$  at the tensor level with dynamically updated scales  $s^t$  after each update. This design reduces the memory footprint by 66% compared to ELSA, enabling pruning at 27B scale under limited resources. We conduct this experiment at 90% sparsity level to test whether ELSA<sub>L</sub> can maintain performance under extreme

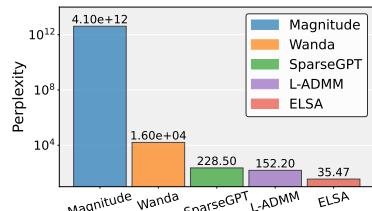


Figure 5: Perplexity of Gemma-2-27B. ELSA achieves the lowest perplexity, confirming its strength.

378  
 379 Table 2: Perplexity and zero-shot prediction accuracy of LLaMA-2-7B under N:M semi-structured  
 380 sparsity. ELSA compares competitively to other methods, demonstrating its adaptivity. Note that 2:4  
 381 and 4:8 patterns are only 50% sparsity levels.

| Sparsity | Method    | Perplexity (↓) |              | Tasks (↑)    |              |              |              |              |              |              |              |
|----------|-----------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|          |           | Wiki           | C4           | ARC-C        | ARC-E        | BoolQ        | HellaSwag    | OBQA         | RTE          | Winogrande   | Avg.         |
| 0%       | Dense     | 5.47           | 7.26         | 43.35        | 76.26        | 77.68        | 57.14        | 31.40        | 62.82        | 69.06        | 59.67        |
| 2:4      | Magnitude | 37.76          | 74.66        | 30.12        | 61.87        | 59.85        | 45.45        | 21.80        | 52.35        | 61.01        | 47.49        |
|          | Wanda     | 12.13          | 15.63        | 30.46        | 61.83        | 68.26        | 41.28        | 24.20        | 53.07        | 62.51        | 48.80        |
|          | SparseGPT | 10.87          | 13.61        | 30.97        | 64.06        | 67.61        | 43.47        | 24.20        | 56.32        | 66.38        | 50.43        |
|          | L-ADMM    | 10.19          | 12.51        | 32.85        | 66.04        | 68.81        | 45.05        | 25.40        | 56.32        | 66.38        | 51.55        |
|          | ALPS      | <b>9.945</b>   | <b>12.09</b> | <b>34.47</b> | <b>68.86</b> | <b>73.79</b> | <b>49.40</b> | <b>27.60</b> | 55.60        | <b>67.25</b> | <b>53.85</b> |
|          | SAFE      | <b>9.914</b>   | <b>12.53</b> | 30.46        | 63.43        | 66.42        | 44.66        | 21.60        | 53.07        | 61.80        | 48.78        |
|          | SparseLLM | 11.29          | 13.95        | 30.55        | 61.91        | <u>71.10</u> | 43.62        | 24.40        | <b>57.40</b> | 65.82        | 50.69        |
|          | ELSA      | 10.15          | 12.34        | 31.49        | 61.24        | 66.36        | <b>47.87</b> | 23.60        | 52.71        | 63.85        | 49.59        |
| 4:8      | Magnitude | 15.91          | 31.60        | <b>36.01</b> | 64.81        | 63.09        | <b>50.05</b> | 26.00        | 52.35        | 62.19        | 50.64        |
|          | Wanda     | 8.603          | 11.33        | 34.47        | 67.05        | <u>72.87</u> | 46.98        | 26.80        | 54.15        | 66.93        | 52.75        |
|          | SparseGPT | 8.508          | 10.81        | 34.81        | <b>68.56</b> | 71.77        | 48.26        | <u>27.80</u> | <u>56.68</u> | <b>68.11</b> | <b>53.71</b> |
|          | L-ADMM    | 8.12           | <u>10.37</u> | <u>35.58</u> | 68.18        | 72.48        | <u>49.45</u> | <b>28.80</b> | <b>58.12</b> | 67.17        | <b>54.25</b> |
|          | ALPS      | <u>8.103</u>   | <b>10.29</b> | 33.28        | 65.19        | 68.75        | 45.96        | 26.20        | 55.96        | 65.98        | 51.62        |
|          | SAFE      | <b>8.043</b>   | 10.47        | 31.57        | 66.84        | 68.04        | 48.55        | 23.40        | 53.07        | 65.04        | 50.93        |
|          | SparseLLM | 8.679          | 11.04        | 34.90        | <u>68.35</u> | <b>75.14</b> | 48.28        | 26.20        | <u>56.68</u> | 66.46        | <u>53.71</u> |
|          | ELSA      | 9.20           | 11.47        | 32.25        | 64.69        | 69.42        | 49.90        | 27.40        | 53.07        | 63.22        | 51.42        |

398  
 399  
 400 compression. As shown in Figure 5, ELSA<sub>L</sub> achieves the lowest perplexity among all compared  
 401 methods (with some omitted due to infeasible memory requirements), outperforming the strongest  
 402 competing method by a factor of 4 $\times$ . These results reinforce our main finding that ELSA preserves  
 403 model quality even at extreme sparsity and scale. Additional implementation details can be found in  
 404 Appendix B.3.

### 5.3 OTHER SPARSITY PATTERNS

410 In this section, we analyze whether ELSA can adapt to other sparsity patterns including (i) N:M  
 411 semi-structured sparsity and (ii) non-uniform sparsity over different layers.

412 We first evaluate ELSA for its adaptivity to N:M semi-structured sparsity, a setting designed for some  
 413 current hardwares to accelerate computations (Sun et al., 2024; Fang et al., 2024). The results of both  
 414 perplexity and zero-shot prediction accuracy are reported in Table 2. ELSA is roughly on par with  
 415 existing methods, and yet, it is noteworthy that these 2:4 and 4:8 sparsity patterns only ensure 50%  
 416 sparsity. More importantly, these results indicate that ELSA can easily adapt to arbitrary constraints  
 417 of moderate sparsity levels without much trouble.

418 We also compare ELSA with non-uniform sparsity allocation  
 419 based pruning methods. Specifically, we compare to OWL  
 420 (Yin et al., 2024) that allocates sparsity based on outlier  
 421 distributions and to EvoPress (Sieberling et al., 2024) that uses  
 422 an evolutionary search strategy to determine the non-uniform  
 423 sparsity levels over different layers. We further set up a method  
 424 that overrides ELSA with the mask found by the evolutionary  
 425 strategy of EvoPress. Note that the sparsity level is set to be  
 426 70%; it is simply because these methods only works or reports  
 427 up to this level. The results are presented in Table 1. One can  
 428 see that ELSA substantially outperforms OWL and shows an  
 429 improvement over EvoPress as well: to elaborate, for instance, it achieves the C4 perplexity of 29.09,  
 430 compared to 33.72 for EvoPress and 52.32 for OWL. Notably, adopting the non-uniform mask found  
 431 by EvoPress within ELSA yields some gains over the EvoPress itself, but it still falls short of the  
 uniform allocation in ELSA, demonstrating the strength of our surrogate-free global formulation.

432  
 433 Table 1: Perplexity of LLaMA-3-  
 434 8B at 70% sparsity. ELSA outper-  
 435 forms prior allocation methods.

| Method          | Wiki(↓)      | C4(↓)        |
|-----------------|--------------|--------------|
| SparseGPT       | 85.84        | 98.35        |
| OWL             | 48.07        | 52.32        |
| EvoPress        | 28.76        | 33.72        |
| ELSA (EvoPress) | 26.11        | 29.33        |
| ELSA            | <b>24.97</b> | <b>29.09</b> |

432  
433

## 5.4 ABLATIONS

434  
435  
436

In this section, we present two ablation analyses on (i) the choice of objective comparing the next token prediction (NTP) against the reconstruction error minimization (REM), and (ii) the projection step contrasting our objective-aware variant with the standard projection method.

437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449

Specifically, we first set up a experiment where we measure how effectively our surrogate-free approach with NTP make use of data to preserve the original model performance while varying the number of data samples. We compare that to the existing REM approach. The results are plotted in Figure 6. While REM tend to perform better than NTP at low data regime, but it soon starts to saturate as data counts increases producing diminishing returns. This is in stark contrast to NTP by which pruning performance keeps on improving quite drastically with more data. Notably, REM requires memory to store dense model predictions, which can grow prohibitively large as with large data. By contrast, NTP naturally benefits from additional data and continues to improve, enabling scalable LLM sparsity. This in part reveals the inherent limitation of surrogate objectives.

450  
451  
452  
453  
454  
455  
456  
457  
458

We also evaluate the effectiveness of the objective-aware projection on high-sparsity regimes. Specifically, we measure the perplexity of LLaMA-3.2-3B model pruned for 70-90% sparsity levels by turning on and off of the projection and report the results in Table 3. The benefit of objective-aware projection grows with sparsity: perplexity gap increases from 1.20 at 70% sparsity to 2.56 at 80%, and widens further at 90%. This demonstrates that incorporating objective-aware importance into the projection step can be beneficial particularly in high sparsity regimes.

459

## 6 DISCUSSION

460  
461  
462  
463  
464  
465  
466  
467  
468

In this work, we confront the problem of moderate sparsity in LLMs through a critical inspection into the current practice, revealing that the prevailing reliance on the sequential layer-wise reconstruction surrogate may have been constraining the path toward more extreme sparsities. This led us to develop ELSA and ELSA-L, enabling us to push the sparsity from 50-70% up to 80-90% while maintaining strong language modeling performance. Grounding on optimization principles ensures that our principle effectively solves the true LLM objective as is, while also facilitating the development of advanced techniques that are both theoretically sound and effective for sparsifying LLMs, which we believe were instrumental in attaining strong practical results.

469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479

Meanwhile, we remark on the memory demands associated with pruning LLMs. In particular, we propose to reassess the widespread assumption that, given the limitations of commodity memory, the adoption of a layer-wise surrogate strategy is difficult to circumvent. First of all, it is worth questioning whether the underlying assumption itself is too restrictive—after all, one would not typically attempt to prune an LLM without at least the resources required to run one. Also, we raise doubts about whether the layer-wise strategy provides clear memory advantages. Precisely, using the offloading technique allows one to optimize over the entire model with similar memory efficiency. In fact, quite the opposite may be the case—they do not scale well with the size of calibration data, requiring the layer activations of the entire calibration data to be stored, while a single mini-batch usually suffices the surrogate-free principle. This calls into question whether our perception of its efficiency could be somewhat inflated, requiring the need for a careful assessment of current practice and exploration of alternative strategies through a more balanced lens.

480  
481  
482  
483  
484  
485

There are many promising directions to pursue for future work: (i) alternative efficiency strategies through advanced memory-efficient and derivative-free optimizers, (ii) system-level advancements in memory offloading, and (iii) extensions to advanced architecture such as Mixture-of-Experts and reasoning models. To conclude, our work validates that the frontier of LLM sparsity can still be expanded by offering a concrete strategy supported by strong empirical evidence. We hope it sets the stage for future breakthroughs and innovations in new directions that have thus far received relatively limited attention.

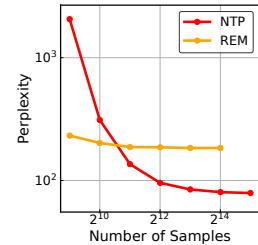


Figure 6: Effect of NTP on data efficiency and perplexity.

Table 3: Effectiveness of geometric projection (✓).

| Sparsity | ✗     | ✓            |
|----------|-------|--------------|
| 70%      | 29.44 | <b>28.24</b> |
| 80%      | 40.06 | <b>37.50</b> |
| 90%      | 65.41 | <b>48.69</b> |

486 REFERENCES  
487

- 488 Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and Liang Zhao. Sparsellm: Towards global  
489 pruning of pre-trained language models. *NeurIPS*, 2024.
- 490 Rishi Bommasani. On the opportunities and risks of foundation models. *arXiv preprint*  
491 *arXiv:2108.07258*, 2021.
- 492 Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization  
493 and statistical learning via the alternating direction method of multipliers. *Foundations and Trends®*  
494 in Machine learning
- 495, 2011.
- 496 Vladimír Boža. Fast and effective weight update for pruned large language models. *Transactions on*  
497 *Machine Learning Research*, 2024.
- 498 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina  
499 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *NAACL*, 2019.
- 500
- 501 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and  
502 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.  
503 *arXiv preprint arXiv:1803.05457*, 2018.
- 504 Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Chukwunyere Osi, Prateek Sharma, Fan Chen, and  
505 Lei Jiang. Llmcarbon: Modeling the end-to-end carbon footprint of large language models. *ICLR*,  
506 2024.
- 507
- 508 Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo  
509 Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language  
510 models. *NeurIPS*, 2024.
- 511 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural  
512 networks. *ICLR*, 2019.
- 513 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in  
514 one-shot. *ICML*, 2023.
- 515
- 516 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A  
517 survey of quantization methods for efficient neural network inference. In *Low-power computer*  
518 *vision*, pp. 291–326. Chapman and Hall/CRC, 2022.
- 519
- 520 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
521 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of  
522 models. *arXiv*, 2024.
- 523
- 524 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for  
525 efficient neural network. *NeurIPS*, 2015.
- 526
- 527 Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep  
528 learning: Pruning and growth for efficient inference and training in neural networks. *Journal of*  
529 *Machine Learning Research*, 22(241):1–124, 2021.
- 530
- 531 Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, and Meisam Razaviyayn. Alter-  
532 nating direction method of multipliers for quantization. *AISTATS*, 2021.
- 533
- 534 Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Fei Chao, and Rongrong Ji. Determining layer-wise  
535 sparsity for large language models through a theoretical perspective. *ICML*, 2025.
- 536
- 537 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig  
538 Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient  
539 integer-arithmetic-only inference. In *Proceedings of the IEEE conference on computer vision and*  
540 *pattern recognition*, pp. 2704–2713, 2018.
- 541
- 542 Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellemudi, Dipankar Das, Kunal Banerjee,  
543 Sasikanth Avancha, Dharm Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,  
544 et al. A study of bfloat16 for deep learning training. *arXiv preprint arXiv:1905.12322*, 2019.

- 540 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott  
 541 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.  
 542 *arXiv preprint arXiv:2001.08361*, 2020.
- 543
- 544 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *NeurIPS*, 1989.
- 545
- 546 Dongyeop Lee, Kwanhee Lee, Jinseok Chung, and Namhoon Lee. SAFE: Finding sparse and flat  
 547 minima to improve pruning. *ICML*, 2025.
- 548
- 549 Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning  
 550 based on connection sensitivity. *ICLR*, 2019.
- 551
- 552 YuXin Li, Felix Dangel, Derek Tam, and Colin Raffel. Fishers for free? approximating the fisher  
 553 information matrix by recycling the squared gradient accumulator. In *Proceedings of the 2025*  
 554 *International Conference on Machine Learning (ICML)*, Jul 2025. doi: 10.48550/arXiv.2507.18807.  
 555 URL <https://arxiv.org/abs/2507.18807>. Poster.
- 556
- 557 Hongyi Liu, Rajarshi Saha, Zhen Jia, Youngsuk Park, Jiaji Huang, Shoham Sabach, Yu-Xiang Wang,  
 558 and George Karypis. Proxspars: Regularized learning of semi-structured sparsity masks for  
 559 pretrained llms. *ICML*, 2025.
- 560
- 561 James Martens. New insights and perspectives on the natural gradient method. *Journal of Machine  
 562 Learning Research*, 21(146):1–76, 2020.
- 563
- 564 Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimization  
 565 for highly sparse one-shot pruning for large language models. *NeurIPS*, 2024.
- 566
- 567 Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenth-  
 568 waite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats for deep  
 569 learning. *arXiv preprint arXiv:2209.05433*, 2022.
- 570
- 571 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct  
 572 electricity? a new dataset for open book question answering. *EMNLP*, 2018.
- 573
- 574 B.K. Natarajan. Sparse approximate solutions to linear systems. *SIAM Journal on Computing*, 24(2):  
 575 227–234, 1995.
- 576
- 577 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
 578 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,  
 579 high-performance deep learning library. *Advances in neural information processing systems*, 32,  
 2019.
- 580
- 581 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An  
 582 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,  
 2021.
- 583
- 584 Sungbin Shin, Wonpyo Park, Jaeho Lee, and Namhoon Lee. Rethinking pruning large language  
 585 models: Benefits and pitfalls of reconstruction error minimization. *EMNLP*, 2024.
- 586
- 587 Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal  
 588 dynamic model compression via evolutionary search. *arXiv preprint arXiv:2410.14649*, 2024.
- 589
- 590 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for  
 591 large language models. *ICLR*, 2024.
- 592
- 593 Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya  
 Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.  
 Gemma 2: Improving open language models at a practical size. *arXiv preprint arXiv:2408.00118*,  
 2024.
- 594
- 595 torchao. Torchao: Pytorch-native training-to-serving model optimization, oct 2024. URL <https://github.com/pytorch/ao>.

- 594 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay  
595 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation  
596 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- 597
- 598 Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR  
599 JAISWAL, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei  
600 Liu. Outlier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high  
601 sparsity. *ICML*, 2024.
- 602 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine  
603 really finish your sentence? *ACL*, 2019.
- 604
- 605 Wenyuan Zeng and Raquel Urtasun. Mlprune: Multi-layer pruning for automated neural network  
606 compression. *arXiv*, 2018.
- 607 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher  
608 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language  
609 models. *arXiv preprint arXiv:2205.01068*, 2022.
- 610 Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei  
611 Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse LLMs.  
612 *ICLR*, 2024.
- 613
- 614 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid  
615 Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data  
616 parallel. *arXiv preprint arXiv:2304.11277*, 2023.
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

---

648 **A PROOF OF THEOREM 4.6**  
649

650 Here we present the convergence proof of ELSA-L. Formally, we prove the convergence of the  
651 following algorithm:  
652

653 **Algorithm 1** ELSA-L  
654

655 1: **Input:** Constant  $\lambda > 0$ ; initial points  $x_0, u_0 \in \mathbb{R}^d$   
656 2: **for**  $r = 0, 1, 2, \dots$  **do**  
657 3:   **Update**  $y$ :  $\Pi_S(x^t + \lambda^{-1}u^t)$   
658 4:   **Update**  $x$  by finding a point  $x^{t+1}$  satisfying  $\nabla f(x^{t+1}) + \mathcal{Q}[u^t + \lambda(x^{t+1} - z^{t+1})] = 0$  and  
659    $\|x^{t+1} - x_*^{t+1}\| \leq \gamma \min\{\|x^{t+1} - z^{t+1}\|, \|x^{t+1} - x^t\|\}$   
660 5:   **Update**  $u$ :  $u^{t+1} = \mathcal{Q}[u^t + \lambda(x^{t+1} - z^{t+1})]$   
661 6: **end for**  
662

662 First, let us define:  
663

664 
$$e^t = \nabla_x \mathcal{L}(x^t, z^t, u^{t-1}) \quad (14)$$
665

666 
$$= \nabla f(x^t) + u^{t-1} + \lambda(x^t - z^t) \quad (15)$$
667

668 
$$= u^{t-1} + \lambda(x^t - z^t) - \mathcal{Q}[u^{t-1} + \lambda(x^t - z^t)]. \quad (16)$$

669 Thus, we can express the  $u$  step in terms of  $e^t$  as follows  
670

671 
$$u^{t+1} = \mathcal{Q}[u^t + \lambda(x^{t+1} - z^{t+1})] \quad (17)$$

672 
$$= u^t + \lambda(x^{t+1} - z^{t+1}) - e^{t+1} \quad (18)$$

673 **Lemma A.1.** Due to  $(\lambda - \mu)$ -strong convexity and  $(\beta + \lambda)$ -smoothness of  $\mathcal{L}(\cdot, z^t, u^{t-1})$ , we know  
674 that  
675

676 
$$(\lambda - \mu)\|x^t - x_*^t\| \leq \|e^t\| \leq (\lambda + \beta)\|x^t - x_*^t\| \quad (19)$$

677 Moreover, due to strong convexity we also know that:  
678

679 
$$\langle e^t, x^t - x_*^t \rangle \geq (\lambda - \mu)\|x^t - x_*^t\| \quad (20)$$

680 **Lemma A.2.** If  $\lambda \geq \beta$  and we also assume that the iterates  $x^t$  stay bounded. Then there exists a  
681 non-negative number  $\bar{D}$  s.t.  $\|x^t - z^t\| \leq \bar{D}$ . With this definition,  
682

683 
$$\mathcal{L}(x^t, z^t, u^t) \geq f_{\min} - \gamma(\lambda + \beta)\bar{D}^2 \quad (21)$$

684 *Proof.* Note that  
685

686 
$$\mathcal{L}(x^t, z^t, u^t) = f(x^t) + \langle u^t, x^t - z^t \rangle + \frac{\lambda}{2}\|x^t - z^t\|^2 \quad (22)$$

687 
$$= f(x^t) + \underbrace{\langle \nabla f(x^t), z^t - x^t \rangle}_{\geq f(z^t)} + \underbrace{\frac{\lambda}{2}\|x^t - z^t\|^2}_{\geq f(z^t)} + \langle e^t, x^t - z^t \rangle \quad (23)$$

688 
$$\geq f(z^t) - \|e^t\|\|x^t - z^t\| \quad (24)$$

689 
$$\geq f_{\min} - \gamma(\lambda + \beta)\bar{D}^2 \quad (25)$$

690 where the last inequality is due to the assumptions and Lemma A.1.  $\square$   
691

692 Now let us prove sufficient decrease on  $\mathcal{L}$  in each iteration.  
693

694 **Lemma A.3.** Let the assumptions of Lemma A.2 be true. Also, assume that the parameters  $\lambda$  and  $\gamma$   
695 are chosen such that  
696

697 
$$\frac{\beta^2}{\lambda} + \frac{\beta(\lambda + \beta)\gamma}{\lambda} + \frac{\gamma^2(\lambda + \beta)}{2} - \frac{(1 - \gamma)^2(\lambda - \mu)}{2} < 0. \quad (26)$$

700 Note that  $\lambda - \mu \geq 0$ . Then, we have  
701

702 
$$\lim_{r \rightarrow \infty} \|x^{t+1} - x^t\| = 0. \quad (27)$$

702 *Proof.* Let

$$\begin{aligned} 703 \quad \mathcal{L}(x^{t+1}, z^{t+1}, u^{t+1}) - \mathcal{L}(x^t, z^t, u^t) &= \underbrace{\mathcal{L}(x^{t+1}, z^{t+1}, u^{t+1}) - \mathcal{L}(x^{t+1}, z^{t+1}, u^t)}_{(A)} \\ 704 \quad &+ \underbrace{\mathcal{L}(x^{t+1}, z^{t+1}, u^t) - \mathcal{L}(x^t, z^t, u^t)}_{(B)}. \\ 705 \\ 706 \\ 707 \\ 708 \\ 709 \end{aligned}$$

710 We want to show that  $(A) + (B) \leq 0$ .

711 Using our definitions, we have

$$712 \quad (A) = \langle u^{t+1}, x^{t+1} - z^{t+1} \rangle - \langle u^t, x^{t+1} - z^{t+1} \rangle = \lambda^{-1} \left( \|u^{t+1} - u^t\|^2 + \langle e^{t+1}, u^{t+1} - u^t \rangle \right). \\ 713 \\ 714$$

$$715 \quad (A) = \lambda^{-1} \left( \|u^{t+1} - u^t\|^2 + \langle e^{t+1}, u^{t+1} - u^t \rangle \right) \quad (28)$$

$$716 \quad = \lambda^{-1} \left( \|\nabla f(x^{t+1}) - \nabla f(x^t)\|^2 + \langle e^{t+1}, \nabla f(x^{t+1}) - \nabla f(x^t) \rangle \right) \quad (29)$$

$$717 \quad \leq \lambda^{-1} \left( \|\nabla f(x^{t+1}) - \nabla f(x^t)\|^2 + \|e^{t+1}\| \|\nabla f(x^{t+1}) - \nabla f(x^t)\| \right) \quad (30)$$

$$718 \quad \leq \lambda^{-1} \left( \beta^2 \|x^{t+1} - x^t\|^2 + \beta \|e^{t+1}\| \|x^{t+1} - x^t\| \right) \quad (31)$$

$$719 \quad \leq \lambda^{-1} \left( \beta^2 \|x^{t+1} - x^t\|^2 + \beta(\lambda + \beta) \|x^{t+1} - x^t\| \|x^{t+1} - x^t\| \right) \quad (32)$$

$$720 \quad \leq \lambda^{-1} \left( \beta^2 \|x^{t+1} - x^t\|^2 + \beta(\lambda + \beta) \gamma \|x^{t+1} - x^t\|^2 \right) \quad (33)$$

$$721 \quad = \lambda^{-1} \beta \left( \beta + (\lambda + \beta) \gamma \right) \|x^{t+1} - x^t\|^2, \quad (34)$$

722 where the last inequality is due to Lemma A.1 and the way  $x^t$  is chosen in Algorithm 1.

723 On the other hand:

$$\begin{aligned} 724 \quad (B) &= \mathcal{L}(x^{t+1}, z^{t+1}, u^t) - \mathcal{L}(x^t, z^t, u^t) \\ 725 \quad &= \mathcal{L}(x^{t+1}, z^{t+1}, u^t) - \mathcal{L}(x^t, z^{t+1}, u^t) + \underbrace{\mathcal{L}(x^t, z^{t+1}, u^t) - \mathcal{L}(x^t, z^t, u^t)}_{\leq 0 \text{ (due to update of } y\text{)}} \\ 726 \quad &\leq \mathcal{L}(x^{t+1}, z^{t+1}, u^t) - \mathcal{L}(x^t, z^{t+1}, u^t) \\ 727 \quad &= \underbrace{\mathcal{L}(x^{t+1}, z^{t+1}, u^t) - \mathcal{L}(x_\star^{t+1}, z^{t+1}, u^t)}_{\leq \frac{\beta+\lambda}{2} \|x^{t+1} - x_\star^{t+1}\|^2} + \underbrace{\mathcal{L}(x_\star^{t+1}, z^{t+1}, u^t) - \mathcal{L}(x^t, z^{t+1}, u^t)}_{\leq -\frac{(\lambda-\mu)}{2} \|x_\star^{t+1} - x^t\|^2} \\ 728 \quad &\leq \frac{\beta+\lambda}{2} \|x^{t+1} - x_\star^{t+1}\|^2 - \frac{(\lambda-\mu)}{2} \|x_\star^{t+1} - x^t\|^2, \end{aligned}$$

729 Now note that  $\|x^t - x_\star^{t+1}\| \geq (1 - \gamma) \|x^{t+1} - x^t\|$  and  $\|x^{t+1} - x_\star^{t+1}\| \leq \gamma \|x^{t+1} - x^t\|$  because of  
730 the update rules of Algorithm 1. Plugging in these, we get

$$731 \quad (B) \leq \left( \frac{\gamma^2(\lambda + \beta)}{2} - \frac{(1 - \gamma)^2(\lambda - \mu)}{2} \right) \|x^{t+1} - x^t\|^2 \quad (35)$$

732 Now combining the inequalities for  $(A)$  and  $(B)$ , we have

$$733 \quad \mathcal{L}(x^{t+1}, z^{t+1}, u^{t+1}) - \mathcal{L}(x^t, z^t, u^t) \quad (36)$$

$$734 \quad \leq \underbrace{\left( \frac{\beta^2}{\lambda} + \frac{\beta(\lambda + \beta)\gamma}{\lambda} + \frac{\gamma^2(\lambda + \beta)}{2} - \frac{(1 - \gamma)^2(\lambda - \mu)}{2} \right)}_{\alpha} \|x^{t+1} - x^t\|^2 \quad (37)$$

756 Now for any  $T$ :

758  $f_{\min} - \gamma(\lambda + \beta)\bar{D}^2 \leq \mathcal{L}(x^{T+1}, z^{T+1}, u^{T+1})$  (38)

759  
760  $= \mathcal{L}(x^0, z^0, u^0) + \sum_{t=0}^T \mathcal{L}(x^{t+1}, z^{t+1}, u^{t+1}) - \mathcal{L}(x^t, z^t, u^t)$  (39)

761  
762  $\leq \alpha \sum_{t=0}^T \|x^{t+1} - x^t\|^2 + \mathcal{L}(x^0, z^0, u^0).$  (40)

763 Now if the parameters are chosen appropriately such that  $\alpha < 0$ , then the right hand side of the  
764 above inequality is decreasing as  $T$  increases, while the left hand side is constant. Therefore, we have  
765  $\lim_{T \rightarrow \infty} \sum_{t=0}^T \|x^{t+1} - x^t\|^2 < \infty$ . Thus,  $\lim_{T \rightarrow \infty} \|x^{t+1} - x^t\| = 0$ .  $\square$

766  
767 **Theorem A.4.** Assume that all the assumptions of Lemma A.3 is satisfied. Then, For any limit point  
768  $(\bar{x}, \bar{z}, \bar{\lambda})$  of the Algorithm 1,  $\bar{x}$  is a  $\lambda$ -stationary solution of the problem.

769  
770 *Proof.* Consider a sub-sequence  $(x^{r_t}, z^{r_t}, u^{r_t})$ , for  $t = 0, \dots$  which converges to  $(\bar{x}, \bar{z}, \bar{u})$ . First of  
771 all due to Lemma A.3, we know that  $\lim_{t \rightarrow \infty} \|x^{r_{t+1}} - x^{r_t}\| = 0$  and  $\lim_{t \rightarrow \infty} \|x^{r_{t-1}} - x^{r_t}\| = 0$ .  
772 Thus,

773  $\lim_{t \rightarrow \infty} x^{r_{t+1}} = \bar{x} \quad \& \quad \lim_{t \rightarrow \infty} x^{r_{t-1}} = \bar{x}$  (41)

774 Moreover, due to the updates of the algorithm

775  $\lim_{t \rightarrow \infty} \|x^{r_{t+1}} - x^{r_t+1}\| \leq \lim_{t \rightarrow \infty} \gamma \|x^{r_{t+1}} - x^{r_t}\| = 0 \quad \& \quad \lim_{t \rightarrow \infty} \|x^{r_t} - x^{r_t}\| \leq \lim_{t \rightarrow \infty} \gamma \|x^{r_t} - x^{r_{t-1}}\| = 0$  (42)

776 Thus,  $\lim_{t \rightarrow \infty} e^{r_t} = \lim_{t \rightarrow \infty} e^{r_{t+1}} = 0$ , which means

777  $\bar{u} = \lim_{t \rightarrow \infty} u^{r_t} = -\lim_{t \rightarrow \infty} (\nabla f(x^{r_t}) - e^{r_t}) = -\nabla f(\bar{x})$  (43)

778  $\lim_{t \rightarrow \infty} u^{r_{t+1}} = -\lim_{t \rightarrow \infty} (\nabla f(x^{r_{t+1}}) - e^{r_{t+1}}) = -\nabla f(\bar{x})$  (44)

779 Thus,  $\lim_{t \rightarrow \infty} u^{r_t+1} = \bar{u}$ .

780 Also, as  $\mathcal{S}$  is finite, there exists a large enough  $T$ , such that  $z^{r_t} = \bar{y}$  for  $t \geq T$ . Again due to the fact  
781 that  $\mathcal{S}$  is finite, we can re-fine the sub-sequence such that  $z^{r_{t+1}} = \hat{y}$ . Thus, without loss of generality  
782 assume that these two conditions hold, i.e.  $z^{r_t} = \bar{y}$  and  $z^{r_{t+1}} = \hat{y}$  for all  $t$  for an appropriately  
783 refined sub-sequence. This means that

784  $\hat{y} \in \arg \min_x \|x - (x^{r_t} + \lambda^{-1}u^{r_t})\|$  (45)

785 Moreover,  $u^{r_{t+1}} = u^{r_t} + \lambda(x^{r_{t+1}} - \hat{y})$ . Taking the  $\lim_{t \rightarrow \infty}$  from both sides, we get

786  $\hat{y} = \bar{x}.$  (46)

787 Combining the above with Equation 45 we can easily see that

788  $\|\bar{x} - (x^{r_t} + \lambda^{-1}u^{r_t})\| \leq \|a_i - (x^{r_t} + \lambda^{-1}u^{r_t})\|, \quad i = 0, \dots, N$  (47)

789 Taking the limits  $\lim_{t \rightarrow \infty}$  from both hand sides of the inequality for all the points  $a_i$  we have

790  $\|\bar{x} - (\bar{x} + \lambda^{-1}\bar{u})\| \leq \|a_i - (\bar{x} + \lambda^{-1}\bar{u})\|, \quad i = 0, \dots, N.$  (48)

791 Thus,

792  $\bar{x} \in \arg \min_{x \in \mathcal{S}} \|x - (\bar{x} - \lambda^{-1}\nabla f(\bar{x}))\|,$  (49)

793 where we used the fact that  $\bar{u} = -\nabla f(\bar{x})$ .  $\square$

810 Table 4: Global hyperparameters of ELSA shared across all models.  
811

| Hyperparameter            | Value        |
|---------------------------|--------------|
| LR schedule               | Linear decay |
| Interval $k$              | 32           |
| Adam $(\beta_1, \beta_2)$ | (0.9, 0.999) |
| Batch size                | 8            |
| Training steps            | 4096         |

812  
813 Table 5: Hyperparameter configuration across models. Each entry shows (learning rate  $\eta$  / penalty  
814 parameter  $\lambda$ ) at different sparsity levels.  
815  
816

| Sparsity                        | OPT-125M  | OPT-1.3B  | Gemma-2-2B | LLaMA-3.2-3B | LLaMA-2-7B | LLaMA-2-13B |
|---------------------------------|-----------|-----------|------------|--------------|------------|-------------|
| 50%                             | 1e-5/1e-2 | 1e-1/5e-5 | 2e-1/2e-5  | 1e-1/5e-5    | 1e-1/5e-5  | 2e-1/5e-5   |
| 60%                             | 5e-5/5e-3 | 1e-2/5e-5 | 1e-2/2e-5  | 1e-2/5e-5    | 2e-2/5e-5  | 2e-1/5e-5   |
| 70%                             | 1e-4/2e-3 | 5e-3/5e-5 | 1e-2/2e-5  | 5e-3/5e-5    | 2e-2/5e-5  | 2e-2/5e-5   |
| 80%                             | 2e-4/1e-3 | 1e-3/1e-4 | 5e-3/2e-5  | 1e-3/1e-4    | 2e-2/5e-5  | 5e-2/5e-5   |
| 90%                             | 2e-4/1e-3 | 1e-3/1e-4 | 5e-4/5e-5  | 1e-3/1e-4    | 1e-3/1e-4  | 2e-3/5e-5   |
| Penalty ( $\lambda$ ) scheduler |           |           |            |              |            |             |
|                                 | constant  | cosine    | constant   | cosine       | cosine     | cosine      |

817  
818 

## B EXPERIMENTAL DETAILS

  
819820 

### B.1 IMPLEMENTATION AND REPRODUCTION DETAILS

  
821822 Our implementation is based on PyTorch (Paszke et al., 2019), using the HuggingFace  
823 transformers and datasets libraries for model and data loading. ELSA is implemented  
824 over HuggingFace Trainer, supporting distributed training via PyTorch FSDP-2 (Zhao et al., 2023)  
825 with HuggingFace Accelerate.  
826827 All experimental results in this work are obtained with unified codebase, while baseline methods are  
828 reproduced using their original implementations whenever available. The environment configuration  
829 (dependencies, versions, and training scripts) will be released together with the code to ensure full  
830 reproducibility.  
831832 Experiments are conducted on NVIDIA A100/H200 GPUs, with the number of GPUs scaled to model  
833 size:  $2 \times$  GPUs for 1.3B–3B models,  $4 \times$  A100 GPUs for 7B models, and  $4 \times$  H200 GPUs for 13B and  
834 27B models.  
835836 

### B.2 DETAILS FOR SECTION 5.1

  
837838 **Calibration/Training data.** To obtain baseline results (Wanda, SparseGPT, ALPS, L-ADMM,  
839 SAFE, SparseLLM), we follow the convention of Frantar & Alistarh (2023), sampling 128 calibration  
840 sequences from the C4 dataset with sequence length 2048. For ELSA, we adopt the same strategy, but  
841 use larger calibration sets to account for the iterative nature of our optimization.  
842843 **Training details.** We train ELSA for 4,096 steps with a batch size of 8 across all model scales,  
844 using Adam as the base optimizer. The penalty parameter follows a cosine schedule, gradually  
845 increasing from 0 at the start to  $\lambda$  at the end of training. All model parameters and optimizer states  
846 uses full precision for training (except for memory-efficient setting and ablations), and automatic  
847 mixed precision with bf16 precision is used for efficient training. A full list of hyperparameter  
848 configurations is provided in Tables 4 and 5.  
849850 **Evaluation.** Perplexity is measured on the held-out (validation) C4 and WikiText2 datasets. Zero-  
851 shot performance is evaluated with lm-eval-harness across seven standard tasks: ARC-  
852 Easy/Challenge (ARC-E/C) (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers  
853 et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), RTE (Zeng & Urtasun, 2018), and  
854 Winogrande (Sakaguchi et al., 2021), and we report the average accuracy as in Section 5.1.  
855

864  
865**B.3 DETAILS FOR SECTION 5.2**866  
867  
868  
869  
870

We ran ELSA<sub>L</sub> on Gemma-2-27B using  $4 \times$ H200 GPUs. Fp8 representations for ADMM states ( $u, z$ ) were implemented based on the `torchao` framework([torchao, 2024](#)), where we further extended the implementation to fully support DTensor, as required by the FSDP-2 framework for distributed training. For this setting, we used a learning rate of  $\eta = 2 \times 10^{-5}$  and penalty parameter  $\lambda = 0.002$ , using cosine penalty scheduling.

871  
872**B.4 DETAILS FOR SECTION 5.3**873  
874  
875

For N:M semi-structured sparsity, we use the same hyperparameter configuration as for 50% unstructured sparsity.

876  
877  
878  
879  
880

For non-uniform sparsity comparisons, we evaluate ELSA on LLaMA-3-8B using the hyperparameters of LLaMA-2-7B at 70% sparsity, while the results of SparseGPT, OWL, and EvoPress are taken directly from [Sieberling et al. \(2024\)](#). For ELSA (EvoPress), we adopt the non-uniform sparsity configurations provided in the official EvoPress repository<sup>\*</sup>, and initialize ELSA with these sparsity budgets while keeping the same training hyperparameters.

881  
882**B.5 DETAILS FOR SECTION 5.4**883  
884  
885  
886

For objective ablation, we used the OPT-125M model at 90% sparsity, fixing the total number of optimization steps to 4,096 and varying the data count from 256 up to 32,684, using the same hyperparameter configurations as in Table 5.

887  
888**C ADDITIONAL RESULTS**889  
890  
891

Here we provide numerical results used to make visual plots in the main text, and additiona result reporting LLaMA-2-13B zero-shot task accuracy.

892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917

---

<sup>\*</sup>[https://github.com/IST-DASLab/EvoPress/tree/main/pruning\\_configs](https://github.com/IST-DASLab/EvoPress/tree/main/pruning_configs)

918  
919  
920  
921  
922  
923 Table 6: Perplexity ( $\downarrow$ ) of various models pruned with different methods across sparsity levels. Dense  
924 performance is shown under each model name (Wiki / C4). Results for SparseLLM on Gemma-2-2B  
925 and LLaMA-2-13B are omitted due to implementation limitations (e.g., architectural incompatibility,  
926 out-of-memory errors). We could not obtain results of SparseLLM in Gemma-2-2b, Llama-3.2-3B,  
927 Llama-2-13B.

| Model                                 | Method    | 50%          |              | 60%          |              | 70%          |              | 80%           |              | 90%          |              |
|---------------------------------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|
|                                       |           | Wiki         | C4           | Wiki         | C4           | Wiki         | C4           | Wiki          | C4           | Wiki         | C4           |
| OPT-125M<br>(Dense: 27.65 / 26.56)    | Magnitude | 193.4        | 141.0        | 920.0        | 598.2        | 3806         | 2263         | 4890          | 3213         | 6613         | 4475         |
|                                       | Wanda     | 38.93        | 34.91        | 77.85        | 63.33        | 351.8        | 248.9        | 1912          | 1066         | 4940         | 3126         |
|                                       | SparseGPT | 37.02        | 33.51        | 60.90        | 49.83        | 239.2        | 156.3        | 2072          | 1050         | 6131         | 2443         |
|                                       | L-ADMM    | <u>33.02</u> | 31.21        | 45.04        | 38.49        | 100.5        | 74.61        | 580.8         | 315.8        | 3427         | 1350         |
|                                       | ALPS      | <b>32.70</b> | <u>30.91</u> | <u>43.07</u> | <u>36.94</u> | <u>90.85</u> | <u>66.28</u> | <u>484.8</u>  | <u>267.7</u> | <u>2524</u>  | <u>1094</u>  |
|                                       | SAFE      | 33.88        | <b>30.54</b> | 47.21        | 37.46        | 120.1        | 75.2         | 1254          | 726.8        | 5382         | 2331         |
|                                       | SparseLLM | 37.11        | 33.19        | 57.47        | 46.64        | 199.2        | 131.7        | 1576          | 752.2        | 4730         | 1825         |
| OPT-1.3B<br>(Dense: 14.62 / 16.07)    | ELSA      | 34.14        | 31.52        | <b>40.04</b> | <u>34.32</u> | <b>49.57</b> | <b>39.86</b> | <b>65.30</b>  | <b>47.74</b> | <b>95.33</b> | <b>62.28</b> |
|                                       | Magnitude | 1712         | 403.3        | 9392         | 5066         | 9442         | 6498         | 1.6e4         | 1.1e4        | 2.9e4        | 1.8e4        |
|                                       | Wanda     | 18.42        | 20.62        | 26.82        | 28.77        | 105.7        | 94.98        | 2504          | 1181         | 1.3e4        | 8447         |
|                                       | SparseGPT | 17.45        | 19.25        | 24.02        | 23.30        | 50.52        | 46.11        | 947.9         | 406.7        | 6472         | 2843         |
|                                       | L-ADMM    | 26.62        | 26.26        | 32.35        | 30.28        | 61.10        | 49.52        | 595.9         | 289.5        | 5659         | 2298         |
|                                       | ALPS      | <u>16.78</u> | <u>18.59</u> | <u>20.58</u> | 21.52        | 35.77        | 34.09        | <u>285.7</u>  | <u>158.4</u> | <u>4590</u>  | <u>1844</u>  |
|                                       | SAFE      | <b>16.38</b> | <b>17.75</b> | <b>19.63</b> | <b>19.93</b> | <u>31.17</u> | <u>27.52</u> | 387.1         | 222.3        | 1.3e4        | 7544         |
| Gemma-2-2B<br>(Dense: 8.71 / 13.16)   | SparseLLM | 17.73        | 19.40        | 23.23        | 24.03        | 56.36        | 47.96        | 861.7         | 372.0        | 5535         | 2217         |
|                                       | ELSA      | 19.66        | 19.11        | 21.97        | <u>20.97</u> | <b>27.13</b> | <b>24.43</b> | <b>36.89</b>  | <b>31.51</b> | <b>61.52</b> | <b>45.39</b> |
|                                       | Magnitude | 51.66        | 57.68        | 2178         | 2064         | 4.4e7        | 3.5e6        | 2.5e9         | 2.4e8        | 5.0e9        | 2.3e9        |
|                                       | Wanda     | 12.07        | 17.49        | 21.39        | 32.40        | 117.5        | 152.0        | 994.6         | 855.6        | 1.1e4        | 5524         |
|                                       | SparseGPT | 11.58        | 16.67        | 16.53        | 23.44        | 34.73        | 47.43        | 147.7         | 160.5        | 983.1        | 776.5        |
|                                       | L-ADMM    | <u>11.02</u> | <u>15.84</u> | <u>14.65</u> | 20.84        | 26.91        | 38.32        | 86.64         | 110.8        | 308.2        | 300.3        |
|                                       | ALPS      | <b>10.93</b> | <b>15.77</b> | <b>14.42</b> | <b>20.32</b> | <u>24.96</u> | 35.08        | 73.50         | 94.26        | <u>238.5</u> | <u>254.3</u> |
| LLaMA-3.2-3B<br>(Dense: 7.81 / 11.32) | SAFE      | 11.61        | 16.21        | 15.22        | <b>20.32</b> | 25.67        | <u>33.39</u> | <u>68.55</u>  | <u>75.22</u> | 432.7        | 345.0        |
|                                       | SparseLLM | —            | —            | —            | —            | —            | —            | —             | —            | —            | —            |
|                                       | ELSA      | 13.57        | 17.84        | 16.29        | 20.45        | <b>21.22</b> | <b>24.55</b> | <b>30.29</b>  | <b>31.68</b> | <b>49.37</b> | <b>44.93</b> |
|                                       | Magnitude | 139.4        | 216.1        | 1.5e4        | 1.4e4        | 1.0e5        | 8.1e5        | 3.5e5         | 3.5e5        | 3.0e5        | 2.4e5        |
|                                       | Wanda     | 13.01        | 19.08        | 31.39        | 42.53        | 142.4        | 168.1        | 3859          | 1821         | 1.4e4        | 8766         |
|                                       | SparseGPT | 12.27        | 17.41        | 23.38        | 30.47        | 86.88        | 84.12        | 292.9         | 237.1        | 1807         | 1094         |
|                                       | L-ADMM    | <u>11.56</u> | <u>16.32</u> | <u>19.06</u> | <u>24.84</u> | <u>45.48</u> | <u>53.30</u> | <u>160.4</u>  | <u>126.9</u> | <u>760.5</u> | <u>509.5</u> |
| LLaMA-2-7B<br>(Dense: 5.47 / 7.26)    | ALPS      | <u>11.31</u> | <u>15.88</u> | 18.16        | 22.83        | <u>41.79</u> | <u>46.48</u> | <u>166.32</u> | <u>109.0</u> | <u>542.0</u> | <u>367.0</u> |
|                                       | SAFE      | <b>10.68</b> | <b>15.51</b> | <b>16.76</b> | <b>22.57</b> | 50.78        | 57.86        | 330.9         | 267.2        | 3410         | 2343         |
|                                       | SparseLLM | —            | —            | —            | —            | —            | —            | —             | —            | —            | —            |
|                                       | ELSA      | 13.56        | 18.98        | <u>17.53</u> | <b>22.57</b> | <b>24.07</b> | <b>28.24</b> | <b>36.25</b>  | <b>37.50</b> | <b>50.88</b> | <b>48.69</b> |
|                                       | Magnitude | 16.03        | 21.34        | 1924         | 2063         | 5.0e4        | 2.8e4        | NaN           | NaN          | NaN          | NaN          |
|                                       | Wanda     | 6.92         | 9.24         | 10.79        | 13.99        | 76.32        | 81.08        | 4096          | 2673         | 2.0e4        | 1.0e4        |
|                                       | SparseGPT | 7.01         | 9.23         | 10.20        | 12.93        | 27.12        | 30.94        | 107.3         | 100.8        | 1430         | 864.5        |
| LLaMA-2-13B<br>(Dense: 4.88 / 6.73)   | L-ADMM    | 6.80         | 8.97         | 9.40         | 11.47        | 20.56        | 22.20        | 60.78         | 58.63        | 400.5        | 287.1        |
|                                       | ALPS      | <u>6.86</u>  | <u>9.02</u>  | <u>9.33</u>  | <b>11.30</b> | <u>19.39</u> | <u>20.37</u> | <u>48.43</u>  | <u>47.22</u> | <u>248.8</u> | <u>180.9</u> |
|                                       | SAFE      | <b>6.72</b>  | <b>8.87</b>  | <b>9.02</b>  | <u>11.40</u> | 86.80        | 48.54        | 8.1e5         | 5.3e5        | 1.6e4        | 1.6e4        |
|                                       | SparseLLM | 7.23         | 9.51         | 10.74        | 13.25        | 37.65        | 35.00        | 126.5         | 94.28        | 1267         | 648.0        |
|                                       | ELSA      | 8.08         | 10.38        | 9.67         | 11.80        | <b>13.20</b> | <b>14.08</b> | <b>20.83</b>  | <b>19.56</b> | <b>26.97</b> | <b>23.14</b> |
|                                       | Magnitude | 6.83         | 9.38         | 11.82        | 14.62        | 214.2        | 191.9        | 3.9e4         | 4.9e4        | 7.5e4        | 6.5e4        |
|                                       | Wanda     | 5.97         | 8.30         | 8.40         | 11.53        | 45.37        | 56.27        | 1004          | 838.8        | 2.2e4        | 1.3e4        |
| LLaMA-2-13B<br>(Dense: 4.88 / 6.73)   | SparseGPT | 6.03         | 8.22         | 8.27         | 10.93        | 19.79        | 23.47        | 97.82         | 79.17        | 1442         | 984.1        |
|                                       | L-ADMM    | 5.92         | 8.11         | 7.57         | 10.05        | 14.81        | 17.56        | 44.78         | 44.42        | 391.1        | 242.1        |
|                                       | ALPS      | <u>5.90</u>  | <u>7.99</u>  | <u>7.56</u>  | <u>9.92</u>  | 14.17        | 16.28        | <u>38.44</u>  | <u>36.78</u> | <u>231.3</u> | <u>152.1</u> |
|                                       | SAFE      | <b>5.73</b>  | <b>7.82</b>  | <b>6.90</b>  | <b>9.24</b>  | <u>12.47</u> | <u>14.57</u> | 93.49         | 73.25        | 2122         | 1388         |
|                                       | SparseLLM | —            | —            | —            | —            | —            | —            | —             | —            | —            | —            |
|                                       | ELSA      | 6.86         | 9.05         | 8.11         | 10.27        | <b>11.14</b> | <b>12.20</b> | <b>17.21</b>  | <b>16.60</b> | <b>30.19</b> | <b>25.07</b> |

972  
973  
974  
975  
976  
977  
978  
979  
980  
981

Table 7: Zero-shot accuracy (%) of Llama-2-7B across multiple tasks, in various sparsity regime (50%-90%).

| Sparsity | Method    | Tasks        |              |              |              |              |              |              |              |
|----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|          |           | ARC-C        | ARC-E        | BoolQ        | HellaSwag    | OBQA         | RTE          | Winogrande   | Avg          |
| 50%      | Dense     | 43.35        | 76.26        | 77.68        | 57.14        | 31.40        | 62.82        | 69.06        | 59.67        |
|          | Magnitude | 34.90        | 64.02        | 62.91        | 49.13        | 26.80        | 57.04        | 63.22        | 51.14        |
|          | Wanda     | 39.25        | 72.22        | 75.17        | 52.64        | 30.60        | 53.43        | 67.17        | 55.78        |
|          | SparseGPT | 38.23        | 71.34        | 75.99        | 52.70        | 29.80        | 56.32        | <b>69.77</b> | 56.31        |
|          | L-ADMM    | <u>39.68</u> | <u>72.77</u> | <b>76.24</b> | <u>53.35</u> | <b>31.40</b> | <b>61.37</b> | <u>69.30</u> | <b>57.73</b> |
|          | ALPS      | <b>40.61</b> | <b>72.90</b> | 75.44        | <b>53.37</b> | <u>30.80</u> | <u>57.76</u> | 68.98        | <u>57.14</u> |
|          | SAFE      | 38.14        | 72.14        | 74.83        | 52.15        | 26.00        | 57.04        | 66.77        | 55.30        |
|          | SparseLLM | 38.05        | 71.25        | 75.14        | 52.66        | 29.60        | 53.43        | 69.30        | 55.63        |
| 60%      | ELSA      | 36.09        | 68.35        | 69.85        | 51.41        | 29.80        | 53.07        | 64.88        | 53.35        |
|          | Magnitude | 25.17        | 44.87        | 47.80        | 35.00        | 20.00        | 50.90        | 53.12        | 39.55        |
|          | Wanda     | 30.63        | 64.44        | 65.51        | 43.51        | <u>25.80</u> | <u>54.15</u> | 64.01        | 49.72        |
|          | SparseGPT | 31.57        | 64.06        | <b>72.57</b> | 45.0         | <u>25.80</u> | 53.43        | 65.51        | 51.13        |
|          | L-ADMM    | <u>34.13</u> | <b>66.50</b> | 70.43        | 47.29        | 26.60        | <b>55.60</b> | <b>66.61</b> | <b>52.45</b> |
|          | ALPS      | <b>34.38</b> | <u>66.33</u> | 70.64        | <u>47.81</u> | <b>27.2</b>  | 54.15        | <u>66.29</u> | <u>52.40</u> |
|          | SAFE      | 31.14        | 64.14        | <u>71.10</u> | 46.43        | 24.00        | <u>54.15</u> | 62.98        | 50.57        |
|          | SparseLLM | 32.59        | 64.52        | 70.86        | 45.24        | <u>25.80</u> | 53.79        | 66.14        | 51.28        |
| 70%      | ELSA      | 31.66        | 63.93        | 67.58        | <b>48.84</b> | 25.00        | 53.43        | 61.48        | 50.28        |
|          | Magnitude | 22.87        | 27.82        | 37.95        | 25.90        | 17.20        | 53.07        | 49.25        | 33.43        |
|          | Wanda     | 18.6         | 30.01        | 57.28        | 28.04        | 12.0         | 52.71        | 48.86        | 35.36        |
|          | SparseGPT | 22.01        | 42.34        | <b>65.14</b> | 33.04        | 16.8         | 52.71        | <u>57.7</u>  | 41.39        |
|          | L-ADMM    | 23.81        | 50.63        | 63.21        | 36.57        | 20.40        | <u>54.15</u> | 60.77        | 44.22        |
|          | ALPS      | <u>25.51</u> | <u>52.78</u> | <u>63.46</u> | <u>37.54</u> | <u>20.8</u>  | 53.43        | <u>61.72</u> | <u>45.03</u> |
|          | SAFE      | 24.23        | 45.62        | 43.76        | 34.74        | 18.40        | <u>52.71</u> | 53.12        | 38.94        |
|          | SparseLLM | 20.90        | 40.32        | 61.87        | 32.74        | 16.0         | <b>54.51</b> | 57.46        | 40.54        |
| 80%      | ELSA      | <b>27.13</b> | <b>55.81</b> | 63.61        | <b>43.16</b> | <b>22.40</b> | 52.71        | 58.64        | <b>46.21</b> |
|          | Magnitude | <b>22.35</b> | 25.38        | 43.67        | 25.72        | 13.00        | 46.57        | 51.62        | 32.62        |
|          | Wanda     | 20.82        | 26.98        | 37.83        | 25.89        | <u>15.0</u>  | 52.71        | 49.25        | 32.64        |
|          | SparseGPT | 17.92        | 27.95        | 38.07        | 27.51        | 12.0         | <b>53.07</b> | 49.01        | 32.22        |
|          | L-ADMM    | 18.26        | 29.29        | 57.49        | 28.33        | 13.00        | <b>53.07</b> | <u>51.22</u> | 35.81        |
|          | ALPS      | 19.37        | <u>32.07</u> | <b>61.1</b>  | <u>29.06</u> | 12.6         | 52.71        | 50.91        | <u>36.83</u> |
|          | SAFE      | <u>21.76</u> | 25.80        | 37.83        | 26.01        | 14.00        | 52.71        | 49.80        | 32.56        |
|          | SparseLLM | 18.09        | 28.70        | 43.55        | 27.57        | 11.6         | 52.71        | 48.86        | 33.01        |
| 90%      | ELSA      | 20.99        | <b>44.61</b> | <u>60.67</u> | <b>34.02</b> | <b>16.80</b> | 52.71        | <b>53.20</b> | <b>40.43</b> |
|          | Magnitude | <b>22.78</b> | 25.93        | <u>39.17</u> | 25.53        | <u>16.0</u>  | 47.29        | 50.12        | 32.40        |
|          | Wanda     | <u>21.67</u> | 25.46        | 37.83        | 25.83        | 15.2         | 47.29        | 49.33        | 31.8         |
|          | SparseGPT | 20.65        | 26.77        | 37.83        | 25.7         | 13.0         | <u>52.71</u> | <u>50.59</u> | 32.46        |
|          | L-ADMM    | 19.97        | 26.14        | 37.83        | 26.46        | 13.60        | <u>51.62</u> | <u>47.51</u> | 31.88        |
|          | ALPS      | 19.45        | <u>26.89</u> | 37.8         | <u>26.81</u> | 12.8         | <b>53.79</b> | 46.65        | 32.03        |
|          | SAFE      | 21.84        | <u>26.52</u> | 37.83        | <u>25.91</u> | 15.80        | <u>52.71</u> | 47.83        | <u>32.63</u> |
|          | SparseLLM | 20.56        | 25.72        | 37.83        | 25.94        | 13.8         | <u>52.71</u> | 46.96        | 31.93        |
| 1021     | ELSA      | 18.52        | <b>41.33</b> | <b>57.25</b> | <b>31.54</b> | <b>16.60</b> | <u>52.71</u> | <b>51.70</b> | <b>38.52</b> |
|          |           |              |              |              |              |              |              |              |              |

1019  
1020  
1021  
1022  
1023  
1024  
1025

1026  
 1027  
 1028  
 1029  
 1030  
 1031  
 1032  
 1033  
 1034  
 1035

1036 Table 8: Zero-shot accuracy (%) of Llama-2 13B across multiple tasks, under various sparsity levels.  
 1037 We could not obtain SparseLLM in Llama-2-13B.

1038

| Sparsity | Method    | Tasks        |              |              |              |              |              |              |
|----------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|          |           | ARC-C        | ARC-E        | BoolQ        | HellaSwag    | OBQA         | RTE          | Winogrande   |
| 0%       | Dense     | 48.46        | 79.38        | 80.55        | 60.04        | 35.20        | 65.34        | 72.14        |
|          | Magnitude | 38.48        | 70.58        | 57.65        | 54.39        | 27.80        | 55.96        | 65.35        |
|          | Wanda     | <u>43.09</u> | <b>76.30</b> | 80.95        | <b>56.96</b> | 31.20        | 60.65        | 71.43        |
|          | SparseGPT | 42.41        | 74.96        | <b>81.53</b> | 55.95        | 31.00        | <b>64.26</b> | 71.35        |
|          | L-ADMM    | <b>43.17</b> | 75.84        | <b>82.29</b> | 56.51        | <u>32.00</u> | <u>63.18</u> | <u>71.98</u> |
|          | ALPS      | 42.66        | <b>76.30</b> | 81.22        | <u>56.71</u> | <b>32.60</b> | 62.82        | <b>72.14</b> |
|          | SAFE      | 41.64        | 75.84        | 80.40        | <u>56.59</u> | 30.60        | 60.65        | 69.14        |
|          | ELSA      | 42.49        | 74.20        | 75.90        | <u>55.52</u> | 31.60        | 52.71        | 68.11        |
| 50%      | Magnitude | 27.13        | 56.14        | 47.49        | 44.66        | 21.80        | 52.71        | 57.46        |
|          | Wanda     | 37.97        | <u>68.81</u> | 77.16        | 48.71        | 28.20        | <u>59.57</u> | 68.19        |
|          | SparseGPT | 36.01        | 69.40        | <u>78.72</u> | 49.38        | 27.4         | <u>57.76</u> | <u>70.56</u> |
|          | L-ADMM    | 19.11        | 33.80        | 62.14        | 29.67        | 14.60        | 52.71        | 53.28        |
|          | ALPS      | <b>40.44</b> | <b>72.93</b> | <b>81.68</b> | 51.97        | <b>30.80</b> | <b>60.29</b> | <b>71.90</b> |
|          | SAFE      | 36.95        | <u>72.43</u> | 78.38        | 52.09        | 28.80        | 57.40        | 67.88        |
|          | ELSA      | <u>38.23</u> | 69.82        | 71.56        | <b>52.44</b> | 27.00        | 52.71        | 65.51        |
|          |           |              |              |              |              |              |              | 53.90        |
| 60%      | Magnitude | 20.65        | 31.31        | 38.65        | 27.53        | 14.60        | 52.71        | 49.25        |
|          | Wanda     | 18.43        | 36.45        | 62.35        | 29.25        | 13.0         | 52.71        | 50.83        |
|          | SparseGPT | 25.34        | 49.58        | 67.86        | 36.27        | 20.2         | 52.71        | 60.93        |
|          | L-ADMM    | 27.56        | <u>59.64</u> | 69.76        | 40.05        | 24.00        | <b>53.43</b> | <u>65.35</u> |
|          | ALPS      | 29.61        | 61.20        | 70.09        | 40.86        | <b>26.6</b>  | <u>53.07</u> | <u>64.56</u> |
|          | SAFE      | 29.78        | 61.07        | 69.17        | 41.62        | 20.20        | 52.71        | 58.96        |
|          | ELSA      | <b>34.13</b> | <b>62.42</b> | <b>70.12</b> | <b>47.52</b> | 24.80        | 52.71        | 60.38        |
|          |           |              |              |              |              |              |              | <b>50.30</b> |
| 70%      | Magnitude | <u>21.84</u> | 25.63        | 41.80        | 25.88        | <u>14.80</u> | <b>53.07</b> | 49.25        |
|          | Wanda     | 20.48        | 26.26        | 37.83        | 26.81        | <u>12.6</u>  | <u>52.71</u> | 50.04        |
|          | SparseGPT | 19.62        | 28.79        | 59.05        | 27.77        | 12.8         | <u>52.71</u> | 49.33        |
|          | L-ADMM    | 19.11        | 33.80        | 62.14        | 29.67        | 14.60        | <u>52.71</u> | 53.28        |
|          | ALPS      | 20.05        | <u>35.99</u> | <u>62.17</u> | 30.65        | 14.0         | <u>52.71</u> | <b>54.93</b> |
|          | SAFE      | 18.34        | 28.37        | 40.64        | 27.44        | 12.80        | <u>52.71</u> | 50.51        |
|          | ELSA      | <b>24.32</b> | <b>50.97</b> | <b>63.52</b> | <b>38.03</b> | <b>19.60</b> | <u>52.71</u> | <u>53.75</u> |
|          |           |              |              |              |              |              |              | <b>43.27</b> |
| 80%      | Magnitude | <u>21.42</u> | 24.87        | 44.16        | 25.72        | <u>15.0</u>  | 46.57        | <u>51.78</u> |
|          | Wanda     | 21.33        | 25.93        | 37.83        | <u>25.80</u> | 13.8         | <u>52.71</u> | <u>51.54</u> |
|          | SparseGPT | 21.08        | 25.76        | <b>58.62</b> | 25.87        | 13.8         | <u>52.35</u> | 49.49        |
|          | L-ADMM    | 19.88        | 26.01        | 39.45        | 27.08        | 13.80        | <b>53.79</b> | 50.04        |
|          | ALPS      | 18.94        | <u>26.94</u> | 43.52        | <u>27.37</u> | 13.4         | <u>52.71</u> | 48.30        |
|          | SAFE      | <b>22.10</b> | 25.76        | 37.83        | 26.02        | 14.20        | <u>52.71</u> | <b>53.43</b> |
|          | ELSA      | 19.03        | <b>36.15</b> | <u>58.44</u> | <b>28.65</b> | <b>16.20</b> | <u>52.71</u> | 50.43        |
|          |           |              |              |              |              |              |              | <b>37.37</b> |

1070  
 1071  
 1072  
 1073  
 1074  
 1075  
 1076  
 1077  
 1078  
 1079