
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

THE UNSEEN FRONTIER: PUSHING THE LIMITS OF
LLM SPARSITY WITH SURROGATE-FREE ADMM

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network pruning is a promising technique to mitigate the excessive compu-
tational and memory requirements of large language models (LLMs). Despite its
promise, however, progress in this area has diminished, as conventional methods
are seemingly unable to surpass moderate sparsity levels (50-60%) without severely
degrading model accuracy. This work breaks through the current impasse, present-
ing a principled and effective method called ELSA, which achieves extreme sparsity
levels of up to 90% while retaining high model fidelity. This is done by identifying
several limitations in current practice, all of which can be traced back to their
reliance on a surrogate objective formulation. ELSA tackles this issue directly and
effectively via standard and well-established constrained optimization techniques
based on ADMM. Our extensive experiments across a wide range of models and
scales show that ELSA achieves substantial improvements over existing methods;
e.g., it achieves 7.8ˆ less perplexity than the best existing method on LLaMA-2-7B
at 90% sparsity. Furthermore, we present ELSA-L, a quantized variant that scales to
extremely large models (27B), and establish its theoretical convergence guarantees.
These results highlight meaningful progress in advancing the frontier of LLM
sparsity, while promising that significant opportunities for further advancement
may remain in directions that have so far attracted limited exploration.

1 INTRODUCTION

Large language models (LLMs) have become indispensable tools across various fields, from creative
industries to scientific research, but their immense size incurs a tremendous amount of memory,
computation, and energy consumption, posing a significant challenge to their widespread deployment
(Kaplan et al., 2020; Bommasani, 2021; Faiz et al., 2024). Neural network pruning can offer a viable
solution to this problem by removing redundant parameters without compromising performance
(LeCun et al., 1989; Han et al., 2015; Hoefler et al., 2021). Indeed, the research community has
responded to this challenge with a surge of innovative methodologies, demonstrating that LLMs can
be made more compact and efficient through effective pruning techniques (Frantar & Alistarh, 2023;
Sun et al., 2024; Boža, 2024; Meng et al., 2024; Fang et al., 2024; Liu et al., 2025; Lee et al., 2025).

However, the community is witnessing a major roadblock: current methodologies are failing to
push beyond a moderate level of sparsity (roughly 50-60%) without a significant decline in model
performance; for instance, prior works have highlighted this limitation with rather incremental
improvements at high sparsity (Meng et al., 2024; Boža, 2024; Yin et al., 2024; Huang et al., 2025).

Have we truly reached a plateau, or is there a path to continued progress?

This work provides a positive answer. We demonstrate that it is possible to prune LLMs for very high
sparsity levels—up to almost 90%—without significant performance degradation (see Figure 1).

The key to our success is identifying and addressing potentially critical flaws in the current practice.
Specifically, the majority of existing methods relies on the principle of sequential layerwise recon-
struction error minimization, an approach proven effective in memory-constrained environments.
However, this approach is inherently prone to propagating compounding errors while enforcing
unnecessarily strong conditions and, in fact, seeks only local solutions by design based on a surrogate
objective (Shin et al., 2024; Bai et al., 2024; Huang et al., 2025). On the other hand, we suggest
finding more globally optimal solutions directly by formulating a sparsity-constrained optimization
problem and developing a robust solver as a whole.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

... Unseen
Frontier

Dense
Magnitude
Wanda
SparseGPT
L-ADMM
ALPS
SAFE
ELSA (ours)

Figure 1: Perplexity (Ó) vs. Sparsity (Ò) curves for different pruning methods; it is measured on the
C4 dataset for pruned LLaMA-2-7B models. While existing methods start to fail as sparsity increases,
our approach (ELSA) stays stable without losing much performance, revealing the unseen frontier.
Previously it was considered nearly impossible to achieve such high sparsity for LLMs or go beyond
the “sparsity wall” formed around 50-60% sparsity levels. The same trend is observed consistently
across different architectures and scales as we will show in Section 5–EXPERIMENTS.

We show that our approach can be applied to a wide range of LLM models and scales from 125M to
13B number of parameters. Our method significantly outperforms existing state-of-the-art techniques,
achieving perplexity levels at least 5ˆ and up to 30ˆ lower, alongside zero-shot prediction accuracy
improvements of nearly 6% on pruned models at 90% sparsity. We provide a flexible implementation
as well, which incorporates memory-efficient designs including quantized optimizer states and enables
pruning even for 27B-parameter models with 66% lower memory footprint, demonstrating extended
potential at scale. Based on classic optimization theory, we also provide a convergence guarantee for
our solver to ensure theoretical soundness alongside empirical findings.

The full extent of its limits is not yet fully understood. However, our work clearly demonstrates
significant potential for further advancements in LLM pruning. We believe that this finding calls for
a renewed focus on alternative strategies that more faithfully preserve model fidelity, which could
include better ways to exchange efficiency for performance, providing practitioners with a wider
range of options.

2 PROBLEM STATEMENT

The long-standing research of neural network pruning, aimed at enhancing the efficiency of large
models (LeCun et al., 1989; Han et al., 2015), has recently made significant progress in its application
to LLMs (Frantar & Alistarh, 2023; Sun et al., 2024; Boža, 2024; Liu et al., 2025). While effective,
these methods decline sharply and fail to maintain performance beyond a moderate level of sparsity
around 50-60%. For example, the recent study of Zhang et al. (2024) to evaluate these methods report
that their performance begins to collapse after 70% sparsity. This deterioration is also evident in other
recent works that, notwithstanding the relative advantage over existing methods, the majority still
suffer from severely degraded performance in high-sparsity regimes, with perplexity often increased
more than an order of magnitude (Boža, 2024; Meng et al., 2024). In fact, this stands in stark contrast
to historical precedents, where extreme sparsity of say 90% or higher was commonly achieved
(Frankle & Carbin, 2019; Lee et al., 2019). Consequently, researchers has begun to theorize the
underlying causes, attributing the failure to compounding layer-wise errors and the explosion of
reconstruction error (Shin et al., 2024; Huang et al., 2025).

These findings have collectively fostered a narrative that achieving high sparsity in language models
is an illusional goal. We argue, however, that this “sparsity wall” is perhaps not an inherent limitation
but rather an artifact of ill-defined problem formulation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To analyze, let us begin by showing that pruning can be formulated most generally as a constrained
optimization problem as follows:

x‹ “ argmin fpxq subject to }x}0 ď k (1)
where x P Rd refers to the optimization variable (i.e., parameters of a neural network), f denotes the
minimization objective (e.g., cross-entropy loss for next token prediction), and k is the number of
parameters to preserve after pruning. I.e., the successful processing of (1) will yield a solution x‹

that is sparse and keeps prediction performance.

However, the majority of LLM pruning methods takes an approach of the following form:

x‹ “ tx‹
i for i “ 1, . . . , Lu where x‹

i “ argmin f̃pxiq subject to }xi}0 ď ki (2)
where L refers to the number of some modularized parts of the network model–most typically
layers–and f̃ denotes a module-wise surrogate objective that measures reconstruction error; precisely,
the reconstruction error here is defined to be

f̃ :“ ED}x̄J
i gpxi´1;Dq ´ xJ

i gpxi´1;Dq}2 (3)
where gpxi´1; ¨q and x̄ denote the activations of the previous layer and the i-th layer of the pre-trained
dense model, respectively, and D refers to some calibration data. Thus, the model is split into
submodels, and each submodel is pruned so as to match or reconstruct the predictions of the dense
counterpart on some data, sequentially until the last submodel. The solution is then obtained by
simply stacking these sparse submodels.

We posit that this approach (2), so-called layer-wise reconstruction error minimization, introduces
non-trivial and potentially critical limitations. Specifically, we highlight three potential pitfalls: (i)
errors from approximate layer-wise solutions, (ii) suboptimality in model-wide reconstruction, and
(iii) the surrogacy in the objective. We elaborate these as below.

First of all, it is hard to solve (2) exactly without errors, in other words, the distance (3) cannot be
zero realistically. This is due to the high cost of exactly solving sparse linear regression (Natarajan,
1995). In fact, this leads to layer-wise solvers relying on saliency-based heuristics to find approximate
solutions (Frantar & Alistarh, 2023; Sun et al., 2024; Meng et al., 2024). Without zero layer-wise
reconstruction errors, even small errors from each layer can compound into large overall errors, which
has been observed to pose non-trivial harm to performance (Shin et al., 2024; Huang et al., 2025).

Also, its sequential, layer-wise design is naturally restrictive, potentially introducing suboptimality.
By enforcing the layer-wise features to match those of a pre-trained network, it effectively restricts
the search space of the potential solutions, even though no guarantee exists that the optimal sparse
model would necessarily respect this requirement. Further concern stems from its independent and
sequential nature; the layers are never jointly optimized, and notably, earlier layers will remain fixed
even when subsequent layers change regardless of the potential suboptimality it introduces.

Lastly—and perhaps quite fundamentally—its reliance on a surrogate objective f̃ implies that one
cannot expect to obtain a solution on (1) even after perfectly solving (2). This stands in direct
opposition to the underlying goal of achieving a perfect, zero error solution on (2), whereas, in reality,
it may simply lead to overfitting, failing the true objective (1) of preserving the language modeling
capabilities. We expect these core issues to act as a barrier as we seek higher sparsity levels.

3 METHOD

We propose ELSA (Extreme LLM sparsity via Surrogate-free ADMM) to directly solve (1). We
ground our approach in optimization from both first-principle and advanced techniques in order to
better ensure that (1) is properly solved while enhancing effectiveness specifically for LLMs.

3.1 SURROGATE-FREE LLM SPARSIFICATION VIA ADMM

We solve (1) using the alternating direction method of multipliers (ADMM, Boyd et al. (2011)), a
strategy involving variable splitting to decouple the intractable sparsity constraint S “ tv P Rd |

}v}0 ď ku from the training objective. This is done by introducing an auxiliary variable z in the
following manner:

min
x,z

fpxq ` ISpzq s.t. x “ z, (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where ISpzq is the indicator function for the set S:

ISpzq :“

"

0 if z P S
8 otherwise.

(5)

In turn, we keep x constrained to be equal to z. This allows us to handle the model training and the
sparsity satisfaction somewhat separated, making both much easier to handle.

To solve for this new formulation, the augmented Lagrangian can be used:

Lλpx, z, uq “ fpxq ` ISpzq `
λ

2
}x ´ z ` u}22 ´

λ

2
}u}22 , (6)

where λ is the hyperparameter for adjusting the strength of the proximal penalty, and u is a scaled
dual variable. ADMM solves this by alternating between minimizing the augmented Lagrangian over
the primal variables (x, z) and performing a dual ascent step on u. This decomposes the problem into
three manageable subproblems that are iterated until convergence:

xt`1 “ argmin
x

ˆ

fpxq `
λ

2
}x ´ zt ` ut}22

˙

, (7)

zt`1 “ argmin
zPS

λ

2
}x ´ zt ` ut}22 “ ΠSpxt`1 ` utq , (8)

ut`1 “ ut ` xt`1 ´ zt`1 . (9)

The x-update (7) accounts for minimizing the training objective, and is iteratively minimized while x
is pushed closer to the sparse z. The z-update (8) can be expressed as the projection ΠSpxt`1 ` utq.
Here, the objective associated with its S is simplified to minimizing the Euclidean distance from
xt`1`ut, effectively replacing the complex, non-convex f with a tractable, convex quadratic function.
As a result, this has an exact closed-form solution computable by zeroing out the pd ´ kq-entries
with the smallest magnitude (Lee et al., 2025). Finally, the scaled dual variable u is updated in (9) to
maximize the augmented Lagrangian via a single step of gradient ascent.

3.2 OBJECTIVE-AWARE PROJECTION

Closely inspecting the projection step in the z-update (8), one can see that the Euclidean distance is
far too removed from f . Thus, it is reasonable to expect that the sparse parameters obtained in z may
differ considerably from the actual sparse optima of f .

This motivates us to align the projection step with f by modifying its objective into the following
quadratic:

zt`1 “ argmin
zPS

1

2
pz ´ pxt`1 ` utqqJH pz ´ pxt`1 ` utqq, (10)

where H is the Hessian of f . Equivalently, we project in the H induced norm, aligning the step with
the second-order geometry of f . Placed once again in the context of pruning research, its advantages
would be akin to those of the family of approaches based on the Optimal Brain Surgeon algorithm
(LeCun et al., 1989).

In practice, two approximations are introduced. We notice that the procedural simplicity in the
Euclidean case stems from the objective being separable across entries. We found that using DiagpHq

allows us to retain this simplicity while still keeping the benefits by zeroing the entries with the
smallest contribution to the objective rather than by their magnitudes. Also, we employ the Gauss-
Newton approximation of the Hessian or the empirical Fisher information matrix F̂, which allows us
to obtain a good approximation of the Hessian only by the outer products of the gradients (Martens,
2020; Li et al., 2025). The results of these can be summarized into the following formula:

zt`1 “ argmin
zPS

ÿ

iďd

F̂ii pzi ´ pxt`1
i ` ut

iqq2, (11)

where each coordinate i contributes independently to this new loss function. Luckily, the standard
Adam optimizer has already made F̂ available for free via its second-moment estimates, requiring no
additional cost in implementing this enhancement. Overall, this tailors our algorithm ELSA to better
adapt to the complex objective of LLMs, and in a way that incurs negligible additional cost.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 SCALABLE ADMM VIA LOW-PRECISION STATES

We further enhance scalability by proposing ELSA-L. Here, we rely on two core operations: a
quantization operation, Q, that maps high-precision tensors to a compact low-precision representation,
and a dequantization operation, R, that rematerializes them.

Formally, for a high-precision tensor z P Rd, the Q operation produces a storable pair pzq, sq

consisting of a quantized tensor and a scale:
Qpzq fi pzq, sq, where s “ maxp|z|q{vmax and zq “ round pz{sq . (12)

Here, vmax is the maximum representable absolute value of the target data type (e.g., 127 for signed
INT8). Conversely, the R operation rematerializes the high-precision tensor from the stored pair:

Dpzq, sq fi s ¨ zq. (13)
These operations are applied in a cycle to manage the auxiliary variables. After a high-precision
update yields an intermediate state, for instance zt`1 “ ΠSpxt`1 ` utq, it is quantized for efficient
storage: pzt`1

q , st`1q “ Qpzt`1q. This transition yields substantial memory savings; for instance,
storing a state in FP8 (8 bits) reduces the memory footprint by 4ˆ compared to the standard FP32
representation (32 bits). The overhead from the scale factor is negligible, as typically only a single
32-bit scale value is stored for the entire tensor. For the subsequent computation, the state is first
rematerialized to high precision: ẑt`1 “ Rpzt`1

q , st`1q.

This quant-dequant cycle, which bridges low-precision storage with high-precision updates via a
dynamic, data-aware scale, is a general and established principle in low-precision deep learning
(Gholami et al., 2022). The specific definitions in (12) can be adapted for various formats, including
both 8-bit integers (INT8) (Jacob et al., 2018) and modern floating-point types like FP8, representing
a cornerstone of efficient numerical methods (Micikevicius et al., 2022).

However, this introduces nontrivial changes into the algorithm, and thus, the guarantees of ADMM
do not automatically extend. We therefore establish a proof to demonstrate that ELSA-L, alongside
with ELSA, will converge to the solution of (1) in the following section.

4 CONVERGENCE ANALYSIS

We establish theoretical convergence for both ELSA and ELSA-L to support their reliability in directly
solving (1). Formally, we assume the following:
Assumption 4.1. (Lower bounded on constraint) The function f is lower bounded on S. That is,
there exists a constant fmin :“ minaPS fpaq and fmin ą ´8.
Assumption 4.2. (β-smoothness) The function f is differentiable, and its gradient is β-smooth. That
is, }∇fpxq ´ ∇fpyq} ď β}x ´ y}

Assumption 4.3. (µ-weak convexity) There exists a constant µ ě 0 such that f is µ-weakly convex.
i.e., fpxq `

µ
2 }x}2 is convex.

Also, we rely on the notion of λ-stationarity (Huang et al., 2021):
Definition 4.4. (λ-stationary point) We say a point x̄ is a λ-stationary point of the optimization
problem (1) if x̄ P argminxPS

›

›x ´
`

x̄ ´ λ´1∇fpx̄q
˘
›

› ,

i.e., the point x̄ cannot be locally improved using projected gradient descent with step-size λ´1.

Given these, we present the convergence of ELSA and ELSA-L as follows:
Corollary 4.5. (Convergence of ELSA) Suppose that Assumptions 4.1-4.3 hold. Assume further that
λ is chosen large enough so that λ´1β2 ´ pλ ´ µq{2 ă 0. Let px̄, z̄, ūq be a limit point of ELSA
algorithm. Then x̄ is a λ-stationary point of (1).
Theorem 4.6. (Convergence of ELSA-L) Suppose that Assumptions 4.1-4.3 hold. Also assume that
the iterates of ELSA-L are bounded, and the constant λ and γ are chosen such that

β2

λ
`

βpλ ` βqγ

λ
`

γ2pλ ` βq

2
´

p1 ´ γq2pλ ´ µq

2
ă 0.

Then, for any limit point px̄, z̄, ūq of the iterates, x̄ is a λ–stationary point of (1).

This demonstrates that ELSA and ELSA-L converge to the stationary point of the sparsity-constrained
optimization problem (1). The detailed proof for ELSA-L is provided in Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

...

OPT-125M

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

...

OPT-1.3B

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

...

Gemma-2-2B

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

...

LLaMA-3.2-3B

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

...

LLaMA-2-7B

0

100

200

300

Pe
rp

le
xi

ty

/

/

...

50 60 70 80 90
Sparsity (%)

/

/

...

LLaMA-2-13B

Dense
Magnitude

Wanda
SparseGPT

L-ADMM
ALPS

SAFE
ELSA

Figure 2: Perplexity vs. Sparsity plots for different models and scales. ELSA preserves much lower
perplexity at high sparsity compared to other methods, consistently across a wide range of settings,
showing its advantage and robustness. All numerical results are provided in Appendix C.

5 EXPERIMENTS

We present a series of concrete experiments to validate ELSA in this section. Specifically, we show
that ELSA (i) effectively prunes models to extreme high sparsity levels across a wide range of models
and scales (Section 5.1), (ii) scales efficiently to large models up to 27B (Section 5.2), and (iii) adapts
to other sparsity patterns such as N:M semi-structured sparsity or non-uniform sparsity found by
evolutionary strategies (Section 5.3). We also provide an ablation study on the choice of objective
functions and generalized projection (Section 5.4).

We compare ELSA to the following methods: Magnitude (Han et al., 2015), SparseGPT (Frantar &
Alistarh, 2023), Wanda (Sun et al., 2024), ALPS (Meng et al., 2024), L-ADMM (Layer-wise ADMM)
(Boža, 2024), SAFE (Lee et al., 2025), and SparseLLM (Bai et al., 2024). These methods are applied
to four different architectures including OPT (Zhang et al., 2022), Gemma-2 (Team et al., 2024), and
LLaMA-2/3 (Touvron et al., 2023; Grattafiori et al., 2024) across a wide range of scales from 125M
to 27B. We report perplexity and zero-shot prediction accuracy of pruned models. All experiment
settings can be found in Appendix B, and source code to reproduce the results will be released upon
publication.

5.1 MAIN RESULTS

Figure 2 reports C4 perplexity for various models across different sparsity levels from 50% to 90%.
Existing methods deteriorate rapidly beyond 70%; for instance, SparseGPT on OPT-125M rises from
49.83 at 60% sparsity to over 1,000 at 80%. In contrast, ELSA remains stable, increasing only from
42.99 to 47.45 over the same range, and at 80% sparsity matches the perplexity of SparseGPT at
60%. This robustness holds across scales: on LLaMA-2-13B at 90% sparsity, ELSA achieves 27.84
perplexity, while most existing methods exceed the hundreds. Figure 3 further highlights this trend
by plotting perplexity against the effective number of non-zero parameters. ELSA consistently sets
the new Pareto frontier across scales, underscoring its robustness in extreme sparsity regimes.

This extends to downstream task performance, as shown in Figure 4. Each radar plot reports per-task
accuracy at high sparsity (70–90%), with the enclosed area reflecting the average accuracy across
tasks. At 70% sparsity, ELSA is competitive with leading methods, but a clear gap emerges as

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10 1 100

Number of non-zero parameters (B)
101

102

Pe
rp

le
xi

ty

New
Pareto

Prior
Pareto

Magnitude
Wanda
SparseGPT
L-ADMM

ALPS
SAFE
SparseLLM
ELSA

OPT 125M
OPT 1.3B
Gemma 2B
LLaMA 3.2 3B
LLaMA 2 7B
LLaMA 2 13B

Figure 3: Pareto optimality of ELSA compared to prior works in terms of perplexity vs. number of
non-zero parameters. ELSA displays its greater optimality across a broad spectrum of effective scales.

ARC-C

ARC-E

BoolQ

HellaSwagOBQA

RTE

Winogrande

17

21

24

34
42

49

16 33 5031

35

39

13

16

19

364248

24
37

50

Sparsity 70%
ARC-C

ARC-E

BoolQ

HellaSwagOBQA

RTE

Winogrande

8

13

18

22
31

39

31 42 5319

25

31

9

12

15

444750

48
50

52

Sparsity 80%
ARC-C

ARC-E

BoolQ

HellaSwagOBQA

RTE

Winogrande

6

12

18

22
28

34

33 41 4924

26

28

4

8

12

434751

45
47

49

Sparsity 90%

Magnitude
Wanda

SparseGPT
L-ADMM

ALPS
SAFE

SparseLLM
ELSA

Figure 4: Zero-shot accuracy of pruned LLaMA-2-7B models. ELSA outperforms other methods
for most tasks, with the performance gap widening as sparsity increases, highlighting its strong
generalization capability. Full numerical results are provided in Table 7 of Appendix C.

sparsity increases. From 70% to 80% sparsity, other methods lose 10–20%p accuracy on tasks such
as Winogrande and ARC-E, while ELSA degrades by less than half as much. At 90%, most methods
collapse, whereas ELSA retains the highest accuracy on 6 out of 7 tasks, with an average margin of
6.06%p. This demonstrates that ELSA maintains generalization far better than existing methods at
high sparsity.

We believe that these results collectively establish the effectiveness of ELSA for extreme sparsity.

5.2 SCALING TO LARGE-R MODELS

Magnitude Wanda
SparseGPT

L-ADMM ELSA

104

108

1012

Pe
rp

le
xi

ty

4.10e+12

1.60e+04

228.50 152.20 35.47

Magnitude
Wanda
SparseGPT
L-ADMM
ELSA

Figure 5: Perplexity of Gemma-2-
27B. ELSA achieves the lowest per-
plexity, confirming its strength.

To further validate the scalability of our principle, we apply
ELSA-L to 27B-scale (Gemma-2-27B). Specifically, we employ
the low-precision optimizer adam8bit for x-update Equa-
tion (7), and store the auxiliary variables pu, zq in (bf16 ,fp8)
precision (Kalamkar et al., 2019; Micikevicius et al., 2022). To
save the states in low-precision, we apply quantization function
Q at the tensor level with dynamically updated scales st after
each update. This design reduces the memory footprint by 66%
compared to ELSA, enabling pruning at 27B scale under limited
resources. We conduct this experiment at 90% sparsity level to
test whether ELSA-L can maintain performance under extreme

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Perplexity and zero-shot prediction accuracy of LLaMA-2-7B under N:M semi-structured
sparsity. ELSA compares competitively to other methods, demonstrating its adaptivity. Note that 2:4
and 4:8 patterns are only 50% sparsity levels.

Perplexity (Ó) Tasks (Ò)

Sparsity Method Wiki C4 ARC-C ARC-E BoolQ HellaSwag OBQA RTE Winogrande Avg.

0% Dense 5.47 7.26 43.35 76.26 77.68 57.14 31.40 62.82 69.06 59.67

2:4

Magnitude 37.76 74.66 30.12 61.87 59.85 45.45 21.80 52.35 61.01 47.49
Wanda 12.13 15.63 30.46 61.83 68.26 41.28 24.20 53.07 62.51 48.80
SparseGPT 10.87 13.61 30.97 64.06 67.61 43.47 24.20 56.32 66.38 50.43
L-ADMM 10.19 12.51 32.85 66.04 68.81 45.05 25.40 56.32 66.38 51.55
ALPS 9.945 12.09 34.47 68.86 73.79 49.40 27.60 55.60 67.25 53.85
SAFE 9.914 12.53 30.46 63.43 66.42 44.66 21.60 53.07 61.80 48.78
SparseLLM 11.29 13.95 30.55 61.91 71.10 43.62 24.40 57.40 65.82 50.69
ELSA 10.15 12.34 31.49 61.24 66.36 47.87 23.60 52.71 63.85 49.59

4:8

Magnitude 15.91 31.60 36.01 64.81 63.09 50.05 26.00 52.35 62.19 50.64
Wanda 8.603 11.33 34.47 67.05 72.87 46.98 26.80 54.15 66.93 52.75
SparseGPT 8.508 10.81 34.81 68.56 71.77 48.26 27.80 56.68 68.11 53.71
L-ADMM 8.12 10.37 35.58 68.18 72.48 49.45 28.80 58.12 67.17 54.25
ALPS 8.103 10.29 33.28 65.19 68.75 45.96 26.20 55.96 65.98 51.62
SAFE 8.043 10.47 31.57 66.84 68.04 48.55 23.40 53.07 65.04 50.93
SparseLLM 8.679 11.04 34.90 68.35 75.14 48.28 26.20 56.68 66.46 53.71
ELSA 9.20 11.47 32.25 64.69 69.42 49.90 27.40 53.07 63.22 51.42

compression. As shown in Figure 5, ELSA-L achieves the lowest perplexity among all compared
methods (with some omitted due to infeasible memory requirements), outperforming the strongest
competing method by a factor of 4ˆ. These results reinforce our main finding that ELSA preserves
model quality even at extreme sparsity and scale. Additional implementation details can be found in
Appendix B.3.

5.3 OTHER SPARSITY PATTERNS

In this section, we analyze whether ELSA can adapt to other sparsity patterns including (i) N:M
semi-structured sparsity and (ii) non-uniform sparsity over different layers.

We first evaluate ELSA for its adaptivity to N:M semi-structured sparsity, a setting designed for some
current hardwares to accelerate computations (Sun et al., 2024; Fang et al., 2024). The results of both
perplexity and zero-shot prediction accuracy are reported in Table 2. ELSA is roughly on par with
existing methods, and yet, it is noteworthy that these 2:4 and 4:8 sparsity patterns only ensure 50%
sparsity. More importantly, these results indicate that ELSA can easily adapt to arbitrary constraints
of moderate sparsity levels without much trouble.

Table 1: Perplexity of LLaMA-3-
8B at 70% sparsity. ELSA outper-
forms prior allocation methods.

Method WikipÓq C4pÓq

SparseGPT 85.84 98.35
OWL 48.07 52.32
EvoPress 28.76 33.72
ELSA (EvoPress) 26.11 29.33
ELSA 24.97 29.09

We also compare ELSA with non-uniform sparsity allocation
based pruning methods. Specifically, we compare to OWL
(Yin et al., 2024) that allocates sparsity based on outlier dis-
tributions and to EvoPress (Sieberling et al., 2024) that uses
an evolutionary search strategy to determine the non-uniform
sparsity levels over different layers. We further set up a method
that overrides ELSA with the mask found by the evolutionary
strategy of EvoPress. Note that the sparsity level is set to be
70%; it is simply because these methods only works or reports
up to this level. The results are presented in Table 1. One can
see that ELSA substantially outperforms OWL and shows an
improvement over EvoPress as well: to elaborate, for instance, it achieves the C4 perplexity of 29.09,
compared to 33.72 for EvoPress and 52.32 for OWL. Notably, adopting the non-uniform mask found
by EvoPress within ELSA yields some gains over the EvoPress itself, but it still falls short of the
uniform allocation in ELSA, demonstrating the strength of our surrogate-free global formulation.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.4 ABLATIONS

In this section, we present two ablation analyses on (i) the choice of objective comparing the next
token prediction (NTP) against the reconstruction error minimization (REM), and (ii) the projection
step contrasting our objective-aware variant with the standard projection method.

210 212 214

Number of Samples

102

103

Pe
rp

le
xi

ty

NTP
REM

Figure 6: Effect of NTP on
data efficiency and perplexity.

Specifically, we first set up a experiment where we measure how
effectively our surrogate-free approach with NTP make use of data to
preserve the original model performance while vayring the number
of data samples. We compare that to the existing REM approach.
The results are plotted in Figure 6. While REM tend to perform
better than NTP at low data regime, but it soon starts to saturate as
data counts increases producing diminishing returns. This is in stark
constrat to NTP by which pruning performance keeps on improving
quite drastically with more data. Notably, REM requires memory to
store dense model predictions, which can grow prohibitively large as
with large data. By contrast, NTP naturally benefits from additional
data and continues to improve, enabling scalable LLM sparsity. This
in part reveals the inherent limitation of surrogate objectives.

Table 3: Effectiveness of geo-
metric projection (✓).

Sparsity ✗ ✓

70% 29.44 28.24
80% 40.06 37.50
90% 65.41 48.69

We also evaluate the effectiveness of the objective-aware projection
on high-sparsity regimes. Specifically, we measure the perplexity of
LLaMA-3.2-3B model pruned for 70-90% sparsity levels by turning
on and off of the projection and report the results in Table 3. The
benefit of objective-aware projection grows with sparsity: perplexity
gap increases from 1.20 at 70% sparsity to 2.56 at 80%, and widens
further at 90%. This demonstrates that incorporating objective-aware
importance into the projection step can be beneficial particularly in
high sparsity regimes.

6 DISCUSSION

In this work, we confront the problem of moderate sparsity in LLMs through a critical inspection into
the current practice, revealing that the prevailing reliance on the sequential layer-wise reconstruction
surrogate may have been constraining the path toward more extreme sparsities. This led us to develop
ELSA and ELSA-L, enabling us to push the sparsity from 50-70% up to 80-90% while maintaining
strong language modeling performance. Grounding on optimization principles ensures that our
principle effectively solves the true LLM objective as is, while also facilitating the development of
advanced techniques that are both theoretically sound and effective for sparsifying LLMs, which we
believe were instrumental in attaining strong practical results.

Meanwhile, we remark on the memory demands associated with pruning LLMs. In particular, we
propose to reassess the widespread assumption that, given the limitations of commodity memory,
the adoption of a layer-wise surrogate strategy is difficult to circumvent. First of all, it is worth
questioning whether the underlying assumption itself is too restrictive—after all, one would not
typically attempt to prune an LLM without at least the resources required to run one. Also, we raise
doubts about whether the layer-wise strategy provides clear memory advantages. Precisely, using the
offloading technique allows one to optimize over the entire model with similar memory efficiency.
In fact, quite the opposite may be the case—they do not scale well with the size of calibration data,
requiring the layer activations of the entire calibration data to be stored, while a single mini-batch
usually suffices the surrogate-free principle. This calls into question whether our perception of its
efficiency could be somewhat inflated, requiring the need for a careful assessment of current practice
and exploration of alternative strategies through a more balanced lens.

There are many promising directions to pursue for future work: (i) alternative efficiency strategies
through advanced memory-efficient and derivative-free optimizers, (ii) system-level advancements
in memory offloading, and (iii) extensions to advanced architecture such as Mixture-of-Experts and
reasoning models. To conclude, our work validates that the frontier of LLM sparsity can still be
expanded by offering a concrete strategy supported by strong empirical evidence. We hope it sets the
stage for future breakthroughs and innovations in new directions that have thus far received relatively
limited attention.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Guangji Bai, Yijiang Li, Chen Ling, Kibaek Kim, and Liang Zhao. Sparsellm: Towards global
pruning of pre-trained language models. NeurIPS, 2024.

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends®
in Machine learning, 2011.

Vladimír Boža. Fast and effective weight update for pruned large language models. Transactions on
Machine Learning Research, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. NAACL, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Chukwunyere Osi, Prateek Sharma, Fan Chen, and
Lei Jiang. Llmcarbon: Modeling the end-to-end carbon footprint of large language models. ICLR,
2024.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language
models. NeurIPS, 2024.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. ICLR, 2019.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. ICML, 2023.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv, 2024.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. NeurIPS, 2015.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Tianjian Huang, Prajwal Singhania, Maziar Sanjabi, Pabitra Mitra, and Meisam Razaviyayn. Alter-
nating direction method of multipliers for quantization. AISTATS, 2021.

Weizhong Huang, Yuxin Zhang, Xiawu Zheng, Fei Chao, and Rongrong Ji. Determining layer-wise
sparsity for large language models through a theoretical perspective. ICML, 2025.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
et al. A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. NeurIPS, 1989.

Dongyeop Lee, Kwanhee Lee, Jinseok Chung, and Namhoon Lee. SAFE: Finding sparse and flat
minima to improve pruning. ICML, 2025.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. ICLR, 2019.

YuXin Li, Felix Dangel, Derek Tam, and Colin Raffel. Fishers for free? approximating the fisher
information matrix by recycling the squared gradient accumulator. In Proceedings of the 2025
International Conference on Machine Learning (ICML), Jul 2025. doi: 10.48550/arXiv.2507.18807.
URL https://arxiv.org/abs/2507.18807. Poster.

Hongyi Liu, Rajarshi Saha, Zhen Jia, Youngsuk Park, Jiaji Huang, Shoham Sabach, Yu-Xiang Wang,
and George Karypis. Proxsparse: Regularized learning of semi-structured sparsity masks for
pretrained llms. ICML, 2025.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

Xiang Meng, Kayhan Behdin, Haoyue Wang, and Rahul Mazumder. Alps: Improved optimization
for highly sparse one-shot pruning for large language models. NeurIPS, 2024.

Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisenth-
waite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats for deep
learning. arXiv preprint arXiv:2209.05433, 2022.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. EMNLP, 2018.

B.K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):
227–234, 1995.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Sungbin Shin, Wonpyo Park, Jaeho Lee, and Namhoon Lee. Rethinking pruning large language
models: Benefits and pitfalls of reconstruction error minimization. EMNLP, 2024.

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and Dan Alistarh. Evopress: Towards optimal
dynamic model compression via evolutionary search. arXiv preprint arXiv:2410.14649, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. ICLR, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

torchao. Torchao: Pytorch-native training-to-serving model optimization, oct 2024. URL https:
//github.com/pytorch/ao.

11

https://arxiv.org/abs/2507.18807
https://github.com/pytorch/ao
https://github.com/pytorch/ao

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Gen Li, AJAY KUMAR
JAISWAL, Mykola Pechenizkiy, Yi Liang, Michael Bendersky, Zhangyang Wang, and Shiwei
Liu. Outlier weighed layerwise sparsity (OWL): A missing secret sauce for pruning LLMs to high
sparsity. ICML, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? ACL, 2019.

Wenyuan Zeng and Raquel Urtasun. Mlprune: Multi-layer pruning for automated neural network
compression. arXiv, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yuxin Zhang, Lirui Zhao, Mingbao Lin, Sun Yunyun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse LLMs.
ICLR, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 4.6

Here we present the convergence proof of ELSA-L. Formally, we prove the convergence of the
following algorithm:

Algorithm 1 ELSA-L

1: Input: Constant λ ą 0; initial points x0, u0 P Rd

2: for r “ 0, 1, 2, . . . do
3: Update y: ΠSpxt ` λ´1utq

4: Update x by finding a point xt`1 satisfying ∇fpxt`1q ` Qrut ` λpxt`1 ´ zt`1qs=0 and
}xt`1 ´ xt`1

‹ } ď γmin t}xt`1 ´ zt`1}, }xt`1 ´ xt}u

5: Update u: ut`1 “ Qrut ` λpxt`1 ´ zt`1qs

6: end for

First, let us define:

et “ ∇xLpxt, zt, ut´1q (14)

“ ∇fpxtq ` ut´1 ` λpxt ´ ztq (15)

“ ut´1 ` λpxt ´ ztq ´ Qrut´1 ` λpxt ´ ztqs. (16)

Thus, we can express the u step in terms of et as follows

ut`1 “ Qrut ` λpxt`1 ´ zt`1qs (17)

“ ut ` λpxt`1 ´ zt`1q ´ et`1 (18)

Lemma A.1. Due to pλ ´ µq-strong convexity and pβ ` λq-smoothness of Lp¨, zt, ut´1q, we know
that

pλ ´ µq}xt ´ xt
‹} ď }et} ď pλ ` βq}xt ´ xt

‹} (19)

Moreover, due to strong convexity we also know that:

xet, xt ´ xt
‹y ě pλ ´ µq}xt ´ xt

‹}2 (20)

Lemma A.2. If λ ě β and we also assume that the iterates xt stay bounded. Then there exists a
non-negative number D̄ s.t. }xt ´ zt} ď D̄. With this definition,

Lpxt, zt, utq ě fmin ´ γpλ ` βqD̄2 (21)

Proof. Note that

Lpxt, zt, utq “ fpxtq ` xut, xt ´ zty `
λ

2
}xt ´ zt}2 (22)

“ fpxtq ` x∇fpxtq, zt ´ xty `
λ

2
}xt ´ zt}2

l jh n

ěfpztq

`xet, xt ´ zty (23)

ě fpztq ´ }et}}xt ´ zt} (24)

ě fmin ´ γpλ ` βqD̄2 (25)

where the last inequality is due to the assumptions and Lemma A.1.

Now let us prove sufficient decrease on L in each iteration.
Lemma A.3. Let the assumptions of Lemma A.2 be true. Also, assume that the parameters λ and γ
are chosen such that

β2

λ
`

βpλ ` βqγ

λ
`

γ2pλ ` βq

2
´

p1 ´ γq2pλ ´ µq

2
ă 0. (26)

Note that λ ´ µ ě 0. Then, we have

lim
rÑ8

}xt`1 ´ xt} “ 0. (27)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Let
Lpxt`1, zt`1, ut`1q ´ Lpxt, zt, utq “ Lpxt`1, zt`1, ut`1q ´ Lpxt`1, zt`1, utq

l jh n

pAq

`Lpxt`1, zt`1, utq ´ Lpxt, zt, utq
l jh n

pBq

.

We want to show that pAq ` pBq ď 0.

pAq “ xut`1, xt`1 ´ zt`1y ´ xut, xt`1 ´ zt`1y “ λ´1

ˆ

›

›ut`1 ´ ut
›

›

2
` xet`1, ut`1 ´ uty

˙

.

Using our definitions, we have

pAq “ λ´1

ˆ

}ut`1 ´ ut}2 ` xet`1, ut`1 ´ uty

˙

(28)

“ λ´1

ˆ

}∇fpxt`1q ´ ∇fpxtq}2 ` xet`1,∇fpxt`1q ´ ∇fpxtqy

˙

(29)

ď λ´1

ˆ

}∇fpxt`1q ´ ∇fpxtq}2 ` }et`1}}∇fpxt`1q ´ ∇fpxtq}

˙

(30)

ď λ´1

ˆ

β2}xt`1 ´ xt}2 ` β}et`1}}xt`1 ´ xt}

˙

(31)

ď λ´1

ˆ

β2}xt`1 ´ xt}2 ` βpλ ` βq}xt`1 ´ xt`1
‹ }}xt`1 ´ xt}

˙

(32)

ď λ´1

ˆ

β2}xt`1 ´ xt}2 ` βpλ ` βqγ}xt`1 ´ xt}2
˙

(33)

“ λ´1β

ˆ

β ` pλ ` βqγ

˙

}xt`1 ´ xt}2, (34)

where the last inequality is due to Lemma A.1 and the way xt is chosen in Algorithm 1.

On the other hand:
pBq “ Lpxt`1, zt`1, utq ´ Lpxt, zt, utq

“ Lpxt`1, zt`1, utq ´ Lpxt, zt`1, utq ` Lpxt, zt`1, utq ´ Lpxt, zt, utq
l jh n

ď0 (due to update of y)

ď Lpxt`1, zt`1, utq ´ Lpxt, zt`1, utq

“ Lpxt`1, zt`1, utq ´ Lpxt`1
‹ , zt`1, utq

l jh n

ď
β`λ

2 }xt`1´xt`1
‹ }2

`Lpxt`1
‹ , zt`1, utq ´ Lpxt, zt`1, utq

l jh n

ď´
pλ´µq

2 }xt`1
‹ ´xt}2

ď
β ` λ

2
}xt`1 ´ xt`1

‹ }2 ´
pλ ´ µq

2
}xt`1

‹ ´ xt}2,

Now note that }xt ´ xt`1
‹ } ě p1 ´ γq}xt`1 ´ xt} and }xt`1 ´ xt`1

‹ } ď γ}xt`1 ´ xt} because of
the update rules of Algorithm 1. Plugging in these, we get

pBq ď

ˆ

γ2pλ ` βq

2
´

p1 ´ γq2pλ ´ µq

2

˙

}xt`1 ´ xt}2 (35)

Now combining the inequalities for pAq and pBq, we have

Lpxt`1, zt`1, ut`1q ´ Lpxt, zt, utq (36)

ď

ˆ

β2

λ
`

βpλ ` βqγ

λ
`

γ2pλ ` βq

2
´

p1 ´ γq2pλ ´ µq

2

˙

l jh n

α

}xt`1 ´ xt}2 (37)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now for any T :

fmin ´ γpλ ` βqD̄2 ď LpxT`1, zT`1, uT`1q (38)

“ Lpx0, z0, u0q `

T
ÿ

t“0

Lpxt`1, zt`1, ut`1q ´ Lpxt, zt, utq (39)

ď α
T

ÿ

t“0

}xt`1 ´ xt}2 ` Lpx0, z0, u0q. (40)

Now if the parameters are chosen appropriately such that α ă 0, then the right hand side of the
above inequality is decreasing as T increases, while the left hand side is constant. Therefore, we have
limTÑ8

řT
t“0 }xt`1 ´ xt}2 ă 8. Thus, limrÑ8 }xt`1 ´ xt} “ 0.

Theorem A.4. Assume that all the assumptions of Lemma A.3 is satisfied. Then, For any limit point
px̄, z̄, λ̄q of the Algorithm 1, x̄ is a λ-stationary solution of the problem.

Proof. Consider a sub-sequence pxrt , zrt , urtq, for t “ 0, ¨ ¨ ¨ which converges to px̄, z̄, ūq. First of
all due to Lemma A.3, we know that limtÑ8 }xrt`1 ´ xrt} “ 0 and limtÑ8 }xrt´1 ´ xrt} “ 0.
Thus,

lim
tÑ8

xrt`1 “ x̄ & lim
tÑ8

xrt´1 “ x̄ (41)

Moreover, due to the updates of the algorithm

lim
tÑ8

}xrt`1 ´ xrt`1
‹ } ď lim

tÑ8
γ}xrt`1 ´ xrt} “ 0 & lim

tÑ8
}xrt ´ xrt

‹ } ď lim
tÑ8

γ}xrt ´ xrt´1} “ 0

(42)
Thus, limtÑ8 ert “ limtÑ8 ert`1 “ 0, which means

ū “ lim
tÑ8

urt “ ´ lim
tÑ8

p∇fpxrtq ´ ertq “ ´∇fpx̄q (43)

lim
tÑ8

urt`1 “ ´ lim
tÑ8

p∇fpxrt`1q ´ ert`1q “ ´∇fpx̄q (44)

Thus, limtÑ8 urt`1 “ ū.

Also, as S is finite, there exists a large enough T, such that zrt “ ȳ for t ě T . Again due to the fact
that S is finite, we can re-fine the sub-sequence such that zrt`1 “ ŷ. Thus, without loss of generality
assume that these two conditions hold, i.e. zrt “ ȳ and zrt`1 “ ŷ for all t for an appropriately
refined sub-sequence. This means that

ŷ P argmin
x

}x ´ pxrt ` λ´1urtq} (45)

Moreover, urt`1 “ urt ` λpxrt`1 ´ ŷq. Taking the limtÑ8 from both sides, we get

ŷ “ x̄. (46)

Combining the above with Equation 45 we can easily see that

}x̄ ´ pxrt ` λ´1urtq} ď }ai ´ pxrt ` λ´1urtq}, i “ 0, ¨ ¨ ¨ , N (47)

Taking the limits limtÑ8 from both hand sides of the inequality for all the points ai we have

}x̄ ´ px̄ ` λ´1ūq} ď }ai ´ px̄ ` λ´1ūq}, i “ 0, ¨ ¨ ¨ , N. (48)

Thus,
x̄ P argmin

xPS
}x ´ px̄ ´ λ´1∇fpx̄qq}, (49)

where we used the fact that ū “ ´∇fpx̄q.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Global hyperparameters of ELSA shared across all models.

Hyperparameter Value
LR schedule Linear decay
Interval k 32
Adam pβ1, β2q (0.9, 0.999)
Batch size 8
Training steps 4096

Table 5: Hyperparameter configuration across models. Each entry shows (learning rate η / penalty
parameter λ) at different sparsity levels.

Sparsity OPT-125M OPT-1.3B Gemma-2-2B LLaMA-3.2-3B LLaMA-2-7B LLaMA-2-13B

50% 1e-5/1e-2 1e-1/5e-5 2e-1/2e-5 1e-1/5e-5 1e-1/5e-5 2e-1/5e-5
60% 5e-5/5e-3 1e-2/5e-5 1e-2/2e-5 1e-2/5e-5 2e-2/5e-5 2e-1/5e-5
70% 1e-4/2e-3 5e-3/5e-5 1e-2/2e-5 5e-3/5e-5 2e-2/5e-5 2e-2/5e-5
80% 2e-4/1e-3 1e-3/1e-4 5e-3/2e-5 1e-3/1e-4 2e-2/5e-5 5e-2/5e-5
90% 2e-4/1e-3 1e-3/1e-4 5e-4/5e-5 1e-3/1e-4 1e-3/1e-4 2e-3/5e-5

Penalty pλq scheduler constant cosine constant cosine cosine cosine

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION AND REPRODUCTION DETAILS

Our implementation is based on PyTorch (Paszke et al., 2019), using the HuggingFace
transformers and datasets libraries for model and data loading. ELSA is implemented
over HuggingFace Trainer, supporting distributed training via PyTorch FSDP-2 (Zhao et al., 2023)
with HuggingFace Accelerate.

All experimental results in this work are obtained with unified codebase, while baseline methods are
reproduced using their original implementations whenever available. The environment configuration
(dependencies, versions, and training scripts) will be released together with the code to ensure full
reproducibility.

Experiments are conducted on NVIDIA A100/H200 GPUs, with the number of GPUs scaled to model
size: 2ˆGPUs for 1.3B–3B models, 4ˆA100 GPUs for 7B models, and 4ˆH200 GPUs for 13B and
27B models.

B.2 DETAILS FOR SECTION 5.1

Calibration/Training data. To obtain baseline results (Wanda, SparseGPT, ALPS, L-ADMM,
SAFE, SparseLLM), we follow the convention of Frantar & Alistarh (2023), sampling 128 calibration
sequences from the C4 dataset with sequence length 2048. For ELSA, we adopt the same strategy, but
use larger calibration sets to account for the iterative nature of our optimization.

Training details. We train ELSA for 4,096 steps with a batch size of 8 across all model scales,
using Adam as the base optimizer. The penalty parameter follows a cosine schedule, gradually
increasing from 0 at the start to λ at the end of training. All model parameters and optimizer states
uses full precision for training (except for memory-efficient setting and ablations), and automatic
mixed precision with bf16 precision is used for efficient training. A full list of hyperparameter
configurations is provided in Tables 4 and 5.

Evaluation. Perplexity is measured on the held-out (validation) C4 and Wikitext2 datasets. Zero-
shot performance is evaluated with lm-eval-harness across seven standard tasks: ARC-
Easy/Challenge (ARC-E/C) (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers
et al., 2019), OpenBookQA (OBQA) (Mihaylov et al., 2018), RTE (Zeng & Urtasun, 2018), and
Winogrande (Sakaguchi et al., 2021), and we report the average accuracy as in Section 5.1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 DETAILS FOR SECTION 5.2

We ran ELSA-L on Gemma-2-27B using 4ˆH200 GPUs. Fp8 representations for ADMM states pu, zq

were implemented based on the torchao framework(torchao, 2024), where we further extended
the implementation to fully support DTensor, as required by the FSDP-2 framework for distributed
training. For this setting, we used a learning rate of η “ 2 ˆ 10´5 and penalty parameter λ “ 0.002,
using cosine penalty scheduling.

B.4 DETAILS FOR SECTION 5.3

For N:M semi-structured sparsity, we use the same hyperparameter configuration as for 50% unstruc-
tured sparsity.

For non-uniform sparsity comparisons, we evaluate ELSA on LLaMA-3-8B using the hyperparameters
of LLaMA-2-7B at 70% sparsity, while the results of SparseGPT, OWL, and EvoPress are taken
directly from Sieberling et al. (2024). For ELSA (EvoPress), we adopt the non-uniform sparsity
configurations provided in the official EvoPress repository*, and initialize ELSA with these sparsity
budgets while keeping the same training hyperparameters.

B.5 DETAILS FOR SECTION 5.4

For objective ablation, we used the OPT-125M model at 90% sparsity, fixing the total number of
optimization steps to 4,096 and varying the data count from 256 up to 32,684, using the same
hyperparameter configurations as in Table 5.

C ADDITIONAL RESULTS

Here we provide numerical results used to make visual plots in the main text, and additiona result
reporting LLaMA-2-13B zero-shot task accuracy.

*https://github.com/IST-DASLab/EvoPress/tree/main/pruning_configs

17

https://github.com/IST-DASLab/EvoPress/tree/main/pruning_configs

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Perplexity (Ó) of various models pruned with different methods across sparsity levels. Dense
performance is shown under each model name (Wiki / C4). Results for SparseLLM on Gemma-2-2B
and LLaMA-2-13B are omitted due to implementation limitations (e.g., architectural incompatibility,
out-of-memory errors). We could not obtain results of SparseLLM in Gemma-2-2b, Llama-3.2-3B,
Llama-2-13B.

50% 60% 70% 80% 90%

Model Method Wiki C4 Wiki C4 Wiki C4 Wiki C4 Wiki C4

OPT-125M
(Dense: 27.65 / 26.56)

Magnitude 193.4 141.0 920.0 598.2 3806 2263 4890 3213 6613 4475
Wanda 38.93 34.91 77.85 63.33 351.8 248.9 1912 1066 4940 3126
SparseGPT 37.02 33.51 60.90 49.83 239.2 156.3 2072 1050 6131 2443
L-ADMM 33.02 31.21 45.04 38.49 100.5 74.61 580.8 315.8 3427 1350
ALPS 32.70 30.91 43.07 36.94 90.85 66.28 484.8 267.7 2524 1094
SAFE 33.88 30.54 47.21 37.46 120.1 75.2 1254 726.8 5382 2331
SparseLLM 37.11 33.19 57.47 46.64 199.2 131.7 1576 752.2 4730 1825
ELSA 34.14 31.52 40.04 34.32 49.57 39.86 65.30 47.74 95.33 62.28

OPT-1.3B
(Dense: 14.62 / 16.07)

Magnitude 1712 403.3 9392 5066 9442 6498 1.6e4 1.1e4 2.9e4 1.8e4
Wanda 18.42 20.62 26.82 28.77 105.7 94.98 2504 1181 1.3e4 8447
SparseGPT 17.45 19.25 24.02 23.30 50.52 46.11 947.9 406.7 6472 2843
L-ADMM 26.62 26.26 32.35 30.28 61.10 49.52 595.9 289.5 5659 2298
ALPS 16.78 18.59 20.58 21.52 35.77 34.09 285.7 158.4 4590 1844
SAFE 16.38 17.75 19.63 19.93 31.17 27.52 387.1 222.3 1.3e4 7544
SparseLLM 17.73 19.40 23.23 24.03 56.36 47.96 861.7 372.0 5535 2217
ELSA 19.66 19.11 21.97 20.97 27.13 24.43 36.89 31.51 61.52 45.39

Gemma-2-2B
(Dense: 8.71/ 13.16)

Magnitude 51.66 57.68 2178 2064 4.4e7 3.5e6 2.5e9 2.4e8 5.0e9 2.3e9
Wanda 12.07 17.49 21.39 32.40 117.5 152.0 994.6 855.6 1.1e4 5524
SparseGPT 11.58 16.67 16.53 23.44 34.73 47.43 147.7 160.5 983.1 776.5
L-ADMM 11.02 15.84 14.65 20.84 26.91 38.32 86.64 110.8 308.2 300.3
ALPS 10.93 15.77 14.42 20.32 24.96 35.08 73.50 94.26 238.5 254.3
SAFE 11.61 16.21 15.22 20.32 25.67 33.39 68.55 75.22 432.7 345.0
SparseLLM — — — — — — —- — — —
ELSA 13.57 17.84 16.29 20.45 21.22 24.55 30.29 31.68 49.37 44.93

LLaMA-3.2-3B
(Dense: 7.81 / 11.32)

Magnitude 139.4 216.1 1.5e4 1.4e4 1.0e5 8.1e5 3.5e5 3.5e5 3.0e5 2.4e5
Wanda 13.01 19.08 31.39 42.53 142.4 168.1 3859 1821 1.4e4 8766
SparseGPT 12.27 17.41 23.38 30.47 86.88 84.12 292.9 237.1 1807 1094
L-ADMM 11.56 16.32 19.06 24.84 45.48 53.30 160.4 126.9 760.5 509.5
ALPS 11.31 15.88 18.16 22.83 41.79 46.48 166.32 109.0 542.0 367.0
SAFE 10.68 15.51 16.76 22.57 50.78 57.86 330.9 267.2 3410 2343
SparseLLM — — — — — — — — — —
ELSA 13.56 18.98 17.53 22.57 24.07 28.24 36.25 37.50 50.88 48.69

LLaMA-2-7B
(Dense: 5.47 / 7.26)

Magnitude 16.03 21.34 1924 2063 5.0e4 2.8e4 NaN NaN NaN NaN
Wanda 6.92 9.24 10.79 13.99 76.32 81.08 4096 2673 2.0e4 1.0e4
SparseGPT 7.01 9.23 10.20 12.93 27.12 30.94 107.3 100.8 1430 864.5
L-ADMM 6.80 8.97 9.40 11.47 20.56 22.20 60.78 58.63 400.5 287.1
ALPS 6.86 9.02 9.33 11.30 19.39 20.37 48.43 47.22 248.8 180.9
SAFE 6.72 8.87 9.02 11.40 86.80 48.54 8.1e5 5.3e5 1.6e4 1.6e4
SparseLLM 7.23 9.51 10.74 13.25 37.65 35.00 126.5 94.28 1267 648.0
ELSA 8.08 10.38 9.67 11.80 13.20 14.08 20.83 19.56 26.97 23.14

LLaMA-2-13B
(Dense: 4.88 / 6.73)

Magnitude 6.83 9.38 11.82 14.62 214.2 191.9 3.9e4 4.9e4 7.5e4 6.5e4
Wanda 5.97 8.30 8.40 11.53 45.37 56.27 1004 838.8 2.2e4 1.3e4
SparseGPT 6.03 8.22 8.27 10.93 19.79 23.47 97.82 79.17 1442 984.1
L-ADMM 5.92 8.11 7.57 10.05 14.81 17.56 44.78 44.42 391.1 242.1
ALPS 5.90 7.99 7.56 9.92 14.17 16.28 38.44 36.78 231.3 152.1
SAFE 5.73 7.82 6.90 9.24 12.47 14.57 93.49 73.25 2122 1388
SparseLLM — — — — — — — — — —
ELSA 6.86 9.05 8.11 10.27 11.14 12.20 17.21 16.60 30.19 25.07

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Zero-shot accuracy (%) of Llama-2-7B across multiple tasks, in various sparsity regime
(50%-90%).

Tasks

Sparsity Method ARC-C ARC-E BoolQ HellaSwag OBQA RTE Winogrande Avg

0% Dense 43.35 76.26 77.68 57.14 31.40 62.82 69.06 59.67

50%

Magnitude 34.90 64.02 62.91 49.13 26.80 57.04 63.22 51.14
Wanda 39.25 72.22 75.17 52.64 30.60 53.43 67.17 55.78
SparseGPT 38.23 71.34 75.99 52.70 29.80 56.32 69.77 56.31
L-ADMM 39.68 72.77 76.24 53.35 31.40 61.37 69.30 57.73
ALPS 40.61 72.90 75.44 53.37 30.80 57.76 68.98 57.14
SAFE 38.14 72.14 74.83 52.15 26.00 57.04 66.77 55.30
SparseLLM 38.05 71.25 75.14 52.66 29.60 53.43 69.30 55.63
ELSA 36.09 68.35 69.85 51.41 29.80 53.07 64.88 53.35

60%

Magnitude 25.17 44.87 47.80 35.00 20.00 50.90 53.12 39.55
Wanda 30.63 64.44 65.51 43.51 25.80 54.15 64.01 49.72
SparseGPT 31.57 64.06 72.57 45.0 25.80 53.43 65.51 51.13
L-ADMM 34.13 66.50 70.43 47.29 26.60 55.60 66.61 52.45
ALPS 34.38 66.33 70.64 47.81 27.2 54.15 66.29 52.40
SAFE 31.14 64.14 71.10 46.43 24.00 54.15 62.98 50.57
SparseLLM 32.59 64.52 70.86 45.24 25.80 53.79 66.14 51.28
ELSA 31.66 63.93 67.58 48.84 25.00 53.43 61.48 50.28

70%

Magnitude 22.87 27.82 37.95 25.90 17.20 53.07 49.25 33.43
Wanda 18.6 30.01 57.28 28.04 12.0 52.71 48.86 35.36
SparseGPT 22.01 42.34 65.14 33.04 16.8 52.71 57.7 41.39
L-ADMM 23.81 50.63 63.21 36.57 20.40 54.15 60.77 44.22
ALPS 25.51 52.78 63.46 37.54 20.8 53.43 61.72 45.03
SAFE 24.23 45.62 43.76 34.74 18.40 52.71 53.12 38.94
SparseLLM 20.90 40.32 61.87 32.74 16.0 54.51 57.46 40.54
ELSA 27.13 55.81 63.61 43.16 22.40 52.71 58.64 46.21

80%

Magnitude 22.35 25.38 43.67 25.72 13.00 46.57 51.62 32.62
Wanda 20.82 26.98 37.83 25.89 15.0 52.71 49.25 32.64
SparseGPT 17.92 27.95 38.07 27.51 12.0 53.07 49.01 32.22
L-ADMM 18.26 29.29 57.49 28.33 13.00 53.07 51.22 35.81
ALPS 19.37 32.07 61.1 29.06 12.6 52.71 50.91 36.83
SAFE 21.76 25.80 37.83 26.01 14.00 52.71 49.80 32.56
SparseLLM 18.09 28.70 43.55 27.57 11.6 52.71 48.86 33.01
ELSA 20.99 44.61 60.67 34.02 16.80 52.71 53.20 40.43

90%

Magnitude 22.78 25.93 39.17 25.53 16.0 47.29 50.12 32.40
Wanda 21.67 25.46 37.83 25.83 15.2 47.29 49.33 31.8
SparseGPT 20.65 26.77 37.83 25.7 13.0 52.71 50.59 32.46
L-ADMM 19.97 26.14 37.83 26.46 13.60 51.62 47.51 31.88
ALPS 19.45 26.89 37.8 26.81 12.8 53.79 46.65 32.03
SAFE 21.84 26.52 37.83 25.91 15.80 52.71 47.83 32.63
SparseLLM 20.56 25.72 37.83 25.94 13.8 52.71 46.96 31.93
ELSA 18.52 41.33 57.25 31.54 16.60 52.71 51.70 38.52

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Zero-shot accuracy (%) of Llama-2 13B across multiple tasks, under various sparsity levels.
We could not obtain SparseLLM in Llama-2-13B.

Sparsity Method Tasks

ARC-C ARC-E BoolQ HellaSwag OBQA RTE Winogrande Avg

0% Dense 48.46 79.38 80.55 60.04 35.20 65.34 72.14 63.02

50%

Magnitude 38.48 70.58 57.65 54.39 27.80 55.96 65.35 52.89
Wanda 43.09 76.30 80.95 56.96 31.20 60.65 71.43 60.08
SparseGPT 42.41 74.96 81.53 55.95 31.00 64.26 71.35 60.21
L-ADMM 43.17 75.84 82.29 56.51 32.00 63.18 71.98 60.71
ALPS 42.66 76.30 81.22 56.71 32.60 62.82 72.14 60.64
SAFE 41.64 75.84 80.40 56.59 30.60 60.65 69.14 59.27
ELSA 42.49 74.20 75.90 55.52 31.60 52.71 68.11 57.22

60%

Magnitude 27.13 56.14 47.49 44.66 21.80 52.71 57.46 43.93
Wanda 37.97 68.81 77.16 48.71 28.20 59.57 68.19 55.51
SparseGPT 36.01 69.40 78.72 49.38 27.4 57.76 70.56 55.60
L-ADMM 19.11 33.80 62.14 29.67 14.60 52.71 53.28 37.90
ALPS 40.44 72.93 81.68 51.97 30.80 60.29 71.90 58.58
SAFE 36.95 72.43 78.38 52.09 28.80 57.40 67.88 56.28
ELSA 38.23 69.82 71.56 52.44 27.00 52.71 65.51 53.90

70%

Magnitude 20.65 31.31 38.65 27.53 14.60 52.71 49.25 33.53
Wanda 18.43 36.45 62.35 29.25 13.0 52.71 50.83 37.57
SparseGPT 25.34 49.58 67.86 36.27 20.2 52.71 60.93 44.70
L-ADMM 27.56 59.64 69.76 40.05 24.00 53.43 65.35 48.54
ALPS 29.61 61.20 70.09 40.86 26.6 53.07 64.56 49.43
SAFE 29.78 61.07 69.17 41.62 20.20 52.71 58.96 47.64
ELSA 34.13 62.42 70.12 47.52 24.80 52.71 60.38 50.30

80%

Magnitude 21.84 25.63 41.80 25.88 14.80 53.07 49.25 33.18
Wanda 20.48 26.26 37.83 26.81 12.6 52.71 50.04 32.39
SparseGPT 19.62 28.79 59.05 27.77 12.8 52.71 49.33 35.72
L-ADMM 19.11 33.80 62.14 29.67 14.60 52.71 53.28 37.90
ALPS 20.05 35.99 62.17 30.65 14.0 52.71 54.93 38.64
SAFE 18.34 28.37 40.64 27.44 12.80 52.71 50.51 32.97
ELSA 24.32 50.97 63.52 38.03 19.60 52.71 53.75 43.27

90%

Magnitude 21.42 24.87 44.16 25.72 15.0 46.57 51.78 32.79
Wanda 21.33 25.93 37.83 25.80 13.8 52.71 51.54 32.70
SparseGPT 21.08 25.76 58.62 25.87 13.8 52.35 49.49 35.28
L-ADMM 19.88 26.01 39.45 27.08 13.80 53.79 50.04 32.86
ALPS 18.94 26.94 43.52 27.37 13.4 52.71 48.30 33.02
SAFE 22.10 25.76 37.83 26.02 14.20 52.71 53.43 33.15
ELSA 19.03 36.15 58.44 28.65 16.20 52.71 50.43 37.37

20

	Introduction
	Problem statement
	Method
	Surrogate-free LLM sparsification via ADMM
	Objective-aware projection
	Scalable ADMM via low-precision states

	Convergence analysis
	Experiments
	Main results
	Scaling to large-r models
	Other sparsity patterns
	Ablations

	Discussion
	Proof of thm:gpaqconv
	Experimental details
	Implementation and reproduction details
	Details for subsec:mainresults
	Details for subsec:scalingresults
	Details for subsec:othersparsity
	Details for subsec:ablation

	Additional results

