
On the Efficacy of Eviction Policy for Key-Value Constrained Generative
Language Model Inference

Anonymous ACL submission

Abstract

Large language Models (LLMs) are no-001
tably cost-prohibitive to deploy in resource-002
constrained environments due to their excessive003
memory and computational demands. In addi-004
tion to model parameters, the key-value cache005
is also stored in GPU memory, growing lin-006
early with batch size and sequence length. As007
a remedy, recent works have proposed various008
eviction policies for maintaining the overhead009
of key-value cache under a given budget. This010
paper embarks on the efficacy of existing evic-011
tion policies in terms of importance score cal-012
culation and eviction scope construction. We013
identify the deficiency of prior policies in these014
two aspects and introduce RoCo, a robust cache015
omission policy based on local attention scores016
and robustness measures. Extensive experimen-017
tation spanning prefilling and auto-regressive018
decoding stages validates the superiority of019
RoCo. Finally, we release EasyKV, a versa-020
tile software package dedicated to user-friendly021
key-value constrained generative inference.022
Code available at https://anonymous.023
4open.science/r/EasyKV-9088/.024

1 Introduction025

Recent advancements in Large Language Mod-026

els (LLMs) have demonstrated outstanding pro-027

ficiency in a wide range of text generation scenar-028

ios, such as content creation, abstractive text sum-029

marization, and instruction-following (Thoppilan030

et al., 2022; Wei et al., 2022; Wang et al., 2023;031

Touvron et al., 2023a,b). Nevertheless, deploying032

LLMs is a notably costly undertaking considering033

their tremendous parameter size and quadratic cost034

of attention layers. Accordingly, model compres-035

sion (Frantar and Alistarh, 2023; Xia et al., 2023)036

and memory-efficient attention (Dao et al., 2022b;037

Dao, 2023) techniques have emerged to tackle these038

challenges and achieved substantial outcomes.039

Owning to the auto-regressive nature of LLM in-040

ference (Vaswani et al., 2017; Radford et al., 2019),041

𝑥!" 𝑥"

𝑘!"
𝑣!"

𝑘#!"
𝑣#!"

𝑘!$
𝑣!$

𝑘#!$
𝑣#!$

··· x 𝐿

Figure 1: Illustration of KV cache eviction inside one
attention layer (L in total). In this example, a single
pair of key-value vectors are deleted (red hatched areas)
before appending the next token’s. Different heads (H
in total) at model layers may evict at different positions.

the intermediate attention key-value vectors are 042

also required to be stored in memory to avoid re- 043

dundant key-value projection in future steps. The 044

size of key-value cache (KV cache) depends on the 045

configuration of the attention layer, batch size, and 046

sequence length, which poses challenges in both 047

memory footprint, I/O cost, and computation bur- 048

den given the increasingly upsoaring model scale 049

and user requests. Variants like multi-query atten- 050

tion and grouped-query attention (Shazeer, 2019; 051

Ainslie et al., 2023) reduce the size of the KV cache 052

with fewer attention heads, but cannot be directly 053

applied to pre-trained LLMs without re-training. 054

In pursuit of flexible and training-free control 055

over KV cache during LLM inference, recent 056

works (Liu et al., 2023b; Zhang et al., 2023; Xiao 057

et al., 2023b; Oren et al., 2024) have investi- 058

gated implementing KV cache with eviction pol- 059

icy, where the key-value vectors of certain tokens 060

are strategically deleted from memory (see Figure 061

1). In this way, the size of the KV cache can be 062

maintained under a specified budget, leading to de- 063

creased memory and computational overhead. De- 064

spite the claimed and empirically observed reduc- 065

tion in KV cache, there still lacks a comprehensive 066

comparative analysis of these methods. This study 067

1

https://anonymous.4open.science/r/EasyKV-9088/
https://anonymous.4open.science/r/EasyKV-9088/
https://anonymous.4open.science/r/EasyKV-9088/

aims to fill this gap and embarks on the efficacy of068

existing eviction policies from a unified framework,069

which decomposes an eviction policy into two de-070

sign dimensions: importance score calculation and071

eviction scope construction. The former character-072

izes how important a pair of key-value vectors is073

to future generations, while the latter determines074

which tokens are readily allowed to be evicted from075

the cache We categorize existing eviction policies076

according to these two dimensions. Following our077

preliminary analysis, we discover that the way cur-078

rent methods calculate importance scores utilizing079

local statistics can only weakly approximate that080

derived from global statistics (full KV cache with-081

out eviction). Moreover, prior methods commonly082

construct the eviction scope by only incorporating083

tokens outside of a local window, which we show084

endure high sensitivity to window size.085

In this paper, we propose RoCo, a Robust Cache086

omission policy based on local attention scores087

and robustness measures. Specifically, we compute088

the importance score of each in-cache token using089

averaged attention probability from future tokens,090

and formulate the eviction scope using tokens with091

the lowest variance of attention. RoCo exhibits092

significantly better consistency with full KV cache093

counterpart and robustness to eviction scope size.094

To evaluate the effectiveness of RoCo in terms095

of preserving the LLM’s downstream performance,096

we perform experiments across both prefilling and097

auto-regressive decoding stages at which cache098

eviction happens, spanning tasks of language mod-099

eling, text summarization, context reconstruction,100

and instruction following. Experimental results at101

different levels of KV cache budget demonstrates102

that RoCo results in significantly better generation103

quality compared to current methods judged by104

both automatic metrics and LLM-based evaluator.105

Our contributions are summarized as follows:106

• We systematically analyze current cache evic-107

tion policies from the dimensions of impor-108

tance score calculation and eviction scope con-109

struction, shedding light on their limitations.110

• Based on our analysis, we introduce a robust111

cache omission policy named RoCo and con-112

duct a comprehensive evaluation to verify its113

effectiveness on downstream tasks.114

• We open-source EasyKV, a versatile software115

package that supports key-value constrained116

generative LLM inference with flexible con-117

figuration on cache budget and eviction policy.118

2 Background 119

In this section, we present necessary background 120

about Transformer as well as existing literature on 121

addressing the memory and computational bottle- 122

neck of Transformer-based LLMs. 123

2.1 Transformer-based LLMs 124

The input to a Transformer-based LLM is a se- 125

quence of tokens x = (x1, ..., xT), which is further 126

processed by the embedding layer, followed by a 127

series of Transformer blocks composed of an atten- 128

tion block and a feedforward block. The attention 129

block is the only submodule where tokens at differ- 130

ent positions exchange information, necessitating 131

the need for a key-value cache during inference. 132

Attention Block At the l-th layer, the input 133

hidden states H l−1 ∈ RT×d is multiplied with 134

three matrices W l
q ,W

l
k, and W l

v, producing Ql = 135

H l−1W l
q ,K

l = H l−1W l
k,V

l = H l−1W l
v. 136

Then the scaled dot-product attention is performed 137

as follows: 138

Attni = Softmax(
Ql

i · (K l
i)

⊤
√
d′

) · V l
i (1) 139

SDPA = Concat(Attn1, ...,AttnH) ·W l
o (2) 140

where H is the number of attention heads, d′ = d
H 141

is the head dimension, and W l
o is the output matrix. 142

Key-Value Cache LLM inference follows an au- 143

toregressive fashion. During training, it masks the 144

upper triangular part of the attention matrix such 145

that each token only sees itself and previous tokens. 146

At inference time, the common practice is to cache 147

the key-value vectors computed so far and append 148

the newly computed ones into the cache. At time 149

step T , the key-value cache can be written as a 150

tensor of shape (L, 2, B,H, T, d′), where L is the 151

number of model layers and B is the batch size. It 152

is evident that the size of the KV cache grows lin- 153

early with respect to sequence length, potentially 154

leading to excessive memory and latency issues 155

when dealing with long input or output. 156

2.2 Efficient LLMs 157

Recent years have witnessed a surge of studies 158

attempting to optimize the inference cost of LLMs 159

from different (often orthogonal) perspectives. 160

One line of work follows the conventional model 161

compression paradigm, aiming to identify and re- 162

move redundancy from billions of model param- 163

eters. These include tensor decomposition (Dao 164

2

et al., 2022a), weight pruning (Frantar and Alistarh,165

2023; Xia et al., 2023; Ashkboos et al., 2024), and166

quantization (Dettmers et al., 2022; Frantar et al.,167

2022; Xiao et al., 2023a). These methods reduce168

the KV cache footprint by reducing the model di-169

mension, layers, and data precision.170

Another line of work focuses on architectural171

design, aiming at reducing model complexity from172

the ground up. Representatives include sparse at-173

tention Transformers (Child et al., 2019; Zaheer174

et al., 2020), linear attention Transformers (Wang175

et al., 2020; Choromanski et al., 2020; Qin et al.,176

2022), and simplified attention variants (Shazeer,177

2019; Ainslie et al., 2023). These methods either178

completely eschew the O(T) space complexity of179

KV cache size or reduce the number of attention180

heads in exchange for a larger context length.181

Some recent efforts (Liu et al., 2023b; Zhang182

et al., 2023; Oren et al., 2024) pay attention to183

methods that maintain the memory usage of the184

KV cache under a fixed budget without finetuning185

or architectural modifications to the model. The186

shared tenet of these approaches is the discern-187

ment and retention of key-value vectors that exert188

a significant influence on future generations. This189

work follows this line of research, dissects the effi-190

cacy of existing eviction policies, and introduces an191

improved policy with more consistent importance192

score and robust eviction scope construction.193

3 Problem Formulation194

Standard Inference Denote the input prompt195

to the LLM as x = (x1, x2, ..., xT), the standard196

generative inference process consists of two con-197

secutive stages: prefilling and auto-regressive de-198

coding. The prefilling stage encodes the input199

prompt x and produces the corresponding attention200

key matrix KT ∈ RL×H×T×d′ and value matrix201

VT ∈ RL×H×T×d′ , where L, H , d′ represent the202

number of model layers, number of attention heads,203

and per-head dimension, respectively. Afterward,204

the LLM samples one token from its output dis-205

tribution at each step conditioned on all key-value206

states computed so far. The key-value matrices are207

updated by appending the key-value vectors of this208

new token:209

xT+1 ∼ LLM(·|x<=T) (3)210

KT+1 = Concat(KT ,KT+1) (4)211

VT+1 = Concat(VT , VT+1) (5)212

where KT+1 ∈ RL×H×1×d′ , VT+1 ∈ RL×H×1×d′ 213

are the key and value vectors of xT+1. The above 214

process is repeated until the end of sequence token 215

is generated. Let x̃ = (x,xo) denote the complete 216

token sequence composed of input prompt x and 217

output xo, where the output sequence contains N 218

tokens. The peak cache size during standard in- 219

ference is therefore determined by the key-value 220

matrix {KT+N ,VT+N} ∈ RL×H×(T+N)×d′ . 221

Key-Value Constrained Inference LLMs are 222

typically deployed on hardware with constrained 223

memory resources. However, during standard gen- 224

erative inference, the size of the key-value cache 225

increases linearly with the total length of the se- 226

quence, potentially leading to out-of-memory is- 227

sues and the associated latency incurred by read- 228

ing and writing between High Bandwidth Mem- 229

ory (HBM) and Static Random Access Memory 230

(SRAM) (Dao et al., 2022b). 231

To this end, recent studies have shifted toward 232

key-value-constrained inference as a more control- 233

lable inference scheme. Denoting the fixed budget 234

for each attention head as B tokens, key-value con- 235

strained inference is to maintain the key-value ma- 236

trices Kt and Vt such that Kt, Vt ∈ RL×H×n×d′ 237

and n ≤ B for any t ∈ {1, ..., T +N}. 238

4 Eviction Policy for Key-Value 239

Constrained Inference 240

In practice, Kt and Vt are stored in a fixed mem- 241

ory buffer with a maximum token budget B. When 242

the buffer is full, an eviction policy is executed 243

to remove stored but non-influential tokens from 244

the cache. Although various eviction policies 245

have been proposed, there still lacks a systematic 246

comparison of their working mechanisms, design 247

choices, and downstream performance. 248

To fill this gap, we embark on the efficacy of 249

existing eviction policies from a unified framework. 250

Concretely, we represent an eviction policy as the 251

composition of two components: importance score 252

calculation and eviction scope construction, which 253

we elaborate on in the following sections. 254

4.1 Importance Score Calculation 255

Importance score calculation plays a vital role in 256

eviction policy. It determines the relative order by 257

which tokens are evicted. We summarize existing 258

importance score calculation methods as follows: 259

Random Deletion As a naive baseline, one can 260

randomly choose the key-value vectors to evict. 261

3

We incorporate this method into comparison and262

let it serve as the lower bound.263

Recency This method deems the farthest token as264

least important and evicts it when the buffer is full.265

It is also referred to as window attention in prior266

studies (Ainslie et al., 2020; Beltagy et al., 2020;267

Xiao et al., 2023b).268

Accumlative Attention Score (AAS) H2O (Zhang269

et al., 2023) maintains a B-sized record array270

that stores the accumulative attention score each271

in-cache token received from subsequent tokens.272

Accumlative Quantized Attention273

Score (AQAS) ScissorHands (Liu et al.,274

2023b) adopts an apporach similar to H2O. The275

exception is that the attention score is quantized276

into a binary value, with 1 indicating above277

average and 0 indicating below average.278

Last Token Attention Score (LTAS) TOVA (Oren279

et al., 2024) uses last token’s attention score as280

importance indicator.281

4.2 Eviction Scope Construction282

Due to the auto-regressive nature of LLMs, recent283

tokens in the cache participate in less attention284

computation than earlier tokens. Therefore, their285

recorded importance scores for some attention-286

based methods can be underestimated and thus get287

wrongly evicted. To this end, an eviction scope288

should be constructed to carefully select tokens289

allowed to be evicted.290

The dominant mean of constructing eviction291

scope is local window, which assumes that tokens292

outside of a local window of size r have accumu-293

lated sufficient information on their importance.294

4.3 Preliminary Experiments295

In our controlled preliminary experiments, we are296

interested in how different importance score cal-297

culation methods behave in terms of consistency298

with respect to their full KV cache version. After299

that, we also explore another way of constructing300

eviction scope in addition to local window.301

Setup We examine the Jaccard similarity be-302

tween the top-B important tokens derived by var-303

ious importance score calculation methods and304

those derived when a full KV cache is available.305

The higher the similarity, the more effectively the306

importance calculation method harnesses local in-307

formation to approximate the global one. We eval-308

uate all attention-based methods (i.e., AAS, AQAS,309

and LTAS) listed in Section 4.1 and set the local310

0.30 0.35 0.40 0.45 0.50 0.55 0.60
KV cache budget rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
cc

ar
d

Si
m

ila
rit

y

AAS
AQAS
LTAS
MAS

Figure 2: Consistency of different importance calcula-
tion methods w.r.t their full KV cache variant.

window size r to 0. More specifically, we use 311

LLaMa2-7B-Chat1 as the LLM and take the 805 312

instructions from AlpacaEval (Li et al., 2023) as 313

prompt, generating a response for each instruction 314

via greedy decoding. For KV cache budget from 315

{0.3, 0.4, 0.5, 0.6}, we compute the Jaccard sim- 316

ilarity at each token position, averaged over se- 317

quence length, attention heads, and layers. 318

Results The results are shown in Figure 2. AAS 319

shows a clear advantage over AQAS across all 320

budget rates, indicating the importance of a full- 321

precision attention score when the relative impor- 322

tance of tokens cannot be distinguished via binary 323

value. LTAS has higher consistency than AAS, 324

which we attribute to the fact that LTAS does not 325

suffer from the recency bias that AAS and AQAS 326

exhibit due to the accumulation operation. How- 327

ever, LTAS computes importance score based on 328

a single token, which might bear high variability. 329

Based on the above results, we advocate the use 330

of Mean Attention Score (MAS) to gauge the im- 331

portance of each token. MAS divides each token’s 332

accumulative attention score by how many times 333

that token is attended by future tokens. As shown in 334

Figure 2, MAS has remarkably higher consistency 335

among all methods, achieving over 0.9 Jaccard sim- 336

ilarity even at 0.3 cache budget rate. This verifies 337

that MAS effectively alleviates recency bias and 338

can better retain high-influential tokens. 339

Is Local Window the Optimal Way to Construct 340

Eviction Scope? The local window approach has 341

been widely used in conjunction with attention- 342

based importance calculation methods to prevent 343

recent tokens from being evicted. The underlying 344

1We also conduct experiments upon other LLMs like
WizardLM-7B, and similar results are observed.

4

0 50 100 150 200
Time step

0.000

0.025

0.050

0.075

0.100
Layer-1, Head-6

0 50 100 150 200
Time step

0.00

0.05

0.10

0.15

Layer-1, Head-22

0 50 100 150 200
Time step

0.000

0.002

0.004

0.006

Layer-30, Head-6

0 50 100 150 200
Time step

0.000

0.002

0.004

0.006

Layer-30, Head-22

Figure 3: Illustration of persistence of attention robust-
ness. We extract attention scores and compute the stan-
dard deviation from LLaMa2-7B-Chat.

rationale is that the accumulated attention score is345

not sufficiently indicative until a specified thresh-346

old, i.e., the window size r is reached.347

Based on the commendable consistency of MAS348

discussed in the previous paragraph, here we pro-349

pose another way to construct the eviction scope350

which exploits a phenomenon termed persistence351

of attention robustness that we find ubiquitously352

exists in large language models. It states that the353

standard deviation of the attention probabilities a to-354

ken receives from future tokens typically undergoes355

a brief ascending phase before settling into a stable356

decline, regardless of the model layer and attention357

head. Figure 3 clearly illustrates the phenomenon.358

We also observe that the ascending phase of a non-359

trivial portion of tokens only takes a relatively small360

number of steps, i.e., ≤ 50, suggesting it might be361

sub-optimal to only consider tokens at least r steps362

away for eviction scope construction.363

To this end, we propose a new way to con-364

struct the eviction scope utilizing the standard365

deviation of attention scores. Concretely, we366

maintain another B-sized array for each at-367

tention head, keep track of the accumulative368

squared attention score, and compute the stan-369

dard deviation of each in-cache token x using370

Std(x) =
√

Accsquare(x)
Count(x) − (Acc(x)

Count(x))
2. In practice,371

Acc, Accsqaure, and Count are all B-sized tensor372

and the standard deviation of all in-cache tokens373

are computed in parallel. Then, instead of the most374

recent r tokens, we exclude tokens having top-r375

standard deviation from eviction scope and remove376

the key-value vectors corresponding to the token377

with the lowest mean attention score.378

0.1 0.2 0.3 0.4 0.5 0.6
Proportion w.r.t cache size

37.5

40.0

42.5

45.0

47.5

50.0

Geo mean of ROUGE-1/2/L

Local Window
Standard Deviation

0.1 0.2 0.3 0.4 0.5 0.6
Proportion w.r.t cache size

45.0

47.5

50.0

52.5

55.0

Meteor

Local Window
Standard Deviation

Figure 4: Results of MAS paired with local window and
standard deviation on text summarization.

We validate the effectiveness of both evic- 379

tion scopes on a news summarization task with 380

LLaMa2-7B-Chat and CNN/Daily Mail (See et al., 381

2017) dataset. Since summarization is a typical 382

long-input-short-output task, we only perform KV 383

eviction at the prefilling stage with a 0.5 compres- 384

sion rate and compare the output against the full 385

KV cache version. Figure 4 shows the geomet- 386

ric mean of ROUGE-1/2/L (Lin, 2004) and ME- 387

TEOR (Banerjee and Lavie, 2005) for eviction 388

scopes of different sizes. Standard deviation yields 389

outputs with considerably higher quality while be- 390

ing less sensitive to the size of the eviction scope. 391

RoCo Combining mean attention score for im- 392

portance score calculation and standard deviation 393

for eviction scope construction, we introduce RoCo 394

as a Robust Cache omission policy for key-value 395

constrained generative LLM inference. 396

5 Comprehensive Evaluation 397

The goal of the eviction policy is to control the 398

memory usage of key-value cache under a fixed 399

budget while retaining the generation quality of 400

LLMs as much as possible. In this section, we per- 401

form an empirical evaluation of the effectiveness 402

of various eviction policies by taking the generated 403

output with a full KV cache as the reference and 404

comparing KV-restricted generations against it. 405

5.1 Experiment Setup 406

We describe the experimental setup used through- 407

out our evaluation, including evaluation tasks, met- 408

rics, datasets, and compared eviction policies. 409

5.1.1 Tasks and Metrics 410

To broadly cover real-world use cases, we evalu- 411

ate using four different types of tasks: language 412

modeling, abstractive text summarization, original 413

context reconstruction, and instruction following. 414

5

Language Modeling Language modeling task415

assesses the ability of LLMs to predict the next416

token given the preceding context. In the key-value-417

constrained scenario, a successful eviction policy418

should be able to detect and remove KV cache of419

unimportant tokens. Following prior works (Han420

et al., 2023; Xiao et al., 2023b; Oren et al., 2024),421

we adopt perplexity as the evaluation metric.422

Abstractive Text Summarization Abstractive423

summarization requires extracting the most salient424

information provided in the input and generating425

a concise summary for it. Since the summary is426

usually much shorter compared to the input, we427

only perform cache eviction during the prefilling428

stage. We report BLEU (Papineni et al., 2002),429

ROUGE (Lin, 2004), and METEOR (Banerjee and430

Lavie, 2005) scores as the evaluation metrics.431

Original Context Reconstruction Given the432

constrained incomplete key-value cache of an in-433

put document, the task of original context recon-434

struction measures how well the limited KV cache435

retains the essential information from the original436

context. BLEU and ROUGE scores are used as437

evaluation metrics.438

Instruction Following Instruction follow-439

ing (Wei et al., 2021) requires an LLM to generate440

a proper response for a given user instruction. We441

apply KV cache eviction at the auto-regressive442

decoding stage since the model output tends to be443

more verbose. In addition to BLEU and ROUGE444

scores, we also opt for a pairwise comparison445

paradigm to evaluate the generated responses446

against those generated by text-davincci-003.447

5.1.2 Datasets448

We use the following datasets as the testbed for449

tasks described in Section 5.1.1.450

OpenWebText OpenWebText is an open-source451

replication of the WebText dataset from OpenAI.452

We randomly sample 200 documents to form the453

test set for the language modeling task.454

XSum Xsum (Narayan et al., 2018) comprises455

BBC articles from the years 2010 to 2017, encom-456

passing a broad spectrum of topics.457

CNN/Daily Mail CNN/Daily Mail (See et al.,458

2017) contains articles from the CNN and the Daily459

Mail newspapers, representing a different distri-460

bution from XSum. We use this dataset for both461

summarization and original context reconstruction.462

AlpacaEval AlpacaEval (Li et al., 2023) is a 463

model-based automatic evaluation benchmark for 464

instruction-following LLMs. It comprises 805 in- 465

structions spanning a diverse range of scenarios. 466

5.1.3 Models 467

Following prior works (Zhang et al., 2023; Oren 468

et al., 2024), we employ LLaMa2-7B-base for lan- 469

guage modeling and LLaMa2-7B-Chat for the re- 470

maining tasks. We also include WizardLM-7B (Xu 471

et al., 2023) as another strong instruction-tuned 472

LLM for tasks except for language modeling. 473

5.1.4 Compared Eviction Policies 474

Importance Score Eviction Scope

Random - -
StreamLLM - local window
ScissorHands AQAS local window
H2O AAS local window
TOVA LTAS -
RoCo MAS standard deviation

Table 1: Eviction policies considered in this paper. The
definition of importance score and eviction scope are
introduced in Section 4.1 and Section 4.2, respectively.

We consider the following baseline eviction poli- 475

cies, with their importance score calculation meth- 476

ods and eviction scope listed in Table 1: 477

• Random: evicting a randomly selected key- 478

value pair from the cache. 479

• StreamLLM (Xiao et al., 2023b): evicting the 480

key-value pair corresponding to the first token 481

after 4 initial attention sink tokens. 482

• ScissorHands (Liu et al., 2023b): evicting the 483

key-value pair corresponding to the token with 484

the smallest accumulative quantized attention 485

score outside the local window of size r. 486

• H2O (Zhang et al., 2023): evicting the key- 487

value pair corresponding to the token with the 488

smallest accumulative attention score outside 489

of the local window of size r. 490

• TOVA (Oren et al., 2024): evicting the key- 491

value pair corresponding to the token with the 492

smallest last token attention score. 493

5.1.5 Other Details 494

Our implementation is based on Pytorch (Paszke 495

et al., 2019) and HuggingFace Transformers (Wolf 496

et al., 2020). To improve the stability of outputs 497

produced by LLMs, we employ greedy decoding 498

for all generative tasks. For prefilling stage eviction, 499

6

Models Methods XSum CNN/DM
BLEU Meteor R-1 R-2 R-L BLEU Meteor R-1 R-2 R-L

LLaMa2-7Bchat

Random 16.7 35.1 41.8 22.8 33.3 15.4 30.8 39.0 19.9 26.2
StreamLLM 11.9 35.5 42.7 17.6 31.3 19.2 40.0 49.5 24.3 30.7

ScissorHands 29.3 50.4 56.5 35.6 46.5 27.8 46.4 57.7 33.4 40.7
H2O 37.3 55.8 62.2 44.2 54.2 31.1 47.6 58.9 36.8 43.7

TOVA 20.5 42.4 48.9 26.9 39.9 21.5 41.7 53.1 27.4 34.8
RoCo 43.4 60.5 65.0 48.6 57.8 33.2 49.3 61.1 39.2 46.0

WizardLM-7B

Random 12.6 30.0 36.3 19.1 28.0 12.4 27.8 39.6 17.0 23.9
StreamLLM 7.1 27.3 36.2 13.4 25.6 8.8 25.9 39.0 14.4 23.8

ScissorHands 29.8 48.6 57.2 38.5 47.7 24.6 41.2 54.3 29.1 35.7
H2O 30.5 50.2 57.6 40.8 49.7 27.7 43.3 56.4 32.5 39.2

TOVA 15.0 36.2 46.1 23.9 34.8 14.5 32.7 45.9 19.4 27.9
RoCo 35.7 56.6 61.4 45.5 53.7 30.2 45.9 59.1 35.6 42.4

Table 2: Performance of different eviction policies on abstractive text summarization tasks at 0.5 KV cache rate.

0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30
KV cache budget rate

7.0

7.2

7.4

7.6

7.8

8.0

Pe
rp

le
xi

ty

Random
StreamLLM
ScissorHands
H2O
TOVA
Roco
Full

Figure 5: Performance of different eviction policies on
language modeling task based on LLaMa2-7B.

we set budget size B by multiplying input token500

length with a compression rate (e.g., 0.5) and di-501

rectly specify B as some integer for decoding stage502

eviction because the output length is unknown. The503

size of the local window is set to half of the KV504

cache budget following H2O, i.e. r = B/2.505

5.2 Main Results506

Overview We report the results of RoCo along-507

side compared baseline eviction policies on lan-508

guage modeling, text summarization, original con-509

text reconstruction, and instruction following tasks510

in Figure 5, Table 2, Table 4, and Table 3. It can511

be seen that RoCo consistently outperforms previ-512

ous methods by significant margins across all tasks513

and models. The advantage of Roco is particularly514

more evident at a low KV cache budget rate. As515

demonstrated in Figure 5, the gap between Roco516

and the second best method H2O reaches 0.2 at 0.15517

budget rate. We also notice that Roco yields larger518

improvements on generative inference tasks com-519

pared to language modeling. This is because, in520

Models Methods CNN/DM
BLEU R-1 R-L

LLaMa2-7Bchat

Random 4.9 26.7 18.1
StreamLLM 15.1 37.6 28.5
ScissorHands 16.9 45.9 33.7

H2O 20.8 50.6 40.7
TOVA 11.2 43.1 30.3
RoCo 28.1 57.7 49.2

WizardLM-7B

Random 6.3 30.3 19.6
StreamLLM 5.3 24.7 16.3
ScissorHands 17.4 48.3 33.0

H2O 20.8 50.8 38.5
TOVA 12.5 41.7 27.7
RoCo 29.0 58.9 47.5

Table 3: Performance of different eviction policies on
context reconstruction task at 0.5 KV cache rate.

generative tasks, future token predictions are depen- 521

dent on previous model generations, where minor 522

errors can accumulate and lead to large divergence. 523

on the AlpacaEval benchmark, RoCo not only de- 524

livers the best overall performance in conventional 525

metrics like BLEU and ROUGE, but also achieves 526

comparable win rates as judged by GPT-4 (Table 527

5). In contrast, H2O shows notable quality declines, 528

and the gap is even larger for StreamLLM. Overall, 529

the experiment results validate the effectiveness 530

of Roco in terms of retaining model performance 531

during key-value-constrained inference. 532

Attention Matters for KV Eviction As the only 533

two policies that do not utilize attention-related 534

information, Random and StreamLLM show signif- 535

icantly inferior performance compared to attention- 536

based methods on all tasks. This observation aligns 537

with the role of key-value vectors in attention com- 538

putation, where the attention score serves natural 539

indicator of token importance. 540

7

Models Methods AlpacaEval
BLEU ROUGE-1 ROUGE-2 ROUGE-L

LLaMa2-7Bchat

Random 45.6 66.6 49.7 56.1
StreamLLM 47.3 66.6 51.1 57.1

ScissorHands 62.1 76.5 63.9 68.8
H2O 63.0 77.5 65.7 69.9

TOVA 60.1 75.3 63.8 68.3
RoCo 66.3 79.7 68.1 72.5

WizardLM-7B

Random 40.6 62.9 45.6 52.8
StreamLLM 43.0 63.9 47.8 54.5

ScissorHands 57.2 73.3 60.9 65.3
H2O 58.6 74.1 62.1 66.8

TOVA 59.6 75.0 63.1 68.0
RoCo 62.2 76.4 64.5 69.5

Table 4: Performance of different eviction policies on AlpacaEval at 250-token KV cache budget.

Budget StreamLLM H2O RoCo

200 72.0(-3.6) 74.5(-1.1) 75.2(-0.4)
250 72.9(-2.7) 74.8(-0.8) 75.5(-0.1)

Table 5: AlpacaEval win rates against text-davincci-003
judged by GPT-4. Numbers in the parenthesis denote
the performance drop compared to full KV cache (500
token output length on average with 75.6 win rate).

5.3 Discussion541

Extension to Grouped-Query Attention (GQA)542

GQA, along with its extreme case Multi-Query At-543

tention (MQA) has gained increasing adoption in544

powerful LLMs like Mistral (Jiang et al., 2023).545

We extend the attention-based eviction policy to546

GQA and MQA by taking the group-wise averaged547

attention score and using it to update the impor-548

tance score according to Section 4.1. The results549

of Zephyr-7B (Tunstall et al., 2023) in Appendix A550

validate the effectiveness of our extension.551

Overhead An ideal eviction policy should avoid552

introducing much extra overhead since LLMs are553

already memory and computational-intensive. The554

memory overhead induced by Roco is L × H ×555

B × 3, which is negligible given the reduced KV556

cache footprint L× 2×H × (S −B)× d′, where557

S is the non-evicted full sequence length. More-558

over, different from the auto-regressive decoding559

stage which is I/O-bounded, the prefilling stage560

is computation-bounded. However, prior policies561

usually evict one token every time the cache is full562

and encode the next token, turning the prefilling563

stage into I/O-bounded. To accelerate key-value564

constrained prompt encoding, RoCo allows for per-565

forming evict-and-encode in a block-wise manner.566

The block size b controls the number of tokens567

Block Size BLEU ROUGE-2 Speed up

1 41.2 46.2 1.0x
2 41.1 46.3 2.0x
4 41.1 46.2 4.0x
8 40.4 45.5 8.0x

16 40.2 45.4 16.0x

Table 6: Summarization results of block-wise eviction
using RoCo.

being freed and encoded within one eviction step. 568

We examine the effect of block-wise eviction using 569

LLaMa2-7B-Chat on XSum summarization task. 570

Table 6 shows that such block-wise eviction greatly 571

speeds up prefilling while retaining similar output 572

quality as token-wise eviction. More results are 573

deferred to Appendix B due to space limit. 574

Integrated Package Finally, we open-source 575

EasyKV, a software package dedicated to key-value 576

constrained inference accompanying this research. 577

It is designed to be fully compatible with existing 578

LLMs with different attention variants and enables 579

flexible configuration of diverse eviction policies, 580

cache budgets, and application scenarios. 581

6 Conclusion 582

This paper studies key-value restricted language 583

model inference. To shed light on the effective- 584

ness of existing eviction policies, we conduct com- 585

prehensive comparative analysis by decomposing 586

eviction policy into importance score calculation 587

and eviction scope construction. We identify the 588

inconsistency and instability of prior policie and 589

introduce RoCo, a robust cache omission policy 590

with improved downstream performance. We also 591

release EasyKV, the accompanying library for ver- 592

satile key-value constrained LLM inference. 593

8

Limitations594

The first limitation of this work is its applicability595

to decoder-only Transformer models. For encoder-596

decoder style language models like T5 (Raffel et al.,597

2020), the KV cache in its encoder part involves bi-598

directional attention computation, which is not han-599

dled by existing cache eviction policies. We leave600

the adaptation to encoder-decoder models to future601

work as decoder-only LLMs are the mainstream602

and most capable models. Another limitation of603

this study lies in its practical implementation. The604

open-sourced implementation of this work is based605

on Pytorch and HuggingFace transformers library,606

which are not heavily optimized for GPU mem-607

ory operation. Future iterations is dedicated to608

implementing cache operations with more efficient609

CUDA kernels.610

References611

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury612
Zemlyanskiy, Federico Lebron, and Sumit Sanghai.613
2023. GQA: Training generalized multi-query trans-614
former models from multi-head checkpoints. In Pro-615
ceedings of the 2023 Conference on Empirical Meth-616
ods in Natural Language Processing, pages 4895–617
4901, Singapore. Association for Computational Lin-618
guistics.619

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Va-620
clav Cvicek, Zachary Fisher, Philip Pham, Anirudh621
Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.622
2020. Etc: Encoding long and structured inputs in623
transformers. arXiv preprint arXiv:2004.08483.624

Chenxin An, Shansan Gong, Ming Zhong, Mukai625
Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.626
2023. L-eval: Instituting standardized evaluation627
for long context language models. arXiv preprint628
arXiv:2307.11088.629

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-630
nari do Nascimento, Torsten Hoefler, and James631
Hensman. 2024. Slicegpt: Compress large language632
models by deleting rows and columns. arXiv preprint633
arXiv:2401.15024.634

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,635
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao636
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:637
A bilingual, multitask benchmark for long context638
understanding. arXiv preprint arXiv:2308.14508.639

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:640
An automatic metric for MT evaluation with im-641
proved correlation with human judgments. In Pro-642
ceedings of the ACL Workshop on Intrinsic and Ex-643
trinsic Evaluation Measures for Machine Transla-644
tion and/or Summarization, pages 65–72, Ann Arbor,645

Michigan. Association for Computational Linguis- 646
tics. 647

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. 648
Longformer: The long-document transformer. arXiv 649
preprint arXiv:2004.05150. 650

Rewon Child, Scott Gray, Alec Radford, and 651
Ilya Sutskever. 2019. Generating long se- 652
quences with sparse transformers. arXiv preprint 653
arXiv:1904.10509. 654

Krzysztof Choromanski, Valerii Likhosherstov, David 655
Dohan, Xingyou Song, Andreea Gane, Tamas Sar- 656
los, Peter Hawkins, Jared Davis, Afroz Mohiuddin, 657
Lukasz Kaiser, et al. 2020. Rethinking attention with 658
performers. arXiv preprint arXiv:2009.14794. 659

Tri Dao. 2023. Flashattention-2: Faster attention with 660
better parallelism and work partitioning. arXiv 661
preprint arXiv:2307.08691. 662

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun De- 663
sai, Michael Poli, Jessica Grogan, Alexander Liu, 664
Aniruddh Rao, Atri Rudra, and Christopher Ré. 665
2022a. Monarch: Expressive structured matrices 666
for efficient and accurate training. In International 667
Conference on Machine Learning, pages 4690–4721. 668
PMLR. 669

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 670
Christopher Ré. 2022b. Flashattention: Fast and 671
memory-efficient exact attention with io-awareness. 672
Advances in Neural Information Processing Systems, 673
35:16344–16359. 674

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke 675
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul- 676
tiplication for transformers at scale. arXiv preprint 677
arXiv:2208.07339. 678

Elias Frantar and Dan Alistarh. 2023. Massive language 679
models can be accurately pruned in one-shot. arXiv 680
preprint arXiv:2301.00774. 681

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and 682
Dan Alistarh. 2022. Gptq: Accurate post-training 683
quantization for generative pre-trained transformers. 684
arXiv preprint arXiv:2210.17323. 685

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng 686
Ji, and Sinong Wang. 2023. Lm-infinite: Simple 687
on-the-fly length generalization for large language 688
models. arXiv preprint arXiv:2308.16137. 689

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 690
sch, Chris Bamford, Devendra Singh Chaplot, Diego 691
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 692
laume Lample, Lucile Saulnier, et al. 2023. Mistral 693
7b. arXiv preprint arXiv:2310.06825. 694

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan 695
Taori, Ishaan Gulrajani, Carlos Guestrin, Percy 696
Liang, and Tatsunori B. Hashimoto. 2023. Al- 697
pacaeval: An automatic evaluator of instruction- 698
following models. https://github.com/ 699
tatsu-lab/alpaca_eval. 700

9

https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval

Chin-Yew Lin. 2004. ROUGE: A package for auto-701
matic evaluation of summaries. In Text Summariza-702
tion Branches Out, pages 74–81, Barcelona, Spain.703
Association for Computational Linguistics.704

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-705
jape, Michele Bevilacqua, Fabio Petroni, and Percy706
Liang. 2023a. Lost in the middle: How lan-707
guage models use long contexts. arXiv preprint708
arXiv:2307.03172.709

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao710
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-711
lidis, and Anshumali Shrivastava. 2023b. Scis-712
sorhands: Exploiting the persistence of importance713
hypothesis for llm kv cache compression at test time.714
arXiv preprint arXiv:2305.17118.715

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.716
2018. Don’t give me the details, just the summary!717
topic-aware convolutional neural networks for ex-718
treme summarization. ArXiv, abs/1808.08745.719

Matanel Oren, Michael Hassid, Yossi Adi, and Roy720
Schwartz. 2024. Transformers are multi-state rnns.721
arXiv preprint arXiv:2401.06104.722

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-723
Jing Zhu. 2002. Bleu: a method for automatic evalu-724
ation of machine translation. In Proceedings of the725
40th Annual Meeting of the Association for Compu-726
tational Linguistics, pages 311–318, Philadelphia,727
Pennsylvania, USA. Association for Computational728
Linguistics.729

Adam Paszke, Sam Gross, Francisco Massa, Adam730
Lerer, James Bradbury, Gregory Chanan, Trevor731
Killeen, Zeming Lin, Natalia Gimelshein, Luca732
Antiga, et al. 2019. Pytorch: An imperative style,733
high-performance deep learning library. Advances in734
neural information processing systems, 32.735

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li,736
Lingpeng Kong, Nick Barnes, and Yiran Zhong. 2022.737
The devil in linear transformer. In Proceedings of738
the 2022 Conference on Empirical Methods in Nat-739
ural Language Processing, pages 7025–7041, Abu740
Dhabi, United Arab Emirates. Association for Com-741
putational Linguistics.742

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,743
Dario Amodei, Ilya Sutskever, et al. 2019. Language744
models are unsupervised multitask learners. OpenAI745
blog, 1(8):9.746

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine747
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,748
Wei Li, and Peter J Liu. 2020. Exploring the limits749
of transfer learning with a unified text-to-text trans-750
former. The Journal of Machine Learning Research,751
21(1):5485–5551.752

Abigail See, Peter J. Liu, and Christopher D. Manning.753
2017. Get to the point: Summarization with pointer-754
generator networks. In Proceedings of the 55th An-755
nual Meeting of the Association for Computational756

Linguistics (Volume 1: Long Papers), pages 1073– 757
1083, Vancouver, Canada. Association for Computa- 758
tional Linguistics. 759

Noam Shazeer. 2019. Fast transformer decoding: 760
One write-head is all you need. arXiv preprint 761
arXiv:1911.02150. 762

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam 763
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, 764
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 765
2022. Lamda: Language models for dialog applica- 766
tions. arXiv preprint arXiv:2201.08239. 767

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 768
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 769
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 770
Azhar, et al. 2023a. Llama: Open and effi- 771
cient foundation language models. arXiv preprint 772
arXiv:2302.13971. 773

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 774
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 775
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 776
Bhosale, et al. 2023b. Llama 2: Open founda- 777
tion and fine-tuned chat models. arXiv preprint 778
arXiv:2307.09288. 779

Lewis Tunstall, Edward Beeching, Nathan Lambert, 780
Nazneen Rajani, Kashif Rasul, Younes Belkada, 781
Shengyi Huang, Leandro von Werra, Clémentine 782
Fourrier, Nathan Habib, et al. 2023. Zephyr: Di- 783
rect distillation of lm alignment. arXiv preprint 784
arXiv:2310.16944. 785

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 786
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 787
Kaiser, and Illia Polosukhin. 2017. Attention is all 788
you need. Advances in neural information processing 789
systems, 30. 790

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, 791
and Hao Ma. 2020. Linformer: Self-attention with 792
linear complexity. arXiv preprint arXiv:2006.04768. 793

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 794
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh 795
Hajishirzi. 2023. Self-instruct: Aligning language 796
models with self-generated instructions. In Proceed- 797
ings of the 61st Annual Meeting of the Association for 798
Computational Linguistics (Volume 1: Long Papers), 799
pages 13484–13508, Toronto, Canada. Association 800
for Computational Linguistics. 801

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 802
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 803
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 804
guage models are zero-shot learners. arXiv preprint 805
arXiv:2109.01652. 806

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 807
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 808
Maarten Bosma, Denny Zhou, Donald Metzler, et al. 809
2022. Emergent abilities of large language models. 810
arXiv preprint arXiv:2206.07682. 811

10

https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2022.emnlp-main.473
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien812
Chaumond, Clement Delangue, Anthony Moi, Pier-813
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,814
Joe Davison, Sam Shleifer, Patrick von Platen, Clara815
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le816
Scao, Sylvain Gugger, Mariama Drame, Quentin817
Lhoest, and Alexander M. Rush. 2020. Transform-818
ers: State-of-the-art natural language processing. In819
Proceedings of the 2020 Conference on Empirical820
Methods in Natural Language Processing: System821
Demonstrations, pages 38–45, Online. Association822
for Computational Linguistics.823

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi824
Chen. 2023. Sheared llama: Accelerating language825
model pre-training via structured pruning. arXiv826
preprint arXiv:2310.06694.827

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao828
Wu, Julien Demouth, and Song Han. 2023a.829
Smoothquant: Accurate and efficient post-training830
quantization for large language models. In Inter-831
national Conference on Machine Learning, pages832
38087–38099. PMLR.833

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song834
Han, and Mike Lewis. 2023b. Efficient streaming835
language models with attention sinks. arXiv preprint836
arXiv:2309.17453.837

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,838
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin839
Jiang. 2023. Wizardlm: Empowering large lan-840
guage models to follow complex instructions. arXiv841
preprint arXiv:2304.12244.842

Manzil Zaheer, Guru Guruganesh, Kumar Avinava843
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-844
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,845
Li Yang, et al. 2020. Big bird: Transformers for846
longer sequences. Advances in neural information847
processing systems, 33:17283–17297.848

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong849
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-850
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.851
H _2 o: Heavy-hitter oracle for efficient generative852
inference of large language models. arXiv preprint853
arXiv:2306.14048.854

11

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

A More Experimental Results855

Prompt Template For instruction-tuned/aligned856

LLMs used in the main experiments, we strictly857

follow their system prompt used during training.858

Specifically, we list the prompt template used859

for LLaMa2-7B/13B-Chat, WizardLM-7B, and860

Zephyr-7B as follows:861

• LLaMa2-7B/13B-Chat: [INST] «SYS» You862

are a helpful, respectful and honest assistant.863

Always answer as helpfully as possible, while864

being safe. Your answers should not include865

any harmful, unethical, racist, sexist, toxic,866

dangerous, or illegal content. Please ensure867

that your responses are socially unbiased and868

positive in nature. If a question does not make869

any sense, or is not factually coherent, ex-870

plain why instead of answering something not871

correct. If you don’t know the answer to a872

question, please don’t share false information.873

«/SYS» {instruction}[/INST]874

• WizardLM-7B: Below is an instruction that875

describes a task. Write a response that appro-876

priately completes the request. Instruction:877

{instruction} Response:878

• Zephyr-7B: <|system|> You are a friendly879

chatbot who always responds in a helpful and880

detailed manner to the user’s questions.</s>881

<|user|> {instruction}</s> <|assistant|>882

Extension to GQA/MQA We extend existing883

attention-based eviction policies into GQA and884

MQA by taking the group-wise averaged atten-885

tion scores and using it to update the importance886

score. To verify our extension, we conduct experi-887

ments using Zephyr-7B (Tunstall et al., 2023), an888

instruction-tuned and aligned version of Mistral-889

7B (Jiang et al., 2023) on the text summarization890

task. Specifically, Zephyr-7B employs GQA and891

has 8 key-value heads and 32 query heads, ren-892

dering a 4x replication for each key-value vector893

pair.894

The results are shown in Table 7. We can see that,895

attention-based eviction policies still exhibit bet-896

ter performance compared to Random and Stream-897

LLM, showing that the group-wise average opera-898

tion can effectively reflect the importance of each899

token across all query heads within its group.900

Results on Larger LLMs In addition to 7B- 901

scale LLMs, we also examine the effectiveness 902

of RoCo alongside other eviction policies on 13B- 903

scale LLMs. To this end, we conduct a text summa- 904

rization experiment using LLaMa2-13B-Chat (Tou- 905

vron et al., 2023b) and report the results in Table 906

8. We observe that, given the same KV cache bud- 907

get, LLaMa2-13B-Chat achieves higher BLEU and 908

ROUGE scores than LLaMa2-7B-Chat. It indicates 909

that a larger model dimension may contain more 910

redundancy in some less informative intermediate 911

activations. This observation is inspiring because 912

it implies that we can preserve more performance 913

when using more powerful LLMs. 914

B More Results on Block-wise Eviction 915

To accelerate key-value constrained prompt en- 916

coding, we extend the per-token evict-and-encode 917

scheme to a block-wise manner. We report results 918

on text summarization with various block sizes us- 919

ing Zephyr-7B in Table 9. With a larger block size, 920

more tokens are evicted with less reliable impor- 921

tance scores, thereby resulting in some influential 922

tokens being wrongly evicted. Nevertheless, the 923

performance drop is tolerable given the significant 924

speedup of prompt encoding, especially when con- 925

fronted with long-context tasks (Liu et al., 2023a; 926

Bai et al., 2023; An et al., 2023). 927

C Case Study 928

To obtain a straightforward impression on the gen- 929

eration quality when RoCo is applied for key-value 930

constrained inference, we present responses gen- 931

erated by LLaMa2-7B-Chat given the instruction 932

“What are the names of some famous actors that 933

started their careers on Broadway?”. The re- 934

sponses at different KV cache budget are shown in 935

Figure 6. At 0.3 KV cache budget rate, RoCo gen- 936

erates a response containing the same actor/actress 937

names as the one conditioned on a full KV cache, 938

demonstrating the commendable ability of RoCo to 939

selectively retain useful key-value states and main- 940

tain coherent generation. 941

12

Models Methods XSum CNN/DM
BLEU Meteor R-1 R-2 R-L BLEU Meteor R-1 R-2 R-L

Zephyr-7B

Random 17.0 39.0 48.6 25.2 34.4 22.8 43.2 54.5 29.0 36.1
StreamLLM 12.0 35.0 45.1 19.3 29.0 20.2 41.2 51.8 26.1 31.9
ScissorHands 26.6 48.7 57.4 34.3 44.2 29.4 49.1 60.4 36.0 44.0

H2O 29.6 49.9 58.9 38.3 47.2 34.9 52.3 63.6 41.3 48.4
TOVA 16.8 40.7 50.5 24.6 34.9 25.5 45.8 57.5 32.2 38.6
RoCo 33.6 54.9 62.6 42.4 50.4 36.6 53.8 64.6 42.6 50.0

Table 7: Performance of Zephyr-7B using different eviction policies on abstractive text summarization tasks at 0.5
KV cache rate.

Models Methods XSum CNN/DM
BLEU Meteor R-1 R-2 R-L BLEU Meteor R-1 R-2 R-L

LLaMa2-13BChat

Random 14.9 27.7 30.0 17.9 24.5 9.0 18.8 22.3 11.7 15.1
StreamLLM 14.7 35.7 41.7 19.8 31.2 26.0 43.1 53.2 30.4 36.6

H2O 38.3 55.9 61.0 44.5 53.4 38.4 52.5 62.3 42.6 48.6
RoCo 45.8 62.2 66.6 51.5 59.3 41.4 54.1 65.1 47.0 53.0

Table 8: Performance of LLaMa2-13B-Chat using different eviction policies on abstractive text summarization tasks
at 0.5 KV cache rate.

Instruction: What are the names of some famous actors that started their careers on Broadway?

Response of RoCo, 100% KV Cache:
Thank you for your question! There are many talented actors who have started their careers on Broadway and gone on to achieve great success in the
entertainment industry. Here are some famous actors who got their start on Broadway:
1. Hugh Jackman: Known for his roles in "The Boy from Oz" and "The Greatest Showman," Jackman got his start on Broadway in the musical "Oklahoma!"
2. Audra McDonald: A six-time Tony Award winner, McDonald got her start on Broadway in the musical "Ragtime."
3. Idina Menzel: Menzel got her start on Broadway in the musical "Rent" and went on to star in "Wicked" and "Frozen."
4. Lin-Manuel Miranda: Miranda got his start on Broadway in the musical "In the Heights" and went on to create the hit musical "Hamilton."
5. Bernadette Peters: A legendary actress and singer, Peters got her start on Broadway in the musical "The Beautyful Nose" and has since starred in numerous
productions, including "Gypsy" and "Sweeney Todd."
6. James Corden: Corden got his start on Broadway in the musical "Les Miserables" before becoming a late-night talk show host on "The Late Late Show with
James Corden."
7. Christine Baranski: Baranski got her start on Broadway in the musical "The Producers" and has since appeared in numerous productions, including "The Good
Wife" and "The Good Fight."
8. Nathan Lane: Lane got his start on Broadway in the musical "A Funny Thing Happened on the Way to the Forum" and has since starred in numerous
productions, including "The Producers" and "It's Only a Play."
9. Bette Midler: Midler got her start on Broadway in the musical "Fiddler on the Roof" and went on to star in "Wicked" and "Hello, Dolly!"
10. John Leguizamo: Leguizamo got his start on Broadway in the play "A Day in the Death of Don Quixote" and has since appeared in numerous productions,
including "The Lion King" and "Spike Lee's Summer of Sam."
I hope this helps! Let me know if you have any other questions.

Response of RoCo, 30% KV Cache:
Thank you for your question! There are many talented actors who have started their careers on Broadway and gone on to achieve great success in the
entertainment industry. Here are some famous actors who got their start on Broadway:
1. Hugh Jackman: Known for his roles in "The Boy from Oz" and "The Greatest Showman," Jackman got his start on Broadway in the musical "Oklahoma!"
2. Audra McDonald: A six-time Tony Award winner, McDonald got her start on Broadway in the musical "Ragtime."
3. Idina Menzel: Menzel got her start on Broadway in the musical "Rent" and went on to star in "Wicked" and "Frozen."
4. Lin-Manuel Miranda: Miranda got his start on Broadway in the musical "In the Heights" and went on to create the hit musical "Hamilton."
5. Bernadette Peters: A legendary actress and singer, Peters got her start on Broadway in the musical "The Beautyful Nose" and has since starred in numerous
Broadway productions.
6. James Corden: Corden got his start on Broadway in the musical "Les Miserables" before becoming a late-night talk show host on "The Late Late Show with
James Corden."
7. Christine Baranski: Baranski got her start on Broadway in the musical "The Producers" before going on to star in the TV show "The Good Wife" and the movie
"The Big Sick."
8. Nathan Lane: Lane got his start on Broadway in the musical "A Funny Thing Happened on the Way to the Forum" and has since starred in numerous Broadway
productions, including "The Producers" and "The Birdcage."
9. Bette Midler: Midler got her start on Broadway in the musical "Fiddler on the Roof" before going on to star in the TV show "The Rose" and the movie "Hocus
Pocus."
10. John Leguizamo: Leguizamo got his start on Broadway in the play "A Day in the Death of Jose Marti" before going on to star in numerous TV shows and
movies, including "ER" and "Ice Age."
These are just a few examples of actors who got their start on Broadway. There are many other talented actors who have also gotten their start on the Great
White Way.

Figure 6: Case study of LLaMa2-7B-Chat generated response given a specific instruction. The response generated
with 30% KV cache using RoCo retains almost all content in the original response.

13

Block Size BLEU ROUGE-2 Speed up

1 26.5 35.4 1.0x
2 26.6 35.4 2.0x
4 26.5 35.4 4.0x
8 26.9 35.8 8.0x
16 26.4 35.4 16.0x

Table 9: Performance of Zephyr-7B on text summariza-
tion using RoCo. Larger block size only leads to a slight
performance decline while significantly speed-up the
prefilling stage.

14

