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Abstract

Despite their impressive capabilities, multimodal
large language models (MLLMs) are prone to
hallucinations, i.e., the generated content that is
nonsensical or unfaithful to input sources. Unlike
in LLMs, hallucinations in MLLMs often stem
from the sensitivity of text decoder to visual to-
kens, leading to a phenomenon akin to “amnesia”
about visual information. To address this issue,
we propose MemVR, a novel decoding paradigm
inspired by common cognition: when the mem-
ory of an image seen the moment before is for-
gotten, people will look at it again for factual
answers. Following this principle, we treat visual
tokens as supplementary evidence, re-injecting
them into the MLLM through Feed Forward Net-
work (FFN) as “key-value memory” at the middle
trigger layer. This look-twice mechanism occurs
when the model exhibits high uncertainty during
inference, effectively enhancing factual alignment.
Comprehensive experimental evaluations demon-
strate that MemVR significantly mitigates hal-
lucination across various MLLMs and excels in
general benchmarks without incurring additional
time overhead. The implementation is available
from https://github.com/1zhou-Wang/MemVR.

1 Introduction
Multimodal Large Language Models (MLLMs), known for
their ability to process visual, auditory and textual data, are
crucial in fields such as computer vision (Koh et al., 2024)
and natural language processing (Tu et al., 2023), helping
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with visual tasks and complex visual question answering.
However, MLLMs still face challenges, notably the “halluci-
nation” issue (Huang et al., 2024b; Zheng et al., 2024; Lyu
et al., 2025), where they generate contents inconsistent with
original inputs, such as generating nonexistent objects or
conflicting judgments. This flaw undermines their reliability,
especially in areas critical to safety such as healthcare (Lin
et al., 2024) and autonomous driving (Ding et al., 2024).
Although the causes of hallucinations are unclear, one po-
tential factor is the imbalance between their understanding
of visual and textual modalities. This imbalance may induce
biases when the model integrates multimodal information,
leading to outputs that do not match objective facts.

Currently, numerous methods are being tried out to solve
this problem. General studies can be broadly categorized
into four streams: (i) Retrieval-Augmented Generation
(RAG) (Qu et al., 2024) which incorporates knowledge from
external databases to mitigate hallucinations, as well as (ii)
through extra fine-tuning (Yu et al., 2024a) to enhance the
self-consistency of generation; (iii) attention intervention
(Huang et al., 2024a) and (iv) Contrastive Decoding (CD)
(Leng et al., 2024) strategies, which not involve extra train-
ing. Specifically, RAG and fine-tuning patterns typically
employ external knowledge retrieval or robust instruction-
tuning datasets to post-hoc debias (Yang et al., 2024; Liu
et al., 2023a), which inevitably introduces substantial com-
putational overhead or storage requirements. Attention in-
tervention, though not requiring additional data, usually
involves retrospection-allocation operations, which bring
about high inference latency and a large memory footprint.

CD-based methods (Li et al., 2023a; Shi et al., 2024) rep-
resent a simpler and more efficient way to mitigate halluci-
nations than other paradigms. Specifically, CD-based hallu-
cination mitigation paradigms, represented by VCD (Leng
et al., 2024), modulate logits of the next token prediction in
a contrastive manner. As shown in Figure 1 left, VCD am-
plifies the language priors by adding Gaussian noise to the
visual inputs, reducing over-reliance on statistical biases and
single-modal priors through contrasting output distributions
from original and distorted visual inputs. This perturbation
of original inputs requires task-specific design, inevitably
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Figure 1: Comparison of the conventional CD-based hallucination
mitigation paradigm VCD, and our proposed efficient MemVR.

✄ doubling inference costs. More critically, contrastive dis-
tributions are agnostic to visual and instructional nuances,
which may not always amplify the intended hallucinations,
occasionally ✄ introducing potential noise into CD.

In this work, we delve into the challenges of hallucination
mitigation in MLLMs and propose a novel paradigm that
overcomes the two limitations of CD-based approaches. Our
research is grounded in a common cognitive process: when
the memory of an image seen the moment before is forgot-
ten, it is intuitive to look twice for accurate and factual
answers (Ballard et al., 1995; Horowitz & Wolfe, 1998).
Following this principle, we propose Memory-space Visual
Retracing (MemVR) that mitigates hallucinations through
supplementing visual evidence, which can also be called
look-twice mechanism. As shown in Figure 1 right, MemVR
reinjects visual tokens through Visual Retracing (VR), i.e.,
look-twice mechanism, into the middle trigger layer suf-
fering from high uncertainty, without incurring additional
inference cost. Compared with VCD and other approaches,
our proposed look-twice mechanism is optimal in terms
of performance, efficiency, and memory cost as shown in
Figure 2 and Table 1. Through extensive experiments on
multimodal hallucination benchmarks, as well as GPT-4o
evaluations, including eight public benchmarks, we show
the comprehensive performance improvements of MemVR
in hallucination mitigation and general capabilities. The
main contributions can be summarized as follows:

❶ We propose MemVR, a novel, efficient, minimalist, and
plug-and-play approach that achieves both model fidelity
and efficiency, which reinforces attention to visual infor-
mation for enhancing modality balance during the forward
pass, without eliminating beneficial language priors.

❷ We present static and dynamic VR strategies that shift
hidden states of the intermediate layer in MLLM for self-
enhancement, rather than modulating logits directly in a
CD manner, thus avoiding multi-round decoding.

❸ Our analysis reveals that hallucinations are triggered by
the sensitivity of text decoder (i.e., LLM) to non-text
modality. This finding is experimentally validated.
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Figure 2: Radar charts comparing models across benchmarks.

Method
Latency ↓

(ms/token)
Throughput ↑
(token/ms)

Time Cost ↓
for 80 Tokens (ms)

Memory ↓
Cost (MB)

Greedy 65.71 (×1.00) 0.015 (×1.00) 5256.6 (×1.00) 14257 (×1.00)

Sample 69.84 (×1.06) 0.015 (×1.00) 5587.0 (×1.00) 14262 (×1.00)

OPERA 240.59 (×3.66) 0.004 (×0.27) 19247.2 (×3.66) 21300 (×1.49)

ICD 70.84 (×1.08) 0.014 (×0.93) 5666.9 (×1.08) 14263 (×1.00)

VCD 144.62 (×2.20) 0.007 (×0.47) 11569.3 (×2.20) 14967 (×1.05)

MemVR 68.32 (×1.04) 0.015 (×1.00) 5545.5 (×1.06) 14345 (×1.01)

Table 1: Performance comparison of SOTA methods and MemVR
in latency, throughput, time cost, and memory usage. The best and
suboptimal results are highlighted in green and blue, respectively.

❹ Comprehensive experiments and evaluations on multi-
ple models demonstrate that MemVR outperforms SOTA
methods in performance and inference speed, such as
+7.0% on the POPE benchmark, 15.6% improvement on
CHAIRI , and total score of MME increased by +32.2
marks. The results on popular hallucination and general
benchmarks validate the generalizability of our method.

2 Related Work
MLLMs and Challenges. In recent years, MLLMs have
made remarkable progress, particularly as they have evolved
from the foundations laid by Vision Language Models
(VLMs). Early based on BERT-style language decoders
(Devlin, 2018), which achieved initial cross-modal integra-
tion by combining visual and textual data (Li et al., 2022).
Leveraging open-source Large Language Models (LLMs)
such as LLaMA families (Touvron et al., 2023), MLLMs
(Alayrac et al., 2022; Wu et al., 2024) have demonstrated en-
hanced adaptability across a range of visual language tasks,
leading to a more profound ability to interpret the world.
Models like LLaVA (Liu et al., 2024b), Qwen-VL (Bai
et al., 2023), GLM4V (Wang et al., 2023), and LLaVA-Next
(Liu et al., 2024a) have further advanced this field, enabling
users to interact with these agents using both image and
text prompts. These models adhere to two critical train-
ing phases: pre-training feature alignment and instruction
fine-tuning, ensuring they better comprehend the format of
instruction inputs (Yin et al., 2024). However, despite their
impressive performance in many areas, multimodal large
language models still suffer from hallucination issues. In
this work, we conducted experiments and analysis on these
representative models to validate MemVR’s applicability.

2



Look Twice Before You Answer: Memory-Space Visual Retracing for Hallucination Mitigation in MLLMs

Table 2: Comprehensive comparisons between the proposed MemVR and existing approaches are presented. MemVR introduces a
low-latency look-twice decoding mechanism, optimizing hidden states to support multimodal integration and enhance overall performance.
MemVR uniquely achieves visual hallucination mitigation and general improvement. SOTA methods we compare are emphasized in gray.

Methods
VH

Mitigation
General

Improvement
Inference
Latency

Expand to
More Modalities

Modified
Component(s)

Decoding
Paradigm

DoLa (Chuang et al., 2023) Negative ✗ Low ✓ Logits Contrastive
OPERA (Huang et al., 2024a) Medium ✗ High ✓ Attention matrix Att-intervention
EAH (Zhang et al., 2024a) Medium ✗ High ✓ Attention matrix Att-intervention
CCA (Xing et al., 2024) Medium ✗ High ✓ Attention matrix Att-intervention
ICD (Wang et al., 2024) Medium ✗ Medium ✗ Textual input, logits Contrastive
ID (Kim et al., 2024) Medium ✗ Medium ✗ Textual input, logits Contrastive
SID (Huo et al., 2024) Medium ✗ Medium ✗ Visual tokens, logits Contrastive
VCD (Leng et al., 2024) Low ✗ Medium ✗ Visual input, logits Contrastive
HALC (Chen et al., 2024b) Medium ✗ Ultrahigh ✗ Visual input, logits Contrastive
VORD (Neo & Chen, 2024) Medium ✗ Medium ✗ Visual input, logits Contrastive
MemVR (ours) High ✓ Low ✓ Hidden states Look-twice

Mitigating Hallucinations in MLLMs. Researchers have
made extensive efforts to uncover the causes of halluci-
nations (Yin et al., 2023; Zhou et al., 2023; Bai et al.,
2024). Early works to mitigate hallucinations focused on
fine-grained modality alignment (Rohrbach et al., 2018) and
reducing co-occurrence biases (Kim et al., 2023) in small-
scale models. More recent strategies involve hallucination-
related datasets for fine-tuning (Gunjal et al., 2024), post-
hoc revisors (Zhou et al., 2024), and adopting RLHF (Yu
et al., 2024a). LURE (Zhou et al., 2023) trains a reviser
to edit the possible hallucinated words in the responses.
While effective, these methods are resource-intensive. At-
tentional intervention strategies (Zhang et al., 2024a; Xing
et al., 2024), represented by OPERA (Huang et al., 2024a),
are simpler and do not require additional data or training,
but have a higher inference latency. CD-based approaches
(Chuang et al., 2023; Chen et al., 2024b; Neo & Chen, 2024),
represented by ICD (Wang et al., 2024) and VCD (Leng
et al., 2024), adjust the decoding distribution to mitigate
hallucinations in MLLM, but this does not consistently im-
prove performance as it introduces potential noise into the
CD.

Comparisons. Distinct from these methods, our proposed
MemVR offers a novel decoding strategy that effectively re-
duces visual hallucinations (VH) without necessitating extra
models, data, and training. Table 2 illustrates the differences
and advantages of our method compared to recent represen-
tative SOTA approaches. DoLa (Chuang et al., 2023) targets
hallucinations in LLM and is negative for alleviating VH, al-
though it exhibits low latency. Attentional intervention meth-
ods (Zhang et al., 2024a; Xing et al., 2024), represented by
OPERA (Huang et al., 2024a), have achieved considerable
progress in mitigating VH, but are limited to the problem
of high latency. CD-based approaches, whether modifying
the textual input (Wang et al., 2024; Kim et al., 2024) or
visual input (Leng et al., 2024; Chen et al., 2024b; Neo &
Chen, 2024), both aim to reduce the output probability of

incorrect tokens through the comparison of logits. However,
this brings two challenges, one is that the CD strategy may
introduce noise to the output distribution, thus losing the
original capability, and the other is that the CD-based mech-
anisms often require multiple rounds of inference to obtain
several pairs of logits for contrasting, resulting in a high
latency. Significantly, these methods work negatively or fail
in general-purpose testing. Compared with them, MemVR
stands as “a paradigm of effectiveness and efficiency” in
visual hallucination mitigation and general improvement.

3 Background and Motivation

3.1 Problem Formulation

Given an MLLM MMLLM
θ parameterized by θ, with a gen-

eral architecture consisting of a text embedding layer, a vi-
sion encoder, a vision-text interface module, a text decoder
consisting of L number of transformer layers, and an affine
layer ς(·) which predicts the distribution of the next token.
For an image-grounded text generation task, given a textual
query x and an input image v, MLLM first extracts vision
features of v by the vision encoder, and then converts them
into visual tokens zv by MLP or Q-Former (Wadekar et al.,
2024) modules. Aligned vision tokens zv are concatenated
with the query x as input to the text decoder, and finally
decoded into a textual response y autoregressive, which is
formulated as follows:

yt ∼ pθ(·|v, x, y<t) ∝ softmax(fθ(·|v, x, y<t)), (1)

where yt indicates the tth token, y<t is the token sequence
generated up to time step t, and fθ is the logit distribution,
i.e., unnormalized log-probabilities produced by MMLLM

θ .

When the text generation y is inconsistent or in conflict with
the input image v, MLLM is believed to present hallucina-
tion issues. The objective of visual hallucination mitigation
is to minimize the appearance of incorrect or conflicting
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Figure 3: Uncertainty of different layers to predict the next token.
Rows denote indices of the early layers, and column names are
decoded tokens in each step. Uncertainty distribution is dynamic.

tokens, ensure faithfulness to v when answering the query x,
and simultaneously maintain high-quality text generations.

3.2 Why Does MLLM Generate Hallucination?

Hallucinations in MLLM are caused by multiple factors,
including inherent biases in the training data (Zhou et al.,
2023), visual uncertainty resulting from the model’s statisti-
cal bias and priors (Leng et al., 2023), and the limitations
of current models in accurately discerning context and fact
throughout the output generation process (Daunhawer et al.,
2021). Upon a more in-depth analysis, we consider that the
imbalance of modalities in MLLM and the autoregressive
characteristic of language models are likely crucial factors
causing their hallucinatory phenomena. Taking image and
text as an example, since an image possesses a much higher
information density than a piece of text, it is reasonable to
suppose that LLMs struggle to understand or memorize vi-
sion information compared to text. Moreover, autoregressive
decoding causes MLLMs to increasingly depend on textual
information, including query x and growing tokens y<t, in-
evitably decreasing reliance on visual input. As attention
sinks (Zhang et al., 2024b) and PAI (Liu et al., 2024c) pro-
posed to pay more attention to images, both reflect the fact
that hallucinations may be caused by modality imbalances.
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Figure 4: (Left) Performance under different scaling ratios to text /
image feature value on MME; (Right) Performance changes when
look-twice to text / image / text+image (i.e, @t+i), respectively.

To further verify this conjecture, we scale the feature values
of different modalities up or down to simulate the modality
imbalance phenomenon. As shown in the left of Figure 4,
it can be observed that: when the image and text features
are scaled up proportionally, modality balance is disrupted
in both cases, yet the performance decline caused by mag-
nifying the image features is more significant than that of
text features; however, when the image and text features is
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Query: What type of fruit is this?

Figure 5: Uncertainty distribution across layers during token rea-
soning in hallucinations. Red-outlined regions show higher uncer-
tainty in middle and late layers for hallucinatory tokens: a, pom.

scaled down proportionally, the contraction on text features
led to a drastic performance drop, while the scaling down of
visual features had a relatively minor impact. We can obtain
three findings in this experiment: ① modality imbalance
issues cause hallucinations in MLLMs, ② text decoders
(i.e., LLMs) are more text-informed, ③ LLMs are harder to
comprehend the visual modality than textual inputs.

This modality imbalance leads to a substantial deviation
from the accurate representation of visual input, eventu-
ally giving rise to hallucinations, as manifested by the phe-
nomenons in the aforementioned studies (Zhou et al., 2023).
This is especially evident in generating longer responses,
explaining the correlation between higher VH and larger
maximum token lengths, as presented in Huang et al. (2023).

3.3 The Pattern of Hallucinations in MLLM

In order to further explore the potential pattern of halluci-
nations in MLLM, this study employs uncertainty as the
metric. As findings of Chen et al. (2024a) in LLMs: incor-
rect tokens generally exhibit higher entropy than correct
ones, we also observe this phenomenon in MLLMs, the vi-
sualization case is shown in Figure 5. From Figure 5, it can
be noticed that when the model generates illusion tokens,
i.e., a, pom -eg-ran-ate (pomegranate), the uncertainty in the
middle and last layers of the model is high in MLLM.

Uncertainty quantification. Following the DoLa (Chuang
et al., 2023), we compute the probability of the next token
via the vocabulary head ς(·) on each layer during reasoning.
Then, we introduce an entropy-based metric (Farquhar et al.,
2024) to quantify the output uncertainty of each layer in the
text decoder as u =

∑
−pi log pi/ logN , where {pi}Ni=1.

In addition, in the context of tokens involving objects, at-
tributes or relations, uncertainty is also high. We conduct a
preliminary analysis with 32-layer LLaVA-1.5-7B. Specifi-
cally, we compute the uncertainty in the output distributions
of early layers. Figure 3 shows the uncertainty scores of
different early layers when decoding the answer, we can
observe that the computed uncertainty remains relatively
high in later layers when predicting key entity objects, at-
tributes, or relations, such as wooden, filled, foods. This
phenomenon suggests that LLM is still uncertain about its
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predictions in the last few layers and may inject more factual
knowledge into the predictions. On the other hand, when
predicting function words and those tokens copied from the
question, e.g., image, with, we observe that the uncertainty
becomes very low from the middle layers. This finding
implies that the model is deterministic for easy-to-predict
tokens at the intermediate layer and keeps the distribution
of outputs almost constant at higher layers, however, it is
more uncertain for difficult-to-predict key tokens and may
constantly change its predictions until the final layer.

3.4 Refresh Visual Memory Alleviates Hallucination

Based on the findings, we propose that both overreliance on
textual information and schema imbalance contribute to a
phenomenon akin to “amnesia” about visual information. It
is easy to understand that from the shallow to the deep layers
of the Transformer, attention is progressively biased towards
textual tokens, resulting in visual tokens at the deeper layer
that hardly affect the results, which is consistent with how
the attention intervention strategies work. To address this,
we try to refresh visual information for trustworthy answers
when the model encounters high uncertainty.

We verify this hypothesis through an empirical study. As
shown in the right of Figure 4, the proposed look-twice
strategy is used for combinations of different modalities,
including text, image, text+image, where it can be found that
the best performance improvement is achieved while only
replenishing image information to the model, i.e., refreshing
visual memory can effectively alleviate hallucinations in
MLLMs. This study lends further credence to our conjecture
regarding the causes of hallucinations in Sec. §3.2.

4 Methodology
Inspired by the common cognition: when the memory of
an image seen the moment before is forgotten, people will
look at it again for factual answers, we design look-twice
mechanism, which treats visual tokens as supplementary
evidences, re-injecting them into MLLMs through FFN
as “key-value memory” at the middle trigger layer. This
look-twice mechanism occurs when the model exhibits high
uncertainty during inference, effectively enhancing factual
alignment and modality balance. All details are listed below.

4.1 Preliminary: Reformulation of FFN

Vanilla FFN comprises two fully connected layers with non-
linear activation in between. We suppose x ∈ Rd as an input
token of the FFN, and FFN function can be formulated as

FFN(x) = ϕ (xW 1)W
⊤
2 , (2)

where ϕ is activation function like ReLU or SiLU (Liu et al.,
2020), and W 1,W 2 ∈ Rd×D are the weight matrices, in

usual D = 4d. Peculiarly, W 1 and W 2 can be rewritten as

W 1 = (k1,k2, . . . ,kD),W 2 = (v1,v2, . . . ,vD), (3)

where ki,vi ∈ Rd denote entries of key and value, respec-
tively. As a result, the FFN can be reformulated as

FFN(x) =
∑

ϕ (⟨x,ki⟩) · vi . (4)

Thus, the FFN function can be construed as using input x
as a query to measure similarity with keys, find matching
values, and gather values by similarity, which works like a
key-value memory storing the factual knowledge as found
in previous studies (Geva et al., 2021; Jie et al., 2024).

4.2 FFN with Visual Retracing

Motivated by the findings in section §3.2 and §3.4, we pro-
pose Visual Retracing (VR), i.e., reinjecting visual evidence
into the middle layer of the text decoder during elevated
uncertainty during reasoning. This strategy treats visual
tokens as anchors to recalibrate off-target predictions and re-
duces uncertainties in object, attribute, relationship tokens.
Experimental results also demonstrate that our method re-
duces uncertainty and alleviates hallucinations as shown
in Figure 8. The reason we call this pattern of reinjecting
visual evidence “visual retracing” is that the model finds and
refreshes key visual memories based on the hidden states
in this process. In particular, inspired by the fact that FFN
executes analogous retrieval from its key-value memory, we
consider VR to serve as a simplified and efficient informa-
tion re-retrieval process. Given a hidden token x ∈ Rd

and dimension-aligned vision tokens zv, FFN with visual
retracing at l-th layer can be written as follows

FFN(l)(x ∝ zv) = α∆+ (1− α) FFN(l)(x), (5)

where zv = (zv,1, . . . ,zv,Nv
) ∈ Rd×Nv , x ∝ zv denotes

execute VR ∆ from x to visual features zv, and α ∈ [0, 1]
denotes injection ratio of visual memory through the FFN
layer which proportional to image complexity. Specifically,
instead of performing retrieval via cross-attention layers as
in previous approaches (Li et al., 2022; Alayrac et al., 2022),
we consider a simple retrieval process for VR as,

∆(zv | x) =
∑Nv

i=1
ϕ(⟨x, zv,i⟩) · zv,i. (6)

From the perspective of FFN, visual retracing works by treat-
ing x as a query, and ⟨zv,i : zv,i⟩ as new key-value entries
(visual evidence) to supplement vision-related information
in the hidden states. In this information re-retrieval process,
MemVR does not introduce any parameters that need to be
trained. Notably, since the size of key-value memory D in
FFN typically far exceeds the number of visual tokens Nv

(for instance, D = 11008 in LLaMA-7B and Nv = 256
for ViT-L/14, Nv ≪ D), the computation of MemVR is
negligible. Thus, VR operation is more efficient than the
cross-attention mechanism with quadratic complexity.
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4.3 Dynamic Triggered Visual Retracing

To magnify the effectiveness of VR, the optimal strategy
should be to trigger VR dynamically based on the token, and
the selection of the trigger layer should also be dynamically
determined. In practice, we consider that the uncertainty
of a candidate layer exceeding the threshold γ warrants vi-
sual retracing. Inspired by the fact that early exit patterns
(Elbayad et al., 2020; Schuster et al., 2022) have proven
effective in directly employing the language heads ζ to the
hidden states of the middle layers, even without a special
training process (Kao et al., 2020), we compute the uncer-
tainty of the next token probability on the early layers for
reasoning. We utilize layer-specific uncertainty to allow for
dynamic premature layer injection at each time step.

Dynamic Triggered MemVR. For MLLMs with different
numbers of layers, as Algorithm 1 shown, the dynamic trig-
gered MemVR strategy called MemVR-dynamic, identifies
desirable premature layers among the candidate layers for
visual retracing based on output uncertainty of different
layers, thus better amplifying the effect of visual retracing.

Algorithm 1 Dynamic Triggered MemVR Strategy

Require: MLLM MMLLM
θ , text query x, image input v.

output Model response ybt .
1: At every decoding step t:
2: Initial set to trigger = TRUE.
3: for l = 1 to L− 1 do
4: u(l) =

∑
−p

(l)
θ log p

(l)
θ /logN. % uncertainty

5: if trigger = = TRUE and u(l) > γ then
6: Execute ∆(zv | h(l+1)

t ) {§4, Eq. (6)}
7: Select FFN(l+1)(h

(l+1)
t ∝ zv) {§4, Eq. (5)}

8: trigger = FALSE % set to only look-twice
9: end if

10: end for
11: MMLLM

θ decoding, obtain current token ybt .

Static Triggered MemVR. Besides MemVR-dynamic, an-
other more straightforward strategy worth considering is
to perform a brute-force experiment on all possible early
layers using a validation set and selecting the layer with the
best average performance. We refer to this simple strategy
as MemVR-static. Nonetheless, MemVR-static exhibits two
notable limitations. Firstly, it demands more comprehensive
hyperparameter tuning across different layers. Secondly, the
optimal layer is extremely sensitive to the data distribution,
which mandates the use of an in-distribution validation set.

MemVR-dynamic vs. -static. In contrast to MemVR-static,
MemVR-dynamic strategy effectively alleviates these chal-
lenges. It achieves this by narrowing down the layer search
space and enhancing robustness, all without relying on an in-
distribution validation set. Empirical comparisons between

the proposed MemVR implemented with the dynamic and
static strategies are presented in Section §5.4 and Table 10.

4.4 Theoretical Analysis

To further understand why MemVR effectively mitigates hal-
lucinations and performs robustly on general benchmarks,
we explain these phenomena using three theorems below.

Theorem 4.1. Let x be the hidden states of FFN and x̂
be after reinjecting visual evidence zv. MemVR enhances
Mutual Information (MI) between x̂ and zv as:

I(x̂; zv) ≥ I(x; zv). (7)

Theorem 4.2. Let y be the target output dependent on
hidden states. If MI between x and zv increases, then
conditional entropy H(y | x) decreases with

H(y | x̂) ≤ H(y | x). (8)

Theorem 4.3. Within the Information Bottleneck (IB) frame-
work, the loss of objective function, represented by the no-
tation L(T ), is optimized by MemVR, which is defined as
L(x̂) ≤ L(x), where L(x) = I(x; c)−βI(x;y) is IB loss,
c denotes input embedding and β is a trade-off parameter.

Intuition: The proofs are provided in Appendix A. The theo-
retical basis of MemVR draws support from the DPI (Cover
et al., 1991) and the contraction properties of stochastic map-
pings in deep neural networks, as evidenced in numerous
IB-related studies (Achille & Soatto, 2018). By enhancing
MI and reducing uncertainty in hidden states, MemVR effec-
tively alleviates hallucination while maintaining efficiency.

5 Experiments

5.1 Experiment Setup

Datasets and Evaluation. To rigorously assess the effec-
tiveness of our proposed MemVR, we conduct a comprehen-
sive set of experiments across POPE benchmark (Li et al.,
2023b), CHAIR (Rohrbach et al., 2018), VizWiz-VQA (Gu-
rari et al., 2018), MME (Fu et al., 2023), MMBench (Liu
et al., 2023b), MM-Vet (Yu et al., 2024b), LLaVA-Bench
(in-the-wild) (Liu et al., 2024b), HallusionBench (Guan
et al., 2024). More details can be found in Appendix B.1.
Implementation Details. Usually, we set γ=0.75. All set-
tings of baseline methods follow the default configurations
from the original papers. More details are in Appendix B.2.

Table 3: CHAIR evaluation results of different methods.
Methods CHAIRS ↓ CHAIRI ↓ Average ↓ Len Recall ↑
LLaVA-1.5 50.0 ↓0.0 15.4 ↓0.0 32.7 ↓0.0 100.6 77.1 ↑0.0
+ OPERA 47.8 ↓2.2 14.6 ↓0.8 31.2 ↓0.5 98.6 76.8 ↓0.3
+ VCD 48.6 ↓1.4 14.9 ↓0.5 31.8 ↓0.5 100.4 77.3 ↑0.2
+ ICD 56.2 ↑6.2 16.3 ↑0.9 36.3 ↑3.6 103.4 16.3 ↓60.
+ MemVR 46.6 ↓3.4 13.0 ↓2.4 29.8 ↓0.5 99.6 80.8 ↑3.7
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Table 4: Performance evaluation on POPE benchmark. The best results are in green. We report accuracy and f1-score under three settings,
e.g., Random, Popular, Adversarial, and also record the Average, to show the robustness of MemVR compared with baseline methods.

Evaluation Methods
Random Popular Adversarial Average

Accuracy ↑ F1-score ↑ Accuracy ↑ F1-score ↑ Accuracy ↑ F1-score ↑ Accuracy ↑ F1-score ↑

MSCOCO

LLaVA-1.5-7B 83.49 ↑0.0 82.28 ↑0.0 79.98 ↑0.0 79.34 ↑0.0 76.03 ↑0.0 76.26 ↑0.0 79.83 ↑0.0 79.29 ↑0.0
OPERA (Huang et al., 2024a) 87.53 ↑4.0 86.45 ↑4.2 84.21 ↑4.2 83.50 ↑4.2 80.88 ↑4.9 80.69 ↑4.4 84.21 ↑4.4 83.55 ↑4.3
ICD (Wang et al., 2024) 84.87 ↑1.4 83.27 ↑1.0 82.93 ↑3.0 81.45 ↑2.1 81.07 ↑5.0 79.96 ↑3.7 82.96 ↑3.1 81.56 ↑2.3
VCD (Leng et al., 2024) 86.84 ↑3.4 86.83 ↑4.6 82.65 ↑2.7 83.37 ↑4.0 77.31 ↑1.3 79.28 ↑3.0 82.27 ↑2.4 83.16 ↑3.9
MemVR (ours) 88.50 ↑5.0 87.34 ↑5.0 87.10 ↑7.1 86.01 ↑6.7 85.20 ↑9.2 84.28 ↑8.0 86.93 ↑7.1 85.88 ↑6.6

A-OKVQA

LLaVA-1.5-7B 83.45 ↑0.0 82.56 ↑0.0 79.90 ↑0.0 79.59 ↑0.0 74.04 ↑0.0 75.15 ↑0.0 79.13 ↑0.0 79.10 ↑0.0
OPERA (Huang et al., 2024a) 88.27 ↑4.8 87.54 ↑5.0 85.17 ↑5.3 84.74 ↑5.2 79.37 ↑5.3 79.97 ↑4.8 84.27 ↑5.1 84.08 ↑5.0
ICD (Wang et al., 2024) 85.57 ↑2.1 85.06 ↑2.5 81.93 ↑2.0 81.95 ↑2.4 77.43 ↑3.4 78.99 ↑3.8 81.64 ↑2.5 82.00 ↑2.9
VCD (Leng et al., 2024) 86.15 ↑2.7 86.34 ↑3.8 81.85 ↑2.0 82.82 ↑3.2 74.97 ↑0.9 77.73 ↑2.6 80.99 ↑1.9 82.30 ↑3.2
MemVR (ours) 91.10 ↑7.7 90.83 ↑8.3 87.33 ↑7.4 87.43 ↑7.8 80.20 ↑6.2 81.66 ↑6.5 86.21 ↑7.1 86.64 ↑7.5

GQA

LLaVA-1.5-7B 83.73 ↑0.0 82.95 ↑0.0 78.17 ↑0.0 78.37 ↑0.0 75.08 ↑0.0 76.06 ↑0.0 78.99 ↑0.0 79.13 ↑0.0
OPERA (Huang et al., 2024a) 88.27 ↑4.5 87.52 ↑4.6 83.07 ↑4.9 82.93 ↑4.6 80.77 ↑5.7 81.05 ↑5.0 84.04 ↑5.1 83.83 ↑4.7
ICD (Wang et al., 2024) 84.90 ↑1.2 84.22 ↑1.3 78.37 ↑0.2 78.81 ↑0.4 75.97 ↑0.9 76.93 ↑0.9 79.75 ↑0.8 79.99 ↑0.9
VCD (Leng et al., 2024) 86.65 ↑2.9 86.99 ↑4.0 80.73 ↑2.6 82.24 ↑3.9 76.09 ↑1.0 78.78 ↑2.7 81.16 ↑2.2 82.67 ↑3.5
MemVR (ours) 89.60 ↑5.9 89.32 ↑6.4 84.63 ↑6.5 84.98 ↑6.6 81.53 ↑6.4 82.48 ↑6.4 85.25 ↑6.3 85.59 ↑6.5

5.2 Results on Hallucination Benchmarks

We conduct hallucination evaluations on CHAIR, POPE,
and HallusionBench with results presented in Table 3, Table
4 and Table 5. In the POPE evaluation, MemVR demon-
strates robust effects. Its performance significantly exceeds
baseline results, with an average accuracy increase of up
to +7.0% and an F1-score increase of up to +7.5% on the
A-OKVQA dataset under the Random, Popular, and Adver-
sarial settings. MemVR clearly outperforms all compared
SOTA methods. As shown in Table 3, compared with vanilla
LLaVA-1.5, MemVR achieves 6.8% and 15.6% improve-
ment on CHAIRS and CHAIRI metrics. Table 5 shows
the HallusionBench evaluation results, where MemVR out-
performs vanilla LLaVA-1.5 and other compared methods,
achieving the best performance and consistent improvement
across different metrics such as hardaACC and aACC.

Table 5: HallusionBench evaluation results of different methods.
Methods fACC ↑ qACC ↑ easyA ↑ hardA ↑ aACC ↑
LLaVA-1.5 17.9 ↑0.0 8.13 ↑0.0 36.0 ↑0.0 36.7 ↑0.0 41.5 ↑0.0
+ OPERA 16.2 ↓1.8 5.49 ↓2.6 37.6 ↑0.9 35.4 ↓1.3 41.2 ↓0.3
+ ICD 13.9 ↓4.0 8.35 ↑0.2 36.9 ↑0.2 33.5 ↓3.4 38.2 ↓3.3
+ VCD 13.9 ↓4.0 11.4 ↑3.3 33.0 ↓3.7 34.7 ↓3.0 41.1 ↓0.4
+ MemVR 17.9 ↑0.0 9.01 ↑0.9 36.9 ↑0.9 37.7 ↑1.0 42.5 ↑1.0

5.3 Results on General-purpose Benchmarks

We evaluate the performance of MemVR on general-purpose
benchmarks, i.e., LLaVA-Bench, MM-Vet, MME, MM-
Bench, and VizWiz. As shown in Table 6, MemVR consis-
tently outperforms competing models on LLaVA-Bench. Be-
sides, MemVR achieves a significant improvement in over-
all performance listed in Table 7, with an average increase
of 6.1% in OCR and spatial awareness tasks, demonstrat-
ing superior generalization capabilities. For MME subset
evaluations (covering both object-level and attribute-level
hallucinations), the results in Figure 2 and Table 8 indicate
that MemVR uniformly improves in handling object-level
and attribute-level hallucinations, as well as commonsense
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Figure 6: (Left) Comparisons of MemVR with regular LLaVA-1.5,
Qwen-VL, and GLM-4V on LLaVA-Bench (in-the-wild). (Right)
The comparison between MemVR and VCD on LLaVA-Bench
shows that MemVR improves significantly while VCD decreases.

reasoning. The Existence, Count, and Color scores all show
significant improvements, where the total score of MME in
LLaVA and Qwen-VL increases by 32 and 36, respectively.
Importantly, although those comparison methods alleviate
some hallucinations, they deteriorate generalizability, i.e.,
they lead to performance degradation on the general bench-
marks. These results indicate that, compared to CD-based
methods, MemVR excels at hallucination mitigation and de-
livers strong performance on general-purpose benchmarks.
More experimental results are provided in Appendix B.

Table 6: LLaVA-Bench (In-the-Wild) evaluation results.
Methods Convs ↑ Detail ↑ Complex ↑ All ↑ Average ↑
LLaVA-1.5 58.8 ↑0.0 52.1 ↑0.0 74.6 ↑0.0 63.4 ↑0.0 64.8 ↑0.0
+ OPERA 59.5 ↑0.7 49.6 ↓2.5 78.6 ↑4.0 59.8 ↓3.6 64.3 ↓0.5
+ ICD 40.3 ↓18. 42.2 ↓9.9 60.3 ↓14. 49.8 ↓13. 56.9 ↓7.9
+ VCD 57.8 ↓1.0 50.8 ↓1.3 77.9 ↑3.3 59.1 ↓4.3 63.2 ↓1.6
+ MemVR 63.8 ↑5.0 52.6 ↑0.5 77.9 ↑3.3 64.0 ↑0.6 65.2 ↑0.4

Table 7: MM-Vet evaluation results, where G denotes language
Generation, K: Knowledge S: Spatial awareness, R: Recognition.

Methods R ↑ OCR S ↑ OCR K R ↑ OCR G S ↑ Total ↑
LLaVA-1.5 67.6 ↑0.0 17.7 ↑0.0 21.2 ↑0.0 10.0 ↑0.0 31.1 ↑0.0
+ OPERA 61.9 ↓5.7 21.5 ↑3.8 11.2 ↓10. 30.0 ↑20. 32.0 ↑0.9
+ ICD 59.5 ↓8.1 17.7 ↑0.0 8.8 ↓12.4 40.0 ↑30. 25.9 ↓5.2
+ VCD 62.2 ↓5.4 15.8 ↓1.9 17.5 ↓3.7 60.0 ↑50. 30.2 ↓1.1
+ MemVR 70.3 ↑2.7 23.8 ↑6.1 21.2 ↑0.0 30.0 ↑20. 32.4 ↑1.3

7



Look Twice Before You Answer: Memory-Space Visual Retracing for Hallucination Mitigation in MLLMs

Table 8: Performance evaluation on MME Hallucination subset, MM-Vet, Vizwiz, and MMBench. The best results are in green.

Evaluation Methods
MME-Hall Object-Level Attribute-Level MM-Vet Vizwiz MMBench

Total ↑ Existence ↑ Count ↑ Position ↑ Color ↑ Accuracy ↑ Accuracy ↑ Accuracy ↑

LLaVA-1.5

Regular 643.3 ↑0.0 190.0 ↑0.0 155.0 ↑0.0 128.3 ↑0.0 170.0 ↑0.0 31.10 ↑0.0 50.00 ↑0.0 62.80 ↑0.0
OPERA 610.0 ↓33. 195.0 ↑5.0 128.3 ↓26. 121.7 ↓6.6 165.0 ↓5.0 32.00 ↑0.9 50.76 ↑0.8 62.80 ↑0.0
ICD 583.3 ↓60. 185.0 ↓5.0 130.0 ↓25. 121.7 ↓6.6 146.7 ↓23. 25.90 ↓5.2 37.62 ↓12. 39.78 ↓23.
VCD 648.3 ↑5.0 190.0 ↑0.0 155.0 ↑0.0 133.3 ↑5.0 170.0 ↑0.0 30.20 ↓0.9 44.90 ↓5.1 54.21 ↓8.6
MemVR (ours) 648.3 ↑5.0 190.0 ↑0.0 155.0 ↑0.0 133.3 ↑5.0 170.0 ↑0.0 32.40 ↑1.3 51.50 ↑1.5 63.75 ↑0.9

Qwen-VL

Regular 618.3 ↑0.0 175.0 ↑0.0 140.0 ↑0.0 123.3 ↑0.0 180.0 ↑0.0 49.00 ↑0.0 66.05 ↑0.0 56.53 ↑0.0
OPERA - ↑0.0 - ↑0.0 - ↑0.0 - ↑0.0 - ↑0.0 - ↑0.0 - ↑0.0 - ↑0.0
ICD 616.7 ↓1.7 170.0 ↓5.0 138.3 ↓1.7 148.3 ↑25. 160.0 ↓20. 31.70 ↓17. 29.37 ↓36. 13.32 ↓43.
VCD 648.3 ↑30. 175.0 ↑0.0 130.0 ↓10. 153.3 ↑30. 190.0 ↑10. 34.60 ↓14. 34.54 ↓31. 39.18 ↓17.
MemVR (ours) 638.3 ↑20. 185.0 ↑10. 145.0 ↑5.0 123.3 ↑0.0 185.0 ↑5.0 49.60 ↑0.6 66.36 ↑0.3 56.44 ↓0.1

5.4 Ablation Studies

To validate the effectiveness across the factors we intro-
duced in our MemVR, we conducted in-depth ablation ex-
periments as detailed in Figure 7 and Table 10. All ablation
experiments are conducted on LLaVA-1.5-7B, and the per-
formance is assessed across benchmarks.

Impact of Threshold and Injection Ratio. Fig. 7 shows
the performance under different injection ratios α and thresh-
olds γ, we find that setting γ between 0.6 and 0.95 can im-
prove performance, with the optimal threshold around 0.75.
Understandably, a high threshold makes VR hard to trigger,
while a low threshold would trigger VR at an earlier layer.
For injection rate α, we find a positive effect of between 5%
and 35%, and a negative effect above 35%, which suggests
that there is an upper limit to the supplementation of vi-
sual memory. To drop the hyperparameter α and derive the
dynamic injection ratio, we calculate α by α = 2(u − γ),
where u denotes uncertain score and this variant named
MemVR†, and the results are present in Table 9.
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Figure 7: (Left) Results under different thresholds γ. (Right) Re-
sults under different injection ratios α, both on MME benchmark.

Table 9: MemVR† performance on different benchmarks.

Methods
MME

(Overall)
POPE

(COCO)
Hallusion

-Bench
LLaVA
-Bench

POPE
(GQA)

LLaVA-1.5 1864.6 83.49 41.45 64.80 83.73
+ MemVR 1896.7 88.50 42.34 65.17 89.60
+ MemVR† 1894.2 88.40 42.27 65.87 89.57

Impact of VR Strategy. MemVR triggers VR dynamically
using layer entropy. Tab. 10 shows that dynamic VR out-

performs layer-fixed strategy, achieving the highest total
score on MME benchmark, where Static-# denotes execut-
ing VR on the # layer and Static-ϕ means running VR on
the specific layer with best performance. This indicates that
dynamic VR leveraging layer entropy offers a more effec-
tive mechanism, adapting better to different scenarios and
achieving optimal performance compared to static VR.

Table 10: MemVR performance with different VR strategies.
MME Static-7 Static-15 Static-23 Static-ϕ Dynamic

Cognition 347.1 352.14 357.9 362.9 383.9
Perception 1500.5 1529.1 1500.3 1526.4 1512.8
Total score 1847.6 1881.2 1858.1 1889.2 1896.7

5.5 Inference Latency

MemVR operates dynamically based on uncertainty. It uses
VR when layer uncertainty exceeds threshold γ; if uncer-
tainty stays low across all layers, indicating high model
confidence, it’s not triggered. This mechanism enables
efficient inference without extra computation. Different
from CD-based and Att-intervention paradigms, which need
multi-round inferences or have rollback-induced exponen-
tial overheads, our proposed look-twice mechanism only
requires one regular inference. The comparisons on latency,
throughput, time cost, and memory are shown in Table 1.

5.6 Cases Study

MemVR reduces uncertainty during inference. As shown
in Figure 8, MemVR effectively reduces uncertainty after
the 8th layer triggered VR, further confirming our analysis
about the pattern of hallucinations in Section §3.3.

Long-text capability. Beyond single-word QA benchmark
evaluation, we explore models’ capacity for comprehensive
long-text generation in various tasks. As shown in Figure
9, MemVR can accurately identify image details relevant
to questions. In contrast, as detailed in Appendix B, Qwen-
VL-Chat struggles to generate detailed image descriptions
in VCD, especially when nuanced image interpretation is
needed. This indicates MemVR has better cross-architecture
adaptability and more reliable long-text generation ability.
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Q1: Is there a pavement in the image? Answer the question using a single word or phrase. Wrong.

Correct !
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Q2: Is there a chair in the image? Answer the question using a single word or phrase. Wrong.

Correct !

0.52 0.78 0.52 0.64 0.44 0.69 0.51 0.78 0.76 0.75 0.42 0.51 0.63 0.42 0.39 0.34 0.32 0.27 0.21 0.26 0.28 0.30 0.30 0.30 0.30 0.30 0.31 0.30 0.33 0.35 0.24 0.30

No 

Yes

No

YesUncertainties  of 9th to 32th layer (MemVR is triggered)Before triggered

Figure 8: Visualisation of uncertainty across layers without and with MemVR. MemVR effectively reduces uncertainty after 8th layer.

Ground Truth: 8.00

GLM-4v-9B Default: The price for tomatoes is 9.00, as indicated by the white sign with 

black   lettering among the red tomatoes.

GLM-4v-9B + VCD: The price for tomatoes is not clearly visible in the image provided. 

There are price tags for some of the other fruits and vegetables, but the tomatoes are eithe

r not labeled or the label is not in focus. If you need the exact price for tomatoes, I would 

recommend visiting the market  in person or checking with the vendor.

GLM-4v-9B + MemVR (Ours): The price for tomatoes is 8.00, as indicated by the white 

sign  with black lettering among the red tomatoes.Question: What is the price for tomatoes?

Figure 9: A case study in long text generation. Compared with VCD, MemVR could effectively mitigate hallucinations.

Analysis of failure cases. We have collected failure cases
from the MME benchmark, in the ’Celebrity,’ ’Scene,’ and
’Landmark’ sub-tasks, where MemVR underperforms com-
pared to the default model. We categorize MemVR’s failure
cases into two types. Type 1 occurs when the default model
is right but MemVR is wrong, due to over-disturbing the
default model’s reasoning. In these instances, the original
visual features are sufficient for reasoning, and the rein-
jected tokens inadvertently disrupt this process, leading to
errors. We’re exploring ways to reduce such disturbances.
For failure type 2, it happens when both are wrong, caused
by image complexity or MLLM’s original knowledge gaps.

5.7 Limitations and Further Discussions

While MemVR shows substantial potential, it is not devoid
of limitations. A primary challenge resides in the com-
plex task of identifying the optimal hyperparameters. These
hyperparameters include the injection ratio of visual infor-
mation, and the strategy for selecting the triggered layers.
This represents the focal point of our subsequent research
efforts, as we work to perfect MemVR.

Additionally, although our research focused on MLLMs
with visual inputs, theoretically, MemVR can be expanded
to more modalities, e.g., listen-twice for audio, scan-twice
for spatial perception, check-twice for fMRI, etc. This opens
up an exciting avenue for future work, where we plan to

extend MemVR’s framework to these diverse input formats
and assess its efficacy across a broader range of tasks.

6 Conclusion
This paper proposes a novel decoding paradigm to miti-
gate hallucination, named MemVR, and present static and
dynamic VR strategies that shift hidden states of the inter-
mediate layer in MLLM for self-enhancement, rather than
modulating logits directly with CD manner, thus avoiding
multi-round decoding. Our experiments, conducted on eight
benchmarks, demonstrate the effectiveness of MemVR in
mitigating hallucination and improving general performance.
Importantly, MemVR is a plug-and-play and task-agnostic
method compatible with any MLLM, without extra fine-
tuning, emphasizing its widespread applicability.
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Impact Statement
This paper proposes MemVR to alleviate hallucinations
in MLLMs. The work has potential wider implications.
Ethically, it may inherit biases from pre-trained models
such as CLIP, risking unfair representation. There’s also
concern that it could be misused to generate disinformation.
In terms of societal impact, MemVR can improve system
reliability in safety-critical areas such as healthcare.
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A Theoretical Analysis of MemVR
In Multimodal Large Language Models, hallucinations often arise due to insufficient alignment between visual inputs and
the model’s internal representations. This paper provides a rigorous theoretical analysis demonstrating that re-injecting
visual features into the intermediate layers of MLLMs mitigates hallucinations and enhances representation capability.

We demonstrate that MemVR increases Mutual Information (MI) between the hidden states and visual tokens, decreasing
the conditional entropy of outputs given the hidden state for fidelity to the visual input. We begin by defining the relevant
variables and information-theoretic concepts that will be used throughout the proof as, Xvq denote concatenated tokens of
text and vision, with probability distribution p(Xvq); Zv means visual (image) features, with probability distribution p(Zv);
The output hidden states of the Transformer model at layer k, defined recursively as: H

(k)
vq = f (k)(H

(k−1)
vq ,1k=mZv),

where 1k=m is the indicator function that equals 1 when k = m (the layer where Zv is rejected) and 0 otherwise, and Y
denotes the target output of MLLMs.

The probability of hallucination can be expressed as:

Phallucination = P (Y ̸= Y ∗ | Xvq),

where Y ∗ is the ground truth output. According to information theory, a higher conditional entropy H(Y | Xvq) indicates
greater uncertainty of Y given Xvq , which increases the probability of hallucination.

Information Flow of Visual Features. In a standard Transformer model, the initial input Xvq undergoes multiple layers of
processing. As the number of layers increases, the initial visual information may gradually diminish (information forgetting).
In the absence of MemVR, the MI between the hidden states and the visual features Zv tends to decrease with depth:

I(H(l)
vq ;Zv) ≤ I(H(l−1)

vq ;Zv),

for l > 1. This inequality indicates that in deeper layers, H(l)
vq contains less vision-related information.

Theorem A.1. Assume that each Transformer layer acts as a deterministic or stochastic mapping with the Markov property.
Then, the mutual information between the hidden states and the visual features decreases with depth:

I(H(l)
vq ;Zv) ≤ I(H(l−1)

vq ;Zv).

Proof. Each Transformer layer can be modeled as a stochastic mapping (Markov kernel) that processes the input hidden
states. Specifically, H(l)

vq is a function of H(l−1)
vq , possibly incorporating additional inputs such as Zv at specific layers.

According to the Data Processing Inequality (DPI) (Cover et al., 1991), if A → B → C forms a Markov chain, then:

I(A;C) ≤ I(A;B).

In this context, consider A = Zv, B = H
(l−1)
vq , and C = H

(l)
vq . Since H

(l)
vq is generated from H

(l−1)
vq without direct access

to Zv , we have the Markov chain Zv → H
(l−1)
vq → H

(l)
vq . Applying DPI yields:

I(Zv;H
(l)
vq ) ≤ I(Zv;H

(l−1)
vq ).

Thus, mutual information between the hidden states and the visual features does not increase with depth.

Visual Retracing in MLLMs. We reinject vision tokens Zv on l-th layer (ahead layer ≤ l < L):

Ĥ(l)
vq = FFN(l)(H(l)

vq ∝ Zv).

MemVR ensures that after the l-th layer, Ĥ(l)
vq again contains question-aligned visual information.

Theorem A.2. Let Hvq be the hidden states of FFN and Ĥvq be after reinjection of visual evidence Zv . MemVR enhances
Mutual Information (MI) between Ĥvq and Zv: I(Ĥvq;Zv) ≥ I(Hvq;Zv).
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Proof. We aim to show that reinjecting Zv at layer l increases the mutual information between the hidden states and Zv

conditioned on Xvq .

By the definition of conditional mutual information:

I(Ĥ(l)
vq ;Zv | Xvq) = EXvq

[I(Ĥ(l)
vq ;Zv | Xvq = x)].

Similarly,
I(H(l)

vq ;Zv | Xvq) = EXvq
[I(H(l)

vq ;Zv | Xvq = x)].

Given Ĥ
(l)
vq = FFN(l)(H

(l)
vq ∝ Zv) denotes the hidden states after utilizing MemVR on l-th, reinjection of Zv introduces

a direct dependency between Ĥ
(l)
vq and Zv beyond what is present in H

(l)
vq . Since FFN(l) is a deterministic function that

incorporates Zv, the mutual information I(Ĥ
(l)
vq ;Zv | Xvq) is at least as large as I(H

(l)
vq ;Zv | Xvq). Ĥ

(l)
vq retains all

information in H
(l)
vq and additionally incorporates information from Zv . Thus, MemVR ensures that:

I(Ĥ(l)
vq ;Zv | Xvq) ≥ I(H(l)

vq ;Zv | Xvq).

By directly incorporating Zv into the computation of Ĥ(m)
vq , MemVR ensures that the hidden states retain more information

about the visual features relative to the original hidden states H(m)
vq , thereby increasing I(Ĥ

(m)
vq ;Zv | Xvq), enhancing the

representation capability and utilizing visual information.

Theorem A.3. Let Y be the target output dependent on hidden states. If MI between H
(l)
vq and Zv increases, then conditional

entropy H(Y | H(l)
vq ) decreases, leading to a lower probability of hallucinations:

H(Y | Ĥ(l)
vq ) ≤ H(Y | H(l)

vq ).

Proof. We aim to show that an increase in mutual information between Ĥ
(l)
vq and Zv conditioned on Xvq leads to a decrease

in the conditional entropy H(Y | Ĥ(l)
vq ). According to the definition of conditional entropy, we have,

H(Y | Ĥ(l)
vq ) = H(Y )− I(Y ; Ĥ(l)

vq ),

H(Y | H(l)
vq ) = H(Y )− I(Y ;H(l)

vq ).

From Theorem A.2: Ĥ(l)
vq contains more information about Zv, i.e., I(Ĥ(l)

vq ;Zv) ≥ I(H
(l)
vq ;Zv). There is I(Y ; Ĥ

(l)
vq ) ∝

I(Ĥ
(l)
vq ;Zv), thus we have I(Ĥ(l)

vq ;Y ) ≥ I(H
(l)
vq ;Y ). Then, we assume a dependency between Zv and Y , i.e., I(Zv;Y ) > 0,

and subtract the inequalities, have:

H(Y | Ĥ(l)
vq ) = H(Y )− I(Y ; Ĥ(l)

vq )

≤ H(Y )− I(Y ;H(l)
vq )

= H(Y | H(l)
vq ).

Thus, MemVR reduces the conditional uncertainty of the target output given the intermediate embedding, thereby mitigating
the probability of hallucinations and improving the model’s predictive capability.

Theorem A.4. Within the Information Bottleneck (IB) framework, reinjecting Zv at layer m optimizes the objective function:

L(Ĥ(m)
vq ) ≤ L(H(m)

vq ),

where the IB objective is defined as:
L(H) = I(H;Xvq)− βI(H;Y ),

and β is a trade-off parameter.
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Proof. The Information Bottleneck (IB) objective aims to find a representation H that maximizes the mutual information
with the target Y while minimizing the mutual information with the input Xvq . The optimization objectives before & after
MemVR are as follows:

L = I(H(l)
vq ;Xvq)− βI(H(l)

vq ;Y ),

L3 = I(Ĥ(l)
vq ;Xvq, Zv)− βI(Ĥ(l)

vq ;Y ),

where I(Ĥ
(l)
vq ;Xvq, Zv) = I(Ĥ

(l)
vq ;Xvq) + I(Ĥ

(l)
vq ;Zv | Xvq). The gap in the objective function is:

∆L = L(l)
3 − L(l)

= [I(Ĥ(l)
vq ;Xvq) + I(Ĥ(l)

vq ;Zv | Xvq)− βI(Ĥ(l)
vq ;Y )]− [I(H(l)

vq ;Xvq)− βI(H(l)
vq ;Y )]

= [I(Ĥ(l)
vq ;Xvq)− I(H(l)

vq ;Xvq)] + I(Ĥ(l)
vq ;Zv | Xvq)− β[I(Ĥ(l)

vq ;Y )− I(H(l)
vq ;Y )].

To ensure that L(m)
3 ≤ L(m), we require: ∆L ≤ 0. We define the changes in mutual information. Let ∆IX = I(H

(l)
vq ;Xvq)−

I(H
(l−1)
vq ;Xvq), ∆IY = I(H

(l)
vq ;Y ) − I(H

(l−1)
vq ;Y ). Note that I(H(l)

vq ;Zv | Xvq) ≥ 0. For ∆IX , the change in mutual
information between H

(l)
vq and Xvq depends on how much additional information from Zv affects the dependence on Xvq.

We denote the maximum possible increase as ∆Imax
X . For ∆IY , From Theorem A.2, ∆IY ≥ 0, and suppose we can

establish a minimum increase ∆Imin
Y > 0. I(H(l)

vq ;Zv | Xvq) represents supplement information about Zv in H
(l)
vq that is

not already explained by Xvq , and we denote this maximum as IZ|X
max .

To satisfy this inequality, choose β such that:

∆L ≤ 0 ⇒ β∆IY ≥ ∆IX + I(H(l)
vq ;Zv | Xvq). (9)

Upper Bound on ∆IX and I(H
(l)
vq ;Zv | Xvq) as ∆IX ≤ ∆Imax

X , I(H(l)
vq ;Zv | Xvq) ≤ I

Z|X
max . Lower Bound on ∆IY as:

∆IY ≥ ∆Imin
Y > 0. Then, we derive the condition with error bounds, for ∆L ≤ 0, it suffices that:

β∆Imin
Y ≥ ∆Imax

X + IZ|X
max ⇒ β ≥ ∆Imax

X + I
Z|X
max

∆Imin
Y

. (10)

This condition provides a lower bound for β to ensure that reinjecting Zv at layer m decreases the IB objective function. By
adhering to this condition, MemVR optimizes the IB objective, balancing the trade-off between the compression of input
information and the preservation of relevant information for prediction.

By reducing the IB objective function, the model focuses more on information relevant to predicting Y while compressing
irrelevant information. The enhanced mutual information with Y reduces the likelihood of generating hallucinated outputs
not supported by the visual input.

Error Bounds Provide Guarantees. The upper and lower bounds on mutual information changes ensure that, under specific
conditions (e.g., the selection of β), theoretical improvement holds.

Estimating the Bounds.

❶ ∆Imin
Y requires knowledge of how much additional information about Y is gained by reinjecting Zv . It can be estimated

based on the mutual information I(Zv;Y ) and the effectiveness of H(m)
vq in capturing information relevant to Y .

❷ ∆Imax
X can be bounded based on the capacity of H(m)

vq to represent Xvq. Specifically, it relates to how much additional
information H

(m)
vq can encode about Xvq beyond what was already captured in H

(m−1)
vq .

❸ H(Zv) is bounded by the entropy of the visual features, as mutual information cannot exceed the entropy of Zv .

Through detailed mathematical derivations and the inclusion of upper and lower error bounds, we have established that:
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(a) Increased Mutual Information: Reinjecting visual features at an intermediate layer increases the mutual information
between the model’s embeddings and the visual input.

(b) Reduced Conditional Entropy: MemVR reduces the conditional uncertainty of the target output given the intermediate
embedding, enhancing the model’s predictive accuracy and mitigating hallucination phenomena caused by the forgetting
of visual information.

(c) Optimization within IB Framework: Within the Information Bottleneck framework, MemVR optimizes the objective
function, provided certain conditions on the mutual information changes are met and appropriate choices of the trade-off
parameter β are made.

B Additional Experiments, Results, and Discussions

B.1 Benchmarks and Metrics

Datasets. To rigorously assess the effectiveness of our proposed method, we conduct a comprehensive set of experiments
across two benchmarks specifically designed to evaluate hallucination mitigation and five general-purpose benchmarks
to gauge the general performance: ① Hallucination benchmarks: Polling-based Object Probing Evaluation (POPE) (Li
et al., 2023b), and Caption Hallucination Assessment with Image Relevance (CHAIR) (Rohrbach et al., 2018), Hallusion-
Bench (Guan et al., 2024); ② General-purpose benchmarks: VizWiz-VQA (Gurari et al., 2018), MLLM Comprehensive
Evaluation (MME) (Fu et al., 2023), Multimodal Benchmark (MMBench) (Liu et al., 2023b), Multimodal Veterinarian
(MM-Vet) (Yu et al., 2024b), LLaVA-Bench (in-the-wild) (Liu et al., 2024b).

In this appendix, we provide additional details on the benchmarks referenced in the main paper. To evaluate hallucinations,
we employ the following five benchmarks:

CHAIR (Rohrbach et al., 2018) evaluates how well the generated captions align with the content of the given image. CHAIR
consists of two versions: CHAIRs, which measures the inaccuracies at the sentence level, and CHAIRi, which evaluates at
the object level within the sentence by comparing the number of false objects to the total number of objects. For evaluation,
we use the val2014 split of the MSCOCO (Lin et al., 2014) dataset, which includes annotations for 80 object categories.
We randomly select 500 images from the entire dataset and used the prompt “Please describe this image in detail.” for the
MLLM. The CHAIR metric includes per-instance evaluation (CHAIRi) and per-sentence evaluation (CHAIRs), defined as
follows:

CHAIRi =
|{hallucinated objects}|
|{all objects mentioned}|

CHAIRs =
|{sentences with hallucinated object}|

|{ all sentences}|

Polling based Object Probing Evaluation (POPE) (Li et al., 2023b) is a VQA-based metric proposed to assess hallucina-
tions in MLLMs. This metric evaluates the MLLM’s response to the prompt “Is [object] is in this image?” To emphasize
that this is a binary VQA task, we appended the prompt with “Please answer yes or no.” To select objects referenced in the
question prompt, we followed three different sampling options: random, popular, and adversarial. We evaluated performance
across all sampling options.

MLLM Evaluation (MME) (Fu et al., 2023) evaluates the capabilities of MLLMs, dividing the evaluation into two major
categories: perception and cognition. The perception category includes fine-grained tasks such as existence, count, location,
rough color, poster, celebrity, scene, landmark, artwork identification, and OCR. The cognition category includes tasks like
commonsense reasoning, numerical calculations, text translation, and code reasoning. All questions in this benchmark are
structured to be answered with a simple yes or no.

Using the LLaVA-Bench (Liu et al., 2024b), we further demonstrated how well our proposed method maintains the language
model performance. This benchmark involves posing various situational questions, such as dialogue, detailed descriptions,
and complex reasoning, to randomly selected images from the MSCOCO val2014 dataset. A total of 60 questions are used
to assess whether the model faithfully follows the instructions. The generated answers are evaluated by comparing them to
the responses of a text-only GPT-4 model.

Candidate Layers. In dynamic premature layer selection, we partition transformer layers into buckets and select one
bucket as the candidate layer set. For 32-layer LLaVA-1.5-7B, we use two buckets:[0,15),[15,31). This design limits the
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hyperparameter search space to only 2-4 validation runs. For efficiency, we use a validation set (MME) to select the best
bucket.

B.2 Backbones and Baselines

To evaluate our method, we utilize well-known MLLMs: LLaVA-1.5 (Liu et al., 2024b), Qwen-VL (Bai et al., 2023), and
GLM4V (Wang et al., 2023), LLaVA-Next (Li et al., 2024). Further, We compare our methods with classic training-tree
SOTA methods designed to mitigate object hallucination, including visual contrastive decoding SOTA VCD (Leng et al.,
2024), OPERA (Huang et al., 2024a) based on overconfidence penalty and hindsight allocation. As Dola (Chuang et al.,
2023) is layer-wise contrastive decoding for LLMs and performs poorly in MLLMs, it will not be shown in the experiment.
Experimental results are obtained and benchmarked using unified implementation.

Greedy search is used as the default decoding strategy in MemVR for all benchmarks. For benchmarks, annotation questions
are adapted to MLLM templates. For POPE, COCO, A-OKVQA, and GQA are used, while MMBench DEV EN is
used for MMBench. MM-Vet is assessed using MM-Vet Online Evaluator, and gpt4-1106-preview is used for LLaVA-
Bench. CHAIR uses images from COCO Val2014 with the query ”Please describe this image in detail”. In MemVR,
do sample=False, temperature=0, threshold=0.75, beam=1. All settings of the compared method follow the default
configurations from the original papers.

B.3 Reproducibility

Implementation details. We employed greedy search as the default decoding strategy across all benchmark evaluations. For
the hallucination benchmarks (POPE, CHAIR and HallusionBench) and general-purpose benchmarks (MME, VizWiz-VQA,
MMBench, MM-Vet, and LLaVA-Bench (in-the-wild)), questions from the annotation files were used as prompts, formatted
to fit the chat templates of each respective MLLM. Specifically, we utilized the COCO, A-OKVQA, and GQA datasets for
POPE evaluation, and MMBench DEV EN for MMBench. In the MM-Vet evaluation, we used an online evaluator powered
by OpenAI GPT-4 to assess generated results, while for LLaVA-Bench (in-the-wild) and HallusionBench, we employed
OpenAI’s model gpt4-1106-preview and GPT-4o-mini respectively via API. For CHAIR, a randomly sampled image set
from the COCO Val2014 dataset was used across all three models, with the prompt ”Please describe this image in detail.”
We sampled three different sets of images using different random seeds and evaluated performance by calculating the mean
and standard deviation of the results.

All MemVR tests were conducted using a greedy decoding approach, with do sample=False, temperature=0, threshold=0.75,
and beam=1. For VCD tests, we set do sample=True, temperature=1, noise step=500, and the plausibility constraint
hyperparameter λ to 0.1, while α, which controls the degree of contrastive emphasis, was set to 1, following the default
parameter settings from the original code and literature. OPERA tests were configured with beam=5, sample=True,
scale factor=50, threshold=15, num attn candidates=5, and penalty weights=1. Due to OPERA’s reliance on older versions
of Torch and Transformers, it was incompatible with Qwen and GLM models, and thus experiments involving these models
were not conducted. Additionally, our method introduces two hyperparameters: the informative layer l for activation
calculations and the factor λ to control the influence of entropy on the next token probability distribution. To map the hidden
states from selected layers l to vocabulary tokens, we chose intermediate layers based on the model’s depth (e.g., layers 5
to 16 for vicuna-7b, which has 32 layers), and we set λ as a fixed value (e.g., 0.75). All parameter settings adhered to the
default configurations specified in the respective papers and code repositories.

Experimental Code. To promote transparency and ensure the reproducibility of our work, we will release all experimental
code, datasets, and detailed tutorials necessary for replicating our experiments. Our goal is to make it straightforward for
researchers and practitioners to reproduce our results, regardless of their technical background. Additionally, by providing
comprehensive documentation and clear guidelines, we aim to facilitate the extension of our method to other models and
architectures, enabling the broader research community to explore its potential applications and improvements. We believe
that open and reproducible research is essential for advancing the field and fostering collaboration.

Computational Resources. Our experiments were conducted on eight A40 and four A800 GPUs. The computational
bottleneck was not the numerical accuracy values but the collection of potential hallucinatory factors for analytical purposes,
including logits and attention values for each head and layer.

B.4 Case Study

This case study aims to evaluate and present various benchmark cases across multiple domains systematically.
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Ground Truth Caption: An aerial view of Diamond Head in the Hawaiian Islands.

Llava-v1.5-7b Default: The famous sight in the photo is the Na Pali Coast on the 

island of Kaua'i in Hawaii.

Llava-v1.5-7b + VCD: The name of the famous sight in the photo is the Na Pali Coast 

of Kaua'i Island, which is an island in Hawaii.

Llava-v1.5-7b Opera: The name of the famous sight in the photo is the Grand Canyon.

Llava-v1.5-7b + MemVR (Ours): The famous sight in the photo is the Diamond 

Head, which is a volcanic crater located on the island of Oahu in Hawaii.
Question: What is the name of this 

famous sight in the photo?

Figure 10: A case study comparing the levels of hallucination among various baselines.

Ground Truth Caption: mousse

Llava-v1.5-7b Default: The right most bottle is of Charles Worthington's 

Thicker & Fuller range.

Llava-v1.5-7b + VCD: densifying spray

Llava-v1.5-7b + MemVR (Ours): The right most bottle is the Thicker & 

Fuller Volumizing Mousse.Question: What is the name of 

this famous sight in the photo?

Figure 11: A case study comparing the levels of hallucination among various baselines.

Are there only three people in the image? 

Please answer yes or no.

Are there only three people in the image? 

Please answer yes or no.

(hallucinated answer of LLaVA)  Yes. 

(correct answer given by MemVR) No.

Are there six people appear in this image? 

Please answer yes or no.

Are there six people appear in this image? 

Please answer yes or no.

(hallucinated answer of LLaVA)  No. 

(correct answer given by MemVR) Yes.

Is there a skis in the image? Answer the 

question using a single…

Is there a skis in the image? Answer the 

question using a single…

(hallucinated answer of LLaVA)  No. 

(correct answer given by MemVR) Yes.

Figure 12: A case study comparing the levels of hallucination among various baselines.
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The image shows a python code. Is the 

output of the code 'a cat'? Please answer 

yes or no.

(hallucinated answer of LLaVA)  No. 

(correct answer given by MemVR) Yes.

The image shows a python code. Is the 

output of the code 'a cat'? Please answer 

yes or no.

Is this artwork created by courbet, 

gustave? Please answer yes or no.

(hallucinated answer of LLaVA)  No. 

(correct answer given by MemVR) Yes.

Is this artwork created by courbet, 

gustave? Please answer yes or no.

Figure 13: A case study comparing the levels of hallucination among various baselines.

Is it appropriate to translate the Chinese 

in the image into English 'very happy' in 

the picture?\nAnswer the question using 

a single word or phrase.

(hallucinated answer of LLaVA)  Yes. 

(correct answer given by MemVR) No.

Is it appropriate to translate the Chinese 

in the image into English 'very happy' in 

the picture?\nAnswer the question using 

a single word or phrase.

I want to supplement protein. Is it 

appropriate to eat the food in the 

picture?\nAnswer the question using a 

single word or phrase.

(hallucinated answer of LLaVA)  No. 

(correct answer given by MemVR) Yes.

I want to supplement protein. Is it 

appropriate to eat the food in the 

picture?\nAnswer the question using a 

single word or phrase.

Figure 14: A case study comparing the levels of hallucination among various baselines.
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Is this photo taken in a place of nursing 

home?\nAnswer the question using a 

single word or phrase.

(hallucinated answer of Qwen)  No. 

(correct answer given by MemVR) Yes.

Is this photo taken in a place of nursing 

home?\nAnswer the question using a 

single word or phrase.

Qwen-VL-Chat

Is this a picture of Smithfield, 

Dublin?\nAnswer the question using a 

single word or phrase.

(hallucinated answer of Qwen)  Unknown. 

(correct answer given by MemVR) Yes.

Is this a picture of Smithfield, 

Dublin?\nAnswer the question using a 

single word or phrase.

Figure 15: A case study comparing the levels of hallucination among various baselines.

Is the word in the logo \"high tite cofeee 

shop\"?\nAnswer the question using a 

single word or phrase.

(hallucinated answer of Qwen)  Yes. 

(correct answer given by MemVR) No.

Is the word in the logo \"high tite cofeee 

shop\"?\nAnswer the question using a 

single word or phrase.

Qwen-VL-Chat

The image shows a python code. Is the 

output of the code 'a cat'? Please answer 

yes or no.

(hallucinated answer of Qwen)  No. 

(correct answer given by MemVR) Yes.

The image shows a python code. Is the 

output of the code 'a cat'? Please answer 

yes or no.

Figure 16: A case study comparing the levels of hallucination among various baselines.
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Are there five people in this image? 

Please answer yes or no.

(hallucinated answer of ChatGLM)  Yes. 

(correct answer given by MemVR) No.

Are there five people in this image? 

Please answer yes or no.

Is the answer to the arithmetic question 

in the image 12?\nAnswer the question 

using a single word or phrase.

(hallucinated answer of ChatGLM)  Yes. 

(correct answer given by MemVR) No.

Is the answer to the arithmetic question 

in the image 12?\nAnswer the question 

using a single word or phrase.

Figure 17: A case study comparing the levels of hallucination among various baselines.

Is this an image of Sampsonievsky 

Cathedral?\nAnswer the question using a 

single word or phrase.

(hallucinated answer of ChatGLM)  No. 

(correct answer given by MemVR) Yes.

Is this an image of Sampsonievsky 

Cathedral?\nAnswer the question using a 

single word or phrase.

The image shows a python code. Is the 

output of the code 'a cat'? Please answer 

yes or no.

(hallucinated answer of ChatGLM)  No. 

(correct answer given by MemVR) Yes.

The image shows a python code. Is the 

output of the code 'a cat'? Please answer 

yes or no.

Figure 18: A case study comparing the levels of hallucination among various baselines.
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B.5 Additional Experiments and Results

Method
MME

Overall Perception Cognition

LLaVA1.5-7B 1864.68 ↑0.0 1508.97 ↑0.0 355.71 ↑0.0
+ VCD (Leng et al., 2024) 1872.87 ↑8.2 1515.01 ↑6.0 357.86 ↑2.2
+ OPERA (Huang et al., 2024a) 1784.34 ↓80.3 1473.62 ↓35.3 310.71 ↓45.0
+ ICD (Wang et al., 2024) 1594.77 ↓269.9 1306.91 ↓202.1 287.86 ↓67.9
+ MemVR (Ours) 1896.72 ↑32.0 1512.80 ↑3.8 383.92 ↑28.2

Qwen-VL-Chat 1784.93 ↑0.0 1442.79 ↑0.0 342.14 ↑0.0
+ VCD (Leng et al., 2024) 1721.06 ↓63.9 1403.17 ↓39.6 317.89 ↓24.3
+ OPERA (Huang et al., 2024a) - - -
+ ICD (Wang et al., 2024) 1833.75 ↑48.8 1472.06 ↑29.3 361.69 ↑19.6
+ MemVR (Ours) 1820.95 ↑36.0 1473.45 ↑30.7 347.50 ↑5.4

GLM-4V-9B 2160.54 ↑0.0 1680.89 ↑0.0 479.64 ↑0.0
+ VCD (Leng et al., 2024) 2105.53 ↓55.0 1624.10 ↓56.8 481.43 ↑1.8
+ OPERA (Huang et al., 2024a) - - -
+ ICD (Wang et al., 2024) 2074.30 ↓86.2 1566.09 ↓114.8 508.21 ↑28.6
+ MemVR (Ours) 2170.17 ↑9.6 1683.03 ↑2.1 487.14 ↑7.5

Table A1: Results on the MME dataset. Best-performing method per model size is in bold. Arrows indicate improvement ( ↑) or
degradation ( ↓) vs. the baseline model.

Method
LLaVABench (in-the-wild)

Average All 1 All 2 All 3

LLaVA1.5-7B 64.80 ↑0.0 63.40 ↑0.0 80.20 ↑0.0 50.80 ↑0.0
+ VCD (Leng et al., 2024) 63.20 ↓1.6 59.10 ↓4.3 82.00 ↑1.8 48.50 ↓2.3
+ OPERA (Huang et al., 2024a) 64.30 ↓0.5 59.80 ↓3.6 83.30 ↑3.1 49.80 ↓1.0
+ ICD (Wang et al., 2024) 56.90 ↓7.9 49.80 ↓13.6 80.70 ↑0.5 40.20 ↓10.6
+ MemVR (Ours) 65.17 ↑0.4 64.00 ↑0.6 80.20 ↑0.0 51.30 ↑0.5

Qwen-VL-Chat 68.50 ↑0.0 70.40 ↑0.0 79.30 ↑0.0 55.80 ↑0.0
+ VCD (Leng et al., 2024) 53.77 ↓14.7 41.00 ↓29.4 85.30 ↑6.0 35.00 ↓20.8
+ OPERA (Huang et al., 2024a) - - - -
+ ICD (Wang et al., 2024) 56.60 ↓11.9 45.30 ↓25.1 85.70 ↑6.4 38.80 ↓17.0
+ MemVR (Ours) 69.50 ↑1.0 69.50 ↓0.9 82.00 ↑2.7 57.00 ↑1.2

GLM-4V-9B 75.30 ↑0.0 88.40 ↑0.0 73.00 ↑0.0 64.50 ↑0.0
+ VCD (Leng et al., 2024) 74.23 ↓1.1 86.70 ↓1.7 72.80 ↓0.2 63.20 ↓1.3
+ OPERA (Huang et al., 2024a) - - - -
+ ICD (Wang et al., 2024) 70.97 ↓4.3 82.10 ↓6.3 71.80 ↓1.2 59.00 ↓5.5
+ MemVR (Ours) 76.73 ↑1.4 88.90 ↑0.5 74.80 ↑1.8 66.50 ↑2.0

Table A2: Results on LLaVABench (in-the-wild) dataset. Best-performing method per model size and dataset is highlighted in bold;
arrows indicate improvement or degradation over the baseline, where higher values indicate better performance.
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Method Total

LLaVA1.5-7B 31.1 ↑0.0
+ VCD (Leng et al., 2024) 30.2 ↓0.9
+ OPERA (Huang et al., 2024a) 32.0 ↑0.9
+ ICD (Wang et al., 2024) 25.9 ↓5.2
+ MemVR (Ours) 32.4 ↑1.3

Qwen-VL-Chat 49.0 ↑0.0
+ VCD (Leng et al., 2024) 34.6 ↓14.4
+ OPERA (Huang et al., 2024a) -
+ ICD (Wang et al., 2024) 31.7 ↓17.3
+ MemVR (Ours) 49.6 ↑0.6

GLM-4V-9B 63.4 ↑0.0
+ VCD (Leng et al., 2024) 59.4 ↓4.0
+ OPERA (Huang et al., 2024a) -
+ ICD (Wang et al., 2024) 57.7 ↓5.7
+ MemVR (Ours) 65.0 ↑1.6

Table A3: Results on MM-Vet dataset. Best-performing method per model size is highlighted in bold. Arrows indicate improvement ( ↑)
or degradation ( ↓) over the baseline.

Method Accuracy

LLaVA1.5-7B 50.00 ↑0.0
+ VCD (Leng et al., 2024) 44.90 ↓5.1
+ OPERA (Huang et al., 2024a) 50.76 ↑0.8
+ ICD (Wang et al., 2024) 37.62 ↓12.4
+ MemVR (Ours) 51.50 ↑1.5

Qwen-VL-Chat 66.05 ↑0.0
+ VCD (Leng et al., 2024) 34.54 ↓31.5
+ OPERA (Huang et al., 2024a) -
+ ICD (Wang et al., 2024) 29.37 ↓36.7
+ MemVR (Ours) 66.36 ↑0.3

GLM-4V-9B 57.39 ↑0.0
+ VCD (Leng et al., 2024) 48.04 ↓9.4
+ OPERA (Huang et al., 2024a) -
+ ICD (Wang et al., 2024) 50.01 ↓7.4
+ MemVR (Ours) 58.00 ↑0.6

Table A4: Results on the Vizwiz dataset. Best-performing method per model size is highlighted in bold; arrows indicate improvement ( ↑)
or degradation ( ↓) relative to the baseline.

Method
CHAIRS

Cs Ci Recall Len

LLaVA1.5-7B 47.60 ↑0.0 13.30 ↑0.0 80.60 ↑0.0 99.70 ↑0.0
+ VCD (Leng et al., 2024) 55.00 ↑7.4 15.80 ↑2.5 77.40 ↓3.2 101.20 ↑1.5
+ OPERA (Huang et al., 2024a) 47.60 ↑0.0 13.50 ↑0.2 79.00 ↓1.6 93.20 ↓6.5
+ ICD (Wang et al., 2024) 56.20 ↑8.6 16.30 ↑3.0 16.30 ↓64.3 103.40 ↑3.7
+ MemVR (Ours) 46.60 ↓1.0 13.00 ↓0.3 80.80 ↑0.2 99.60 ↓0.1

Qwen-VL-10B 6.80 ↑0.0 5.30 ↑0.0 53.40 ↑0.0 17.60 ↑0.0
+ VCD (Leng et al., 2024) 13.00 ↑6.2 12.30 ↑7.0 47.90 ↓5.5 115.70 ↑98.1
+ OPERA (Huang et al., 2024a) - - - -
+ ICD (Wang et al., 2024) 18.40 ↑11.6 14.30 ↑9.0 37.60 ↓15.8 48.10 ↑30.5
+ MemVR (Ours) 4.80 ↓2.0 3.30 ↓2.0 52.30 ↓1.1 15.00 ↓2.6

GLM-4V-9B 40.40 ↑0.0 9.00 ↑0.0 72.70 ↑0.0 218.20 ↑0.0
+ VCD (Leng et al., 2024) 42.20 ↑1.8 9.60 ↑0.6 72.80 ↑0.1 239.80 ↑21.6
+ OPERA (Huang et al., 2024a) - - - -
+ ICD (Wang et al., 2024) 43.40 ↑3.0 9.10 ↑0.1 73.60 ↑1.9 239.80 ↑21.6
+ MemVR (Ours) 39.40 ↓1.0 9.00 ↑0.0 70.70 ↓2.0 214.00 ↓4.2

Table A5: Results on CHAIRS dataset. Best-performing method per model size and dataset is highlighted in bold; arrows indicate
improvement or degradation over the baseline, where lower values indicate better performance.
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Method Existence Count Position Color Scene Artwork OCR Numerical Text trans Code reason

LLaVA-Next (Llama3-8B) 195.0 165.0 143.3 185.0 161.6 159.2 118.0 125.0 50.0 77.5
+MemVR 195.0 170.0 143.3 185.0 163.6 161.0 124.0 125.0 52.5 77.5

LLaVA-Next (Mistral-7B) 190.0 150.0 133.3 190.0 144.2 163.5 113.0 122.5 60.0 67.5
+MemVR 195.0 155.0 133.3 190.0 145.2 165.0 113.8 122.5 60.0 67.5

LLaVA-Next (Vicuna-1.6-7B) 195.0 135.0 143.3 165.0 162.2 123.2 132.5 42.5 107.5 55.0
+MemVR 195.0 135.0 135.0 170.0 163.0 123.5 140.0 42.5 115.0 57.5

Table A6: Performance comparison across different LLaVA-Next models with and without MemVR.

Method
MMBench

AR CP FP-C FP-S LR RR Overall

LLaVA1.5-7B 72.86 ↑0.0 75.68 ↑0.0 58.04 ↑0.0 63.48 ↑0.0 28.81 ↑0.0 51.30 ↑0.0 62.80 ↑0.0
+ VCD (Leng et al., 2024) 60.30 68.58 51.75 53.24 18.64 48.70 54.21
+ OPERA (Huang et al., 2024a) 69.85 75.00 56.64 66.21 28.81 53.04 62.80
+ ICD (Wang et al., 2024) 42.21 ↓30.7 52.36 ↓23.3 52.36 ↓5.7 39.59 ↓23.9 16.10 ↓12.7 32.17 ↓19.1 39.78 ↓23.0
+ MemVR (Ours) 71.86 ↑1.2 76.69 ↑1.0 57.34 ↓0.7 64.16 ↑0.9 31.36 ↑2.5 56.52 ↑5.2 63.75 ↑0.9

Qwen-VL-10B 60.30 ↑0.0 71.28 ↑0.0 45.45 ↑0.0 62.80 ↑0.0 28.81 ↑0.0 38.26 ↑0.0 56.53 ↑0.0
+ VCD (Leng et al., 2024) 34.67 52.36 20.28 55.63 11.86 22.61 39.18
+ OPERA (Huang et al., 2024a) - - - - - - -
+ ICD (Wang et al., 2024) 12.56 ↓47.7 17.57 ↓53.7 2.10 ↓43.4 22.53 ↓40.3 2.54 ↓26.3 5.22 ↓33.0 13.32 ↓43.2
+ MemVR (Ours) 61.31 ↑1.0 71.28 ↑0.0 44.06 ↓1.4 62.80 ↑0.0 27.97 ↓0.8 38.26 ↑0.0 56.44 ↓0.1

GLM-4V-9B 88.44 ↑0.0 86.49 ↑0.0 69.93 ↑0.0 85.67 ↑0.0 66.10 ↑0.0 85.22 ↑0.0 82.39 ↑0.0
+ VCD (Leng et al., 2024) 86.43 85.47 68.53 84.64 61.86 81.74 80.58
+ OPERA (Huang et al., 2024a) - - - - - - -
+ ICD (Wang et al., 2024) 83.92 ↓4.5 84.46 ↓2.0 62.94 ↓7.0 81.23 ↓4.4 60.17 ↓5.9 80.00 ↓5.2 78.01 ↓4.4
+ MemVR (Ours) 88.94 ↑0.5 86.49 ↑0.0 70.63 ↑0.7 86.01 ↑0.4 66.10 ↑0.0 85.22 ↑0.0 82.65 ↑0.3

Table A7: Results on the MMBench dataset with newly added ICD rows. Best-performing method per model size and dataset is highlighted
in bold; arrows indicate improvement ( ↑) or degradation ( ↓) over the baseline.

Strategy 1-Token Len 5-Token Len 10-Token Len 20-Token Len 30-Token Len 50-Token Len 80-Token Len

Greedy 661.7 897.9 1273.1 1880.3 2501.8 3617.6 5256.6
Sample 786.8 1056.2 1314.9 1998.5 2568.5 3593.0 5587.0
VCD Sample 1747.74 2767.52 4027.07 4537.42 5031.39 7690.77 11569.3
Opera Beam 1566.1 3094.9 4166.4 6242.7 8436.9 12672.3 19247.2
MemVR Sample 750.8 1197.6 1780.5 2339.2 2631.7 3718.0 6011.0
MemVR Greedy 775.1 974.2 1337.5 1861.7 2742.8 4000.9 5545.5

Table A8: Time cost for generating tokens. All based on LLaVA1.5-7B

B.6 VCD Implement Details

The code of VCD (Leng et al., 2024) is also released. However, the result of VCD evaluated in our experiments on POPE is
lower than the original paper. Therefore, we report the results in the original paper.
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C Examples of capability integrations

C.1 Others

Q: How can the model understand information directly from the vision encoder, especially if it has a different vision system?
To ensure that MemVR is adaptable across diverse vision systems, we conducted experiments on multiple VLM architectures,
including LLaVA, which utilizes a Visual-Instructional-Tuning framework with different sizes of ViT-based CLIP models,
Qwen-VL-Chat, which employs a Q-Former-like architecture for visual processing, and ChatGLM-4v-9B, which integrates
a large pre-trained visual encoder. These architectures encompass a broad range of vision models, providing confidence that
MemVR is applicable to most MLLMs in use today.

Artifacts and licenses We report a list of licenses for all datasets and models used in our experiment in Table A10. We
strictly follow all the model licenses and limit the scope of these models to academic research only.
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Question: Which room is bigger, the double
garage or the living room?

Question: How many gallons of supreme
gasoline can I get with $50?

Ground Truth: Double garage Ground Truth: 13.6 | 13.7
Required Capabilities: OCR, Spatial Awareness,
Math

Required capabilities: OCR, Math

Question: Which car is on the parking spot 33? Question: Is this apple organic?
Ground Truth: No | Empty Ground Truth: Yes
Required Capabilities: Recognition, OCR, Spa-
tial Awareness

Required capabilities: Recognition, OCR

Question: What will the girl on the right write on
the board?

Question: Which are producers in this food
web?

Ground Truth: 14 Ground Truth: Phytoplankton & Seaweed
Required capabilities: Recognition, OCR, Spatial
Awareness, Math

Required Capabilities: OCR, Knowledge,
Spatial Awareness

Table A9: Six samples on MM-Vet benchmark requiring different capability integrations.
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Data Sources URL License

MSCOCO 2017 Link CC BY 4.0
ADE20K Link BSD-3-Clause
VQA Val Link CC BY 4.0
LLaVA-bench-in-the-wild Link Apache-2.0
ImageNet Link Custom License
MMBench Link Apache-2.0

Software Code URL License

LLaVA Link Llama Community Licence
Qwen-VL Link Tongyi Qianwen Licence
GLM-4V Link THUDM GLM-4 Licence
GPT-4V/4O Link OpenAI Term of Use

Table A10: License information for the scientific artifacts.
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https://cocodataset.org/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://vizwiz.org/tasks-and-datasets/vqa/
https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
https://image-net.org/
https://image-net.org/download.php
https://github.com/open-compass
https://github.com/haotian-liu/LLaVA
https://ai.meta.com/llama/license/
https://github.com/QwenLM/Qwen-VL
https://github.com/QwenLM/Qwen-VL?tab=License-1-ov-file
https://github.com/THUDM/GLM-4
https://github.com/THUDM/GLM-4?tab=Apache-2.0-1-ov-file
https://chatgpt.com/
https://openai.com/policies/terms-of-use/
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