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Abstract

Large language models have shown impres-001
sive results for multi-hop mathematical reason-002
ing when the input question is only textual.003
Many mathematical reasoning problems, how-004
ever, contain both text and image. With the005
ever-increasing adoption of vision language006
models (VLMs), understanding their reason-007
ing abilities for such problems is crucial. In008
this paper, we evaluate the reasoning capa-009
bilities of VLMs along various axes through010
the lens of geometry problems. We proce-011
durally create a synthetic dataset of geome-012
try questions with controllable difficulty lev-013
els along multiple axes, thus enabling a sys-014
tematic evaluation. The empirical results ob-015
tained using our benchmark for state-of-the-art016
VLMs indicate that these models are not as ca-017
pable in subjects like geometry (and, by gen-018
eralization, other topics requiring similar rea-019
soning) as suggested by previous benchmarks.020
This is made especially clear by the construc-021
tion of our benchmark at various depth levels,022
since solving higher-depth problems requires023
long chains of reasoning rather than additional024
memorized knowledge.025

1 Introduction026

Multi-hop reasoning is a fundamental element in in-027

telligence: it allows us to combine multiple pieces028

of information to answer questions or solve prob-029

lems. While formal reasoning such as automated030

theorem proving (Robinson, 1965; Kovács and031

Voronkov, 2013; Schulz, 2002) has been a key fo-032

cus in the AI literature, recent years have witnessed033

a great amount of progress in multi-hop reasoning034

with natural language thanks to the advances in035

pre-trained large language models (LLMs) (Wei036

et al., 2022; Nye et al., 2022; Kazemi et al., 2023b;037

Saparov et al., 2023; Yao et al., 2023; Pan et al.,038

2023). Among various types of multi-hop reason-039

ing, mathematical reasoning has turned into a key040

focus domain for AI researchers (Lu et al., 2022;041

Figure 1: Sample GeomVerse problem. Question: If
the ABEF shape is a rectangle where a semi-circle has
been removed from one side of it, the perimeter of the
ABEF shape is 34 [...] compute the degree of the DAB
angle. Assume π = 3.14. Round computations to 2
decimal places. Solution: The diameter of the semi-
circle in the ABEF shape is equal to the side of the
rectangle with length 7 so the shape has two sides with
equal but unknown lengths, one side with length 7, and
one semi-circle arc with diameter 7. So the perimeter
is 2 ∗ UnknownSide + 7 + 7π

2 [...] the length of the
AB side is 16.01

2 = 8. [...] the final answer is 28.69.

Lewkowycz et al., 2022) with many recent works 042

targeting to solve open problems in mathematics 043

(Fawzi et al., 2022; Davies et al., 2021). It is an 044

appealing domain for AI research due to various 045

reasons: it is a primitive skill that is essential for 046

many tasks, it has an open-ended nature, and due 047

to various challenges such as limited data it still 048

remains a challenge for LLMs and modern AI sys- 049

tems. Recently, the International Math Olympiad 050

(IMO) grand challenge (Selsam et al., 2020) was 051

announced where the goal is to build an AI system 052

that can win a gold medal in IMO, one of the most 053

prestigious competitions. Not only research, with 054

advancements in LLMs, many new applications 055

and products are leveraging AI research for educa- 056

tion to build personalized tutors (Abdelghani et al., 057

2023; Khan, 2023). One of the key challenges so 058
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far has been to improve the performance of these059

systems in STEM subjects.060

Due to the vast popularity of mathematical prob-061

lem solving both from research and product per-062

spectives, several datasets have been developed for063

measuring and improving the mathematical reason-064

ing of LLMs (Cobbe et al., 2021; Ling et al., 2017;065

Hendrycks et al., 2021) and are widely adopted by066

the research community. While existing datasets067

mostly focus on textual problems, there are several068

bodies of mathematical problems that require both069

textual and visual understanding of the problem.070

Being one of the main school curriculum and hav-071

ing a high presence in many math competitions072

including IMO, geometry is a key domain in this073

space. With the fast pace in adoption of the vision-074

language models (VLMs) (Chen et al., 2022b; Ope-075

nAI, 2023) in various aforementioned applications,076

it is crucial to measure and improve their perfor-077

mance on such problems. Previous work has cre-078

ated a number of datasets with geometry questions079

based on high-school, college, or SAT exams, and080

developed specific models for this task. While081

evaluating VLMs on such datasets may provide082

a holistic understanding of the general capability083

of the models, such evaluation may provide little084

information about the specific areas of strengths085

and weaknesses of VLMs and hence provide little086

guidance on where research should focus. Recent087

years have witnessed a surge of interest in synthetic088

datasets that allow for a systematic evaluation of089

the boundaries of capabilities and the limitations090

of the state-of-the-art models (see, e.g., (Lindström091

and Abraham, 2022; Borisov et al., 2022; Kazemi092

et al., 2023a; Gekhman et al., 2023; Vaska and093

Helus, 2023; Fatemi et al., 2024)).094

In this paper we create GeomVerse, a dataset of095

synthetically generated geometry questions that re-096

quire multi-hop mathematical reasoning over text097

and image. We bridge reasoning about geometry098

problems and logical reasoning, allowing us to mea-099

sure model performances on reasoning factors that100

may go beyond geometry and may be present in101

many (mathematical) reasoning problems on text102

and image. In other words, GeomVerse allows for103

unveiling the reasoning ability of VLMs across sev-104

eral axes, by using geometry as a lens. We also105

measure model performances on geometry-specific106

axes of difficulty. This enables a systematic eval-107

uation of VLMs on this task. A sample generated108

problem and solution can be viewed in Figure 1.109

Some of the main findings from our systematic 110

evaluation on GeomVerse are summarized below. 111

Firstly, through the unique property of GeomVerse 112

that allows for constructing benchmarks at various 113

depths, we find that current VLMs are not as ca- 114

pable in subjects like geometry as suggested by 115

previous benchmarks, showing that they may still 116

be immature for product applications such as AI 117

tutoring. Importantly, since several of the diffi- 118

culty axes we study are not specific to geometry, 119

our results reveal a number of important failure 120

modes as well as a significant gap in the reason- 121

ing capacity of state-of-the-art VLM that may go 122

beyond geometry. Secondly, finetuning VLMs to 123

produce the entire solution substantially improves 124

their performance for in-distribution problems but 125

that does not generalize to out-of-distribution prob- 126

lems. Thirdly, VLMs struggle more with increas- 127

ing in depth rather than width of reasoning. And 128

fourthly, VLMs are rather robust to the question 129

and image representation. 130

2 Related Work 131

Our work is related to several research directions 132

in the literature as summarized below. 133

Vision-Language Models (VLMs): Recent 134

VLMs (Chen et al., 2022b; Allaway et al., 2022; 135

Alayrac et al., 2022; Li et al., 2023; Wang et al., 136

2022; Chen et al., 2023) have demonstrated 137

promising performance on a wide range of image 138

and video tasks including captioning, question 139

answering and visual reasoning. However, the 140

capabilities of performing multi-modal multi-hop 141

(mathematical) reasoning are less investigated. 142

Because these VLMs are generative black-boxes, 143

understanding how well they can comprehend and 144

answer the multi-hop questions is a critical topic. 145

Multi-Hop Reasoning Datasets: There are a 146

number of datasets available in the literature that 147

require multi-hop logical (Tafjord et al., 2021; 148

Kazemi et al., 2023a; Zhong et al., 2021) and math- 149

ematical (Cobbe et al., 2021; Ling et al., 2017; 150

Hendrycks et al., 2021) reasoning over text. Previ- 151

ous work has also developed a number of geometric 152

reasoning datasets (Seo et al., 2015; Lu et al., 2021; 153

Chen et al., 2021, 2022a; Zhang et al., 2023) that 154

require reasoning over both text and image. Ta- 155

ble 1 provides an overview of the existing datasets 156

and compares them along four axes: 1- requiring 157

textual understanding, 2- requiring visual under- 158

2



Dataset→
Feature ↓

P
ro

of
W

rit
er

(T
af

jo
rd

et
al

.,
20

21
)

B
oa

rd
ga

m
eQ

A
(K

az
em

ie
ta

l.,
20

23
a)

A
R

-L
S

AT
(Z

ho
ng

et
al

.,
20

21
)

A
Q

U
A

(L
in

g
et

al
.,

20
17

)

G
S

M
8k

(C
ob

be
et

al
.,

20
21

)

C
LE

V
R

-M
at

h
(L

in
ds

trö
m

an
d

A
br

ah
am

,2
02

2)

C
ha

rt
Q

A
(M

as
ry

et
al

.,
20

22
)

G
eo

S
(S

eo
et

al
.,

20
15

)

G
eo

Q
A

(C
he

n
et

al
.,

20
21

)

G
eo

m
et

ry
3k

(L
u

et
al

.,
20

21
)

U
ni

G
eo

(C
he

n
et

al
.,

20
22

a)

P
G

P
S

9K
(Z

ha
ng

et
al

.,
20

23
)

G
eo

m
V
er
se

Textual
Understanding

3 3 3 3 3 3 3 3 3 3 3 3 3

Visual
Understanding

7 7 7 7 7 3 3 3 3 3 3 3 3

Mathematical
Reasoning

7 ∼ 7 3 3 ∼ ∼ 3 3 3 3 3 3

Automatic
Difficulty
Control

3 3 7 7 7 ∼ ∼ 7 7 7 7 7 3

Table 1: A comparison of GeomVerse with some of the recent and/or widely-used multi-hop (logical or mathemat-
ical) reasoning datasets. We use ∼ when a dataset contains a property to a limited extent.

standing, 3- involving mathematical reasoning, and159

4- automatic control of the difficulty level (thus160

allowing for a systematic evaluation).161

Multi-Hop Reasoning Approaches: Some of162

the approaches for improving the multi-hop reason-163

ing of LLMs and VLMs range from pre-training on164

relevant data (Hendrycks et al., 2021; Lewkowycz165

et al., 2022), finetuning with (Nye et al., 2022;166

Dalvi et al., 2021; Zelikman et al., 2022; Kazemi167

et al., 2023a) and without (Clark et al., 2021; Betz168

et al., 2021) explicitly generating the solution, in-169

context learning with solutions (Wei et al., 2022),170

decomposing the problem into smaller pieces and171

solving them separately (Zhou et al., 2023; Khot172

et al., 2023) and using LLMs/VLMs as tools173

within classical algorithms (Kazemi et al., 2023b;174

Creswell et al., 2023). In the realm of reasoning175

about geometry problems, existing work typically176

develops specialized models or tools (e.g, (Trinh177

et al., 2024)) or resorts to distillation strategies (e.g.,178

(Gao et al., 2023)); measuring the reasoning ability179

of general-purpose VLMs is less studied.180

3 The GeomVerse Dataset181

We start with some preliminaries and terminologies.182

Then, we explain how GeomVerse is created. The183

dataset will be publicly available upon the accep-184

tance of the paper.185

3.1 Multi-Hop Logical Reasoning186

A logical theory consists of facts and rules. Con-187

sider the following theory as a running example:188

Facts : {a, b}189

Rules : {a⇒ c, a ∧ b⇒ d, d⇒ e} 190

The theory contains two facts specifying a and b 191

are true, and three rules specifying a implies c, a 192

and b imply d and d implies e. Starting from the 193

facts, one can apply deduction on the set of facts 194

and the rules to derive new facts and answer queries 195

(e.g., we can query whether e holds). We define the 196

depth of a query as the number of hops of reasoning 197

required to prove it, and the width of a query as 198

the maximum number of branches in the proof of 199

the query. For a given query, any fact or rule not 200

necessarily in the proof of the query is referred to 201

as a distractor. For example, if we query a both the 202

depth and width are 0, if we query c the depth is 1 203

and the width is also 1, if we query d the depth is 1 204

and the width is 2, and if we query e both the depth 205

and the width are 2. When we query e, the rule 206

a⇒ c is a distractor. Note that queries with width 1 207

correspond to a chain of reasoning, whereas higher 208

width queries correspond to a tree of reasoning. 209

3.2 From Logical to Geometric Reasoning 210

Geometry problems often provide values for certain 211

elements (e.g., sides, angles, areas). Using geomet- 212

ric rules and formulas, we can deduce the values of 213

the remaining elements one by one. The elements 214

whose values are given to us can be thought of as 215

facts in logical theories, the geometry rules and 216

formulas can be considered as the rules in logical 217

theories, and the process of deriving the hidden 218

values can be thought of as the deduction. 219

As an example, the solution to the problem in 220

Figure 1 can be formulated in logical form as: 221

Facts : {AAHID, AABCD, PABEF , LBE} 222
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Rules : {AAHID =⇒ AD,PABEF , LBE =⇒ LAB,223

AABCD, LAD, LAB =⇒ DDAB}224

where Ax, Px, Lx and Dx represent the area of225

a shape, perimeter of a shape, length of a side,226

and degree of an angle respectively. We note two227

key differences with logical reasoning: 1- unlike228

in deductive logical reasoning, the rules are not229

given to the model and the model has to use its own230

geometry knowledge (learned from pre-training or231

finetuning) to apply the right geometry formulae232

and derive new values, 2- in the case of geometry,233

applying rules involves computations.234

3.3 Creating the GeomVerse235

To create GeomVerse, we fix a set of 12 standard236

and non-standard shapes S as demonstrated in Fig-237

ure 2 and gather a number of rules/formulas Fs238

for each shape s ∈ S (e.g., the Pythagorean theo-239

rem) with a total of 68 formulas across all shapes.240

We further use supplementary and complementary241

angles as two special shapes with only a single for-242

mula each. For a formula f , we let fin represent243

the input elements and fout represent the element244

whose value can be computed based on the formula245

and the inputs (e.g., for the Pythagorean theorem,246

the two sides can be the input and the hypotenuse247

can be the output). Then, similar to several existing248

works on constructing multi-hop, textual logical249

reasoning datasets or textual stories (Kazemi et al.,250

2023a; Ye et al., 2022), we adopt a backward gener-251

ation strategy where we start by generating a ques-252

tion, and then adding rules to increase the depth253

and width of reasoning to the desired amount.254

Generating Examples with Depth 1: To gener-255

ate an example with depth 1, we can simply sample256

a shape s ∈ S and formula f ∈ Fs. Then, we let257

facts = f (in), query = f (out), and with the only258

required rule in the solution being rules = {f}.259

Increasing the Depth: Let f1 be the formula260

we sampled for the depth 1 example and f (in)1 and261

f
(out)
1 be the inputs and output of f1. To increase262

the depth to 2, we select one of the elements e in263

f
(in)
1 and do not provide it in the facts. Instead, we264

sample a new shape s2 and formula f2 such that265

f
(out)
2 has the same type as e and we tie the values266

of e and f (out)2
1. For example, if e is one of the267

sides of a triangle, then s2 can be a square and f2268

can be the formula of deriving the side of a square269

from its area, where the square and the triangle270

1Note: e should have a type that allows it to be connected
to another shape (e.g., side or angle).

Algorithm 1 BackwardGenerate
Input: Shared element e, Shared element type τ
Depth d

if d == 0 then
do

s = RandomSelect(S)
f = RandomSelect(Fs)

while f (out).type != τ
Append s to other shapes on e.
Randomly assign values to f (in).
Provide f (in) values as facts.

else
do

s = RandomSelect(S)
f = RandomSelect(Fs)
E = ConnectableElements(f (in))

while f (out).type != τ OR |E| = 0
Append s to other shapes on e.
Randomly assign values to f (in) − E .
Provide f (in) − E values as facts.
e1, . . . , em = SampleElems(E , pbranch)
for e ∈ {e1, . . . , em} do

BackwardGenerate(e, e.type, d-1)

share the same side. Then facts = (f
(in)
1 − e) ∪ 271

f
(in)
2 , query = f

(out)
1 , and the required rules are 272

rules = {f1, f2} with f2 providing the value for 273

e and then f1 using this value to answer the query. 274

The depth can be further increased in a similar way 275

by appending a new shape and formula to one of 276

the elements in f (in)2 . 277

Increasing the Width: Let s and f be the shape 278

and formula we sampled at some depth for the con- 279

struction of an example and e1 and e2 be two con- 280

nectable elements (side or angle) in f (in). We can 281

include only f (in) − {e1, e2} in the facts, and ap- 282

pend new shapes and formulas as explained above 283

so that the values for e1 and e2 can be derived. 284

Distractors: Distractors can be added in a post 285

processing step. Consider a Depth 2 (Width 1) ex- 286

ample and suppose e is the element that has to be 287

computed in the first hop and be used in the second 288

hop. If we provide the value of e as input, then the 289

model turns into a Depth 1 problem with a distract- 290

ing shape and corresponding values. In Figure 1, 291

for example, if we provide the value of the AD 292

side as input, then the square and its corresponding 293

values can be considered as distractors. 294

The Generation Algorithm: Algorithm 1 295

adopts the high-level idea of the GenerateTheory 296
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Figure 2: The standard shapes (top row) and non-standard shapes (bottom row) used in our dataset.

algorithm from Kazemi et al. (2023a) for recur-297

sively generating geometry problems (as opposed298

to logical theory problems) in a backward fash-299

ion. Initially, we select one element type τ to be300

asked for in the question (e.g., side, angle, area,301

perimeter, etc.), and a desired depth d. Then we302

call the BackwardGenerate function. If d = 0, we303

sample a shape s ∈ S and formula f ∈ Fs such304

that the type of the element in f (out) is τ , append305

the shape s to the previous shapes on the shared306

element, assign random values to the elements in307

f (in) and provide them as facts2. Otherwise, we308

sample a shape s ∈ S and formula f ∈ Fs such309

that 1) the type of the element in f (out) is τ and310

2) there is at least one connectable (side or angle)311

element in f (in). Then, we select a subset E of the312

elements in f (in) for expanding the number of hops.313

If pbranch = 0, we only select one of the elements314

from f (in) which introduces no branching and so315

no increase in width. Otherwise, with probability316

pbranch we select a second element as well, which317

leads to a branching and so increases the width. We318

append the shape s to the previous shapes on the319

shared element, assign random values to the ele-320

ments in f (in)−E and provide them as facts. Then,321

for each element in E , we recursively call the Back-322

wardGenerate function to append new shapes such323

that these values can be derived. A visual example324

of the procedure is provided in Appendix C.325

Automatic Question and Solution Genera-326

tion: We automatically produce a question that327

provides the facts as input and asks for f (out) where328

f is the first formula used. We also keep track of329

the required rules (including shapes, formulas, and330

the shared elements) during the generation process331

(excluded from Algorithm 1 for brevity) and auto-332

2During random value assignment, we test multiple factors
to ensure the assigned values are sensible (e.g., the sides of a
right triangle are smaller than its hypotenuse) and re-assign
values until these criteria are met. Sometimes, this becomes
impossible due to some values that are derived from other
hops; in these cases, we simply discard the example and gen-
erate another example from scratch.

matically produce a solution by applying deduction 333

and computations on the rules and facts. 334

Text-Only vs. Text-Image: We create two ver- 335

sions of our problems. In one version, all the re- 336

quired information is given in the question and the 337

image is not needed for answering the question 338

(although the presence of the image can make it 339

easier to understand the problem), and in the other 340

version some information is given in the image and 341

some in the question text so both the image and 342

text of the question are required. We use the former 343

to experiment with text-based LLMs and the latter 344

to experiment with VLMs. 345

Coverage: The connection between Algorithm 1 346

and logical reasoning helps specify what classes 347

of geometry problems are covered by Algorithm 1. 348

Specifically, Algorithm 1 can generate any geom- 349

etry problem P containing a tree of shapes where 350

each shape is connected to its parent shape via a 351

single side or a single (vertical) angle, and where 352

the solution can be found by finding the values of 353

the shared elements bottom-up on the tree. 354

Further Considerations: While Algorithm 1 355

can generate problems with overlapping shapes, to 356

ensure the quality of the generated examples re- 357

mains high without any human involvement in the 358

generation process, we only accept the generated 359

examples where the shapes are non-overlapping. 360

3.4 Quality Check 361

To ensure high quality for the questions, the solu- 362

tions, the images, and the labels, we did two quality 363

checks. Firstly, we generated all possible Depth 1 364

problems and manually verified their quality and 365

correctness. Secondly, we asked 10 well-educated 366

people to verify a total of 100 problems (from vari- 367

ous depths and with various properties) and iden- 368

tify as many issues as possible with the questions, 369

solutions, labels, or images. A list of the issues 370

identified in this round are provided in Appendix E. 371

All the raised issues were then fixed, and the pro- 372

cess was repeated with 100 new examples to ensure 373
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Figure 3: Model performances as a function of the depth of reasoning. Note: near-zero accuracies are not visible
in the plot. ∗GPT4V results were obtained on a subset of randomly selected 10 examples per depth, and the
correctness was determined manually.

no issues remained. Additionally, to get human per-374

formance on these problems, a separate set of four375

people solved 60 sampled problems (20 from each376

depth) and raised no issues, indicating another level377

of quality check for the generated dataset.378

4 Experiments379

We experiment with two state-of-the-art VLMs:380

PaLI (Chen et al., 2022b) and GPT4V (OpenAI,381

2023), and a state-of-the-art LLM: PaLM 2 Large382

(Anil et al., 2023), in four settings: 1- zero-shot,383

2- few-shot with chain-of-thought (CoT) prompt-384

ing (Wei et al., 2022) (hereafter referred to as FS-385

CoT), where the CoT corresponds to the solution,386

3- finetuning to directly predict the label (hereafter387

referred to as FT), and 4- finetuning to predict the388

solution/CoT (hereafter referred to as FT-CoT). We389

do the first experiment with GPT4V3, the second390

with PaLM 2 Large and PaLI 55B (the largest PaLI391

model), and the last two experiments with PaLI 5B392

to keep the required computations manageable.393

Following Methani et al. (2020) and Masry et al.394

(2022), we measure performance in terms of re-395

laxed accuracy, where a prediction is considered396

correct if it is within δ percent of the golden la-397

bel. We do this to accommodate for the slight398

variation in computations introduced due to the399

rounding strategy (e.g., due to the order of the com-400

putations). We empirically found δ = 3 to be401

appropriate so we consider a prediction p correct if402

0.97 ∗ label ≤ p ≤ 1.03 ∗ label. We remove from403

our dataset any example where the difference be-404

tween the label computed with and without round-405

ing intermediate steps is more than 3%.406

We provide results on subsets of our dataset with407

different properties. In each case, we generate 1000408

3Based on the GPT4 responses, we notice that it uses zero-
shot CoT (Kojima et al., 2022) under the hood.

examples randomly given the described parameters 409

and report the results on those examples. We also 410

generate a separate pool of train, validation, and 411

fewshot examples for our experiments. The imple- 412

mentation details are presented in Appendix B. 413

4.1 Performance as a Function of Depth 414

Figure 3 represents the model results on examples 415

with varying depths. Without finetuning, GPT4V 416

can only solve Depth 1 examples, and the accuracy 417

of the FS-CoT PaLI model is almost zero on all 418

depths. In contrast, the text-only model can solve 419

a portion of the Depth 2 and 3 problems as well. 420

While the presence of the image should make the 421

problem easier to understand and solve, this results 422

hints that LLMs may be stronger in mathematical 423

and multi-hop reasoning compared to their coun- 424

terpart VLMs. Moreover, while finetuning helps 425

VLMs learn to do some reasoning, as the depth of 426

reasoning increases the performance drops mono- 427

tonically and quite significantly. 428

Notice that FT-CoT outperforms FT substan- 429

tially for all depths. While such improvements have 430

been previously observed for reasoning with tex- 431

tual inputs (Suzgun et al., 2022), this result shows 432

the importance of showing CoT to VLMs as well. 433

This result also hints at the quality of the automatic 434

solutions in GeomVerse. 435

We also measured human performance on our 436

dataset by having 4 well-educated (but not neces- 437

sarily expert in geometry) people solve a total of 438

20 problems per depth. The results show a stark 439

gap between the best model performances and the 440

human performance; we also observe that our prob- 441

lems can be challenging to solve even for humans. 442

The mistakes made by humans where due to vari- 443

ous issues including wrong/forgotten degree to radi- 444

ans conversion, using wrong formulas, and making 445

wrong assumptions. 446
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Figure 4: Measuring the generalization ability with in-
distribution and out-of-distribution problems.

Table 2: Top-5 failure modes in the order of frequency.

Few-Shot Text-Only Model FT-CoT VLM Model (OOD)
Wrong proof planning Wrong calculations

Wrong formula Misunderstanding shapes
Wrong calculations Wrong formula

Wrong assignment of values Wrong proof planning
Hallucinating values Wrong value assignment

Generalization: We next measure how much447

the FT-CoT model (the best performing one across448

depths) can generalize to variations in the shapes.449

To this end, we finetune a model only on the follow-450

ing shapes: square, right triangle, trapezoid, semi-451

circle, rectangle plus equilateral triangle, rectangle452

minus semi-circle, and square minus circle. We453

then report the results separately for the test exam-454

ples containing only these shapes (in-distribution)455

vs examples containing at least one new shape (out-456

of-distribution). Notice that all the left-out shapes457

have a similar (but not exact) counterpart shape in458

the training. The results are reported in Figure 4.459

As it can be observed, the performance goes signif-460

icantly down for the out-of-distribution case.461

Our depth and generalization results combined462

show that VLMs struggle with solving multi-hop463

geometry questions and reveals a crucial gap in464

their reasoning capabilities.465

Failure Analysis: To understand the main fail-466

ure modes of the models, we manually verified467

5 examples per depth for the FS-CoT text-only468

model and the FT-CoT model when tested on a469

combination of seen and unseen shapes. The main470

failure modes are presented in Table 2. Besides471

computation errors which have been previously472

observed as well for mathematical reasoning prob-473

lems (Lewkowycz et al., 2022), we observe several474

other failure modes: 1- wrong proof planning (ei-475

ther wrong step order or disconnected steps), 2-476

wrong formulas (showing a gap in model knowl-477

edge), 3- misundestanding shapes in the case of478

VLMs (e.g., confusing sector with triangle), 4-479

wrong value assignment (e.g., assigning the value480
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Figure 5: Model performances as a function of width.
Models seem to be less affected by increasing the width
of the reasoning.

of a side to another side), and 5- hallucination 481

(mostly hallucinating non-existent value). While 482

proof planning is the most frequent failure mode 483

of the text-only model, we notice that the FT-CoT 484

model makes fewer planning errors. 485

Correct Label = Correct Reasoning? We next 486

verify if the model produces a correct reasoning 487

chain in the cases where it produces a correct final 488

answer. Since re-using the reasoning chains pro- 489

duced by a model to further finetune it is becoming 490

more prevalent (Zelikman et al., 2022; Huang et al., 491

2022; Magister et al., 2022), producing correct rea- 492

soning in the case of correct label is an important 493

property of a model. To measure the reasoning 494

accuracy, for the FS-CoT text-only and the FT-CoT 495

models, we randomly selected up to 20 examples 496

(upper-bounded by the number of correctly solved 497

problems) from each of the depths where the model 498

produced the exact label and verified manually if 499

the produced reasoning chain is also correct. We 500

also verified the examples for which the zero-shot 501

model predicted the label correctly. For Depth 502

1 examples, we observe that the reasoning chain 503

is correct for the three models in all cases; for 504

Depth 2, 20/20 have correct reasoning chains for 505

the FS-CoT model and 19/20 have correct reason- 506

ing chains for the FT-CoT model, and for Depth 507

3 examples, 8/9 examples have correct reasoning 508

chains for the FS-CoT model and 16/20 for the 509

FT-CoT model, with the errors mostly being on 510

missed intermediate computations that were then 511

replaced with correct numbers in later steps. This 512

shows that the reasoning is mostly correct when 513

the label is predicted correctly. 514

Due to the low performance of the zero-shot and 515

FS-CoT PaLI models, hereafter we only experi- 516

ment with the FS-CoT Text-Only and finetuned 517

PaLI models. 518
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Figure 6: Model performance when distracting infor-
mation is added to the question/image.

4.2 Performance as a Function of Width519

We generate Depth 2 examples (medium difficulty520

in terms of depth) with pbranch=0, 0.5, and 1.0, and521

report the performances in Figure 5. We observe522

that while increasing the width negatively affects523

the performance in several cases (especially for the524

FS-CoT model) the amount of decrease is substan-525

tially lower compared to the depth experiments4.526

The results hint at the ability of the models at learn-527

ing to deal with higher width examples. This could528

be because the main added difficulty from higher529

width problems is that the model needs to solve530

more independent Depth 1 problems, on which they531

showed good performance according to Figure 3.532

4.3 Distractors533

We next measure how well models can deal with534

distracting information, a phenomenon which is535

common in real problems. We create a version536

of the Depth 2 problems where we provide the537

hidden value as input. This effectively turns the538

Depth 2 problem into a Depth 1 problem with some539

extra (distracting) shapes and values. The model540

performance is reported in Figure 6. Comparing541

Depth 1 results with and without distractors, the542

performance drops significantly for all models in543

presence of a distractor. Comparing Depth 1 with544

distractor and Depth 2 without distractor, while545

the text-only model has taken advantage of the546

value for the hidden element in some cases, for the547

finetuned VLM models the performance degrades548

to as low as that of the Depth 2 dataset.549

4.4 Sensitivity to low-level visual features550

To measure how sensitive the VLM models are to551

the low-level visual features, we create separate552

test sets each varying in one low-level feature and553

4Part of the reason for this observation could be because
we have only 30/68 formulas that have more than 1 con-
nectable elements in their inputs and so even in the case where
pbranch = 1.0, we still generate a number of examples that
correspond to chains as opposed to trees.
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Figure 7: Measuring model sensitivity to low-level fea-
tures of the images.

measure the performance of the trained models on 554

these new sets. Specifically, we experiment with 555

changing the opacity of the shape colors, the line 556

width of shape boundaries, and the font size of the 557

texts on the images. In figure 7, we observe that the 558

models are robust against opacity and line width, 559

but not against font size changes. 560

4.5 Other Variations 561

Our experiments so far focus on general factors 562

that may be present in many problems requiring 563

reasoning on text and image. In Appendix A, we 564

experiment with various other axes of difficulty that 565

are more specific to geometry problems (including 566

shapes, source of information, image annotation, 567

adding variablized inputs, and decomposing perfor- 568

mance based on question type). 569

5 Conclusion 570

In this work, we procedurally generated a synthetic 571

dataset of geometry reasoning questions that re- 572

quire multi-hop reasoning over both text and im- 573

age. Through the lens of the geometry problems, 574

we conducted a systematic analysis of various gen- 575

eral and geometry-specific reasoning abilities of 576

VLMs and found the gaps and strengths in their 577

reasoning capabilities. Future work can verify the 578

merit of finetuning models on synthetic geometry 579

problems for improving their performance on real 580

datasets. In an initial experiment, we measured the 581

performance of the PaLI 5B model on Geometry3k 582

with and without finetuning on GeomVerse and ob- 583

served modest improvements (from almost 0 to 584

almost 2 percent accuracy). We believe this is due 585

to the difference in the visual and textual features 586

of the Geomety3k and GeomVerse, as well as the 587

poor generalization of PaLI to geometry problems 588

beyond its training distribution. Better aligning the 589

textual and visual features and using more powerful 590

models can yield more gains. 591
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Limitations & Risks592

• While GeomVerse covers a wide range of ge-593

ometry questions, there are problems that can-594

not be produced using Algorithm 1 with our595

current set of shapes and formulas. The con-596

nection between Algorithm 1 and logical rea-597

soning makes evident the class of problems598

that cannot be represented by the algorithm.599

In particular, let P be the class of geometry600

problems containing a tree of shapes where601

each shape is connected to its parent shape via602

a single side or a single (vertical) angle, and603

where the solution can be found by finding604

the values of the shared elements bottom-up605

on the tree. Algorithm 1 cannot generate any606

geometry problem that is not in P . For ex-607

ample, let ABC be a triangle, D be a point608

on the AC side dividing ABC into two trian-609

gles ABD and ACD, where some property610

of ABC should be computed based on the611

properties of ABD and ACD. This problem612

cannot be produced by Algorithm 1 as it does613

not correspond to a tree of connected shapes614

as described above. However, note that one615

can add such cases to our set of non-standard616

shapes in a similar way we added the other617

non-standard shapes.618

• The problems in GeomVerse can be solved619

with a logical deduction procedure and may620

not require much creativity. For this reason,621

our evaluation should not be considered as622

measuring the creativity of the models in solv-623

ing problems, but rather their ability in follow-624

ing a deduction procedure.625

• For our finetuning experiments, to make com-626

putations manageable, we used the small PaLI627

5B model. Finetuning larger and more capa-628

ble models such as Gemini (Team et al., 2023)629

or GPT4V (OpenAI, 2023) can provide more630

insight into the performance of the finetuned631

VLMs.632
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Figure 8: Comparing model performance when using
only standard shapes vs when using all shapes. Overall,
we do not see a big drop in the performance.
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Figure 9: Model performances as a function of provid-
ing more information in the text or on the image.

A More Results: Other Axes of Difficulty917

Besides the experiments in the main text, we also918

consider a number of other axes of difficulty for a919

systematic evaluation. In what follows, we describe920

these axes and present the experimental results. In921

Section D, we provide samples corresponding to922

each of the axes of difficulty.923

A.1 Standard vs Non-Standard Shapes924

In Figure 2, we outlined the standard and non-925

standard shapes used in GeomVerse. Conceptually,926

it should be more difficult to solve problems in-927

volving non-standard shapes as they require more928

computations. We compare the performance of var-929

ious models on problems that contain all shapes930

vs those that involve only standard shapes. To fix931

other axis of difficulty, we only consider depth 2932

examples for this experiment where the problems933

are at a medium level of difficulty. The finetuned934

models are finetuned on all images in both cases.935

The results are in Figure 8. According to the results,936

we observe that while the FS-CoT model performs937

better on the standard shapes, this is not the case af-938

ter finetuning. This shows that finetuning can teach939

the models to effectively deal with non-standard940

(but in-distribution) shapes.941
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Figure 10: Model performances as a function of image
annotation.

A.2 More Info in Text or on Image 942

Some of the information can be provided either in 943

the text of the question or on the image. For exam- 944

ple, the degree of an angle can be provided in the 945

image, or can be provided in the text. We generate 946

examples where the information is given mostly in 947

text and examples where it is given mostly on the 948

image, and report model performances in Figure 9. 949

For the FT model, we see that the former case re- 950

sults in lower accuracy which could be because 951

in this case the model needs to first map those in- 952

formation to the elements in the image and then 953

reason with them. FT-CoT almost closes the gap; 954

this could be because the provided CoTs teach the 955

model how to map information from text to image. 956

A.3 Image Annotation 957

We consider two types of image annotation: 1- in- 958

dividual annotation: we refer to each side with a 959

single lower-case letter, each angle with a Greek 960

letter, and each shape with its (distinct) color, and 961

2- coordinate annotation: we assign upper-case 962

letters to the coordinates on the image and refer 963

to sides with the letters on the two coordinates, to 964

angles with the three coordinates, and to shapes 965

with all their coordinates. We generate a test set 966

with coordinate annotation and another with indi- 967

vidual annotation and report model performances 968

on these two sets in Figure 10. The two models 969

show different behaviour with the FT model per- 970

forming slightly better on the individual annotation 971

case, but the FT-CoT model slightly performing 972

better on the coordinate annotation case. 973

A.4 Variablized Inputs 974

Instead of providing the exact values of the input 975

elements (e.g., the α angle is 30 degrees), it is com- 976

mon in geometry questions to provide a variablized 977

version of them (e.g., the α angle is 2x+1) in which 978

case one needs to first infer the value of the variable 979
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Figure 11: Model performances as a function of includ-
ing variablized inputs in the question. The performance
degrades as we include variables in the questions.

Few-Shot Text Only
(PaLM 2 L)

Finetuned
(PaLI 5B)

CoT Finetuned
(PaLI 5B)

0

10

20

30

40

50

Re
la

xe
d 

Ac
cu

ra
cy

 (3
%

)

Side
Angle
Area/Perimeter

Figure 12: Model performances broken down by the
question type.

based on the given information and then use that to980

infer the value of an element. As an example, we981

can either directly provide two of the angles of a982

triangle as input and ask for the third one, or we983

can provide variablized values for the three angles984

and ask for one of them. To generate variablized985

questions, when we use a formula f , instead of986

directly providing the values for f (in) as input and987

expecting the model to apply the formula to derive988

the value of f (out), we provide variablized values989

for (some of) the elements in f (in) and f (out) and990

expect the model to use the formula for deriving991

the value of the variable x and use that to derive the992

numerical value of f (out). We selected 17/68 of993

our formulas for which a variablized version of the994

problem only requires solving an extra 1-d linear995

equation. We then conducted an experiment where,996

whenever one of the 17 rules was selected during997

generation, we provide a variablized version of it998

with probability ρ. Figure 11 demonstrates the re-999

sults for ρ = 0, ρ = 0.5 (corresponding to level1000

= medium) and ρ = 1.0 (corresponding to level =1001

high). We observe that as we include variablized1002

inputs, the performance of the models degrade, es-1003

pecially for the FT-CoT model. This shows VLMs1004

(and also LLMs) struggle to work with variables1005

when solving geometry problems.1006

A.5 Decomposing by Question Type 1007

Our questions involve asking about the length of a 1008

side, the degree of an angle, or the area/perimeter 1009

of a shape. In Figure 12, we report model perfor- 1010

mances for each of these question types. We ob- 1011

serve that the FS-CoT Text-Only model performs 1012

almost equally across all three types, with slight 1013

preference for angle and area/perimeter questions. 1014

For the FT model, questions about angles are sub- 1015

stantially easier, followed by questions about side. 1016

We conjecture that part of the reason for the high 1017

performance of the FT model on angle questions 1018

might be because the degree of an angle can be 1019

estimated from the figure without actually solving 1020

the problem. This could be in part validated by 1021

the results of the FT-CoT model, where the jump 1022

in accuracy is substantially higher for side and 1023

area/perimeter questions. In the case of FT-CoT, 1024

we see that side questions are easier than the other 1025

two; this may in part be because these questions 1026

involve easier arithmetic operations (e.g., some of 1027

the angle questions require computing arcsin which 1028

might be difficult for a pre-trained model). 1029

B Implementation Details 1030

For our finetuning experiments, we first generated 1031

a training set containing 10k examples and a vali- 1032

dation set containing 2k examples. For each of the 1033

examples in these two sets, the parameters corre- 1034

sponding to different axes of difficulty discussed 1035

in the paper were set randomly to allow for a di- 1036

verse set of examples in the train and validation 1037

sets. We then removed the (few) examples whose 1038

solution was identical to one of the solutions in one 1039

of the examples in our test sets. The same train and 1040

validation sets were used for all of our test sets. 1041

We finetuned our model for 10k steps with a 1042

learning rate of 0.0005 and a batch size of 128, 1043

measured the model performance on the validation 1044

set every 2000 steps, and reported the results on 1045

the test sets for the checkpoint achieving the best 1046

performance on the validation set. 1047

For our fewshot experiments, we manually se- 1048

lected 4 examples from the training set and used 1049

those examples as fewshot demonstrations across 1050

all experiments. These examples were selected 1051

to ensure many aspects of the test set are covered 1052

(e.g., to ensure there are examples at various depths, 1053

widths, with and without variables, with different 1054

question types, etc.). 1055
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Figure 13: A visual demonstration of the process in Algorithm 1 for generating a example in Depth 3.

Rounding Errors: Note that depending on how1056

we round intermediate computations, the final an-1057

swer can be slightly different. For example, con-1058

sider the expression 2.26∗3.14
4 . If we first multiply1059

the numerator, round it and then divide by 4 and1060

round again, we will get 2.26∗3.14
4 = 7.1

4 = 1.78.1061

However, if we first do both computations and then1062

round at the end, we will get 2.26∗3.14
4 = 1.77. For1063

this reason, we reported relaxed accuracy in our1064

experiments to account for the differences in the1065

way we computed the final results and the way the1066

model may compute it.1067

C Sample Process for Algorithm 11068

In Figure 13, we provide a visual demonstration of1069

the process in Algorithm 1 for generating an exam-1070

ple with Depth 3. In Step 1, we select a shape from1071

our set of shapes and then select one of the formu-1072

las. The shape selected in this example is a rect-1073

angle and let the selected formula be to compute1074

the area of a rectangle given its height and width;1075

so f (in)1 = {LAC , LCD} and f (out)1 = {AABCD}1076

where LAC and LCD represent the length of AC1077

and CD and AABCD represents the area of ABCD1078

(note that we could also select LBC and LAB in-1079

stead). We then select which element(s) from f
(in)
11080

we will provide explicitly and which element(s)1081

should be derived. Assume we decide to provide1082

LAC explicitly and append other shapes to derive1083

the value of LCD. In this case, we assign a random1084

value to LAC and provide it in the set of facts.1085

In Step 2, we need to select a shape where one1086

of its sides is CD, and select a formula from which1087

the length of this side can be derived. In the pro-1088

vided example, the selected shape is a right triangle1089

and let us assume the selected formula is to com-1090

pute a side of a right triangle given the hypotenuse1091

and the opposite angle. So f (in)2 = {LCE , DCED}1092

and f (out)2 = {LCD}, where LCE and LCD repre- 1093

sent the lengths of the CE and CD sides andDCED 1094

represents the degree of the CED angle. We then 1095

select which element(s) from f
(in)
2 we will provide 1096

explicitly and which element(s) should be derived. 1097

Assume both elements should be derived (corre- 1098

sponding to increasing the width of reasoning). So 1099

none of the elements will be added to the facts. 1100

In Step 3, we need to select a shape where one of 1101

its sides isCE, and select a formula from which the 1102

length of this side can be derived. In the provided 1103

example, the selected shape is a semi-circle. As- 1104

sume the formula is to compute the diameter of the 1105

semi-circle LCE given its perimeter PSemiCircle. 1106

Since we want to generate Depth 3 examples, we 1107

add PSemiCircle to the set of facts. 1108

In Step 4, we need to select a shape that can be 1109

connected to the CED angle, such that DCED can 1110

be derived from that new shape. In the provided ex- 1111

ample, the selected shape is a supplementary angle, 1112

and the formula is that the sum of two supplemen- 1113

tary angles is 180. We provide DDEF in the facts 1114

so DCED can be derived based on that. 1115

Putting it all together, we get the right- 1116

most shape in Figure 13. The facts include 1117

{LAC , PSemiCircle, DDEF } and the query is 1118

AABCD. Based on the rules we used, we can apply 1119

deduction to produce a solution as follows: 1120

DDEF =⇒ DDEC 1121

PSemiCircle =⇒ LCE 1122

DDEC , LCE =⇒ LCD 1123

LCD, LAC =⇒ AABCD 1124

To generate the question, we turn the facts (and 1125

the extra information needed to know such as the 1126

shapes, whether some angles are vertical or comple- 1127

mentary, etc.) into a question using a template. We 1128

also provide the shape names when necessary. For 1129

Figure 13, for example, the elements whose values 1130
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have to be provided as input are recorded during the1131

generation process; this includes the length of AC,1132

the measure of the DEF angle, and the perimeter1133

of the semi-circle. We also take note of the other1134

information that must be provided; this includes the1135

fact that CDE is a right triangle and that DEF and1136

DEC are complementary. We then use templates1137

to turn each of these pieces of information into a1138

textual format and concatenate them; we also tex-1139

tify the question using templates and append at the1140

end. The final question will look like: If the length1141

of the AC side of the ABDC rectangle is 10, CDE1142

is a right triangle, the DEF angle is 120 degrees,1143

the DEF and the DEC angles are complementary,1144

and the perimeter of the semi-circle is 20, compute1145

the area of the ABDC rectangle.1146

D Samples from GeomVerse1147

In this work, we experimented with several vari-1148

ations of GeomVerse. Here, we provide samples1149

from these different variations to better illustrate1150

how each test set looks like. The questions and1151

solutions are provided in Tables 3 and 4 and the1152

corresponding images are provided in Figure 14.1153

E Issues Found During Quality Check1154

As mentioned in the main text, the dataset went1155

through multiple rounds of quality check. In what1156

follows, we provide some of the examples of the is-1157

sues found during the quality check by non-authors.1158

• Text repetition: In two cases, the quality1159

checkers found the text of the question to be1160

repetitive. This happened in the cases where,1161

e.g., the question was "the length of the AB1162

side of the ABC triangle is 10, the length of1163

the BC side of the ABC triangle is 6, the length1164

of the AC side of the ABC triangle is 8". We1165

updated our templates to remove repetitions.1166

• Unnecessary information in the question:1167

An issue raised by multiple quality checkers1168

was that we provided the value of π = 3.141169

even when it was not used in the solution. We1170

made sure we only provide it when needed.1171

Misprinting a formula in the solution: In1172

one case, a formula was misprinted in the so-1173

lution where a squaring operation was missing1174

(this did not affect the final result though be-1175

cause it was a misprint). This was fixed.1176

• Unsolvable Variablized Inputs: The qual-1177

ity checkers identified that when we provided1178

variablized inputs, sometimes the problem be- 1179

came unsolvable. This happened, e.g., in the 1180

case where we provided an input such as "the 1181

length of the three angles of a triangle are 1182

x + 30, −2x + 60 and x + 45" where after 1183

summing the three values, x disappeared. 1184

• Missing Coordinates: In one case, one of 1185

the characters corresponding to an image in 1186

the coordinate was missing. We identified the 1187

root cause and fixed this. 1188

• Spacing issues: Since the solutions were gen- 1189

erated automatically, there were a number 1190

of cases where a space was either missing 1191

between two words or there were multiple 1192

spaces. 1193
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(a) Depth 1 (b) Depth 1 Variablized (c) Depth 2

(d) Depth 2 with Branch (e) Depth 3 (f) Depth 3 Branch

(g) Coordinate Annotation (h) Individual Annotation
(more info on image)

(i) More Info in Text

Figure 14: Samples from our test sets.
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Table 3: Questions and solutions corresponding to the images in Figure 14.

Image index Question Solution
(a) Compute the perimeter of the ABCD parallelogram. The lengths of the AD and the AB sides of the ABCD

parallelogram are 10 and 12, so the perimeter of the
ABCD parallelogram is 2 * (10 + 12) = 2 * 22 = 44.
Therefore the final answer is 44.

(b) If the degree of the BAC angle is 2x + 50, the degree
of the BCA angle is 2x + 35 and the degree of the
CBA angle is 5x + 50, compute the degree of the
CBA angle.

The three degrees of the ABC triangle are 2x+ 50,
2x+35 and 5x+50. Therefore, 2x+50+2x+35+
5x + 50 = 180, so 9x + 135 = 180, so 9x = 45,
so x = 45

9
= 5. The degree of the CBA angle =

5 ∗ 5 + 50 = 75. Therefore the final answer is 75.
(c) If the BCDE shape is a combination of a rectangle

and a semi-circle and the area of the BCDE shape is
102, compute the degree of the BCA angle. Assume
π = 3.14. Round computations to 2 decimal places.

The area of the BCDE shape is 102 and the length
of the CD side is 6, so (other side) ∗6 + 3.14∗62

8
=

102, so (other side) * 6 = 102 − 3.14∗62
8

= 102 −
3.14∗36

8
= 102 − 113.04

8
= 102 − 14.13 = 87.87.

Therefore, the length of the BC side is 87.87
6

= 14.65.
The length of the hypotenuse of the ABC triangle is
14.65 and the length of the side opposite to the BCA
angle is 7, so the BCA angle equals asin( 7

14.65
) =

asin(0.48) = 28.69. Therefore the final answer is
28.69.

(d) If the length of the height of the ABCD trapezoid
is 8, the area of the blue semi-circle is 189.97, the
BCFGH shape is a combination of a rectangle and an
equilateral triangle and the perimeter of the BCFGH
shape is 42, compute the area of the ABCD trapezoid.
Assume π = 3.14. Round computations to 2 decimal
places.

The area of the blue semi-circle is 189.97 so the
length of the AD diameter can be computed as√

8 ∗ 189.97
π

) =
√

1519.76
π

=
√
484.0 = 22. The

side of the equilateral triangle in the BCFGH shape is
equal to the side of the rectangle with length 8 so the
shape has two sides with equal but unknown lengths,
one with length 8, and two triangle sides with length
8. The perimeter of the BCFGH shape is 42 so 2
* (unknown side) + 3 * 8 = 42. So 2 * (unknown
side) = 42 - 24 = 18, and the length of the BC side
is 18

2
= 9. The lengths of the AD and the BC bases

of the ABCD trapezoid are 22 and 9 and the height
of the trapezoid is 8, so the area of the trapezoid is
1
2
∗ (22 + 9) ∗ 8 = 1

2
∗ 31 ∗ 8 = 124. Therefore the

final answer is 124.
(e) If the perimeter of the ABE triangle is 42, the BEFG

shape is a rectangle where a semi-circle has been
removed from one side of it and the perimeter of
the BEFG shape is 62, compute the perimeter of
the ABCD rectangle. Assume π = 3.14. Round
computations to 2 decimal places.

The diameter of the semi-circle in the BEFG shape is
equal to the side of the rectangle with length 10 so the
shape has two sides with equal but unknown lengths,
one side with length 10, and one semi-circle arc with
diameter 10. So the perimeter is 2∗UnknownSide+
10+ 10∗π

2
. So 2∗UnknownSide+10+ 10∗3.14

2
=

62. So 2 ∗UnknownSide = 62− 10− 10∗3.14
2

=

62−10− 31.4
2

= 62−10−15.7 = 36.3. Therefore,
the length of the BE side is 36.3

2
= 18.15. The

lengths of the AE and BE sides of the ABE triangle
are 10 and 18.15 and the perimeter is 42, so the
lengths of the AB side equals 42 − 10 − 18.15 =
13.85. The lengths of the AD and the AB sides of the
ABCD rectangle are 15 and 13.85, so the perimeter of
the ABCD rectangle is 2∗(15+13.85) = 2∗28.85 =
57.7. Therefore the final answer is 57.7.
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Table 4: Continuing Table 3.

Image index Question Solution
(f) If the ABCD shape is a square where a circle has been

removed from it, the AEFGH shape is a rectangle
where an equilateral triangle has been removed from
one side of it, the perimeter of the AEFGH shape is
48, the DEIJ shape is a rectangle where a semi-circle
has been removed from one side of it and the area of
the DEIJ shape is 78, compute the area of the ABCD
shape. Assume π = 3.14. Round computations to 2
decimal places.

The side of the equilateral triangle in the AEFGH
shape is equal to the side of the rectangle with
length 9 and the shape has two sides with equal
but unknown lengths, one with length 9, and two
triangle sides with length 9. The perimeter of the
shape is 48 so 2 ∗ OtherSside + 3 ∗ 9 = 48.
So 2 ∗ OtherSide = 48 − 27 = 21 and the
length of the AE side is 21

2
= 10.5. The area

of the DEIJ shape is 78 and the length of the EI
side is 6, so OtherSide ∗ 6 − 3.14∗62

8
= 78, so

OtherSide ∗ 6 = 78 + 3.14∗62
8

= 78 + 3.14∗36
8

=

78 + 113.04
8

= 78 + 14.13 = 92.13. Therefore,
the length of the DE side is 92.13/6 = 15.35.
The lengths of the AE and DE sides of the ADE
triangle are 10.5 and 15.35, so the length of the
hypotenuse (the AD side) is

√
10.52 + 15.352 =√

110.25 + 235.62 =
√
345.87 = 18.6. The

length of the AD side of the ABCD shape is 18.6, so
its area is 18.62− (π

4
) ∗ (18.62) = 345.96− 0.79 ∗

345.96 = 345.96− 273.31 = 72.65. Therefore the
final answer is 72.65.

(g) If the area of the ACD right triangle is 106, compute
the area of the ABC right triangle. Round computa-
tions to 2 decimal places.

The length of the AD side in the ACD triangle is 14
and the area is 106 so the length of the AC side =
106∗2
14

= 212
14

= 15.14. The lengths of the AC and
AB sides of the ABC triangle are 15.14 and 15, so the
area of the triangle is (15.14 ∗ 15)/2 = 227.1/2 =
113.55. Therefore the final answer is 113.55.

(h) If the perimeter of the gray triangle is 44, the green
shape is a combination of a rectangle and an equilat-
eral triangle and the area of the green shape is 114,
compute the length of the side of the gray triangle
marked with question mark. Round computations to
2 decimal places.

The area of the green shape is 114 and the length of
one side of its rectangle is 6, so (other side) ∗6+

√
3

4
∗

62 = 114, so (other side) ∗6 = 114 −
√
3

4
∗ 62 =

114− 1.73
4
∗36 = 114−0.43∗36 = 114−15.48 =

98.52. Therefore, the length of the side marked with
letter "a" is 98.52/6 = 16.42. The lengths of two
sides of the gray triangle are 21 and 16.42 and the
perimeter is 44, so the lengths of the side marked
with "?" equals 44− 21− 16.42 = 6.58. Therefore
the final answer is 6.58.

(i) If the perimeter of the ABC triangle is 33, the degree
of the CAD angle is 75, the area of the DAC sector is
157, the degree of the EBC angle is 75 and the area
of the EBC sector is 56.52, compute the length of
the AB side of the ABC triangle. Assume π = 3.14.
Round computations to 2 decimal places.

The CAD angle of the DAC sector is 75 and the
area is 157 so the AC radius can be computed as
=
√

157/((75/360) ∗ π) =
√

157/(0.21 ∗ π) =√
157/0.66 =

√
(237.88) = 15.42. The EBC

angle of the EBC sector is 75 and the area is
56.52 so the BC radius can be computed as =√

56.52/((75/360) ∗ π) =
√

56.52/(0.21 ∗ π) =√
56.52/0.66 =

√
85.64 = 9.25. The lengths of

the AC and BC sides of the ABC triangle are 15.42
and 9.25 and the perimeter is 33, so the lengths of the
AB side equals 33−15.42−9.25 = 8.33. Therefore
the final answer is 8.33.
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