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Abstract

Recent works reveal that feature or label smoothing lies at the core of Graph
Neural Networks (GNNs). Concretely, they show feature smoothing combined
with simple linear regression achieves comparable performance with the carefully
designed GNNs, and a simple MLP model with label smoothing of its prediction
can outperform the vanilla GCN. Though an interesting finding, smoothing has not
been well understood, especially regarding how to control the extent of smoothness.
Intuitively, too small or too large smoothing iterations may cause under-smoothing
or over-smoothing and can lead to sub-optimal performance. Moreover, the extent
of smoothness is node-specific, depending on its degree and local structure. To
this end, we propose a novel algorithm called node-dependent local smoothing
(NDLS), which aims to control the smoothness of every node by setting a node-
specific smoothing iteration. Specifically, NDLS computes influence scores based
on the adjacency matrix and selects the iteration number by setting a threshold
on the scores. Once selected, the iteration number can be applied to both feature
smoothing and label smoothing. Experimental results demonstrate that NDLS
enjoys high accuracy — state-of-the-art performance on node classifications tasks,
flexibility — can be incorporated with any models, scalability and efficiency — can
support large scale graphs with fast training.

1 Introduction

In recent years, Graph Neural Networks (GNNs) have received a surge of interest with the state-of-the-
art performance on many graph-based tasks [2} 36} 9l 34, 28| [29]. Recent works have found that the
success of GNNs can be mainly attributed to smoothing, either at feature or label level. For example,
SGC [27] shows using smoothed features as input to a simple linear regression model achieves
comparable performance with lots of carefully designed and complex GNNs. At the smoothing
stage, features of neighbor nodes are aggregated and combined with the current node’s feature to
form smoothed features. This process is often iterated multiple times. The smoothing is based on
the assumption that labels of nodes that are close to each other are highly correlated, therefore, the
features of nodes nearby should help predict the current node’s label.

One crucial and interesting parameter of neighborhood feature aggregation is the number of smoothing
iterations k&, which controls how much information is being gathered. Intuitively, an aggregation
process of k iterations (or layers) enables a node to leverage information from nodes that are k-hop
away (22 33]]. The choice of k is closely related to the structural properties of graphs and has a
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(a) Two nodes with different local structures (b) The CDF of LSI in different graphs

Figure 1: (Left) The node in dense region has larger smoothed area within two iterations of
propagation. (Right) The CDF of LSI in three citation networks.

significant impact on the model performance. However, most existing GNNs only consider the
fixed-length propagation paradigm — a uniform k£ for all the nodes. This is problematic since the
number of iterations should be node dependent based on its degree and local structures. For example,
as shown in Figure the two nodes have rather different local structures, with the left red one
resides in the center of a dense cluster and the right red one on the periphery with few connections.
The number of iterations to reach an optimal level of smoothness are rather different for the two nodes.
Ideally, poorly connected nodes (e.g., the red node on the right) needs large iteration numbers to
efficiently gather information from other nodes while well-connected nodes (e.g., the red node on the
left) should keep the iteration number small to avoid over-smoothing. Though some learning-based
approaches have proposed to adaptively aggregate information for each node through gate/attention
mechanism or reinforcement learning [25} [17} 35} 23], the performance gains are at the cost of
increased training complexity, hence not suitable for scalable graph learning.

In this paper, we propose a simple yet effective solution to this problem. Our approach, called
node-dependent local smoothing (NDLS), calculates a node-specific iteration number for each node,
referred to as local smooth iteration (LSI). Once the LSI for a specific node is computed, the
corresponding local smoothing algorithm only aggregates the information from the nodes within a
distance less than its LSI as the new feature. The LSI is selected based on influence scores, which
measure how other nodes influence the current node. NDLS sets the LSI for a specific node to be
the minimum number of iterations so that the influence score is e-away from the over-smoothing
score, defined as the influence score at infinite iteration. The insight is that each node’s influence
score should be at a reasonable level. Since the nodes with different local structures have different
“smoothing speed”, we expect the iteration number to be adaptive. Figure [I(b)]illustrates Cumulative
Distribution Function (CDF) for the LSI of individual nodes in real-world graphs. The heterogeneous
and long-tail property exists in all the datasets, which resembles the characteristics of the degree
distribution of nodes in real graphs.

Based on NDLS, we propose a new graph learning algorithm with three stages: (1) feature smoothing
with NDLS (NDLS-F); (2) model training with smoothed features; (3) label smoothing with NDLS
(NDLS-L). Note that in our framework, the graph structure information is only used in pre-processing
and post-processing steps, i.e., stages (1) and (3) (See Figure[2). Our NDLS turns a graph learning
problem into a vanilla machine learning problem with independent samples. This simplicity enables
us to train models on larger-scale graphs. Moreover, our NDLS kernel can act as a drop-in replacement
for any other graph kernels and be combined with existing models such as Multilayer Perceptron
(MLP), SGC [27], SIGN [24], S>GC [37] and GBP [3].

Extensive evaluations on seven benchmark datasets, including large-scale datasets like ogbn-
papers100M [[13]], demonstrates that NDLS achieves not only the state-of-the-art node classification
performance but also high training scalability and efficiency. Especially, NDLS outperforms
APPNP [25]] and GAT [26] by a margin of 1.0%-1.9% and 0.9%-2.4% in terms of test accuracy,
while achieving up to 39x and 186 training speedups, respectively.

2 Preliminaries

In this section, we first introduce the semi-supervised node classification task and review the prior
models, based on which we derive our method in Section 3. Consider a graph G = (V, £) with [V| =n



nodes and |£| = m edges, the adjacency matrix (including self loops) is denoted as A € R™*"
and the feature matrix is denoted as X = {x1, ®2...,®, } in which x; € R/ represents the feature
vector of node v;. Besides, Y = {y1,vy2...,y1} is the initial label matrix consisting of one-hot
label indicator vectors. The goal is to predict the labels for nodes in the unlabeled set V,, with the
supervision of labeled set V.

GCN smooths the representation of each node via aggregating its own representations and the ones
of its neighbors’. This process can be defined as

X+ = 5 (AX(’“)W(’“)) ., A=D""'AD", (1)

where A is the normalized adjacency matrix, r € [0, 1] is the convolution coefficient, and D is the
diagonal node degree matrix with self loops. Here X(¥) and X (*+1) are the smoothed node features
of layer k and k + 1 respectively while X(%) is set to X, the original feature matrix. In addition,
W (%) is a layer-specific trainable weight matrix at layer &, and 0(-) is the activation function. By
setting » = 0.5, 1 and 0, the convolution matrix D'-1AD-" represents the symmetric normalization
adjacency matrix D—/2AD~1/2 [16]), the transition probability matrix AD~* [32], and the reverse
transition probability matrix DA [30], respectively.

SGC. For each GCN layer defined in Eq. 1} if the non-linear activation function J(-) is an identity
function and W (%) is an identity matrix, we get the smoothed feature after k-iterations propagation
as X(®) = AFX. Recent studies have observed that GNNs primarily derive their benefits from
performing feature smoothing over graph neighborhoods rather than learning non-linear hierarchies
of features as implied by the analogy to CNNs [21} 8, [12]. By hypothesizing that the non-linear
transformations between GCN layers are not critical, SGC [27] first extracts the smoothed features
X (%) then feeds them to a linear model, leading to higher scalability and efficiency. Following the
design principle of SGC, piles of works have been proposed to further improve the performance of
SGC while maintaining high scalability and efficiency, such as SIGN [24], S2GC [37]] and GBP [3].

Over-Smoothing [18] issue. By continually smoothing the node feature with infinite number of

propagation in SGC, the final smoothed feature X(*°) is

(dz + ].)T(dj + 1)177‘
2m+n

X = A®X,  A¥ = , 2)
where A is the final smoothed adjacency matrix, Af‘; is the weight between nodes v; and v;, d;
and d; are the node degrees for v; and v;, respectively. Eq. (Z) shows that as we smooth the node
feature with an infinite number of propagations in SGC, the final feature is over-smoothed and unable
to capture the full graph structure information since it only relates with the node degrees of target
nodes and source nodes. For example, if we set » = 0 or 1, all nodes will have the same smoothed
features because only the degrees of the source or target nodes have been considered.

3 Local Smoothing Iteration (LSI)

The features after k iterations of smoothing is X*) = AFX. Inspired by [30], we measure the
influence of node v; on node v; by measuring how much a change in the input feature of v; affects
the representation of v; after k iterations. For any node v;, the influence vector captures the influences
of all other nodes. Considering the h'" feature of X, we define an influence matrix I, (k):

ax ™
In(k)i; = ——h-. (3)
I(k) = A* I, = A= 4)

Since I (k) is independent to h, we replace I, (k) with I(k), which can be further represented
as I(k) = In(k), Yh € {1,2,.., f}, where f indicates the number of features of X. We denote

I(k); as the i*" row of I(k), and I as I(co). Given the normalized adjacency matrix A, we can



have I(k) = AFand [ = A®. According to Eq. @), I converges to a unique stationary matrix
independent of the distance between nodes, resulting in that the aggregated features of nodes are
merely relative with their degrees (i.e., over-smoothing).

We denote I(k); as the i*" row of I(k), and it means the influence from the other nodes to the
node v; after k iterations of propagation. We introduce a new concept local smoothing iteration
(parameterized by €), which measures the minimal number of iterations k required for the influence
of other nodes on node v; to be within an e-distance to the over-smoothing stationarity 1.

Definition 3.1. Local-Smoothing Iteration (LSI, parameterized by €) is defined as
K(i,€) = min{k : ||I; — I(k)||2 < €}, )

where || - ||2 is two-norm, and € is an arbitrary small constant with € > 0.

Here € is a graph-specific parameter, and a smaller € indicates a stronger smoothing effect. The
e-distance to the over-smoothing stationarity I; ensures that the smooth effect on node v; is sufficient
and bounded to avoid over-smoothing. As shown in Figure[I(b)] we can have that the distribution of
LSI owns the heterogeneous and long-tail property, where a large percentage of nodes have much
smaller LSI than the rest. Therefore, the required LSI to approach the stationarity is heterogeneous
across nodes. Now we discuss the connection between LSI and node local structure, showcasing nodes
in the sparse region (e.g., both the degrees of itself and its neighborhood are low) can greatly prolong
the iteration to approach over-smoothing stationarity. This heterogeneity property is not fully utilized
in the design of current GNNs, leaving the model design in a dilemma between unnecessary iterations
for a majority of nodes and insufficient iterations for the rest of nodes. Hence, by adaptively choosing
the iteration based on LSI for different nodes, we can significantly improve model performance.

Theoretical Properties of LSI. We now analyze the factors determining the LSI of a specific node.
To facilitate the analysis, we set the coefficient » = 0 for the normalized adjacency matrix A in
Eq. (1), thus A = D~ A. The proofs of following theorems can be found in Appendix A.1.

Theorem 3.1. Given feature smoothing X %) = AFX with A = DA, we have

d;
2m+n

K(i,e) <logy, | € , (6)

where o is the second largest eigenvalue of A, d; denotes the degree of node v; plus 1 (i.e.,
d; = d; + 1), and m, n denote the number of edges and nodes respectively.

Note that Ay < 1. Theorem shows that the upper-bound of the LSI is positively correlated with
the scale of the graph (m, n), the sparsity of the graph (small A\ means strong connection and low
sparsity, and vice versa), and negatively correlated with the degree of node v;.

Theorem 3.2. For any nodes i in a graph G,
K(i,e) < max{K(j,€),j € N(i)} + 1, @)

where N (i) is the set of node v;’s neighbours.

Theorem [3.2]indicates that the difference between two neighboring nodes’ LSIs is no more than 1,
therefore the nodes with a super-node as neighbors (or neighbor’s neighbors) may have small LSIs.
That is to say, the sparsity of the local area, where a node locates, also affects its LSI positively.
Considering Theorems|3.1{and together, we can have a union upper-bound of K (i, €) as

d;

K(i,e) < mi K(j € N(1 1,1
(i:€) < min { max (K (j.€).j € N(i)} + L logs, | e/ 35—

®)

4 NDLS Pipeline

The basic idea of NDLS is to utilize the LSI heterogeneity to perform a node-dependent aggregation
over a neighborhood within a distance less than the specific LSI for each node. Further, we propose
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Figure 2: Overview of the proposed NDLS method, including (1) feature smoothing with NDLS
(NDLS-F), (2) model training with smoothed features, and (3) label smoothing with NDLS (NDLS-L).
NDLS-F and NDLS-L correspond to pre-processing and post-processing steps respectively.

a simple pipeline with three main parts (See Figure [2): (1) a node-dependent local smoothing of
the feature (NDLS-F) over the graph, (2) a base prediction result with the smoothed feature, (3) a
node-dependent local smoothing of the label predictions (NDLS-L) over the graph. Note this pipeline
is not trained in an end-to-end way, the stages (1) and (3) in NDLS are only the pre-processing and
post-processing steps, respectively. Furthermore, the graph structure is only used in the pre/post-
processing NDLS steps, not for the base predictions. Compared with prior GNN models, this key
design enables higher scalability and a faster training process.

Based on the graph structure, we first compute the node-dependent local smoothing iteration
that maintains a proper distance to the over-smoothing stationarity. Then the corresponding local
smoothing kernel only aggregates the information (feature or prediction) for each node from the nodes
within a distance less than its LSI value. The combination of NDLS-F and NDLS-L takes advantage
of both label smoothing (which tends to perform fairly well on its own without node features) and the
node feature smoothing. We will see that combining these complementary signals yields state-of-the-
art predictive accuracy. Moreover, our NDLS-F kernel can act as a drop-in replacement for graph
kernels in other scalable GNNs such as SGC, S2GC, GBP, etc.

4.1 Smooth Features with NDLS-F

Once the node-dependent LSI K (4, €) for a specific node i is obtained, we smooth the initial input
feature X; of node ¢ with node-dependent LSI as:

_ 1 K (i,€) *)
Xi(e)= — x ) 9
i(©) K(i,e) + 1 kZ:O : ©)

To capture sufficient neighborhood information, for each node v;, we average its multi-scale features
{ng) | kK < K(i,¢)} obtained by aggregating information within k hops from the node v;.
The matrix form of the above equation can be formulated as

max K (i,€)

1 S .
~ ey = d k<K
X(e) = E MFX k) M(k)ij: KGo+1 ! J- an < K(i,e) . (0)
=0 0, otherwise

where M) is a set of diagonal matrix.

4.2 Simple Base Prediction

With the smoothed feature X according to Eq. @ we then train a model to minimize the loss —
D view ! (yi, f ()N(,)), where X; denotes the i*" row of X, ¢ is the cross-entropy loss function, and

f(X;) is the predictive label distribution for node v;. In NDLS, the default f is a MLP model and



Y = f ()~() is its soft label predicted (softmax output). Note that, many other models such as Random
Forest [20] and XGBoost [6] could also be used in NDLS (See more results in Appendix A.2).

4.3 Smooth Labels with NDLS-L

Similar to the feature propagation, we can also propagate the soft label Y with Y®) = AkY.
Considering the influence matrix of softmax label Jp, (k).

oy k)
Tn(k)ij = —={G- (11)
Y
According to the definition above we have that
Jn(k) = In(k),Vh € {1,2, .., f}. (12)

Therefore, local smoothing can be further applied to address over-smoothing in label propagation.
Concretely, we smooth an initial soft label Y; of node v; with NDLS as follows

K(i,€)
v 1 o (k)
Yi(e) = —— > Y. 13
() K(i,e)+1 & (13)

Similarly, the matrix form of the above equation can be formulated as
max K (i,€)

Y= > MBY®, (14)
k=0

where M) follows the definition in Eq. (T0).

5 Comparison with Existing Methods

Decoupled GNNs. The aggregation and transformation operations in coupled GNNs (i.e., GCN [15],
GAT [26]] and JK-Net [30]) are inherently intertwined in Eq. (I)), so the propagation iterations L
always equals to the transformation iterations K. Recently, some decoupled GNNs (e.g., PPNP [16],
PPRGo [1], APPNP [16], AP-GCN [25] and DAGNN [21]]) argue the entanglement of these two
operations limits the propagation depth and representation ability of GNNs, so they first do the
transformation and then smooth and propagate the predictive soft label with higher depth in an
end-to-end manner. Especially, AP-GCN and DAGNN both use a learning mechanism to learn
propagation adaptively. Unfortunately, all these coupled and decoupled GNNs are hard to scale
to large graphs — scalability issue since they need to repeatedly perform an expensive recursive
neighborhood expansion in multiple propagations of the features or soft label predicted. NDLS
addresses this issue by dividing the training process into multiple stages.

Sampling-based GNNs. An intuitive method to tackle the recursive neighborhood expansion problem
is sampling. As a node-wise sampling method, GraphSAGE [11] samples the target nodes as a mini-
batch and samples a fixed size set of neighbors for computing. VR-GCN [4] analyzes the variance
reduction on node-wise sampling, and it can reduce the size of samples with an additional memory
cost. In the layer level, Fast-GCN [3]] samples a fixed number of nodes at each layer, and ASGCN [14]
proposes the adaptive layer-wise sampling with better variance control. For the graph-wise sampling,
Cluster-GCN [7] clusters the nodes and only samples the nodes in the clusters, and GraphSAINT [32]]
directly samples a subgraph for mini-batch training. We don’t use sampling in NDLS since the
sampling quality highly influences the classification performance.

Linear Models. Following SGC [27], some recent methods remove the non-linearity between each
layer in the forward propagation. SIGN [24] allows using different local graph operators and proposes
to concatenate the different iterations of propagated features. S2GC [37] proposes the simple spectral
graph convolution to average the propagated features in different iterations. In addition, GBP [5]
further improves the combination process by weighted averaging, and all nodes in the same layer
share the same weight. In this way, GBP considers the smoothness in a layer perspective way. Similar



Table 1: Algorithm analysis for existing scalable GNNs. n, m, ¢, and f are the number of nodes,
edges, classes, and feature dimensions, respectively. b is the batch size, and k refers to the number of
sampled nodes. L corresponds to the number of times we aggregate features, K is the number of
layers in MLP classifiers. For the coupled GNNs, we always have K = L.

Type | Method | Preprocessing and postprocessing | Training | Inference | Memory
Node-wise sampling | GraphSAGE - O(k*nf?) O(k*nf?) Obk*f + Lf?)
Layer-wise sampling FastGCN - O(kLnf?) O(kLnf?) O(kLf + Lf?)
Graph-wise sampling | Cluster-GCN O(m) O(Lmf+ Lnf?) | O(Lmf+ Lnf?) | OMBLf + Lf?)
SGC O(Lmf) O(nf?) O(nf?) Of+ 13
oo S2GC O(Lmf) O(nf?) O(nf?) O(bf + f?)
Linear model SIGN o(Lmf) O(Enf?) O(Knf?) OGBLf + K f?)
GBP O(Lnf + LY™en) O(Knf?) O(Knf?) Obf + Kf?)
Linear model NDLS O(Lmf + Lmc) O(Knf?) O(Knf?) Obf+Kf?)

Table 2: Overview of datasets and task types (T/I represents Transductive/Inductive).

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Type Description
Cora 2,708 1,433 5,429 7 140/500/1,000 T citation network
Citeseer 3,327 3,703 4,732 6 120/500/1,000 T citation network
Pubmed 19,717 500 44,338 3 60/500/1,000 T citation network
Industry 1,000,000 64 1,434,382 253 5K/10K/30K T short-form video network
ogbn-papers100M 111,059,956 128 1,615,685,872 172 1,207K/125K/214K T citation network
Flickr 89,250 500 899,756 7 44K/22K/22K I image network
Reddit 232,965 602 11,606,919 41 155K/23K/54K I social network

to these works, we also use a linear model for higher training scalability. The difference lies in
that we consider the smoothness from a node-dependent perspective and each node in NDLS has a
personalized aggregation iteration with the proposed local smoothing mechanism.

Table[T|compares the asymptotic complexity of NDLS with several representative and scalable GNNs.
In the stage of the preprocessing, the time cost of clustering in Cluster-GCN is O(m) and the time
complexity of most linear models is O(Lmf). Besides, NDLS has an extra time cost O(Lmc) for
the postprocessing in label smoothing. GBP conducts this process approximately with a bound of

O(Lnf + Livmslg"), where ¢ is a error threshold. Compared with the sampling-based GNNSs, the
linear models usually have smaller training and inference complexity, i.e., higher efficiency. Memory
complexity is a crucial factor in large-scale graph learning because it is difficult for memory-intensive
algorithms such as GCN and GAT to train large graphs on a single machine. Compared with SIGN,
both GBP and NDLS do not need to store smoothed features in different iterations, and the feature
storage complexity can be reduced from O(bL f) to O(bf).

6 Experiments

In this section, we verify the effectiveness of NDLS on seven real-world graph datasets. We aim to
answer the following four questions. Q1: Compared with current SOTA GNNs, can NDLS achieve
higher predictive accuracy and why? Q2: Are NDLS-F and NDLS-L better than the current feature
and label smoothing mechanisms (e.g., the weighted feature smoothing in GBP and the adaptive label
smoothing in DAGNN)? Q3: Can NDLS obtain higher efficiency over the considered GNN models?
Q4: How does NDLS perform on sparse graphs (i.e., low label/edge rate, missing features)?

6.1 Experimental Setup

Datasets. We conduct the experiments on (1) six publicly partitioned datasets, including four citation
networks (Citeseer, Cora, PubMed, and ogbn-papers100M) in [[15} [13]] and two social networks
(Flickr and Reddit) in [32]], and (2) one short-form video recommendation graph (Industry) from our
industrial cooperative enterprise. The dataset statistics are shown in Table 2] and more details about
these datasets can be found in Appendix A.3.

Baselines. In the transductive setting, we compare our method with (1) the coupled GNNs:
GCN [15], GAT [26] and JK-Net [30]; (2) the decoupled GNNs: APPNP [16], AP-GCN [23],



Table 3: Results of transductive settings. OOM means “out of memory”.

Type Models Cora Citeseer PubMed Industry ogbn-papers100M
GCN 81.8+0.5 70.8+0.5 79.3+0.7 45.9+04 OOM
Coupled GAT 83.0+0.7 72.5+£0.7 79.0+0.3 46.8+0.7 OOM
JK-Net 81.8+0.5 70.7+0.7 78.8+0.7 47.24+0.3 OOM
APPNP 83.3+0.5 71.8+£0.5 80.1£0.2 46.7+0.6 OOM
AP-GCN 83.44+0.3 71.3+0.5 79.7+£0.3 46.9+0.7 OOM
Decoupled PPRGo 82.4+02 71.3+0.5 80.0+04 46.6+0.5 OOM
DAGNN (Gate) 84.4+0.5 73.3+0.6 80.5+0.5 47.1+0.6 OOM
DAGNN (NDLS-L)* 84.44+0.6 73.6+0.7 80.9+0.5 47.2+0.7 OOM
MLP 61.1£0.6 61.8+0.8 72.7+0.6 41.3+0.8 47.240.3
SGC 81.0+0.2 71.3+0.5 78.9+0.5 45.2+0.3 63.2+0.2
Linear SIGN 82.1+0.3 72.4+0.8 79.5+0.5 46.3+£0.5 64.24+0.2
S2GC 82.7+0.3 73.0+0.2 79.9+0.3 46.6+0.6 64.7+0.3
GBP 83.9+0.7 72.9+0.5 80.6+04 46.9+0.7 65.2+0.3
NDLS-F+MLP* 84.1+0.6 73.5+0.5 81.1+0.6 47.5+0.7 65.3+0.5
Lincar MLP+NDLS-L* 83.9+0.6 73.1+0.8 81.1+0.6 46.9+0.7 64.6+0.4
SGC+NDLS-L* 84.24+0.2 73440.5 81.1+04 47.1+£0.6 64.91+0.3
NDLS* 84.6+0.5 73.7+0.6 81.4+04 47.7+0.5 65.6+0.3

DAGNN (Gate) [21]], and PPRGo [[1]]; (3) the linear-model-based GNNs: MLP, SGC [27], SIGN [24],
S2GC [37] and GBP [3]. In the inductive setting, the compared baselines are sampling-based GNNs:
GraphSAGE [11]], FastGCN [3]], ClusterGCN [7] and GraphSAINT [32]. Detailed descriptions of
these baselines are provided in Appendix A.4.

Implementations. To alleviate the influence of randomness, we repeat each method ten times and
report the mean performance. The hyper-parameters of baselines are tuned by OpenBox [19] or set
according to the original paper if available. Please refer to Appendix A.5 for more details.

“® N3
]
_ et Table 4: Results of inductive settings.
S P &
°E47 1x AP-GON .18
£l s b Resc Models Flickr  Reddit
S| 5% e GraphSAGE 50.1+13  95.440.0
" see FastGCN 50.4+0.1 93.7+0.0
o ® ClusterGCN 48.140.5 95.7£0.0
- n . GraphSAINT 51.140.1  96.6+0.1
Relative Training Time
NDLS-F+MLP* 51.9£0.2 96.6+0.1
Figure 3: Performance along with training GraphSAGE+NDLS-L™ ~ 51.5+0.4  96.3+0.0
time on the Industry dataset. NDLS 52.6+:04  96.8+0.1

6.2 Experimental Results.

End-to-end comparison. To answer Q1, Tableand E] show the test accuracy of considered methods
in transductive and inductive settings. In the inductive setting, NDLS outperforms one of the most
competitive baselines — GraphSAINT by a margin of 1.5% and 0.2% on Flickr and Reddit. NDLS
exceeds the best GNN model among all considered baselines on each dataset by a margin of 0.2% to
0.8% in the transductive setting. In addition, we observe that with NDLS-L, the model performance
of MLP, SGC, NDLS-F+MLP, and GraphSAGE can be further improved by a large margin. For
example, the accuracy gain for MLP is 21.8%, 11.3%, 8.4%, and 5.6% on Cora, Citseer, PubMed,
and Industry, respectively. To answer Q2, we replace the gate mechanism in the vanilla DAGNN with
NDLS-L and refer to this method as DAGNN (NDLS-L). Surprisingly, DAGNN (NDLS-L) achieves
at least comparable or (often) higher test accuracy compared with AP-GCN and DAGNN (Gate), and
it shows that NDLS-L performs better than the learned mechanism in label smoothing. Furthermore,
by replacing the original graph kernels with NDLS-F, NDLS-F+MLP outperforms both S?GC and
GBP on all compared datasets. This demonstrates the effectiveness of the proposed NDLS.

Training Efficiency. To answer Q3, we evaluate the efficiency of each method on a real-world
industry graph dataset. Here, we pre-compute the smoothed features of each linear-model-based
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Figure 4: Test accuracy on PubMed dataset under different levels of feature, edge and label sparsity.
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Figure 5: (Left) LSI distribution along with the node degree in three citation networks. (Right) The
visualization of LSI in Zachary’s karate club network. Nodes with larger radius have larger LSIs.

GNN, and the time for pre-processing is also included in the training time. Figure [3]illustrates the
results on the industry dataset across training time. Compared with linear-model-based GNNs, we
observe that (1) both the coupled and decoupled GNNs require a significantly larger training time; (2)
NDLS achieves the best test accuracy while consuming comparable training time with SGC.

Performance on Sparse Graphs. To reply Q4, we conduct experiments to test the performance
of NDLS on feature, edge, and label sparsity problems. For feature sparsity, we assume that the
features of unlabeled nodes are partially missing. In this scenario, it is necessary to calculate a
personalized propagation iteration to “recover” each node’s feature representation. To simulate
edge sparsity settings, we randomly remove a fixed percentage of edges from the original graph.
Besides, we enumerate the number of nodes per class from 1 to 20 in the training set to measure
the effectiveness of NDLS given different levels of label sparsity. The results in Figure ] show that
NDLS outperforms all considered baselines by a large margin across different levels of feature, edge,
and label sparsity, thus demonstrating that our method is more robust to the graph sparsity problem
than the linear-model-based GNNss.

Interpretability. As mentioned by Q1, we here answer why NDLS is effective. One theoretical
property of LSI is that the value correlates with the node degree negatively. We divide nodes into
several groups, and each group consists of nodes with the same degree. And then we calculate the
average LSI value for each group in the three citation networks respectively. Figure |5(a)|depicts that
nodes with a higher degree have a smaller LSI, which is consistent with Theorem 3.1} We also use
NetworkX [10] to visualize the LSI in Zachary’s karate club network [31]]. Figure[5(b)| where the
radius of each node corresponds to the value of LSI, shows three interesting observations: (1) nodes
with a larger degree have smaller LSIs; (2) nodes in the neighbor area have similar LSIs; (3) nodes
adjacent to a super-node have smaller LSIs. The first observation is consistent with Theorem[3.1] and
the latter two observations show consistency with Theorem 3.2}

7 Conclusion

In this paper, we present node-dependent local smoothing (NDLS), a simple and scalable graph
learning method based on the local smoothing of features and labels. NDLS theoretically analyzes



what influences the smoothness and gives a bound to guide how to control the extent of smoothness
for different nodes. By setting a node-specific smoothing iteration, each node in NDLS can smooth
its feature/label to a local-smoothing state and then help to boost the model performance. Extensive
experiments on seven real-world graph datasets demonstrate the high accuracy, scalability, efficiency,
and flexibility of NDLS against the state-of-the-art GNNs.

Broader Impact

NDLS can be employed in areas where graph modeling is the foremost choice, such as citation
networks, social networks, chemical compounds, transaction graphs, road networks, etc. The
effectiveness of NDLS when improving the predictive performance in those areas may bring a
broad range of societal benefits. For example, accurately predicting the malicious accounts on
transaction networks can help identify criminal behaviors such as stealing money and money
laundering. Prediction on road networks can help avoid traffic overload and save people’s time.
A significant benefit of NDLS is that it offers a node-dependent solution. However, NDLS faces
the risk of information leakage in the smoothed features or labels. In this regard, we encourage
researchers to understand the privacy concerns of NDLS and investigate how to mitigate the possible
information leakage.
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