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Abstract

Factor analysis methods have been widely used in neuroimaging to transfer high
dimensional imaging data into low dimensional, ideally interpretable representa-
tions. However, most of these methods overlook the highly nonlinear and complex
temporal dynamics of neural processes when factorizing their imaging data. In
this paper, we present deep Markov factor analysis (DMFA), a generative model
that employs Markov property in a chain of low dimensional temporal embeddings
together with spatial inductive assumptions, all related through neural networks,
to capture temporal dynamics in functional magnetic resonance imaging (fMRI)
data, and tackle their high spatial dimensionality, respectively. Augmented with a
discrete latent, DMFA is able to cluster fMRI data in its low dimensional temporal
embedding with regard to subject and cognitive state variability, therefore, enables
validation of a variety of fMRI-driven neuroscientific hypotheses. Experimental
results on both synthetic and real fMRI data demonstrate the capacity of DMFA in
revealing interpretable clusters and capturing nonlinear temporal dependencies in
these high dimensional imaging data.

1 Introduction

Functional magnetic resonance imaging (fMRI) has been extensively used in cognitive neuroscience
to study brain structures and their interactions at rest or during a cognitive task [Glover, 2011]. fMRI
also provides insights into how brain’s functional connectivity changes during different experimental
conditions [Preti et al., 2017, Azari et al., 2020]. However, due to high dimensional nature of fMRI
data (tens of thousands of voxels in few seconds-long sessions), analyzing functional connectivity of
brain could get very challenging [Turk-Browne, 2013]. Most classical methods employ region of
interest (ROI)-based approaches to reduce size of data for processing [Poldrack, 2007, Etzel et al.,
2009, Farnoosh and Soltanian-Zadeh, 2017, Gadgil et al., 2020]. However, averaging across many
voxels within each region could wash out signals from small number of task-relevant voxels with
noise from non-activated voxels, therefore results in a loss of information [Poldrack, 2007].
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Recently, few approaches have been proposed, based on probabilistic generative models, for topo-
graphic factorization of fMRI data into a weighted summation of few localized activation sources
(i.e., temporal weights and topographic spatial factors), among which topographic factor analysis
(TFA) [Manning et al., 2014b] and its multi-subject extension, hierarchical TFA (HTFA) [Manning
et al., 2018], and neural TFA (NTFA) [Sennesh et al., 2020] are the most noted ones. This factor-
ization serves as a necessary preparation step for subsequent statistical analysis that can effectively
characterize subject- and stimulus-level variations and reveal task- or cognitive state-related networks
in brain. However, TFA approaches assume a prior in which temporal weights are conditionally
independent as a function of time, which means they do not encode temporal dynamics. Given the
non-linearity and complex time-dependencies inherent in fMRI, a model is required that can capture
and represent these dependencies.

In this paper, we propose deep Markov factor analysis (DMFA)1, a Bayesian model for factorization
of fMRI data that learns a deep generative Markovian prior to reason about nonlinear temporal
dynamics. This is realized by a chain of low dimensional temporal embeddings related through neural
networks. This prior is further augmented by a discrete latent for multimodal dynamical estimation,
and clustering subject- and task-level variations directly in its low dimensional temporal embedding.
To accommodating high spatial dimensionality, DMFA generatively parameterize spatial factors from
a low dimensional spatial latent through neural networks.

We evaluate the performance of DMFA on a synthetic and two real large-scale fMRI datasets. Our
experiments demonstrate that DMFA uncovers meaningful clusters in these data and achieves better
predictive performance for unseen data relative to the state-of-the-art.

2 Related Work

Factor Analysis in fMRI: Factor analysis in neuroimaging includes a wide range of approaches for
reducing data dimensionality to facilitate their interpretability and computational tractability. Principal
component analysis (PCA) [Pearson, 1901] and independent component analysis (ICA) [Comon
et al., 1991] are among the most well-known classical factor analysis methods. To accommodate
tensor data and mitigate scalability issues, multilinear versions of PCA and ICA have been proposed
in Vasilescu and Terzopoulos [2005], Beckmann and Smith [2005], Cichocki [2011], Richard and
Montanari [2014], Hopkins et al. [2015]. Specifically, for multi-subject fMRI study, Lee et al. [2008]
proposed independent vector analysis (IVA) and Richard et al. [2020] developed MultiView ICA to
model shared responses. Likewise, Chen et al. [2015] developed a shared response model (SRM)
for aggregating multi-subject fMRI data and highlighting group differences, and Van Kesteren and
Kievit [2021] incorporated structured residuals into the exploratory factor analysis (EFA) framework.
Karahanoğlu and Van De Ville [2015] deconvolved hemodynamic response from rest fMRI time
series and then performed temporal clustering on the resulting whole-brain innovation signals to
recover the corresponding spatial patterns. However, spatial factors obtained by these methods are
unstructured, often have the same size as the images in the original dataset, and may include many
small and large voxel clusters across the brain, therefore are not directly interpretable [Manning et al.,
2014b]. More important, these methods are permutation invariant along temporal dimension (i.e.,
do not assume any relationships between temporal dimensions), therefore do not model temporal
dynamics [Yu et al., 2016].

To enhance spatial interpretability, Manning et al. [2014b] introduced topographic factor analysis
(TFA), a probabilistic technique that casts each brain image as a weighted sum of Gaussian spatial
factors. In this way, each Gaussian blob (a.k.a topographic factor) can be thought of as a brain
region for which activation levels are estimated over time, and is easily interpreted through its set
of parameters. Later on, authors proposed a hierarchical version of TFA (HTFA) [Manning et al.,
2018] to incorporate data from multiple subjects and enable hypothesis testing across subjects by
applying hierarchical Gaussian priors for global and subject-specific parameters of temporal and
topographic factors. These linearly-dependent hierarchical Gaussian priors, though, favor estimation
of unimodal distributions and limit the model’s expressivity. Recently, Sennesh et al. [2020] proposed
neural TFA (NTFA) for task fMRI, which extends TFA by incorporating neural networks onto its
framework. NTFA assumes separate latent embeddings for participants and stimuli and map them
into the temporal and spatial latents with neural networks. However, methods in this line of work

1The source code is available at https://github.com/ostadabbas/DMFA
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essentially assume a prior in which temporal weights are conditionally independent as a function of
time, which means that they do not encode temporal dynamics.

Dynamical Factorization: A number of matrix/tensor factorization approaches have been proposed
for modeling temporal dynamics in sequential data. These methods employ linear-Gaussian state-
space models [Sun et al., 2014], autoregressive temporal regularizer [Bahadori et al., 2014, Yu et al.,
2016, Takeuchi et al., 2017], and multilinear dynamical systems [Rogers et al., 2013, Cai et al.,
2015, Jing et al., 2018]. In contrast to these methods which provide point estimates, Bayesian
dynamical factorization has been proposed in Xiong et al. [2010], Charlin et al. [2015], Sun and
Chen [2019], in which linear temporal dynamics are applied to factor latents. While some of these
methods have been successful in dynamical modeling of sequential data, they are less effective for
high dimensional spatial data like fMRI as they do not explicitly adopt any structural constraints
for spatial factors. Moreover, their linear dynamical assumptions lack the capacity to characterize
nonlinear dependencies.

Motivated by recent advances in deep learning, several studies have implemented neural networks
into Gaussian state space models for nonlinear dynamical modelling [Krishnan et al., 2015, Watter
et al., 2015, Chung et al., 2015, Karl et al., 2017, Krishnan et al., 2017, Fraccaro et al., 2017, Becker
et al., 2019, Farnoosh et al., 2021]. A common practice is to learn a temporal latent model followed
by a mapping to data space, a.k.a. a decoder, and an encoder for amortized variational inference.
However, this encoding/decoding framework is not tractable in very high dimensional spatial data
like fMRI. To be more specific, it is computationally intensive to feed high dimensional data for
amortized estimation, or map to them directly from a latent space (see Section 4.1 for a detailed
discussion). Also, several studies have employed recurrent neural networks (RNNs) for temporal
analysis of fMRI data [Hjelm et al., 2018, Dvornek et al., 2018, Yan et al., 2019, Wang et al.,
2019]. RNN-based methods are not probabilistic and can only process reduced dimensional ROI
data. Although convolutional RNN models can capture both temporal and spatial correlations, by
construction they do not provide the familiar spatial correlation maps that we expect in neuroimaging
analysis and that are necessary for neuroscientific interpretability. In addition, RNN model are harder
to train on long sequences due to the vanishing/exploding gradient problem as they feed parameters
sequentially. While this problem is much alleviated in LSTM, GRU, and Transformer models, these
architectures still result in a huge computational graph and intense GPU memory consumption on
long sequences, which leads to very long training times. In contrast, DMFA, as will be explained
below, samples from a distinct posterior distribution at each time point and can fit arbitrarily long
sequences without any issues (by allowing parallel computations over time), and at the same time
infers smooth spatial factors automatically.

3 Deep Markov Factor Analysis (DMFA)

Figure 1: Graphical model representation for
deep Markov factor analysis (DMFA). DMFA
incorporates a deep generative Markovian prior
pθ(z

W
t |zW

t−1) to represent temporal variations
in W , which is conditioned on a discrete latent,
C, for data clustering. The K spatial factors
are conditioned on a shared latent, zF. Latent
nodes and observations are represented by solid
and gray-shaded circles, respectively. The solid
black squares denote nonlinear mappings pa-
rameterized by neural networks.

Let’s assume a corpus of N fMRI data {Yn |n ∈ [1:N ]}
for Yn ∈ RT×V , where T and V are the number of
time points and voxels, respectively. DMFA defines a
hierarchical dynamical deep generative model over this
corpus in a factorization framework:

Yn ∼ Norm(W>n Fn, σ
YI),

Wn ∼ Norm(µW
θ (ZW

n ), σW
θ (ZW

n )),

Fn =
[
fk,v := RBFk(v; ρk, γk)

]
,

ρ, γ ∼ Norm(µF
θ(z

F
n), σF

θ(z
F
n)),

zF
n ∼ Norm(0, I),

ZW
n ∼ pθ(ZW

n |Cn),

Cn ∼ Cat(π).

where Fn ∈ RK×V are K � V spatial factors and
Wn ∈ RK×T are their associated temporal weights,
consistent with a factorization framework. pθ(ZW

n |Cn)
is a deep generative Markovian prior over a set of low
dimensional temporal latents ZW

n = {zW
n,t | t ∈ [0:T ]}
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conditioned on a discrete latent Cn for clustering. The temporal weights Wn are sampled from
a Gaussian distribution whose mean and covariance are a function of ZW

n and are parameterized
by neural networks µW

θ and σW
θ , respectively. The spatial factors Fn are determined by a set of K

radial basis functions (RBFs) whose parameters {ρ, γ} are sampled from a Gaussian distribution
parameterized by neural networks µF

θ and σF
θ from a low dimensional spatial latent zF

n. All networks
have parameters, which are collectively denoted by θ. Finally, σY denotes observation noise. The
graphical model for DMFA is depicted in Fig. 1.

Clustering Latent: We assume that each fMRI data Yn belongs to a specific cluster s ∈ [1:S] which
is declared by its associated discrete latent Cn ∼ Cat(π) sampled from a categorical prior with
assignment probability vector π. This discrete latent conditions the first temporal latent zW

n,0 resulting
in a Gaussian mixture distribution over this temporal latent:

pθ(z
W
n,0|Cn = s) = Norm(µs,Σs),

where µs and Σs are determined by cluster assignment.

Deep Generative Markovian prior: We assume that the temporal latents ZW
n are related through a

Markov chain, for which the transition probability pθ(zW
n,t|zW

n,t−1) = Norm(µZ
θ(z

W
n,t−1), σZ

θ(z
W
n,t−1))

is a Gaussian distribution whose mean and covariance are parameterized by neural networks from
zW
n,t−1. We further blend the estimated mean from neural network with a linear transformation of
zW
n,t−1 to support both nonlinear and linear transitions (we dropped n for brevity):

µZ
θ(z

W
t−1) = (1− g)� µZ,L

θ (zW
t−1) + g � µZ,NL

θ (zW
t−1)

where µZ,L
θ (·) represents a linear mapping, µZ,NL

θ (·) is the nonlinear mapping of neural network, and
g ∈ [0, 1] is a weighting vector estimated from zW

t−1 with another neural network.

Temporal Weights & Spatial Factors: As with the transition model, we assumed Gaussian distri-
butions for temporal weights, such that their means and covariances are a function of their associated
temporal latents:

wn,t ∼ Norm(µW
θ (zW

n,t), σ
W
θ (zW

n,t)),

where µW
θ and σW

θ are neural network functions. The high spatial dimensionality in fMRI data
encourages the need for a hierarchical analysis that summarizes spatial factors with fewer parameters.
Therefore, consistent with Manning et al. [2014b,a, 2018], we represent each spatial factor as a radial
basis function (i.e., a Gaussian blob):

fkv := RBFk(v; ρk, γk) = exp
(
− ‖pv − ρk‖

2

exp (γk)

)
,

where pv ∈ R3 denotes the position of voxel with index v, and ρk, γk ∈ R3 denote the center and
extent of the Gaussian blob, respectively. The set of all RBF parameters {ρk, γk | k ∈ [1:K]} ∼
Norm(µF

θ(z
F
n), σF

θ(z
F
n)) are sampled from a Gaussian distribution whose mean and covariance are

a function of the shared spatial latent zF
n. Introducing zF

n as a low dimensional spatial embedding
encourages estimation of a multi-modal distribution among spatial factors.

3.1 Learning DMFA with Variational Inference

We train DMFA with stochastic variational methods [Hoffman et al., 2013, Ranganath et al., 2013].
These methods approximate the posterior pθ(W,ZW, zF,C, ρ, γ|Y ) using a variational distribution
qφ(W,ZW, zF,C, ρ, γ), where φ denotes parameters of the variational model, by maximizing a lower
bound on the log-likelihood of the data:

L(θ, φ) = log pθ(Y )− KL
(
qφ(W,ZW, zF,C, ρ, γ) || pθ(W,ZW, zF,C, ρ, γ|Y )

)
.

By maximizing this bound with respect to the parameters θ and φ, we learn a deep generative model
and perform Bayesian inference, respectively.

Parameterizing Variational Distribution: We assume a fully factorized variational distribution
and introduce trainable variational parameters for each data as mean and covariance of a diagonal
Gaussian:

qφ(W,ZW, zF,C, ρ, γ) =

N∏
n=1

q(Cn)q(zW
n,0)q(zF

n)

K∏
k=1

q(ρn,k, γn,k)

T∏
t=1

q(zW
n,t)q(wn,t),
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Table 1: Network architectures in DMFA. The fully connected (FC) layers parameterize the three Gaussian
distributions in the generative model: pθ(zW

t |zW
t−1), pθ(wt|zW

t ) and pθ(ρ, γ|zF). The second row denotes the
inputs to neural networks.

Layer
Model

µZ
θ,σ

Z
θ : R2 → R2 µW

θ ,σ
W
θ : R2 → RK µF

θ,σ
F
θ : R2 → R6K

Input zW
t−1 ∈ R2 zW

t ∈ R2 zF ∈ R2

1 FC 2×Dt PReLU FC 2×De PReLU FC 2× 4 PReLU
2 FC Dt × 2 Sigmoid FC De × 2De PReLU FC 4× 8 PReLU
3 g ∈ [0, 1]2 FC 2De × 2K FC 8× 6K

4 FC 2×Dt PReLU µW, log σW ∈ RK µF ∈ R6K

5 FC Dt × 2 FC 2× 4 PReLU
6 µZ,NL ∈ R2 FC 4× 8 PReLU
7 PReLU FC 2× 2 FC 8× 6K
8 log σZ ∈ R2 log σF ∈ R6K

9 FC 2× 2
10 µZ,L ∈ R2

where q(·) for continuous latents are parametric Gaussian distributions. Note that due to the high
dimensionality of fMRI data (V � N , i.e., number of voxels are much larger than number of data),
we do not utilize an amortized inference (where a single parametric function maps each data to a set
of variational parameters) as it could be computationally very expensive and result in over-fitting (see
Section 4.1). Although we can define variational parameters for categorical distributions q(Cn), we
approximate it with posterior p(Cn|zW

n,0) to compensate information loss induced by the mean-field
approximation:

q(Cn = s) ' p(Cn = s|zW
n,0) =

p(Cn = s)p(zW
n,0|Cn = s)∑S

s=1 p(Cn = s)p(zW
n,0|Cn = s)

This approximation has a two-fold advantage: spares the model additional trainable parameters for
variational distribution, and further links variational parameters of qφ(zW

n,0) to generative parameters
of pθ(zW

n,0) and pθ(c), hence results in a more robust learning and inference algorithm.

Derivation of Evidence Lower Bound (ELBO): Once the generative model and variational distribu-
tion are determined, we can derive the ELBO which contains a reconstruction term and regularization
terms for each latent to bring their variational posterior as close as possible to their generative prior:

Ln(θ, φ) = Eqφ(Wn)qφ(ρn,γn)

[
log pθ(Yn|Wn, Fn)

]
(Likelihood)

−
∑
Cn

qφ(Cn) KL
(
qφ(zW

n,0)||pθ(zW
n,0|Cn)

)
− KL

(
qφ(Cn)||p(C)

)
(Clusters)

−
∑
t

Eqφ(zW
n,t−1)

[
KL
(
qφ(zW

n,t)||pθ(zW
n,t|zW

n,t−1)
)]

(Markov Transitions)

−
∑
t

Eqφ(zW
n,t)

[
KL
(
qφ(wn,t)||pθ(wn,t|zW

n,t)
)]

(Weights)

−
∑
k

Eqφ(zF
n)

[
KL
(
qφ(µn,k, γn,k)||pθ(µn,k, γn,k|zF

n)
)]
− KL

(
qφ(zF

n)||p(zF)
)
. (Factors)

We compute Monte Carlo estimate of gradient of the ELBO using a reparameterized sample from the
variational distribution of continuous latents. For the discrete latent, Cn, we compute the expectations
over qφ(Cn) by summing over all the possibilities, hence no sampling is performed. We analytically
calculate the KL terms of ELBO for both multivariate Gaussian and categorical distributions, which
leads to lower variance gradient estimates and faster training as compared to e.g., noisy Monte Carlo
estimates often used in the literature.
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Figure 2: (a) DMFA recovered the three clusters of activation in our synthetic fMRI dataset, unsupervised. The
mean dynamical trajectory (composed of three consecutive rotational dynamics) shows the inferred trajectory
of each cluster mean over time in the temporal latent and is consistent with the periodic activation of sources
in data clusters. (b) Real and reconstructed brain images. (c) The learned generative model’s predictions for a
selected activation source show that DMFA encoded the nonlinear hemodynamic response function in its deep
temporal generative model.

4 Training Details

We described the network architectures of DMFA in Table 1, where Dt and De are the dimensions
of hidden layers for (µZ

θ, σ
Z
θ) and (µW

θ , σ
W
θ ), respectively. We did all the programming in PyTorch

v1.3 and used Adam optimizer with learning rate of 0.01. We initialized all the parameters randomly
except for locations of Gaussian blobs for which we set initial values to local extrema in their averaged
fMRI data. We clipped Gaussian blob parameters to the confines of brain if needed. We used a linear
KL annealing schedule, [Bowman et al., 2016], which increased from 0.01 to 1 over 100 epochs.
We learned/tested all models on an Intel Core i7 CPU @3.7 GHz with 8 Gigabytes of RAM, which
proves tractability of the learning process. Per-epoch training time varied from 0.1 minutes in small
datasets to 6.0 minutes in larger experiments and 200 epochs sufficed for most experiments.

4.1 Discussion of Parameter Count for DMFA

The number of learnable parameters for variational distribution in DMFA is O(NTK). DMFA has
O(KDe+Dt) parameters for its temporal generative model and O(K) parameters for its spatial
generative model. Note that the clustering latent, C, does not impose additional parameters to the
variational distribution, while only adds O(S) parameters to the temporal generative model.

While DMFA introduces extra features and more complex modeling assumptions for fMRI experi-
ments compared to TFA methods of Manning et al. [2014b,a, 2018], (i.e., infers nonlinear temporal
dynamics and performs clustering), we emphasize that it has the same order of parameters as these
methods. TFA methods similarly have O(NTK) parameters as they employ a fully factorized varia-
tional distribution. We also want to highlight that DMFA is tractable in very high dimensional spatial
data like fMRI in contrast to nonlinear state-space models of Watter et al. [2015], Krishnan et al.
[2017], Fraccaro et al. [2017], Karl et al. [2017], Becker et al. [2019]. The encoder/decoder structure
in these works, i.e., qφ(Wn|Yn)/pθ(Yn|Wn), immediately scales both generative and variational
parameters to at least O(KV), where V ∼ 105 � NT in fMRI data, hence causes extensive computa-
tional burden and more importantly overfitting. Furthermore, these methods do not learn a generative
model for spatial factors, i.e., pθ(ρ, γ), and as a result are not able to reason about subject-level
variabilities in this respect. We overcome these challenges in DMFA by carefully designing our
non-amortized variational inference and imposing functional form assumptions on spatial factors in a
factorization framework. The proposed learning and inference algorithm keep generative parameters
in O (KDe + Dt)� O(KV), and variational parameters in O(NTK), where NT ∼ 102 − 105, yield
an observation to parameter ratio of O( NTV

NTK ) = O( VK ) for all the experiments, therefore permit an
efficient learning process.
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Figure 3: (Left) DMFA’s clustering results show that the ASD and control groups can be partially separated.
(Middle) Real and reconstructed brain images, showing the smoothing given by sparse factorization. (Right) A
downstream classification task showed that DMFA and DMFA+SVM outperformed regions of interest (ROI)+SVM
and ICA+SVM in the Caltech, SBL, Stanford, and Yale subsets of the dataset at p-value < 0.005, corrected for
multiple comparisons. ROI+SVM and ICA+SVM performed better in the NYU subset.

5 Experimental Results

We analysed the performance of DMFA on a synthetic and two large-scale fMRI datasets. In the
first experiment, we verified DMFA’s capability in recovering the true clusters and capturing the
underlying temporal dynamic in a synthesized fMRI dataset (visualized in Fig. 2). Next, we evaluated
the performance of DMFA on a large scale resting-state fMRI data, Autism dataset [Craddock et al.,
2013], and a task fMRI data, Depression dataset [Lepping et al., 2016]. We assessed the clustering
feature of DMFA on both datasets in terms of disease and cognitive state separation tasks, visualized
in Fig. 3 and Fig. 4. We further provided a quantitative comparison with two state-of-the-art Bayesian
generative models for fMRI data, HTFA [Manning et al., 2018] and NTFA [Sennesh et al., 2020], and
a deep state-space model, RKN [Becker et al., 2019], in terms of synthesis quality of the generative
models on both datasets by computing held-out log-likelihood and prediction accuracy, respectively,
in Table 2.

5.1 Synthetic fMRI

We generated synthetic fMRI data using a MATLAB package provided by Manning et al. [2014b],
which is known to be useful for analysing fMRI models. The synthesized brain image for each
trial (time point) is a weighted summation of a number of radial basis functions (spatial factors)
randomly located in brain. This synthesized fMRI data is then convolved with a hemodynamic
response function (HRF) and zero-mean Gaussian noise with a medium-level signal-to-noise ratio is
added. Here, we considered 30 activation sources (spatial factors) randomly located in a standard
MNI-152-3mm brain template with roughly V = 270, 000 voxels and 150 trials. We randomly split
these 30 activation sources into 3 groups, each having 10 of the Gaussian blobs. These three groups
of sources are periodically activated according to some random weights, one after another, for 5 trials.
We generated non-overlapping sequences of T = 5 time points from this synthetic fMRI data. This
resulted in 10 data points for each activation group (i.e., N = 30). To train DMFA, we set T = 5,
K = 30, Dt = 2, De = 8, S = 3, and σY = 0.01. As depicted in Fig. 2 (a), DMFA was able to
successfully recover the 3 clusters of activation that were present in this dataset totally unsupervised.
The dynamical trajectory of each cluster mean in the temporal latent (i.e., µzW

t
|µzW

t−1
,C) is predicted

sequentially from the learned generative model and is visualized in the bottom-right of Fig. 2 (a),
and appears to be partitioned into three consecutive rotational dynamics. This is consistent with the
periodic activations of sources in data clusters (which come in tandem). Predictions of the learned
generative model for a selected activation source are visualized in Fig. 2 (d) for the next 50 time
points, estimated as follows: wt ∼ p(wt|zt), where zt ∼ p(zt|zt−1) for t = {151, . . . , 200}. These
predicted samples perfectly follow hemodynamic response function, confirming DMFA’s capacity in
capturing the underlying nonlinear HRF by using neural networks in its deep temporal generative
model.

5.2 Autism Dataset

We used the publicly available preprocessed resting state fMRI (rs-fMRI) data from the Autism
Brain Imaging Data Exchange (ABIDE) collected at 16 international imaging sites [Craddock et al.,
2013]. This dataset includes rs-fMRI imaging from 408 individuals suffering from Autism Spectrum
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Figure 4: (a), Left: Training DMFA clustered together temporal latent variables associated with each subject
without supervision, while partially separating clusters of points associated with the MDD group from those
associated with the control group. The MDD group appears more concentrated into the center of the temporal
latent space, while the control group have their temporal latent variables dispersed more broadly across the latent
space. (a), Middle, Right: DMFA enabled us to partially separate “positive” and “negative” stimuli per-subject
with Gaussian clusters. (b) Real and reconstructed brain images.

Disorder (ASD), and 476 typical controls. Each scan has T = 145 ∼ 315 time points at TR = 2, and
V = 271, 633 voxels. We split the signals into sequences of 75 time points. We take two approaches
to evaluate the performance of DMFA in separating ASD from control: (i) Cluster data directly in
the low dimensional latent, ZW, using the clustering feature of DMFA (called DMFA), (ii) Extract
functional connectivity matrices, [Hull et al., 2017], from learned temporal weights, W , followed
by a 10-fold SVM for classification (called DMFA+SVM). As baselines, we performed a 10-fold SVM
classification on extracted connectivity matrices from (i) averaged signals of 116 ROIs in automatic
anatomical labeling (AAL) atlas [Kazeminejad and Sotero, 2019] (called ROI+SVM) and (ii) a hundred
time courses obtained with nonlinear spatial ICA of Hyvarinen and Morioka [2017] (called ICA+SVM).
Several studies have been done on this dataset to differentiate ASD group from control [Abraham
et al., 2017, Parisot et al., 2017, Singh et al., 2017, Kazeminejad and Sotero, 2019, Wang et al., 2021,
Sun et al., 2021], all of which using supervised methods, and could achieve accuracies up to 72%
using the signals extracted from anatomically labeled regions in the brain by carefully splitting data
to be as homogeneous as possible and reducing site-related variability.

We set T = 75, K = 100, De = 15, Dt = 5, S = 2, σY = 0.01, and trained DMFA for 200 epochs
on the entire dataset (Full), and also datasets from 9 imaging sites (with more balanced datasets)
separately: Caltech, Leuven, MaxMun, NYU, SBL, Stanford, UM, USM, Yale. As shown in Fig. 3
(Right), DMFA and DMFA+SVM outperformed baselines in Caltech, SBL, Stanford, and Yale (at p-value
< 0.005, corrected for multiple comparisons), while ROI+SVM and ICA+SVM only performed better
in NYU dataset. DMFA+SVM performed slightly better than baselines on the entire dataset (Please
note that DMFA is a clustering approach, hence, no error bars are provided for it in Fig. 3). Clustering
results for Caltech, Maxmun, SBL, and Stanford are shown in Fig. 3 (Left) in which ASD and control
seems to be partially separable (see Fig. S1 in supplementary for more visualization results).

5.3 Depression Dataset

In this dataset [Lepping et al., 2016], 19 individuals with major depressive disorder (MDD) and
20 never-depressed control participants listened to standardized positive and negative emotional
musical and nonmusical stimuli during fMRI scanning. Each participant underwent 3 musical, and 2
nonmusical runs each for 105 time points at TR=3 with V = 353, 600 voxels. During each run, each
stimulus type (positive, and negative) was presented for 33 seconds (∼ 11 time points) interleaved
with instances of neutral tone of the same length. We discarded instances of neutral tone, and split
each run into non-overlapping sequences of T = 6 time points in agreement with stimuli design
(each stimuli block is split into two sequences). In other words, each run has 4 sequences associated
with “positive stimuli”, and 4 with “negative stimuli” resulting in a total of 8 data points for each run.
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Table 2: Comparison of held-out log-likelihood and prediction accuracy. DMFA results in models with higher
held-out likelihood and better prediction accuracy, therefore, is a better fit compared to the competitors.

Negative Held-out Log-Likelihood (Nats) Prediction (NRMSE%)

Dataset
Model DMFA NTFA HTFA Ablation DMFA RKN

DMFA DMFA

Autism (Caltech) 2.52 2.61 2.82 2.75 2.63 5.44 6.19

Depression 5.82 5.97 6.64 6.26 6.02 6.35 7.49

Synthetic 3.47 3.64 3.71 3.83 3.61 2.07 2.84
The best results are highlighted in bold fonts.
Likelihood values are scaled by 10−6, 10−5, and 10−5 for Autism, Depression, and Synthetic datasets, respectively.

In the first experiment, we trained DMFA on the entire musical runs (N = 39 × 3 × 8 = 936) by
setting T = 6, K = 100, De = 15, Dt = 5, σY = 0.001 for 200 epochs. The results are shown
in Fig. 4 (a, Left). We observed that DMFA fully separated the data points associated with each
subject into distinct clusters across the low dimensional temporal latent space. In other words, DMFA
was able to re-unite pieces of signals associated with each subject without any supervision. More
importantly, DMFA was able to partially separate the data points associated with MDD group from
control. As seen in Fig. 4 (a, Left), the MDD group data points are fairly populated in the center of
temporal latent while control group are dispersed across the latent space. However, DMFA was not
able to meaningfully separate “negative” and “positive” music pieces in its low-dimensional latent
space from a subject-level perspective, since the variation between runs of a subject dominates the
stimulus-level variation. For this reason, in a second experiment, we focused on 5 subjects, and
their first musical run from both MDD and control group and trained DMFA respectively. Again, as
expected, data points from each subject were distinctly clustered in the latent space (see middle and
right columns in Fig. 4 (a)). Additionally, DMFA was able to fit two partially separating Gaussians
to “positive”, and “negative” stimuli per subject. However, since the number of data points for each
subject and run is limited, the significance of these clusters are not conclusive. A dataset with longer
runs could possibly answer that.

5.4 Comparison with State-of-the-Art

We further evaluated DMFA against HTFA [Manning et al., 2018], an established probabilistic
generative model for multi-subject fMRI analysis, which uses unimodal Gaussian priors for both
temporal weights and spatial factor parameters, and its neural network-based extension NTFA
[Sennesh et al., 2020] in terms of held-out log-likelihood, and a state-of-the-art deep state-space
model, recurrent Kalman networks (RKN) [Becker et al., 2019], in terms of next-time-point prediction
accuracy of test set (see Table 2). Held-out likelihood is an established metric for evaluating generative
models (in lack of a ground-truth) and measures how probable an unseen data is under the generative
model. For next-time-point prediction, we adopt a rolling prediction scheme as in Chen et al. [2019],
and predict next time point on the test set sequentially from historical data using the generative model
and spatial factors learned on the train set.

We split our data to train and test as follows. We used the Caltech site subset from autism dataset and
split each subject’s fMRI time series into two half (each with T = 70). We trained the models on the
first half, and tested on the second half. For the depression dataset, we considered 4 sequences from
each subject’s run for training and tested on the remaining 4 sequences. We set K = 100 spatial
factors for all the models and trained each with their default hyperparameters. For the RKN model,
we fit AAL atlas ROI signals as it is intractable to feed raw high-dimensional data. We reported
average normalized prediction error (NRMSE%) for both RKN and DMFA on AAL atlas regions
to make a fair comparison. For the synthetic fMRI, we set K = 30 and picked half of the data for
test, and used the 30 Gaussian blob activations as ROI signals for reporting prediction accuracy in
RKN and DMFA. The results are shown in Table 2, which proves that DMFA resulted in models with
higher likelihood on the test sets, hence it is a better fit when compared to NTFA and HTFA models.
DMFA also resulted in better predictions on the test sets of autism, depression, and synthetic datasets
when compared with RKN.
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5.5 Ablation Study

We performed two ablation studies to further evaluate (and quantify) the impact of deep neural
networks and Markov temporal apriori. First, we trained a version of DMFA in which we removed
nonlinear activation functions (i.e., PReLU), denoted as DMFA. As reported in Table 2, in our
datasets, this resulted in a decrease in held-out likelihood. Also, the inferred temporal latents lacked
the interpretable patterns seen in Fig. 3 and Fig. 4 in terms of clinical/cognitive separability as latents
collapsed into the conditional Gaussian priors. Second, we trained a version of DMFA in which
we removed the temporal connections (i.e., temporal transition model), denoted as DMFA. Again,
this resulted in a drop in held-out likelihood as reported in Table 2, however, the temporal latents
preserved their interpretable patterns.

6 Conclusion

We presented deep Markov factor analysis, DMFA, a new probabilistic model for robust factor
analysis of high dimensional fMRI data. We employed a chain of low dimensional Markovian latents
connected by deep neural networks and conditioned on a discrete latent as a state-space embedding
for temporal weights to account for nonlinear dynamics, enable data clustering in a low dimensional
space, and provide informative visualizations about data. To tackle high spatial dimensionality in
fMRI, we employed a low dimensional spatial embedding to generatively parameterize spatial factors.
DMFA proves fast and capable on large-scale fMRI data.
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