
Solving Traveling Salesman Problems Using Parallel
Environments in Reinforcement Learning

Shaohua Hu
Institute of Automation, Chinese Academy of Sciences,

and Beijing Jiaotong University
Beijing, China

22711091@bjtu.edu.cn

Ming Zhu, Tenghai Qiu, Zhiqiang Pu
National Key Laboratory of Cognition and Decision Intelligence for Complex Systems,

Institute of Automation, Chinese Academy of Sciences,
and University of Chinese Academy of Sciences,

Beijing, China
zhumingpassional@gmail.com

Xiaolin Ai
National Key Laboratory of Cognition and Decision Intelligence for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing, China
and National Key Laboratory of Information Systems Engineering, Changsha Hunan, China

Abstract

Traveling salesman problems (TSP) are NP-hard and difficult to solve since the
search space increases significantly with problem size. Reinforcement learn-
ing (RL) is a promising method for its powerful search abilities with the help
of GPUs. However, sampling speed is a bottleneck since training requires a
large number of samples, and current methods ignore this issue. We propose
to use GPU-based parallel environments to increase the sampling speed in RL;
furthermore, we use powerful neural networks transformers with self-attention
to enhance the policy so that the long-distance topology can be learned. The
experimental results demonstrate the advantages of GPU-based parallel environ-
ments in terms of sampling speed and objective values. The code is available at:
https://github.com/zhumingpassional/RLSolver.

1 Introduction

Traveling Salesman Problems (TSP) are classic NP-hard in the field of combinatorial optimization
(CO), widely applied in various practical scenarios such as logistics and delivery. Heuristic algorithms,
such as the Concorde [1] and Lin-Kernighan-Helsgaun (LKH-3) [6], often struggle to handle instances
due to the combinatorial explosion. Their parameters rely on expert knowledge and complex tuning;
therefore, the optimality can not be guaranteed [2, 7].

In recent years, neural combinatorial optimization (NCO) has provided a new solution to this domain
through deep reinforcement learning (RL) [9]. By modeling the TSP as a sequential decision problem,
neural networks can learn end-to-end solution strategies without relying on pre-computed solution
pool. In particular, transformer-based architectures, with their ability to model global dependencies,
have shown great potential in solving TSP [7, 8]. However, the practical application of this method

https://github.com/zhumingpassional/RLSolver


is severely constrained by sampling speed, greatly limiting the feasibility of research iterations and
industrial deployment.

When solving the TSP, the practical application of neural network methods is often limited by the
core bottleneck of sampling speed. Although distributed RL frameworks such as A3C and IMPALA
have demonstrated significant effectiveness in other fields [10, 5], for highly structured CO problems
like TSP, simple parallelization strategies often fail to fully exploit their inherent symmetry and
constraint properties. The main challenges lie in the sparse reward mechanism in CO, which hinders
the effective propagation of learning signals. Additionally, the serial interaction between agents
and the environment in standard training frameworks significantly reduces data sampling speed,
and high-variance gradient estimates based on small-batch updates further exacerbate convergence
instability. Our method introduces a parallel environment mechanism to improve the sampling speed
and training efficiency for RL methods.

This paper proposes parallel policy optimization algorithm based on Policy Optimization with
Multiple Optima (POMO) [8], which breaks through computational bottlenecks through multi-level
parallelization and system-level optimization. The distributed POMO training architecture combines
PyTorch Distributed Data Parallel (DDP) [11] and the POMO algorithm to achieve data parallel
training on multiple GPUs, while each GPU internally generates multiple parallel trajectories through
POMO. The POMO framework [8] leverages the inherent symmetry of the TSP to simultaneously
generate solutions from multiple starting nodes, significantly improving solution quality and training
efficiency.

We conducted a review of existing open-source RL frameworks, evaluating their development and
maintenance status, functional coverage, and technical support. The results are shown in Table 1.
First, most frameworks lack active maintenance, posing compatibility risks with modern libraries and
affecting the reproducibility of research. Second, there are huge differences in functional coverage,
with the number of environments ranging from 3 to more than 100 and data source support ranging
from 1 to 12. This imbalance limits the ability of algorithms to be verified in different scenarios.
Finally, there are significant differences in technical architecture, with some frameworks lacking
GPU acceleration support, which leading to low training efficiency. Therefore, we believe that it is
necessary to establish a unified evaluation benchmark.

Table 1: Comparison of open-source RL frameworks

Attribute Jumanji rl4co or-gym RLSolver (Ours)
Number of Envs 22 27 21 24
Supported Data Sources 24 7 21 13
Last Commit (Age) >1y <1y >2y <1w
Approved PRs (6 mo.) 0 0 0 >20
GPU Acceleration ✓ ✓ × ✓

The key contributions of this paper are as follows:

1. We propose to use GPU-based parallel environments in RL methods for the TSP. Through
reasonable parallelization design, training time is reduced from tens of hours to a few hours,
significantly improving the practicality of NCO methods.

2. We designed a multi-level parallel architecture that effectively combines distributed data paral-
lelism and POMO’s trajectory-level parallelism. By fully leveraging the symmetry of the TSP
during training, we achieve efficient sample collection and stable gradient updates.

3. We validated the effectiveness of our method on standard TSP benchmarks. Experiments show
that the framework achieves a gap of 0.1%-1% from the optimal solution on TSP-20 to TSP-100,
demonstrating the significant role of parallel environments in enhancing the performance of neural
TSP solvers.

2 Methodology

This section provides GPU-based parallel environments in RL methods for solving TSP.

2



2.1 Problem Modeling

We model TSP in two-dimensional Euclidean space as a finite-time Markov decision process (MDP).
Given a set of city coordinates {xi ∈ [0, 1]2}ni=1, the goal is to construct the shortest Hamiltonian
cycle that visits all cities exactly once and returns to the starting point.

In the MDP, the agent constructs a solution by sequentially selecting the next city to visit. Specifically,
the state space S contains the fixed coordinates of all cities, the current city, the starting city, and the
mask information of the cities that have been visited. At time step t, the state st encodes the partially
constructed path πt = (c1, c2, . . . , ct). The action space A is the set of unvisited cities, which is a
discrete space that dynamically shrinks as the decision process progresses. The reward function is
sparsely designed, with a terminal reward equal to the total length of the path R(sn) = −L(πn) given
only when the entire path is completed, and zero rewards for intermediate steps. State transitions are
deterministic; after selecting city ct+1, the system transitions to a new state st+1 containing updated
path information.

This sequential modeling approach naturally leads to a deep learning-based solution strategy. Since
TSP is essentially a graph structure problem rather than a pure sequence problem, the Transformer
architecture is well suited to capture this global spatial relationship.

2.2 Reinforcement Learning Algorithm and Network Architecture

RL Framework

Our method uses Policy Optimization with Multiple Optima (POMO) as its main training framework.
The key point of POMO is to utilize the rotational symmetry of TSP solutions, i.e., for instances with
n cities, POMO constructs n trajectories in parallel, each starting from a different city. This design
expands the training signal for each instance from 1 trajectory to n trajectories, thereby exploring
multiple high-quality local optima in the space.

POMO uses the average reward of all parallel trajectories as the shared baseline, bi = 1
n

∑n
k=1 Ri,k,

where Ri,k denotes the trajectory reward of the i-th instance starting from the k-th city. Based on the
REINFORCE algorithm, we minimize the policy gradient loss:

L(θ) = 1

Bn

B∑
i=1

n∑
k=1

(Ri,k − bi)

n∑
t=1

log πθ(ai,k,t|si,k,t) (1)

where B is the batch size, and πθ is the parameterized policy network. This shared baseline
mechanism significantly reduces the variance of gradient estimates, making training more stable and
efficient.

Neural Network Architecture

Our method is based on a Transformer encoder-decoder architecture. The encoder first maps two-
dimensional coordinates to a high-dimensional embedding space through linear projection, and then
uses L layers of self-attention modules to extract global relationship features between nodes. The
embedded hj ∈ Rd output by the encoder has permutation invariance, which perfectly matches the
node disorder of TSP. We use PyTorch’s scaled dot-product attention fusion kernel and automatically
select Flash Attention [4] on supported hardware to improve computational efficiency and memory
utilization.

The decoder gradually constructs the path in an autoregressive manner. Let the encoder’s output
for each city be {hi}ni=1, and let the global context be h̄ = 1

n

∑n
j=1 hj . At step t, the decoder

concatenates the global context, the current city embedding hπt , and the initial city embedding
hπ1 , and performs a linear projection to obtain the query vector qt = Wq

[
h̄⊕ hπt ⊕ hπ1

]
. Then,

through a cross-attention mechanism, using qt as the query and the encoder output as the key-value
pairs, the context vector ct is calculated. The scores of candidate cities are calculated by the dot
product of the context vector and the encoder output: st(i) = C · tanh

(
c⊤
t hi√
d

)
+mt(i), where C

is the clipping coefficient, and the masking term mt(i) = 0 if i /∈ St and mt(i) = −∞ if i ∈ St,
to ensure that probabilities are only assigned to unvisited cities. Applying softmax to the scores
yields the selection distribution pt(i) = softmaxi

(
st(i)

)
. The next node is sampled according

3



to πt+1 ∼ Categorical
(
pt(·)

)
and added to the visited set St+1 = St ∪ {πt+1}. The conditional

probability of the entire path can be written as Pθ(π2:n | π1, H) =
∏n−1

t=1 pt
(
πt+1

)
.

Parallel Environments

Our parallelization is divided into two levels. Within the parallelization level, n POMO trajectories
are started for each instance on a single GPU. Between parallelization levels, Distributed Data Parallel
(DDP) is used to perform parallelization on K blocks of GPUs, with each GPU processing B/K
instances and synchronizing gradients between all processes. We use torch.compile to compile and
optimize critical rollout and loss calculation functions, spreading Python overhead across CUDA
Graphs. This allows us to process B × n instances simultaneously in a single training step. We use
torch.compile to compile and optimize the critical rollout and loss calculation functions, offloading
Python overhead to CUDA Graphs. This allows us to process B × n trajectories simultaneously in a
single training step, significantly improving sampling speed compared to traditional methods.

3 Experiment

3.1 Convergence and the number of environments

GPU-based parallel environments can improve the quality of solutions during training. We conducted
experiments on the TSP-30 dataset, setting the number of epochs to 50 and keeping the number
of training steps per epoch constant (50 steps). The internal POMO size of our method was set to
30 (equal to the problem size), and the total number of training steps was kept constant (50 steps).
Figure 1 shows the change in the objective value with the number of epochs in different GPU parallel
environments (batch size). We tested different parallel environment scales ranging from 4 to 1024.
The experimental results indicate that increasing the number of GPU parallel environments improves
performance significantly. More parallel environments help the model identify and learn high-quality
strategy patterns faster, thereby achieving faster convergence and better performance.

0 10 20 30 40 50
Epoch

4.75

5.00

5.25

5.50

5.75

6.00

6.25

6.50

Av
er

ag
e 

Re
wa

rd

4 envs
16 envs
32 envs
64 envs
128 envs
256 envs
512 envs
1024 envs

Figure 1: Performance with different numbers of GPU parallel environments

3.2 Speed of data sampling

We evaluated the sampling speed of our method and Jumanji [3] across different number of envi-
ronments to demonstrate the scalability and performance characteristics of our parallel optimization
method. Jumanji is a high-performance RL library that provides a suite of parallel environments and
scalable simulation tools. All benchmark experiments were conducted using NVIDIA A6000 GPUs.

As shown in Figure 2, our method demonstrates superior sampling speed at smaller number of
environments, with this advantage being particularly pronounced in the medium-to-large scale range
(128–1024). The sampling speeds of both methods scale approximately linearly with increasing

4



Table 2: Comparison of TSP solvers.

TSP20 TSP50 TSP100

Method Length Gap (%) Time (ms) Length Gap (%) Time (ms) Length Gap (%) Time (ms)

LKH3 3.845 0.00 9.00 5.687 0.00 80.0 7.754 0.00 390.0
Concorde 3.845 0.00 8.10 5.687 0.00 28.0 7.754 0.00 60.0

AM-greedy 3.856 0.28 0.39 5.777 1.59 0.50 8.086 4.28 0.72
AM-sampling 3.847 0.06 3.80 5.713 0.46 17.0 7.931 2.29 62.7
Ours 3.847 0.07 0.55 5.712 0.45 1.37 7.903 1.92 2.81

of environments. However, Jumanji exhibits a little better scaling properties when the number of
environments is 4096.

Figure 2: Sampling efficiency comparison between our method and Jumanji

3.3 Performance

This experiment was conducted on a server equipped with four NVIDIA A6000 GPUs, each with 48
GB of VRAM. The embedding dimension and hidden layer dimension of the model were both set
to 128, and the multi-head attention mechanism used 8 attention heads. To control the randomness
of action selection, we used a temperature parameter C = 15.0× (n/20)0.5, where n is the number
of nodes in TSP, enabling the model to automatically adjust the balance between exploration and
exploitation based on the problem scale.

The training dataset consists of 100,000 randomly generated TSP instances, with the number of nodes
set to 20, 50, and 100, and node coordinates uniformly distributed in the unit square [0, 1)× [0, 1). We
independently generated 1,000 test instances using different random seeds. For RL-based methods,
we uniformly set the model training to 300 epochs.In the evaluation phase, we compare our method
with OR-based methods and RL-based methods, assessing the gap from the optimal solution and the
solution speed.

The experimental results are shown in Table 2. In terms of solution quality, our method achieves
gaps of 0.07%, 0.45%, and 1.92% on TSP20, TSP50, and TSP100, respectively. All of them are
better than or close to AM-sampling and significantly better than AM-greedy. More importantly, our
method demonstrates a significant advantage in solution speed, being much faster than AM-sampling
and OR solvers. As the problem size increases from 20 to 100 nodes, our method’s solution time
increases by only approximately 5 times, while AM-sampling increases by approximately 16 times
and LKH3 increases by approximately 43 times, demonstrating excellent scalability. This indicates
the applicability of our method for handling TSP.

5



4 Conclusion

In this paper, we propose parallel environments in reinforcement learning for TSP. By combining
GPU parallel environments and the POMO algorithm, we overcome the computational bottlenecks
of data sampling in practical applications. Experimental results show that our method can achieve
high-quality solutions, high sampling speed and training efficiency. In the future, we will optimize
the management of multiple GPUs and memory.

5 Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant 62322316,
the National Natural Science Foundation of China under Grant No. 62503472, the Open Fund of
National Key Laboratory of Information Systems Engineering (No. 6142101240203).

References
[1] David L Applegate, Robert E Bixby, Václav Chvátal, and William J Cook. The traveling

salesman problem: A computational study. Princeton University Press, 2007.

[2] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

[3] Clément Bonnet, Daniel Luo, Donal Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
et al. Jumanji: A diverse suite of scalable reinforcement learning environments in jax. arXiv
preprint arXiv:2306.09884, 2024.

[4] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. In Advances in Neural Information
Processing Systems, volume 35, 2022.

[5] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward,
et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures.
In International Conference on Machine Learning, pages 1407–1416. PMLR, 2018.

[6] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Technical report, Roskilde University, 2017.

[7] Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems!
In International Conference on Learning Representations, 2019.

[8] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
Min. Pomo: Policy optimization with multiple optima for reinforcement learning. In Advances
in Neural Information Processing Systems, 2020.

[9] Xiao-Yang Liu, Ming Zhu, and Jiahao Zheng. ElegantRL: Massively parallel framework for
cloud-native deep reinforcement learning.
https://github.com/AI4Finance-Foundation/ElegantRL.

[10] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, et al. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928–1937. PMLR, 2016.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
et al. Pytorch: An imperative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems, volume 32, 2019.

6

https://github.com/AI4Finance-Foundation/ElegantRL

	Introduction
	Methodology
	Problem Modeling
	Reinforcement Learning Algorithm and Network Architecture

	Experiment
	Convergence and the number of environments
	Speed of data sampling
	Performance

	Conclusion
	Acknowledgment

