
NESTED SLICE SAMPLING

David Yallup∗, Will Handley
Institute of Astronomy and Kavli Institute for Cosmology Cambridge
University of Cambridge
{dy297, wh260}@cam.ac.uk

Namu Kroupa
Department of Engineering and Cavendish Laboratory
University of Cambridge
nk544@cam.ac.uk

ABSTRACT

Nested Sampling is a powerful meta Bayesian inference algorithm known for
its ability to estimate the marginal likelihood of a model and perform parameter
inference, even for complex multimodal distributions. In this paper, we refine
the formulation of Nested Sampling in the context of slice sampling, leading to
a novel vectorized version of the algorithm that leverages GPU acceleration for
improved efficiency in machine learning applications. We demonstrate that this
vectorized Nested Slice Sampling algorithm can exploit parallelization opportu-
nities to substantially reduce runtime while maintaining sampling accuracy. The
performance of the approach is evaluated on a range of challenging benchmark
problems, showing significant improvements in sampling efficiency and scalability
to high dimensions. The proposed vectorized Nested Sampling algorithm opens
up new possibilities for applying Nested Sampling to large-scale machine learning
problems where efficient Bayesian inference is critical. We provide an open-source
implementation of our method to facilitate adoption and reproducibility.

1 INTRODUCTION

Sampling from unnormalized probability distributions is a foundational task in Machine Learning.
This probability distribution can be defined,

P (x) =
exp (−βE(x))Π(x)

Z
, β ∝ 1/T , (1)

Where x are the parameters of interest, E is the scalar energy function and Π some reference
probability density. The normalizing constant Z is the partition function of the Boltzmann distribution,
and is typically described as the intractable normalizing constant in the machine learning literature.
The inverse temperature T , defined as β, is introduced that can smoothly modulate between some
reference distribution Π (often implicitly taken as an unbound uniform probability density and
omitted) at β = 0 and the target density at β = 1. This constant is defined as the integral of the
Boltzmann factor exp(−βE(x)) over the microstates x of the system,

Z =

∫
exp (−βE(x))Π(x)dx . (2)

When the Boltzmann factor is identified as a likelihood function – the probability of observing some
data given parameters of a model – and the reference distribution is identified as a prior distribution of
model parameters, the normalizing constant can be identified as the marginal likelihood in statistical
inference (Murphy, 2022). Numerical estimation of this quantity is a central task when performing
Bayesian Model comparison (MacKay, 2002). This numerical estimation is widely performed with
Markov Chain Monte Carlo (MCMC) (Geyer, 1992) methods, although most standard MCMC
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algorithms do not directly estimate Z. Advances in such algorithms is of broad interest across
Machine Learning (ML) driven fields.

Nested Sampling was first introduced by Skilling as a generic meta algorithm targeting the estimation
of the marginal likelihood (Skilling, 2006). At a high level it belongs to the same school as particle
Monte Carlo methods, namely Sequential Monte Carlo (Doucet et al., 2001), evolving a population of
particles through a series of intermediate distributions that bridge between the reference uninformed
state and the informed target. It saw immediate adoption in the physical sciences (Ashton et al., 2022;
Pártay et al., 2014), where it was noted for its robustness in the face of sampling from complex,
multimodal distributions. However, despite this popularity, a single, canonical implementation
strategy has not emerged, leading to a variety of named implementations with differing internal
mechanics. This presents a methodological gap compared to more standardized algorithms like
Hamiltonian Monte Carlo. Various aspects of its specific implementation have been extensively
explored in the intervening years, with some common successful patterns emerging which we
summarize in this work. Contemporary work on incorporating gradients of the energy surface has
seen some promising results (Feroz & Skilling, 2013; Cai et al., 2022; Lemos et al., 2023), and some
implementations in modern autodiff (Baydin et al., 2018) compatible frameworks (Albert, 2020;
Anau Montel et al., 2024) have appeared in recent years.

In this work, building on successful patterns in NS development, we look to address this method-
ological gap and provide a clear, efficient, and modern implementation suitable for both physical
science and ML practitioners. We firstly seek to refine the formalism of Nested Sampling in Section 2,
focussing on slice sampling as a robust and efficient inner kernel, arguing for its foundational role in
performant NS implementations. We distill this insight into a practical implementation, Nested Slice
Sampling (NSS), detailed in Section 3, that incorporates several key advantages over existing ap-
proaches (discussed in Section D), most notably enabling efficient vectorization for parallel hardware
(GPUs), analogous to recent efforts vectorizing other MCMC methods (Hoffman & Sountsov, 2022;
Hoffman et al., 2021). Our implementation is designed to be composable within modern probabilistic
programming ecosystems like jax. Subsequently, in Section 4, we highlight the state-of-the-art
performance achievable with this implementation on challenging black-box sampling problems,
demonstrating its ability to handle multimodality and estimate normalizing constants accurately
across a range of dimensions.

2 THEORETICAL FRAMEWORK AND RELATED METHODOLOGIES

In this section we review the generic framework of Nested Sampling, and it’s connections to other
sampling methodologies. We also introduce the Slice Sampling algorithm, and demonstrate how it
uniquely suited as an inner kernel for Nested Sampling.

2.1 NESTED SAMPLING

An illustration of the NS algorithm is shown in the top panel of Figure 1, where the reference Gaussian
density in orange is weighted by a Boltzmann factor illustrated in solid blue, with this sketch of the
algorithm running from left to right. The target log density we wish to sample from is shown in the
bottom panel in black, and exhibits two distinct modes of density. A shortcoming of many MCMC
single chains is that probabilities to transition between these modes rapidly approaches zero when
realized in higher dimensions (Łatuszyński et al., 2025). A common theme of algorithm design to
alleviate this is to construct a path of interpolating distributions between the known reference and the
desired target, where annealing – increasing β smoothly from zero to one – is perhaps the dominant
paradigm. NS constructs these interpolating targets by iterative compression of the reference density,
using a decreasing energy criterion (dashed blue) to drive particles towards the low energy (high
likelihood) regions of the reference density (Skilling, 2006). This path of intermediate distributions
(shown in solid shades of orange) is unique to NS, formed of constrained regions of the reference
density.

We form a generic outer kernel that defines the transition between a population of particles from
one energy level to the next in Algorithm 1 (defined in Appendix B). Leaving aside the issue of the
constrained propagation step for now, we review how this outer kernel yields a set of samples that
can reconstruct the partition function. Repeated action of this kernel yields a series of monotonically
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E ≤ inf E ≤ 10 E ≤ 3 E ≤ 0

P (x)

Figure 1: Illustration of the Nested Sampling algorithm [top], and how it constructs the partition
function [bottom].

decreasing ordinates in energy1,
E1 > E2 > . . . > En , (3)

and k deleted (dead) particles that estimate the fractional decrease in volume (X) by a geometric
factor dependent on the size of the (live) population, m, as,

∆ lnXi = −k/m . (4)

Starting from a known reference volume of X0 = 1, the partition function can be constructed as a
sum weighted by the Boltzmann factor associated with each energy ordinate as,

Z =

n∑
i=1

exp(−βEi)∆Xi . (5)

Noting that this possesses the unique property of being athermal i.e. amenable to reweighting to any
temperature level. This estimation follows geometric arguments on the expectation of the volume
contraction, and the accumulated effect this has on the partition function has been well studied in the
literature (Chopin & Robert, 2010; Keeton, 2011; Fowlie et al., 2023). The energy levels being set
automatically renders the algorithm inherently adaptive, and it is typical to provide some termination
criteria exiting once the remaining live term in the sum is sufficiently smaller than the accumulated
estimate. We revisit some finer details of these arguments in Section C.

The base form of NS comprises of a single particle k = 1 transition, but this can be set to some higher
fraction of the total particle count m allowing vectorized versions we will exploit in this article. This
parallelization strategy, detailed further in Section D.3, is key to leveraging modern hardware. This
scheme has already been exploited to some level with MPI parallelization for CPU usage (Handley
et al., 2015). The resulting estimate in Equation (5) is a Lebesgue integral of vertical division of the
energy levels (Llorente et al., 2023). Where the choice of vertical steps is automatically determined
by the algorithm and optimally set for the target of marginal likelihood estimation (Polson & Scott,
2015).

2.2 SLICE SAMPLING AS NESTED SAMPLING

Efficiently sampling from the constrained reference distribution is the core challenge of Nested Sam-
pling (NS). At each iteration, NS requires drawing samples from the reference distribution Π(x) re-

1In probabilistic inference terms, the energy is the negative-log likelihood, hence decreasing energy is
increasing likelihood.
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stricted to the region where the energy is less than a certain threshold Emin (i.e., E(x) < Emin) (Buch-
ner, 2021a). We propose two arguments in this work, firstly that it requires a minimal augmentation
to Slice Sampling (Neal, 2003) to realize NS, and secondly that all efficient implementations of NS
inherently resemble some form of Slice Sampling.

Vertical Slice Step out Rejection sample

Figure 2: Illustration of the Slice Sampling procedure. First a vertical slice of the target density is
taken, followed by an iterative stepping out procedure to set the interval of the horizontal slice, finally
followed by a rejection sampling from this segment.

In moderate-dimensional spaces, rejection sampling can be employed, utilizing the current set of
live particles to inform a proposal distribution (Feroz & Hobson, 2008; Buchner, 2021b). However,
rejection sampling becomes inefficient in high-dimensional spaces due to the curse of dimensionality.
Proposal regions for rejection can be made increasingly expressive – using the live populations of
particles to inform this choice – with a variety of ML approaches investigated (Lange, 2023; Williams
et al., 2021; Torrado et al., 2023).

To address this challenge, successful implementations for high-dimensional problems often incor-
porate a Slice Sampling (SS) inner kernel within NS (Handley et al., 2015; Speagle, 2020; Albert,
2020). SS is an MCMC method designed to sample from a target distribution that is in principle free
of tuning (Neal, 2003). SS constructs a Markov transition kernel that alternates between vertical
slices of a target distribution by some random uniform auxiliary variable u ∼ U(0, 1), allowing a new
state x′ to be sampled from the horizontal slice of the target at height y = u×Π(x). Specifically, we
consider the Hit-and-Run Slice Sampling algorithm, which simulates from the horizontal slice by an
iterative stepping out and rejection sampling procedure to efficiently sample from high-dimensional
constrained distributions (Neal, 2003). A figurative diagram of this procedure is shown in Figure 2.
This realization of SS has favorable scaling properties and practical implementation advantages in
high-dimensional settings (Power et al., 2024; Rudolf & Ullrich, 2018). The hit-and-run (Smith,
1984) portion of the procedure is powered by constructing some proposal distribution, and using
this to generate new directions to perform the horizontal slice step (Buchner, 2023). We consider
a simple Gaussian direction proposal distribution in practice, characterized by some conditioning
matrix, M , used to sample Mahalanobis normalized directions for slicing. There is much potential
for improvement in building more complex proposals (Moss, 2020), but a fast, robust baseline will
prove highly competitive.

In Algorithm 2 (Appendix B) we detail SS as an inner kernel complement to the NS outer kernel
detailed in Algorithm 1. We observe that if the auxiliary energy variable constraint is removed (i.e.,
Emin →∞), and the target is the unnormalized posterior density, we recover standard SS. Where the
auxiliary energy level criteria does appear, it appears in conjunction with the existing stepping out
procedure – vitally SS is already simulating from a region with compact (and potentially complex)
support. By maintaining a sample of live particles defining the auxiliary energy level Emin, SS can
be amenably tuned throughout the runtime of the algorithm. NS benefits immensely from sampling
methods adept at handling compact support – regions constrained by hard boundaries – contrary
to many MCMC methods that perform best with unbounded support (a comparison demonstrating
the inefficiency of constrained random walks is shown in Section F). While there are some notable
exceptions (Murray et al., 2005; Brewer & Foreman-Mackey, 2016), Hit and Run SS has been the
dominant paradigm for NS for a reason. Potential improvements to this core design invariably have
many similarities to SS (Lee & Vempala, 2016; Chen et al., 2019).

2.3 CONNECTIONS TO SEQUENTIAL MONTE CARLO

The connection between Sequential Monte Carlo (SMC) (Chopin, 2002; Del Moral et al., 2006) and
Nested sampling has been formalized in (Salomone et al., 2024), where NS can be styled as a particular
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form of SMC. SMC is widely used in the statistical community for model comparison (Zhou et al.,
2015), is impressively parallelizable (Murray et al., 2015) and is noted for robustness in multimodal
sampling problems (Paulin et al., 2018). These are all features we highlight of NS in this work,
hence it forms a natural choice for a baseline in our empirical studies. Similarly to Nested Sampling,
sequential Monte Carlo is a meta algorithm admitting many realizations in practice. We consider
in this an SMC implementation that is tempered – sequentially stepping in temperature between
reference and target – and adaptive – choosing these temperature steps on the fly (Fearnhead &
Taylor, 2010). A generic outer kernel of SMC is given in Algorithm 3 (Appendix B), where the core
components are propagation, weighting and resampling steps. The tempered SMC kernel takes a
monotonically increasing sequence of (inverse) temperatures {βt}t=T

t=0 that smoothly bridge from the
known, sampleable, distribution at β0 = 0 to the target at βT = 1. The sequence of temperatures
could be specified in advance, however a popular adaptive scheme is to calculate the effective sample
size, ESS=(

∑
w2

i )/(
∑

wi)
2, allowing the choice of βN+1 to be set by solving for a desired ESS to

be maintained in each outer step.

The choice of inner kernel to perform the propagation is an open design choice, with Metropolis
Hastings Random Walks (Robert & Casella, 2005; Andrieu et al., 2010; Chopin, 2002) or Hamiltonian
Monte Carlo (Duane et al., 1987; Buchholz et al., 2020) being popular choices. There are an array of
other methods employed in the statistics literature to estimate normalizing constants (Llorente et al.,
2023), however SMC’s state-of-the-art performance on many problems and notable commonalities to
NS make it a logical baseline. We note that where comparison between NS and SMC has been made
in the past (Grosse et al., 2015; Salomone et al., 2024), a suboptimal choice of MH inner kernels for
NS has been used (we explore this empirically in Section F). While SMC admits a highly flexible
choice of inner kernel, our argument in Section 2.2 is that performant NS implementations are often
best served by kernels adept at handling hard constraints, such as slice sampling.

3 ALGORITHM AND IMPLEMENTATION

The algorithm has been implemented in the blackjax framework (Cabezas et al., 2024), which
is a library for sampling algorithms in the jax ecosystem (Bradbury et al., 2018). This choice
is well motivated by the jax ecosystems rapid adoption in the scientific community, where the
goal of composable and differentiable functions allows complex forward models used in scientific
applications to be greatly accelerated. Additionally, the presence of state of the art, well tested SMC
implementations (Chopin & Papaspiliopoulos, 2020) within blackjax affords a direct comparison
(crucially, comparisons in prior work often lacked optimized NS implementations, see Section F).

3.1 NESTED SLICE SAMPLING

The combination of Algorithm 1 and Algorithm 2 (defined in Appendix B) define the form of
Nested Sampling we dub here NSS. Whilst our implementation accommodates flexible declaration of
proposal distributions, following the simplest definition in Algorithm 2, we take the proposal to be a
normalized direction drawn from a multivariate Gaussian with online tuning using the covariance
of the set of live particles. This tuning is run every outer kernel step but offers minimal overhead to
the algorithm run time, more expressive tuning could be run less frequency to balance any incurred
computational cost. An initial population is drawn from the reference density for the problem at
hand. Following the steps of deleting live particles based on energy levels, and resampling from
the remaining set, a short SS chain is run to construct new valid decorrelated states from the k
duplicated start points. We configure the NSS algorithm with the following key hyperparameters,
motivated by ablation studies (Section E) and typical usage. We maintain a population of m = 1000
particles, initialized from the prior distribution Π(x). At each iteration, we employ the vectorized
update described in Section D.3, removing the k = 100 particles with the highest energy values
and generating replacements in parallel. To ensure the new particles are sufficiently decorrelated
from their parents (selected from the surviving population), each replacement involves running the
inner HRSS kernel (Algorithm 2) for p steps, where we set p = 3× d proportional to the problem
dimension d. Finally, the overall process terminates based on a standard NS evidence convergence
criterion (Skilling, 2006): the algorithm stops when the estimated remaining contribution to the
marginal likelihood integral (Equation (5)) from the current live particle set falls below a tolerance

5



of 0.001 relative to the evidence accumulated from deleted particles. While flexible termination
conditions are possible, this default ensures the integration captures the vast majority of the evidence.

To utilize hardware acceleration, we apply the short SS chains in parallel, by vectorizing the inner
kernel and applying it to the set of chosen parent particles for propagation. As demonstrated in
Section F, HRSS benefits from a relatively low variance in the number of evaluations per step
compared to constrained random walks, meaning whilst the vectorization isn’t perfectly efficient
(see Section D.3), it is still very worthwhile. Notably the SMC methods used as benchmarks do not
require successful steps in their short chains. This is a key difference we revisit in the discussion.

3.2 SMC BENCHMARKS

To provide a benchmark, that similarly enables estimation of the normalizing constant with adaptive
tuning, we use two variants of SMC with different choices of inner kernel. The overall adaptive
scheme for SMC is detailed in (Fearnhead & Taylor, 2010), and similarly to our NSS implementation
we consider a form that enables adaptive tuning of the inner kernel using the covariance of the live par-
ticles of the sampler. Specifically we use the inner kernel tuning algorithm as implemented
in blackjax. For the inner kernel we consider two choices, Random Walk Metropolis Hastings
(RW) and Independent Rosenbluth Metropolis Hastings (IRMH) (Robert & Casella, 2005). Both
inner kernels involve a proposal, which is chosen to a multivariate normal, with covariance estimated
from the live particles at each iteration. The static proposal of IRMH is a common choice (South
et al., 2019), to implement an Importance Sampling like scheme in a particle Monte Carlo (Andrieu
et al., 2010), this should perform similarly to Annealed Importance Sampling (Neal, 1998). The
same proposal is used to form the RW inner kernel, however in this case its covariance is additionally
scaled by a factor proportional to the dimension of the parameter space d, 2.382/d. This scaling
targets optimal acceptance rates for RW MH algorithms (Geyer, 1992).

To ensure a fair comparison with NSS, we configured the SMC benchmarks with analogous settings
where possible. Both SMC variants utilized a population of 1000 particles, matching the NSS config-
uration. The MCMC propagation step within each SMC iteration involved running the respective
inner kernel (RW or IRMH) for p = 3× d attempted steps, directly mirroring the chain length factor
used in NSS, where d is the problem dimension. Furthermore, we employed the adaptive tempering
scheme described in (Fearnhead & Taylor, 2010), where the sequence of inverse temperatures β is
determined automatically by targeting an Effective Sample Size (ESS) of 0.9 after each weighting
step. This target ESS value controls the adaptivity, managing the trade-off between making progress
towards the target distribution and maintaining particle diversity. While further problem-specific
tuning might yield marginal improvements, we kept these parameters fixed across experiments to
provide a consistent baseline comparison against NSS.

The effective sample size controls the size of the steps in the temperature β that are taken. There is
some leeway to optimize these parameters for problem specific performance, but we have chosen to
keep them fixed for the purposes of this study. Additionally, it would perhaps be expected to include
an inner kernel of Hamiltonian Monte Carlo to be adaptively tuned in this setup (Buchholz et al.,
2020), or include a more advanced proposal for the MCMC steps composed of a flow based neural
network (Matthews et al., 2023). Both of these represent opportunities to further augment the basic
setup of NSS, so we omit these in favor of a more like for like comparison. Parallel tempering is
another “classical” method that has seen some recent development (Syed et al., 2021), which could
have been selected as an alternative baseline. We omit propagation of errors on the normalizing
constant estimates of SMC, which we take to form unbiased estimators with minimal counting
error (Beskos et al., 2011).

4 EXPERIMENTS

In this section we review the performance of the proposed algorithm on a variety of benchmark
problems. We consider a range of synthetic benchmarks, as well as a selection of problems from
the Inference Gym (Sountsov et al., 2020). We evaluate the quality of the samples provided by each
algorithm using the Maximum Mean Discrepancy (MMD) (Gretton et al., 2012), where the ground
truth for comparison is composed of samples drawn from either analytically known results, or from a
computationally exhaustive MCMC run. To understand the efficiency of each algorithm we report
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the Effective Sample Size (ESS) of the resulting posterior approximation, amortized for runtime and
number of energy evaluations required to reach the result. Details on this calculation are included
in Section C.2. All experiments are run on either an M1 Max Studio CPU, or an NVIDIA T4 GPU.
Details on uncertainty and ESS calculation are included in Section C.

4.1 MIXTURE OF BIVARIATE GAUSSIANS

We consider a pedagogical example of a challenging, yet visualizable, 2D multimodal problem.
Comprised of a mixture of 40 bivariate normal distributions on a uniform reference density, as
introduced in (Midgley et al., 2023). It is noteworthy that this problem seems challenging for
the many Normalizing Flow (Papamakarios et al., 2021b) based Neural Network approaches being
explored for sampling. We display target samples obtained from running the various algorithms
considered in Figure 3, and the results are encapsulated in Table 1. We include an example of
Hamiltonian Monte Carlo with No-U-Turn sampling (Hoffman & Gelman, 2014) as a further control
due to its ubiquity. However, as HMC does not estimate the normalizing constant Z, we exclude
it from the main numerical comparisons in subsequent sections, though its struggles with this
multimodal target (even in 2D) highlight the challenges faced by standard gradient-based methods.
We find that both NSS and SMC trivially recover the target with competitive accuracy, indicated by
the retrieval of lnZ and the MMD. Whilst using more energy evaluations to reach this state, when
judged by ESS per evaluation or per second, NSS displays an edge in efficiency.

−50 −25 0 25 50

−40

−20

0

20

40

True samples

−50 −25 0 25 50

NSS

−50 −25 0 25 50

SMC RW

−50 −25 0 25 50

NUTS

Figure 3: Mixture of 40 bivariate Gaussian distributions on a bounded uniform distribution.

4.2 SYNTHETIC BENCHMARKS

Next we introduce challenging synthetic benchmarks designed to probe sampler performance on
specific pathological features common in inference problems, such as high dimensionality, strong
correlations (Rosenbrock), hierarchical structures (Neal’s funnel), and pronounced multimodality
(Gaussian Mixture), where accurate posterior sampling and evidence estimation are difficult. We list
the specific details of each benchmark in the following subsections, providing a visualization of the
results in a 2D slice of parameter space in Figure 4 (with ground truth samples as larger blue points,
and algorithm results in smaller orange points), alongside performance details in Table 2. Across
these three experiments we see that NSS is consistently providing the highest quality of samples, as
well as leading in efficiency of sample generation.

4.2.1 MIXTURE OF GAUSSIANS

An extension of the basic 2D example to a more challenging 10D problem, with a mixture of five
10-dimensional Gaussian distributions with randomized means and covariance.

4.2.2 NEAL’S FUNNEL

A ten dimension example of a funnel distribution, as defined in (Neal, 2003). The ground truth is found
by running an HMC chain for many iterations and using a non-centered parameterization (Gorinova
et al., 2019). For the algorithms under test we use the more challenging centered parameterization.
The target distribution is defined as,

P (y,x) = N (y|0, 3)
9∏

n=1

N (xn|0, exp(y/2)) , (6)
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Figure 4: Marginal distributions of the first two parameters of the synthetic benchmarks. Rosenbrock
[top left], Neal’s funnel [top right], and Mixture of Gaussians [bottom].

With a uniform prior distribution on all parameters.

4.2.3 ROSENBROCK FUNCTION

A ten-dimensional example of the Rosenbrock function on a uniform prior. The Rosenbrock function,
is known for having a challenging sweeping degeneracy, is a common test problem for optimization
algorithms. In its generalized n-dimensional form, its energy is defined as,

E(x) =

n−1∑
i=1

[
100(xi+1 − x2

i )
2 + (1− xi)

2
]
. (7)

4.3 INFERENCE GYM

To complement the results on synthetic benchmarks, we also run the set of algorithms on some
common intermediate dimension parameter space problems included in the inference gym (Sountsov
et al., 2020) repository. These examples typically include data, and are realizations of Bayesian
probabilistic models, where the energy function is the negative log likelihood of the model. We
include the results in Table 3, noting the dimension of the parameter space of the problem as [d]. This
package includes ground truth derived from exhaustive and selectively tuned HMC runs, performing
parameter inference in high dimensional Bayesian inference models would typically be the domain
of gradient assisted sampling methods.

An important quantity in Bayesian inference that is used to perform model selection is the Bayes
factor, defined as the ratio of marginal likelihoods of two models, lnBF12 = lnZ1 − lnZ2, where
the integral in Equation (5) is now understood as the integral of the likelihood function over the prior
on the parameters. Reference values for marginal likelihoods are hard to come by on such problems,
HMC and other popular scalable methods explicitly do not estimate this, and the algorithms presented
in this work are the state of the art on this task.

NSS still appears to consistently provide the most accurate posterior inference, whilst being competi-
tive in runtime metrics, although the inefficiency of vectorization relative to the perfectly vectorized
SMC is likely the cause here. We note that for the largest problem, based on a S&P500 volatility
model, the prior contains a sizable set of invalid likelihood regions. Even after attempting to mask
these as low likelihood, neither SMC algorithm is able to make any progress, but NSS sees invalid
regions as a simple extension of its already constrained sampling set (a natural consequence of the
HRSS kernel, Algorithm 2) and progresses fine.
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5 DISCUSSION

In both SMC and NSS, the hyperparameter that is not comfortably set is the length of the short
Markov Chains used to mutate the particles, p. This needs to be set sufficiently high to decorrelate
the particle that is being duplicated, but overestimation of this length causes poor sampling efficiency.
The version of SMC employed uses an ‘embarrassingly’ parallel update that attempts a fixed number
of steps across all particles, Nested Sampling in its base form is at the extreme other end attempting
to only update one particle at a time. The NSS approach detailed falls somewhere between this, and
bears resemblance to waste-free variants of SMC (Dau & Chopin, 2021). The numerical experiments
in Section 4.3 show that across the board NSS is able to be more efficient in terms of number of
evaluations, but loses out on total runtime. This suggests that the variable number of evaluations
required in the slice sampling construction (Figure 10) is somewhat wasteful when vectorized under
strict synchronization (discussed in Section D.3), and an outstanding issue for Nested Sampling
approaches is the ability to tune this length on the fly based on some measure of how decorrelated
samples are across many short chains (Margossian et al., 2024). Similar discussions in the NS
literature have focussed on a dynamic form of NS (Higson et al., 2018), dynamically tuning numbers
of live particles, however this is badly suited for a static memory vectorized implementation, so we
prefer to highlight tuning the length of the short chains (p) as a more tractable problem for future
work.

Conceptually, the comparison highlights different adaptive strategies. Tempered SMC adapts its path
through intermediate distributions by managing particle diversity (via ESS targets) along a predefined
annealing coordinate (β). NSS, conversely, adapts its path by discovering iso-likelihood (iso-energy)
contours dictated by the data itself, making its progression inherently tied to the likelihood structure.
While this makes NSS potentially more direct for evidence estimation, it also imposes stricter
requirements on the inner kernel’s ability to handle the resulting hard constraints, unlike the greater
kernel flexibility typically afforded in SMC.

On synthetic benchmarks, with complex geometries, NSS is notably strong across all metrics
with minimal tuning. Although more detailed tuning of benchmark SMC algorithms may close
this gap, the robustness and accuracy on a variety of O(10) dimensional problems explains and
aligns with many usages in Bayesian inference for the physical sciences. Providing a vectorized
implementation of NS is vital and has immense benefit for the physical sciences, where vectorized
forward models (Wong et al., 2023b) and Neural Network emulators (Spurio Mancini et al., 2022)
are increasingly commonplace. Tentative applications of the core NS procedure to Machine Learning
applications such as marginalization of Gaussian Process hyperparameters (Simpson et al., 2021;
Kroupa et al., 2024), has thus far used legacy MPI parallelized code and would benefit immensely from
this vectorized implementation. We expect this implementation to be suitable for O(100) dimension
problems, although more efficient gradient based short chains (an open challenge discussed in
Section F.1) will be needed to progress much beyond this (Lemos et al., 2023).

6 CONCLUSION

Nested Sampling and Sequential Monte Carlo are state-of-the-art algorithms for providing unbiased
estimates of the normalizing constant of a target distribution. Whilst there are other options, estimation
of this normalizing constant, particularly in the presence of complex features present in many real
world distributions mean this remains a notoriously difficult task. Nested Sampling is a technique that
has become the workhorse for model comparison in many fields in the physical sciences, particularly
those with a Bayesian preference such as astrophysics (Trotta, 2008), but has remained relatively
obscure in the machine learning community. This paper addresses this by providing a clear, modern
implementation of Nested Sampling with some important algorithmic refinements centered on slice
sampling (Section 2.2) and key simplifications compared to legacy codes (e.g., direct prior sampling,
no clustering, see Section D). We formulate a static memory version of the algorithm that compiles
on modern GPU hardware in the jax ecosystem. This implementation is compatible with single digit
precision, and allows highly parallelized, vectorized computation (Section D.3). We remove some
of the more cumbersome details of existing NS algorithms, whilst retaining superior performance
on many metrics, and this is demonstrated on a variety of challenging benchmarks in this work.
We provide an open source and general framework for NS, and outline a number of open problems
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and future research directions that this work enables, including improved adaptation via NDEs
(Section F.2, Section F.3) and incorporation of gradient information (Section F.1).

SOFTWARE AND DATA

The core algorithm implementation has been prepared for submission to a widely used open source
library. On publication, explicit experiment example code will similarly be made available. All data
is composed of standard benchmark problems, which are open source and online.

IMPACT STATEMENT

This paper presents work whose goal is to advance the field of Machine Learning. We target a widely
used method in the physical sciences and provide a modern implementation that is compatible with
hardware acceleration. We believe this has the potential to enable a new class of problems to be
solved in the physical sciences, and potential for innovative usage in the machine learning community.
There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.
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A RESULTS TABLES

Here we include tables detailing the results of the numerical experiments run in the main text.

Table 1: Algorithm performance details for the pedagogical mixture of bivariate Gaussians problem.

Algorithm Energy evals ESS Time (s) MMD lnZ ESS ESS
/1k eval /second

Ground Truth - - - - -9.21 - -
NSS 455628 3743 1.9 9.57 ×10−3 -9.18 ± 0.05 8.2 2 ×103

SMC RW 190000 989 0.59 7.46 ×10−3 -9.24 5.2 1.7 ×103

SMC IRMH 190000 991 0.6 4.80 ×10−3 -9.21 5.2 1.6 ×103

Table 2: Algorithm performance details for synthetic benchmarks.

Algorithm Energy evals ESS Time (s) MMD lnZ ESS ESS
/1k eval /second

Funnel
NSS 12276194 37086 6.7 0.052 -30.03 ± 0.13 3 5.6 ×103

SMC RW 2350000 985 1.6 0.39 -31.37 0.42 6.2 ×102

SMC IRMH 2300000 960 1.6 0.43 -31.38 0.42 6.1 ×102

Gaussian Mixture
Ground Truth - - - - -46.05 - -
NSS 3469821 8737 5.1 0.062 -46.40 ± 0.13 2.5 1.7 ×103

SMC RW 1170000 954 1.3 0.19 -45.92 0.82 7.3 ×102

SMC IRMH 1170000 989 1.4 1.5 -47.33 0.85 7.1 ×102

Rosenbrock
NSS 6856062 9937 5.4 0.22 -50.14 ± 0.22 1.4 1.8 ×103

SMC RW 3180000 999 2.3 0.79 -50.78 0.31 4.4 ×102

SMC IRMH 3150000 998 2.4 2 -51.66 0.32 4.1 ×102

Table 3: Results on benchmarks from the inference gym set of problems.

Algorithm Energy evals ESS Time (s) MMD lnZ ESS ESS
/1k eval /second

Eight Schools [d] = 10
NSS 1534238 5180 4 6.03 ×10−3 -36.19 ± 0.08 3.4 1.3 ×103

SMC RW 1320000 990 1.9 8.28 ×10−3 -36.23 0.75 5.2 ×102

SMC IRMH 1350000 989 2.2 8.49 ×10−3 -36.12 0.73 4.6 ×102

Credit Logistic [d] = 25
NSS 20723029 11671 2.1 ×102 7.57 ×10−3 -529.16 ± 0.26 0.56 56
SMC RW 4875000 942 12 9.17 ×10−3 -528.98 0.19 80
SMC IRMH 4875000 960 13 0.012 -529.14 0.2 76

Radon Contextual [d] = 97
NSS 128345045 15353 9.1 ×102 7.78 ×10−3 -2590.43 ± 0.28 0.12 17
SMC RW 27936000 999 55 0.011 -2601.00 0.036 18
SMC IRMH 28227000 960 71 0.012 -2610.48 0.034 14

S&P500 Small [d] = 103
NSS 40684489 11670 1.9 ×103 0.036 -688.23 ± 9.92 0.29 6.2
SMC RW - - - - - - -
SMC IRMH - - - - - - -
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B ALGORITHM DETAILS

Here to complement the description of the algorithm in the main text, we include the pseudo-code for
the main algorithms discussed.

Algorithm 1 Nested Sampling outer Kernel
Input: Particles {xi}m0 , deletion number k
Sort {xi}m0 by E(xi), finding top-k energy levels
Define Emin as min of top-k energy levels
Weight by boolean wi = (E(xi) < Emin)
Resample k parents from {xi}m0 with replacement by wi

Propagate k duplicated particles with {xi}ki=1 ← {x′
i}ki=1, E(x′

i) < Emin with some inner kernel
for p steps
Output: {xi}m0 , Emin

Algorithm 2 Inner kernel Hit and Run Slice Sampling for Nested Sampling
Input: Current state x, Target distribution Π(x), Conditioning matrix M , Energy function E(x),
Auxiliary energy variable Emin

Vertical slice y ← u×Π(x), u ∼ U(0, 1)
Sample direction d ∼ N (0,M)
Normalize d← d/∥d∥
Draw initial slice direction w ∼ U(0, 1)
Initialize l← x− wd, r ← x+ (1− w)d
{Stepping-out phase: Find interval boundaries satisfying both constraints}
while Π(l) ≥ y and E(l) < Emin do
l← l − d

end while
while Π(r) ≥ y and E(r) < Emin do
r ← r + d

end while
{Rejection phase: Sample uniformly from interval until valid point found}
loop

Propose x′ ∼ Uniform(l, r)
if Π(x′) ≥ y and E(x′) < Emin then

break {Accept valid sample x′ and exit loop}
else
{Shrink interval based on invalid proposal x′}
if x′ < x then
l← x′

else
r ← x′

end if
end if

end loop
Output: x′

Algorithm 3 Tempered Sequential Monte Carlo
Input: Particles {xi}m0 , weight wN

i , temperature βN

Resample {xi}m0 with replacement with probability wN
i

Propagate {xi}m0 → {x′
i}m0 with some inner kernel for p steps.

Weight by βN+1, wN+1
i ← exp(−βN+1 − βNE(x′

i))

Output: Particles {x′
i}m0 , weight wN+1

i , temperature βN+1
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C PROBABILISTIC VOLUME ESTIMATION AND UNCERTAINTY
QUANTIFICATION

Nested Sampling (NS) estimates the normalizing constant (Equation (5)) by summing contributions
from particles deleted at increasing energy levels. The weight of each contribution depends on the
estimated prior volume shrinkage ∆Xi associated with deleting particle i. Following Section 2.1, this
section details how to accurately estimate these volumes and propagate the associated uncertainty,
particularly for the vectorized (k > 1) version of NS.

C.1 TRACKING THE EFFECTIVE NUMBER OF LIVE PARTICLES

Our vectorized implementation (Algorithm 1 with k > 1) simultaneously removes the k particles
with the highest energies. Let these particles have energies E0 > E1 > · · · > Ek−1, where Ek−1 is
the energy threshold Emin for the batch removal.

While the particles are removed together, we can analyze the expected volume shrinkage by concep-
tualizing k sequential single-particle removals ordered by these energies. The expected log-volume
shrinkage associated with the removal of the (j + 1)-th particle in this ordered subsequence (the one
with energy Ej) reflects the reduction in live particle count from m− j to m− j − 1:

∆ lnXi,j = −
1

m− j
, for j ∈ {0, . . . , k − 1} . (8)

The total expected log-shrinkage for removing the entire batch is the sum of these individual expected
contributions:

∑k−1
j=0 (−

1
m−j ). Noting that i still indexes the running outer sum in Equation (5). This

provides a more accurate point estimate for the expected volume contraction at an outer step i than the
simple approximation −k/m. Crucially, this calculation provides the expectation of the shrinkage,
and we can deal with this uncertainty as detailed in Section C.2. In simple terms this means rather
than jumping k energy levels, we jump k times with a smaller geometric sample each time, before
replenishing back to m total particles.

C.2 STOCHASTIC ESTIMATION OF PRIOR VOLUMES AND IMPORTANCE WEIGHTS

While Section C.1 discussed the expected volume shrinkage, robust uncertainty quantification in
Nested Sampling relies on simulating the stochastic nature of the volume compression process
post-hoc (Skilling, 2006; Keeton, 2011). This is the strategy used in our experiments.

To simplify the notation, we can drop the second index introduced in Equation (8) and absorb the
changing volume estimate into an effective number of live particles at iteration i, as m∗

i . At each
energy level transition, provided we have drawn a new decorrelated sample from the level set, the
next energy level is sampled uniformly within the level set. The stochastic change in log-volume
associated with the i-th particle deletion is then simulated by sampling ui ∼ U(0, 1):

∆ lnXi =
lnui

m∗
i

. (9)

Using this simulated volume element ∆Xi, the importance weight for particle i (at inverse temperature
β) is:

logwi(β) = ln(∆Xi)− βEi . (10)
An ensemble of weights for each particle can be calculated by resampling the stochastic volume
estimates in Equation (9). This ensemble of weights is then used to compute expectations and
uncertainties on the normalizing constant estimate and any other related derived quantity.

This simulation captures the primary volume uncertainty. Other potential error sources may require
different diagnostics, explored in the literature (Prathaban & Handley, 2024; Higson et al., 2019).

C.3 DEMONSTRATION

To demonstrate the practical application of the stochastic volume estimation, we replicate the synthetic
10D mixture of Gaussian experiment from Section 4.2. We perform multiple runs of both SMC RW
and NSS, each initiated with different random seeds.
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For NSS, the procedure detailed in Section C.2 is used on the output of each run (or the combined
output of all runs) to derive a standard deviation for the log-normalizing constant estimate (lnZ).
This standard deviation quantifies the uncertainty originating from the stochastic volume compression
inherent in the NS method.

For SMC, such an internal error estimate is not directly available from the standard algorithm.
Therefore, we assess its performance variability by calculating the empirical mean and standard
deviation of the lnZ estimates across the multiple independent runs.

An additional benefit of the NSS post-hoc analysis is that particle lists from multiple runs can be
concatenated before applying the volume simulation procedure. This allows for a single, combined
lnZ estimate and uncertainty derived from the full set of generated samples, potentially offering
improved precision compared to analyzing runs individually.

The results are visualized in Figure 5. The plot compares the distribution of lnZ estimates from
multiple SMC runs against the NSS estimates. On this challenging multimodal problem, the figure
illustrates the utility and accuracy of the internally generated NSS error bars compared to the SMC
variant.
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Figure 5: Log-normalizing constant estimate across 10 reseeded runs for a 10D Gaussian Mixture
target.

D ADVANTAGES VERSUS EXISTING NESTED SAMPLING IMPLEMENTATIONS

In this section we consider some important differences that distinguish the algorithm proposed in this
work from existing work, particularly focussing on aspects not covered in the main text.

D.1 ENCODING A REFERENCE (PRIOR) DENSITY

Standard implementations of NS typically use a transform from the unit hypercube to encode a prior
density. This is convenient and for most proper priors a largely moot point on paper. However, in
practice it offers a number of distinct disadvantages that we lift by designing an algorithm to work
directly with prior densities.

• Numerical stability: The transform from the unit hypercube to the prior density can be
numerically unstable, this is compounded for higher dimensional problems, and particularly
harshly visible when using single precision numerics. For ML and hardware accelerated
version of the algorithm this is a strong motivation.

• Flexibility: For some applications such as online Bayesian updating this would require
representing previous results with a learnt transform from the unit hypercube, and whilst
feasible (Alsing & Handley, 2021), it is restrictive in certain use cases.

• Geometry: The simplest probabilistic inference case of a Gaussian Prior and Gaussian
likelihood, and hence Gaussian posterior, has the simplest geometry one could hope for, a
level set comprised of a hyperellipsoid. If one is reliant on a transform to the unit hypercube
to perform sampling in that space, this geometry is naturally deformed, taking a simple
problem and making it harder. We demonstrate this for a simple bivariate normal distribution
in Figure 6.

In summary the insistence on a representation of the prior as a transform from the unit hypercube is
largely a historical artifact derived from initial usage of rejection sampling, where arbitrary truncation
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of non-uniform priors to make sampling efficient are largely impossible otherwise. Leaving this
behind brings the algorithm in much closer alignment with modern probabilistic programming
languages, and the ability to use the algorithm in a wider range of applications.
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Figure 6: Samples drawn in a space defined on the real metric of the prior [left], and a representation
of the same samples after the inverse CDF of the prior density F−1 is used to map these to the unit
hypercube [right]. The target (posterior) geometry is warped and even a simple Gaussian problem
becomes non-linear.

D.2 CLUSTERING AND DENSITY ESTIMATION

Another common feature of existing Nested Sampling implementations is the use of clustering
algorithms on the live particle set {xi}m0 . By identifying distinct groups and often fitting simple
geometric shapes (e.g., ellipsoids based on local covariance) to them, these methods perform a form
of rudimentary density estimation. This is used to create locally adapted proposals, a necessity for
scaling early rejection sampling based implementations (Feroz & Hobson, 2008) which struggle with
disparate modes using a single proposal distribution.

In contrast, our Markov Chain inner kernel approach (NSS) makes explicit clustering unnecessary.
NSS primarily adapts globally using information from the entire live set (e.g., updating the condi-
tioning matrix M based on the global covariance) combined with the inherent local adaptation of
the slice sampling steps themselves (finding boundaries via stepping-out). It does not build explicit
local density models for separate modes. This offers significant advantages in terms of algorithmic
simplicity (removing the need for a complex clustering module) and efficiency (avoiding clustering
overhead and potentially facilitating better hardware vectorization).

While effective, the global adaptation in NSS could be enhanced. There would be clear benefit in using
more modern techniques to construct better inner kernel proposals, potentially replacing the simple
global covariance M with explicit Neural Density Estimators (NDEs). We discuss opportunities
for Neural Network proposals further in Section F.2. NDEs offer potential advantages over legacy
clustering implementations due to better scalability to high dimensions and their suitability for parallel
GPU computation compared to often sequential or tree-based clustering algorithms. This mirrors
improvements in modern SMC algorithms, where issues like sample impoverishment and mode
collapse are mitigated by incorporating adaptive proposals, using NDEs to better capture multimodal
targets and guide particle propagation (Matthews et al., 2023).

We consider the same 10D mixture of Gaussians problem from Section 4.2. The first two dimensions
of the resulting posterior distribution are shown in Figure 7, and the results are encapsulated in Table 4.
Despite lacking clustering, NSS recovers the posterior distribution accurately (lowest MMD) and
efficiently, offering a drastic improvement in walltime (over an order of magnitude on this benchmark)
compared to PolyChord (Handley et al., 2015) or UltraNest (Buchner, 2021b). While all algorithms
provide good solutions, this demonstrates the viability and performance benefits of the non-clustering
approach.

D.3 VECTORIZATION FOR PARALLEL ACCELERATION

With the increased proliferation of Neural Network surrogates, neural Simulation-Based Inference,
and the general utilization of GPU acceleration in scientific problems, sampling algorithms that
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Table 4: Comparison between popular legacy implementations and the current work.

Algorithm MMD lnZ Energy evals

Ground truth - -46.05 -
NSS 0.018 -46.1±0.2 2910702
PolyChord 0.055 -46.1±0.2 3309636
UltraNest 0.057 -45.7±0.32 3143172
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Figure 7: Comparison of first two dimensions of a 10D mixture model, comparing different legacy
implementations with the current work.

efficiently leverage parallel hardware have become essential. However, implementing typically
control-flow-heavy MCMC methods effectively on architectures like GPUs presents challenges (Hoff-
man & Sountsov, 2022; Hoffman et al., 2021; Riou-Durand et al., 2023).

Our approach accelerates Nested Sampling by exploiting the flexibility in choosing the number of
particles, k, deleted per outer iteration (Algorithm 1). The standard implementation uses k = 1,
proceeding sequentially. Choosing k > 1 allows k particles to be deleted simultaneously, and
crucially, allows the generation of k replacement particles (typically by duplicating k survivors and
evolving them with the inner MCMC kernel) to be performed in parallel.

The efficiency of this parallelization is limited by the inner MCMC step, here Hit-and-Run Slice
Sampling (Algorithm 2). Slice sampling involves a variable number of likelihood evaluations per
call (e.g., during stepping-out). When executing k chains in parallel (e.g., via jax.vmap), the time
for the collective step is determined by the chain requiring the maximum number of evaluations.
Therefore, the speedup is not perfectly linear in k. However, despite this inherent variability,
significant wall-clock time reductions are achievable, especially on highly parallel hardware like
GPUs.

To demonstrate the efficiency and trade-offs, we consider a Gaussian linear model (y ∼ N (Aθ,C))
with Gaussian priors on θ, where A is a random matrix. Defining a data generating process for yi,
subject to Gaussian noise C, as,

Aij ← N (0, I) (11)
θj ← N (0, I) (12)
yi ← N (Aijθj , C) . (13)

By simulating a true value for the parameters θj , a data observation yi is generated. Such a model has
an analytic Gaussian expression for the distribution of θ conditioned on the simulated observation,
and allows scaling to large parameter spaces by increasing j, and large data vectors by scaling i. To
test the efficiency of vectorization we consider an example where i = 100, j = 10 and C = I .

Using NSS to infer θ, we start with m = 500 live particles and vary the deletion number k from
1 to 400. Figure 8 shows the effect on total runtime and the error in the estimated log marginal
likelihood (lnZ). Vectorization provides substantial runtime benefits, with diminishing returns as k
(and thus the fraction k/m) increases when run on CPU hardware, however exhibiting no diminishing
returns when run on a GPU. This speedup comes at some cost in accuracy: the error in lnZ increases,
appreciably increasing when deleting over half of the particles. This increased error arises because
larger k leads to larger jumps between the energy contours where particles are deleted. This results
in a coarser discretization of the evidence integral (Equation (5)), increasing the variance of the
numerical integration.
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The shape of the runtime curve depends on the problem specifics (e.g., cost of likelihood evaluation
relative to MCMC overhead) and hardware. The explicit comparison between CPU and GPU runs in
Figure 8 (normalized) highlights the vastly superior scalability achievable with GPU acceleration for
this vectorized approach.
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Figure 8: Ablation of the deletion fraction (k/m) as a hyperparameter of the NSS algorithm, effect
on runtime is shown for a simple Gaussian Linear model with other hyperparameters fixed. Default
value used elsewhere in this work corresponds to k/m = 0.1.

E HYPERPARAMETERS OF NESTED SLICE SAMPLING

We identified the main hyperparameters of NSS in Section 3. In this section, we provide ablation
studies on a controlled problem to motivate the default choices used in our empirical studies. We
chose a d = 20 dimensional Gaussian inference problem: comprised of a multivariate Gaussian
prior and energy (likelihood) function, an inference problem where the target distribution P (x) is
also Gaussian hence has analytic form and a known normalizing constant. The prior distribution
is taken to be a unit multivariate normal distribution, and the energy (likelihood) function E(x)
is a d-dimensional Gaussian E(x) = N (x|µE ,ΣE). The parameters of the energy function were
randomly generated (but fixed across ablations) for this experiment as,

µE,i ← N (0, I) , (14)

Ci,j ← N (0, 0.12) , (15)

ΣE = CCT . (16)

In Figure 9, we explore how varying key hyperparameters affects performance, measured by the error
in the estimate of lnZ and the total number of likelihood/energy evaluations required. We analyze:

• Population size (m): (Left panel) As expected, increasing the number of live particles m
improves the accuracy of the lnZ estimate (error scales roughly as 1/

√
m), primarily by

reducing the statistical variance in the stochastic volume estimations (Equation (9)). This
comes at a roughly linear increase in the total number of energy evaluations.

• MCMC Chain Length Factor (p): (Middle panel) This factor determines the number
of inner MCMC steps p taken to decorrelate duplicated particles. Initially, longer chains
improve sample decorrelation, potentially reducing bias or variance in lnZ, but beyond a
certain point (e.g., p ≈ 2− 5× d here), there are diminishing returns on accuracy while the
computational cost continues to grow linearly.

• Proposal Scale Factor (ϵ): (Right panel) This factor scales the covariance matrix M used
for proposing directions in the Hit-and-Run Slice Sampling kernel (proposal ∼ N (0, ϵ2M)).
Setting ϵ optimally balances the efficiency of the slice sampling steps; too small may lead to
slow exploration, too large may lead to inefficient stepping-out or rejection within the slice.
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The results suggest that ϵ = 1.0 (using the unmodified covariance) performs well for this
problem, but we are largely insensitive to this on this idealised problem.

The deletion fraction k/m was analyzed separately in Section D.3 due to its direct link to vectorization.
These ablation studies illustrate the typical trade-offs between computational cost and accuracy
inherent in tuning NS hyperparameters. The default values used in this work (m = 1000, p = 3× d,
ϵ = 1.0, and k/m = 0.1) represent a reasonable and practical balance for the benchmark problems
considered.

0

2

4

6

E
n
er

g
y

E
va

lu
a
ti

o
n
s

×107

0 1000 2000 3000 4000

Population size (m)

−33.5

−33.0

−32.5

ln
Z

Analytic

NSS

1

2

E
n
er

g
y

E
va

lu
a
ti

o
n
s

×107

1 2 3 4 5

MCMC Chain length (p/Dimension)

−33.0

−32.5

−32.0

ln
Z

Analytic

NSS

1.25

1.50

1.75

2.00

2.25

E
n
er

g
y

E
va

lu
a
ti

o
n
s

×107

1 2 3 4 5

Scale factor (ε)

−33.50

−33.25

−33.00

−32.75

−32.50

ln
Z

Analytic

NSS

Figure 9: Ablation of 3 hyperparameters of the NSS algorithm on a randomized 20 dimension
Gaussian Prior, Gaussian Energy/Likelihood problem. Scaling the population size (left), scaling the
length of the short inner Markov chains (middle) and tuning a scale factor of the particle covariance
slice proposal (right). Defaults used in this work are m = 1000, p = 3 × d, and a scale factor of
ϵ = 1.0.

F CHALLENGES OF CONSTRAINED PRIOR SAMPLING

A core challenge in Nested Sampling is efficiently drawing samples from the prior distribution Π(x)
restricted to the dynamically shrinking region where the energy E(x) is less than the current threshold
(E(x) < Emin). This hard energy constraint poses difficulties for many standard MCMC techniques,
often rendering them suboptimal due to high rejection rates near the boundary. Some expositions
and comparisons of Nested Sampling have highlighted this by using inner kernels based on simple
constrained random walks (RW) (e.g., Salomone et al. (2024)).

To illustrate the benefit of our chosen inner kernel, we contrast the performance of such a constrained
RW sampler with our Hit-and-Run Slice Sampling (HRSS) implementation detailed in Algo-
rithm 2. The RW implementation mirrors the adaptive approach used for SMC in Section 2.3:
proposals are drawn from a multivariate Gaussian whose covariance is tuned based on the live
particle set and scaled by 2.382/d, but proposed steps are rejected if they fall outside the energy
constraint E(x′) < Emin. We compare these two inner kernels on a 50D ill-conditioned Gaussian
problem. Figure 10 displays the distribution of the number of likelihood/energy evaluations required
per successful MCMC step for both methods.

The HRSS kernel (Algorithm 2) is naturally suited to this constrained sampling task. Its ’stepping-out’
procedure explicitly seeks the boundaries of the valid slice (defined by both the prior slice level y and
the energy constraint Emin) along a given direction before drawing a sample from within that valid
interval. This avoids the high rejection rates encountered by the RW kernel near the energy boundary.
As shown in Figure 10, the RW approach frequently proposes steps that are rejected, leading to a
long tail in the distribution of evaluations per step and wasted computations. Empirically, the NSS
algorithm using HRSS significantly outperforms the RW variant, achieving lower runtimes (over an
order of magnitude faster on this problem) and more accurate lnZ estimates. The poor and highly
variable performance of the constrained RW (indicated by the long tail) seriously hinders efficient
vectorization (Section D.3).
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Figure 10: Comparison of efficiency of the inner kernel for Slice Sampling [left] and Random Walks
[right], evaluated on a 50D ill-conditioned Gaussian problem under the NS energy constraint. Plotted
is the histogram of energy evaluations per accepted step.

F.1 GRADIENT-BASED SAMPLING

A topic of considerable interest is how to incorporate gradient information from the energy function,
∇E(x), (where available) to improve sampling efficiency within Nested Sampling, particularly in
high-dimensional problems (Lemos et al., 2023; Feroz & Skilling, 2013). Developing a robust method
to leverage gradients effectively would be transformative. While our modular implementation allows
exploring different inner kernels, successfully integrating gradient information into the NS process
remains an open challenge, arguably a key limitation compared to gradient-based methods applied to
unconstrained posteriors.

The core difficulty stems from the NS sampling task itself (Figure 1). The target distribution within
the constraint E(x) < Emin is the (often uninformative) prior Π(x), yet the useful gradient ∇E(x)
describes the landscape of the energy function defining the constraint boundary. Standard gradient-
based MCMC proposals (like HMC or MALA trajectories) do not inherently respect this hard energy
boundary.

Existing approaches often draw inspiration from Neal’s suggestions for slice sampling (Neal, 2003),
such as using reflections based on the energy gradient at the boundary defined by E(x) = Emin.
However, this construction faces practical hurdles: accurate reflection requires precise boundary
identification and handling, which is computationally complex and difficult to implement robustly,
especially for curved boundaries. Furthermore, hitting the boundary exactly is a rare occurrence in
continuous space. A potentially more fruitful path might involve generalizing ideas from methods
like (Cai et al., 2022), perhaps using proximal gradient terms or softened constraints within a
Langevin-guided proposal mechanism designed to better navigate near the hard energy boundary.
Currently, however, no clear, generally successful design pattern for gradient-based NS has emerged.
Despite this, the performance of gradient-free NSS on challenging black-box problems remains
noteworthy.

F.2 COMPARISON WITH NDE-AUGMENTED MCMC METHODS

The NSS method proposed here acquires information about the target distribution via evaluations of
the prior Π(x) and energy E(x) during its slice sampling steps (Algorithm 2). Adaptation occurs
through relatively simple information compression: using the global covariance of the live points
{xi}m to update the conditioning matrix M for the Gaussian direction proposal.

A prominent alternative approach involves augmenting Markov Chain Monte Carlo (MCMC) methods
with modern Neural Density Estimators (NDEs) (Papamakarios et al., 2021a). We benchmark NSS
against FlowMC (Wong et al., 2023a; Gabrié et al., 2022), which exemplifies this paradigm. FlowMC
primarily acquires information about the target posterior distribution through its Metropolis-Adjusted
Langevin Algorithm (MALA) (Roberts & Tweedie, 1996) steps. These steps explore the local
probability landscape using evaluations of the posterior density and its gradient, accepting or rejecting
moves based on the Metropolis-Hastings criterion. The key role of the NDE (specifically, a Rational
Quadratic Spline Normalizing Flow (Durkan et al., 2019)) in FlowMC is information compression
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Table 5: Comparison with FlowMC on the 10D Gaussian mixture problem.

Algorithm Energy evals ESS Time (s) MMD lnZ ESS ESS
/1k eval /second

Gaussian Mixture
Ground Truth - - - - -46.05 - -
NSS 3837175 8260 3.6 0.077 -45.92 ± 0.16 2.2 2.3 ×103

flowMC ϵ = 0.1 3200000 1520.14 20 0.52 - 0.48 75
flowMC ϵ = 1.0 3200000 2701.55 17 0.051 - 0.84 1.6 ×102

flowMC ϵ = 10.0 3200000 1768.62 17 0.57 - 0.55 1 ×102

and utilization: it learns an approximation of the target density based on the history of accepted
MCMC samples. This learned NDE is then used to generate more efficient global proposals for
subsequent MALA steps, aiming to accelerate the information acquisition process.

We compare NSS and FlowMC on the 10D Gaussian Mixture problem (Section 4.2), with results in
Figure 11 and Table 5. FlowMC was run with mostly default settings, however we favored aligning
the method closer to our NSS/SMC experiments, taking large numbers of short chains. To this end
we used 1000 parallel chains with a length of 3× d as used in our NSS/SMC implementation. The
MALA step size of FlowMC ϵ was varied. The reported FlowMC ESS reflects the effective number
of independent posterior samples based on MCMC diagnostics.

Key observations from Table 5:

• Evidence Estimation: FlowMC, as an MCMC method, samples the normalized posterior
but does not estimate the marginal likelihood lnZ. NSS directly targets and estimates this
quantity.

• Posterior Sampling Quality (MMD): Properly tuned FlowMC (ϵ = 1.0) achieves posterior
sample quality (MMD) comparable to NSS.

• Efficiency: Despite the NDE aiming to improve proposal efficiency, NSS demonstrates
significantly higher ESS per evaluation and per second, and a much lower overall runtime
on this benchmark. FlowMC incurs computational overhead for NDE training/evaluation
and requires careful tuning of its MALA step size ϵ.

This comparison highlights different strategies: NSS uses a simpler adaptation mechanism but relies
on an efficient, gradient-free inner kernel (HRSS) suitable for the NS task, directly yielding lnZ.
FlowMC uses sophisticated NDEs to accelerate gradient-based MCMC exploration but doesn’t
estimate lnZ and introduces overheads. While NSS performs strongly here, incorporating more
advanced NDE proposals (beyond global covariance) into the NSS framework itself remains a
promising direction for future work, potentially offering a different balance of information acquisition
and compression tailored to the NS objective.
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Figure 11: Comparison of different hyperparameter choices of an adaptive MCMC algorithm (aug-
mented with Normalizing Flows) to NSS on a mixture Gaussian problem.

F.3 COMPARISON WITH SCORE-BASED DIFFUSION SAMPLERS

Another avenue for incorporating NDE advances into inverse problem solving uses generative
models, trained with variational methods, to learn to directly approximate the target distribution.
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Table 6: Comparison with (underdamped) Diffusion Bridge Sampling (DBS) on the 10D Gaussian
mixture problem. * Note this is not the fairest measure of ESS as one can drawn arbitrarily many
samples from the diffusion process, but this is the number of samples used to estimate the MMD.

Algorithm Energy evals Time (s) MMD lnZ

Gaussian Mixture
Ground Truth - - - -46.05
NSS 3837175 3.5 0.077 -45.92 ± 0.16
DBS 65536000 255 0.28 -
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Figure 12: Comparison of NSS with Diffusion Bridge Sampling (DBS) on the 10D mixture Gaussian
problem.

Contemporary approaches use methods common to score-based generative models, to train a network
that can simulate approximate posterior samples, e.g. Controlled Monte Carlo Diffusions (Chen et al.,
2025). The free parameters trained in a variational approach are the weights and biases of the network
parameterizing the drift of the Stochastic Differential Equation (SDE) that generates the samples.

We compare NSS to Diffusion Bridge Sampling (DBS) (Richter & Berner, 2024) particularly using
its underdamped realisation (Blessing et al., 2025). DBS aims to learn a stochastic differential
equation that transports samples from a simple reference distribution to the potentially complicated
target distribution P (x). Information acquisition in DBS occurs during the training phase, requiring
repeated evaluations of the score function, i.e., the gradient of the log-target density (∇x logP (x)),
to guide the learned diffusion process. This gradient information, evaluated potentially many times
across simulated trajectories, informs the model about the shape and high-density regions of the target.
The acquired information is naturally compressed into the parameters of the Neural Network that
approximates the score or drift function of the diffusion process. Once trained, generating samples
involves simulating the learned SDE.

We applied DBS to the same 10D randomized Gaussian Mixture problem from Section 4.2, with
results shown in Figure 12 and Table 6. We note that DBS and related methods can provide estimates
of the normalizing constant, but this is typically relative to the reference (Gaussian) distribution,
rather than the actual Prior as would be needed for Bayesian Model Comparison for example. The
comparison (Table 6) highlights efficiency concerns for such approaches on this problem: DBS
required significantly more computational effort (evaluations and walltime, imposed by the training
cost), and questions remain regarding how favorably this cost scales with dimension. In this instance,
the increased cost also resulted in a poorer posterior approximation (higher MMD) compared to NSS.
While NDE-based generative methods can be powerful function approximators, their comparative
performance against established methods like NSS appears problem-dependent, especially when
considering both posterior accuracy and the primary goal of Bayesian evidence estimation. Although
this comparison doesn’t capture the utility of the trained approximate density provided by DBS, it
would be similarly possible to use information acquired by NSS (the posterior samples) within a
standard generative modelling framework to compress the learned representation, leaning on the
established success of such generative methods (Song et al., 2020).
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