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ABSTRACT

Despite the popularity of complex machine learning models,

domain experts often struggle to understand and are reluctant

to trust them due to lack of intuition and explanation of their

predictions. Moreover, these cannot be used in many real–

world applications, where features are not readily available

but acquired at a cost. To address the latter challenge, dy-

namic instance–wise joint feature selection and classification

selects both the order and the number of features to individu-

ally classify each data instance when features are sequentially

acquired one at a time. Herein, its model–based and post hoc

interpretability is demonstrated validating its utility in high–

stakes applications. As a case study, predicting the credit risk

of an individual based on financial and other data is consid-

ered. Experimental results show that the proposed method is

indeed interpretable without sacrificing prediction accuracy.

Index Terms— model–based interpretability, instance–

level sparsity, glass–box models, explainability, datum–wise

decisions.

1. INTRODUCTION

Recent advances in machine learning set paths to complex

function approximators that can achieve high performance in

many domains [1, 2]. However, humans are often reluctant to

deploy such complex models in practice, particularly in health

care, criminal justice, and financial markets, since they do not

have formal justifications about what the model is doing and

why it outputs specific classification decisions [3, 4].

Inherently interpretable machine learning models can be

used to discover relevant knowledge about domain relation-

ships in data, debug or justify the model and its outputs, and

control and improve the model [5–7]. Examples include the

generalized additive models (GAMs) [8] and the decision

tree. GAMs combine single–feature models through a linear

function, identifying the contribution of individual features

to the model output. Common GAMs include the logistic

regression and the explainable boosting machines, which use

linear and boosted decision tree shape functions [9].

This material is based upon work supported by the National Science

Foundation under Grants ECCS–1737443 & CNS–1942330.

Using a sparse set of features to classify data instances is

essential for model interpretability [6, 10], since we can ex-

plicitly observe which features contribute to each model out-

put. However, in standard settings, sparsity is achieved glob-

ally by incorporating a regularizer to the model parameters

(e.g., GAMs with L1–norm regularizer), where the same sub-

set of features is used to classify all test instances. In contrast,

the decision tree achieves instance–level sparsity by evaluat-

ing features along different decision paths, using different fea-

tures to classify different test instances. Nonetheless, it uses a

greedy approach to build the tree structure, where locally op-

timal splits are obtained at every tree node [11], hence, using

more features than necessary.

In our prior work [12], we proposed an algorithm for

Instance–wise Feature selection and Classification with op-

timum feature Ordering (IFCO), which dynamically selects

both the order and the number of features to classify each

data instance individually when features sequentially arrive

one at a time during testing. Herein, the model–based and

post hoc interpretability of IFCO is justified. Experimental

results on a credit risk classification task show that IFCO can

be used in high–stakes applications, where model interpre-

tations are required without sacrificing test accuracy. Other

sequential methods can be potentially analyzed in a similar

way to verify their interpretability.

2. BACKGROUND

In [12], we introduced the following optimization problem:

minimize
σ,σ(R),Dσ(R)

E

{

R
∑

k=1

e
(

Fσ(k)

)

+ L(Dσ(R))

}

, (1)

where σ denotes a permutation of the features, σ(R) de-

notes the number of features acquired before the frame-

work terminates assuming feature ordering σ, and Dσ(R)

denotes the classification rule used. The term e(Fk) > 0,
k ∈ {1, . . . ,K}, denotes the cost of acquiring feature Fk,

and L(Dσ(R)) =
∑L

j=1

∑L

i=1 QijP
(

Dσ(R) = j, C = ci
)

is

the cost associated with the classification rule Dσ(R), where

ci denotes an assignment to class variable C, and Qij > 0IC
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represents the cost of selecting class cj when the true class

is ci, i, j ∈ {1, . . . , L}. The optimum classification strategy

D∗

σ(R) for any number σ(R) and ordering σ was shown to be:

D∗

σ(R) = arg min
16j6L

[

QT
j πσ(R)

]

, (2)

where Qj , [Q1,j , Q2,j , . . . , QL,j ]
T , πσ(k) , [π1

σ(k), π
2
σ(k),

. . . , πL
σ(k)]

T , and πi
σ(k) , P

(

C = ci|Fσ(1), . . . , Fσ(k)

)

. The

posterior probability vector πσ(k) ∈ [0, 1]L is updated recur-
sively via Bayes’ rule as follows:

πσ(k) =
diag

(

∆
(

Fσ(k)|Fσ(1), . . . , Fσ(k−1), C
)

)

πσ(k−1)

∆T (Fσ(k)|Fσ(1), . . . , Fσ(k−1), C)πσ(k−1)

, (3)

where ∆
(

Fσ(k)|Fσ(1), . . . , Fσ(k−1), C
)

, [P (Fσ(k)|Fσ(1),

. . . , Fσ(k−1), c1), . . . , P (Fσ(k)|Fσ(1), . . . , Fσ(k−1), cL)]
T ,

diag(A) represents a diagonal matrix with elements of vector

A, πσ(0) , [p1, p2, . . . , pL]
T , and pi = P (C = ci). The

optimum ordering σ∗ and the optimum number σ∗(R∗) of
features were then derived using dynamic programming:

J̄k(πσ∗(k)) = min
[

g(πσ∗(k)), Āk(πσ∗(k))
]

, k = 0, . . . ,K − 1,

J̄K(πσ∗(K)) = g(πσ∗(K)),
(4)

where Āk(πσ∗(k)) , minFk+1∈Zk

[

e(Fk+1)+
∑

Fk+1
∆T (Fk+1|

Fσ∗(1), . . . , Fσ∗(k), C)πσ∗(k)J̄k+1

(

πσ∗(k+1)

)

]

, g(πσ∗(k)) , minj

[QT
j πσ∗(k)], and Zk is the set of remaining features at stage

k. The optimum number σ∗(R∗) of features is equal to the

first k < K features for which g(πσ∗(k)) 6 Āk(πσ∗(k)), or

σ∗(R∗ = K) if there are no more features to be acquired.

Finally, we proposed IFCO using the fact that g(πσ∗(k))
and Āk(πσ∗(k)) are continuous, concave, and piecewise linear

functions. To classify a test instance, IFCO starts by setting k

= 0 and assigning the prior distribution of the class variable

C to the posterior probability πσ∗(0). If J̄0(πσ∗(0)) belongs

to a hyperplane of g(πσ∗(0)), IFCO stops and classifies the

instance using Eq. (2). Otherwise, it acquires the feature as-

sociated with the hyperplane of Ā0(πσ∗(0)), increments k by

1, and updates the posterior probability πσ∗(0) using Eq. (3).

IFCO repeats these steps until it stops or there are no more

features available (see [12] for more details).

3. INTERPRETABILITY

The glass–box nature of IFCO (model–based interpretabil-

ity) is demonstrated herein, such that a human can understand

its behavior and which factors influence its decision–making

process. The relationships that IFCO has learned from a given

dataset (post hoc interpretability) [5] are also analyzed.

We consider logistic regression (LR) with L1–norm reg-

ularizer, and decision tree (DT) as baselines, since they are

well–studied machine learning models that are interpretable

on a modular level [6]. For demonstration purposes, we use

Table 1. Credit risk dataset features.
Feat. Description Feat. Description

F1 Checking account status F11 Present residence

F2 Duration in months F12 Property

F3 Credit history F13 Age in years

F4 Purpose of the credit F14 Other installment plans

F5 Credit amount F15 Housing

F6 Savings account status F16 Existing credits

F7 Present employment (years) F17 Job

F8 Installment rate F18 Number of dependents

F9 Personal status F19 Telephone

F10 Other debtors F20 Foreign worker
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Fig. 1. Number of features used to classify ten random test

instances in the credit risk dataset. Range corresponds to the

95% confidence interval.

the German credit risk dataset [13]. The goal is to classify

individuals as high or low credit risk based on a set of 20 fea-

tures (see Table 1). Similar observations can be made in other

domains (e.g., IMDB movie review classification [14]), but

are not included herein due to space limitations.

3.1. Model–Based Interpretability

Model–based interpretability considers three criteria: spar-

sity, simulatability, and modularity [5]. Sparsity refers to us-

ing a sparse set of features to classify each data instance. Sim-

ulatability represents the ability to simulate and reason about

the entire decision–making process. Modularity denotes the

ability to interpret the meaningful portions of the decision–

making process independently.

3.1.1. Sparsity

IFCO imposes instance–level sparsity by utilizing the fea-

ture acquisition cost, i.e.,
∑R

k=1 e
(

Fσ(k)

)

, in the optimization

function in Eq. (1). Specifically, acquiring features in differ-

ent orderings σ and terminating at different number σ(R) of

features results in different accumulated costs. By penaliz-

ing these accumulated feature acquisition costs, IFCO opti-

mizes the number of features used to classify individual data

instances. It also uses a varying number of features to classify

different data instances.

Similar to IFCO, DT uses a varying number of features

to classify different data instances by evaluating features

along different decision paths in the tree. In contrast, LR

imposes global sparsity by utilizing the L1–norm penalty on

the model parameters in the optimization function. Global
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sparsity degrades the model’s interpretability since it uses the

same subset of features to classify all test instances. How-

ever, before interpreting a sparse solution, the stability of the

sparsity should be validated [5]. In particular, if the sparsity

varies drastically due to a small perturbation in the training

dataset, the resulting interpretations are meaningless. Herein,

we train 100 instances of each machine learning model using

100 bootstraps of the training data and observe the variation

of the number of features used to classify a fixed set of test in-

stances (see Fig. 1). Observe that the variation in the number

of features used to classify the same test instance is less than

one feature with 95% confidence. Therefore, the instance–

level sparsity of IFCO and DT and the global sparsity of LR

are stable to small perturbations in the training dataset.

3.1.2. Simulatability

A human can simulate and reason about IFCO’s entire

decision–making process. The functions J̄k(πσ∗(k)), k = 0,
. . . ,K, in Eq. (4) can be decomposed into linear hyperplanes

because g(πσ∗(k)) and Āk(πσ∗(k)) are continuous, concave,

and piece–wise linear [12]. Hence, there are unique regions

in the domain of J̄k(πσ∗(k)), i.e., the posterior probability

space generated by πσ∗(k), that determine whether to acquire

a specific feature or stop the acquisition process. Fig. 2 illus-

trates this decision–making process for the credit risk dataset.

At stage k = 0, IFCO starts by assigning the prior probability

P (credit risk = high) to the posterior probability πσ∗(0). If

this probability falls in the blue region, IFCO acquires F1. If

it falls in the orange region, IFCO acquires F6. Otherwise,

IFCO stops and reaches a decision, i.e., the person is classi-

fied as low or high credit risk if this probability falls in the

green or red region, respectively. If IFCO decides to acquire

a feature (i.e., F1 or F6), it updates the posterior probabil-

ity πσ∗(0) using Eq. (3) and continues the decision–making

process similarly in the next stage, as shown in Fig. 2.

DT is also a simulatable model due to its hierarchical

decision–making process [5]. Each node compares the fea-

ture value with a fixed threshold and decides whether to fol-

low the left or right branch. Final decisions are at the leaves.

However, DT uses a greedy approach to learn the tree struc-

ture, where locally optimal splits are obtained at every tree

node [11]. In contrast, IFCO optimizes the instance–wise fea-

ture ordering, hence uses fewer features on average to classify

data instances compared to DT (see Table 2). In LR, a human

only needs to compute the dot product between the feature

vector and the corresponding weight vector to obtain a classi-

fication decision. Each weight is proportionate to the effect of

the corresponding feature on the class variable when the rest

features are kept unchanged.

3.1.3. Modularity

IFCO enforces modularity by employing a sequential decision–

making process based on a sufficient statistic, i.e., the poste-

0.0 0.2 0.4 0.6 0.8 1.0

k= 0

k= 1

k= 2

k= 3

πσ*(k)

Low risk
High risk
F1
F2
F3
F5
F6
F12

Fig. 2. First four stages of the IFCO’s decision making pro-

cess for the credit risk dataset.

rior probability vector πσ∗(k), that is recursively updated as

seen in Eq. (3). At each stage k, the only information required

for this update is the observation vector ∆
(

Fσ∗(k)|Fσ∗(1), . . . ,

Fσ∗(k−1), C
)

= [P (Fσ∗(k)|Fσ∗(1), . . . , Fσ∗(k−1), c1), . . . ,
P (Fσ∗(k)|Fσ∗(1), . . . , Fσ∗(k−1), cL)]

T . In other words, the

posterior probability decomposes into the probability of

each feature given the already acquired features and the

class variable. Note that probabilistic models can enforce

modularity by specifying a conditional independence struc-

ture, making it easier to reason about different parts of a

model independently [5]. IFCO adopts such an assumption,

which simplifies the observation vector to ∆
(

Fσ∗(k)|C
)

=
[P (Fσ∗(k)|c1), . . . , P (Fσ∗(k)|cL)]

T . This assumption helps

to decompose the posterior probability into simple and mean-

ingful portions in terms of the probability of each feature

given the class variable. It also speeds up computations and

enables prediction–level interpretations.

LR inherits modularity by having a decision function

based on an affine transformation of the input feature space [8],

while each node in DT can be viewed as a modular block that

contributes to the final classification decision.

3.2. Post Hoc Interpretability

This section analyzes the dataset– and prediction–level infor-

mation learned by IFCO about the credit risk dataset.

3.2.1. Dataset–level Interpretations

Partial Dependence: Partial dependence captures the marginal

effects of an individual feature on the output of a machine

learning model [15]. Specifically, for feature Fi, the par-

tial dependence function is approximated by PD(Fi) ≈
1
N

∑N

n=1 f̂(Fi, F̄
(n)
i ), where f̂ is the model output, F̄

(n)
i is

the nth training instance without feature Fi, and N is the total

number of training instances. Fig. 3 shows the partial depen-

dence functions of two features on the probability of credit

risk being high. Observe that the probability of credit risk

being high decreases as the feature savings account status

increases. Feature savings account status = 4 represents “no

known savings accounts” [13], which increases credit risk. In

contrast, feature age does not seem to affect credit risk.

Feature Importance: IFCO computes feature importance by

averaging the number of times each feature contributes to a
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