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Abstract

We consider the problem of estimating probability density functions based on sample data,
using a finite mixture of densities from some component class. To this end, we introduce the
h-lifted Kullback–Leibler (KL) divergence as a generalization of the standard KL divergence
and a criterion for conducting risk minimization. Under a compact support assumption, we
prove an O(1/

√
n) bound on the expected estimation error when using the h-lifted KL

divergence, which extends the results of Rakhlin et al. (2005, ESAIM: Probability and
Statistics, Vol. 9) and Li & Barron (1999, Advances in Neural Information Processing
Systems, Vol. 12) to permit the risk bounding of density functions that are not strictly
positive. We develop a procedure for the computation of the corresponding maximum h-
lifted likelihood estimators (h-MLLEs) using the Majorization-Maximization framework and
provide experimental results in support of our theoretical bounds.

1 Introduction

Let (Ω,A,P) be an abstract probability space and let X : Ω → X be a random variable taking values
in the measurable space (X ,F), where X is a compact metric space equipped with its Borel σ-algebra F.
Suppose that we observe an independent and identically distributed (i.i.d.) sample of random variables
Xn = (Xi)i∈[n], where [n] = {1, . . . , n}, and that each Xi arises from the same data generating process as
X, characterized by the probability measure F ≪ µ on (X ,F), with density function f = dF/dµ, for some
σ-finite µ.

In this work, we are concerned with the estimating f via a data dependent double-index sequence of estima-
tors (fk,n)k,n∈N, where

fk,n ∈ Ck = cok (P)

=

fk (·;ψk) =
k∑
j=1

πjφ (·; θj) | φ (·; θj) ∈ P, πj ≥ 0, j ∈ [k] ,
k∑
j=1

πj = 1

 ,

for each k, n ∈ N, and where
P =

{
φ (·; θ) : X → R≥0 | θ ∈ Θ ⊂ Rd

}
,

ψk = (π1, . . . , πk, θ1, . . . , θk), and d ∈ N. To ensure the measurability and existence of various optima, we
shall assume that φ is Caratheodory in the sense that φ (·; θ) is (X ,F)-measurable, for each θ ∈ Θ, and
φ (X; ·) is continuous for each X ∈ X .

In the definition above, we can identify the set Ck = cok (P) as the set of density functions that can be
written as a convex combination of k elements of P, where P is often called the space of component density
functions. We then interpret Ck as the class of k-component finite mixtures of densities of class P, as studied,
for example, by McLachlan & Peel (2004); Nguyen et al. (2020; 2022b).
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1.1 Risk bounds for mixture density estimation

We are particularly interested in oracle bounds of the form

E {ℓ (f, fk,n)} − ℓ (f, C) ≤ ρ (k, n) , (1)

where (p, q) 7→ ℓ (p, q) ∈ R≥0 is a loss function on pairs of density functions. We also define the density-to-
class loss

ℓ (f, C) = inf
q∈C

ℓ (f, q) , C = cl
(⋃
k∈N

cok (P)
)
,

where cl(·) is the closure. Here, we identify (k, n) 7→ ρ (k, n) as a characterization of the rate at which
the left-hand side of (1) converges to zero as k and n increase. Our present work follows the research of
Li & Barron (1999), Rakhlin et al. (2005) and Klemelä (2007) (see also Klemelä 2009, Ch. 19). In Li &
Barron (1999) and Rakhlin et al. (2005), the authors consider the case where ℓ (p, q) is taken to be the
Kullback–Leibler (KL) divergence

KL (p || q) =
∫
p log p

q
dµ,

and fk,n = fk (·;ψk,n) is a maximum likelihood estimator (MLE), where

ψk,n ∈ arg max
ψk∈Sk×Θk

1
n

n∑
i=1

log fk (Xi;ψk) ,

is a function of Xn, with Sk denoting the probability simplex in Rk.

Under the assumption that f, fk ≥ a, for some a > 0 and each k ∈ [n] (i.e., strict positivity), Li & Barron
(1999) obtained the bound

E {KL (f || fk,n)} − KL (f || C) ≤ c1
1
k

+ c2
k log (c3n)

n
,

for constants c1, c2, c3 > 0, which was then improved by Rakhlin et al. (2005) who obtain the bound

E {KL (f || fk,n)} − KL (f || C) ≤ c1
1
k

+ c2
1√
n
,

for constants c1, c2 > 0 (constants (cj)j∈N are typically different between expressions).

Alternatively, Klemelä (2007) takes ℓ (p, q) to be the squared L2 (µ) norm distance (i.e., the least-squares
loss):

ℓ (p, q) = ∥p− q∥2
2,µ,

where ∥p∥2
2,µ =

∫
X |p|2dµ, for each p ∈ L2 (µ), and choose fk,n as minimizers of the L2 (µ) empirical risk:

i.e., fk,n = fk (·;ψk,n), where

ψk,n ∈ arg min
ψk∈Sk×Θk

− 2
n

n∑
i=1

fk (·;ψk) + ∥fk (·;ψk)∥2
2,µ . (2)

Here, Klemelä (2007) establish the bound

E ∥f − fk,n∥2
2,µ − inf

q∈C
∥f − q∥2

2,µ ≤ c1
1
k

+ c2
1√
n
,

c1, c2 > 0, without the lower bound assumption on f, fk above, even permitting X to be unbounded. Via
the main results of Naito & Eguchi (2013), the bound above can be generalized to the U -divergences, which
includes the special L2(µ) norm distance as a special case.

On the one hand, the sequence of MLEs required for the results of Li & Barron (1999) and Rakhlin et al.
(2005) are typically computable, for example, via the usual expectation–maximization approach (cf. McLach-
lan & Peel 2004, Ch. 2). This contrasts with the computation of least-squares density estimators of form
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(2), which requires evaluations of the typically intractable integral expressions: ∥fk (·;ψk)∥2
2. However, the

least-squares approach of Klemelä (2007) permits the analysis using families P of usual interest, such as
normal distributions and beta distributions, the latter of which being compactly supported but having den-
sities that cannot be bounded away from zero without restrictions, and thus do not satisfy the regularity
conditions of Li & Barron (1999) and Rakhlin et al. (2005).

1.2 Main contributions

We propose the following h-lifted KL divergence, as a generalization of the standard KL divergence to address
the computationally tractable estimation of density functions which do not satisfy the regularity conditions
of Li & Barron (1999) and Rakhlin et al. (2005). The use of the h-lifted KL divergence has the possibility
to advance theories based on the standard KL divergence in statistical machine learning. To this end, let
h : X → R≥0 be a function in L1(µ), and define the h-lifted KL divergence by:

KLh (p || q) =
∫

X
{p+ h} log p+ h

q + h
dµ. (3)

In the sequel, we shall show that KLh is a Bregman divergence on the space of probability density functions,
as per Csiszár (1995).

Assume that h is a probability density function, and let Yn = (Yi)i∈[n] be a an i.i.d. sample, independent of
Xn, where each Yi : Ω → X is a random variable with probability measure on (X ,F), characterized by the
density h with respect to µ. Then, for each k and n, let fk,n be defined via the maximum h-lifted likelihood
estimator (h-MLLE): fk,n = fk (·;ψk,n), where

ψk,n ∈ arg max
ψk∈Sk×Θk

1
n

n∑
i=1

(log {fk (Xi;ψk) + h (Xi)} + log {fk (Yi;ψk) + h (Yi)}) . (4)

The primary aim of this work is to show that

E {KLh (f || fk,n)} − KLh (f || C) ≤ c1
1
k

+ c2
1√
n

(5)

for some constants c1, c2 > 0, without requiring the strict positivity assumption that f, fk ≥ a > 0.

This result is a compromise between the works of Li & Barron (1999) and Rakhlin et al. (2005), and Klemelä
(2007), as it applies to a broader space of component densities P, and because the required h-MLLEs, (4),
can be efficiently computed via minorization–maximization (MM) algorithms (see, e.g., Lange 2016). We
shall discuss this assertion in Section 6.

1.3 Relevant literature

Our work largely follows the approach of Li & Barron (1999), which have was extended upon by Rakhlin et al.
(2005) and Klemelä (2007). All three texts use approaches based on the availability of greedy algorithms
for maximizing convex functions with convex functional domains. In this work, we shall make use of the
proof techniques of Zhang (2003). Related results in this direction can be found in DeVore & Temlyakov
(2016) and Temlyakov (2016). Making the same boundedness assumption as Rakhlin et al. (2005), Dalalyan
& Sebbar (2018) obtain refined oracle inequalities under the additional assumption that the class P is finite.
Numerical implementations of greedy algorithms for estimating finite mixtures of Gaussian densities were
studied by Vlassis & Likas (2002) and Verbeek et al. (2003).

The h-MLLE as an optimization objective can be compared to other similar modified likelihood estimators,
such as the Lq likelihood of Ferrari & Yang (2010) and Qin & Priebe (2013), the β-likelihood of Basu
et al. (1998) and Fujisawa & Eguchi (2006), penalized likelihood estimators, such as maximum a posteriori
estimators of Bayesian models, or f -separable Bregman distortion measures of Kobayashi & Watanabe (2024;
2021).
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The practical computation of the h-MLLEs, (4), is made possible via the MM algorithm framework of Lange
(2016), see also Hunter & Lange (2004), Wu & Lange (2010), and Nguyen (2017) for further details. Such
algorithms have well-studied global convergence properties and can be modified for mini-batch and stochastic
settings (see, e.g., Razaviyayn et al., 2013 and Nguyen et al., 2022a).

A related and popular setting of investigations is that of model selection, where the objects of interest are
single-index sequences (fkn,n)n∈N, and where the aim is to obtain finite-sample bounds for losses of the form
ℓ (fkn,n, f), where each kn ∈ N is a data dependent function, often obtained by optimizing some penalized
loss criterion, as described in Massart (2007), Koltchinskii (2011, Ch. 6), and Giraud (2021, Ch. 2). In the
context of finite mixtures, examples of such analyses can be found in the works of Maugis & Michel (2011)
and Maugis-Rabusseau & Michel (2013). A comprehensive bibliography of model selection results for finite
mixtures and related statistical models can be found in Nguyen et al. (2022c).

1.4 Organization of paper

The manuscript proceeds as follows. In the following section we formally characterize the h-lifted KL
divergence as a Bregman divergence, and establish some of its properties. In Section 4, we prove new
risk bounds of the form (1) in terms of the h-lifted KL divergence. We discuss the computation of the
h-lifted likelihood estimator of form (4) in Section 6, followed by the presentation of some empirical results
regarding the convergence of (1) in terms of both k and n. Additional technical results are also included in
the Appendices.

2 The h-lifted KL divergence and its properties

In this section we formally define the h-lifted KL divergence on the space of density functions and establish
some of its properties.
Definition 1 (h-lifted KL divergence). Let f, g, and h be probability density functions on the space X , where
h > 0. The h-lifted KL divergence from g to f is defined as follows:

KLh (f || g) =
∫

X
{f + h} log f + h

g + h
dµ = Ef

{
log f + h

g + h

}
+ Eh

{
log f + h

g + h

}
.

2.1 KLh as a Bregman divergence

Let ϕ : I → R, I = (0,∞) be a strictly convex function that is continuously differentiable. The Bregman
divergence between scalars dϕ : I × I → R≥0 generated by the function ϕ is given by:

dϕ(p, q) = ϕ(p) − ϕ(q) − ϕ′(q)(p− q),

where ϕ′(q) denotes the derivative of ϕ at q.

Bregman divergences possess several useful properties, including the following list:

1. Non-negativity: dϕ(p, q) ≥ 0 for all p, q ∈ I with equality if and only if p = q;

2. Asymmetry: dϕ(p, q) ̸= dϕ(q, p) in general;

3. Convexity: dϕ(p, q) is convex in p for every fixed q ∈ I.

4. Linearity: dc1ϕ1+c2ϕ2(p, q) = c1 dϕ1(p, q) + c2 dϕ2(p, q) for c1, c2 ≥ 0.

The properties for Bregman divergences between scalars can be extended to density functions and other
functional spaces, as established in Frigyik et al. (2008) and Stummer & Vajda (2012), for example. We also
direct the interested reader to the works of Pardo (2006), Basu et al. (2011), and Amari (2016).

The class of h-lifted KL divergences constitute a generalization of the usual KL divergence and are a subset of
the Bregman divergences over the space of density functions that are considered by Csiszár (1995). Namely,
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let P be a convex set of probability densities with respect to the measure µ on X . The Bregman divergence
Dϕ : P × P → [0,∞) between densities p, q ∈ P can be constructed as follows:

Dϕ(p || q) =
∫

X
dϕ (p(x), q(x)) dµ(x).

The h-lifted KL divergence KLh as a Bregman divergence is generated by the function ϕ(u) = (u+h) log(u+
h) − (u+ h) + 1. This assertion is demonstrated in Appendix A.

2.2 Advantages of the h-lifted KL divergence

When the standard KL divergence is employed in the density estimation problem, it is common to restrict
consideration of density functions to those bounded away from zero by some positive constant. That is, one
typically considers the smaller class of so-called admissible target densities Pα ⊂ P (cf. Meir & Zeevi, 1997),
where

Pα = {φ(·; θ) ∈ P | φ(·; θ) ≥ α > 0} .

Without this restriction, the standard KL divergence can be unbounded, even for functions with bounded
L1 norms. For example, let p and q be densities of beta distributions on the support X = [0, 1]. That is,
suppose that p, q ∈ Pbeta, respectively characterized by parameters θp = (ap, bp) and θq = (aq, bq), where

Pbeta =
{
x 7→ β (x; θ) = Γ (a+ b)

Γ (a) Γ (b)x
a−1 (1 − x)b−1

, θ = (a, b) ∈ R2
>0

}
. (6)

Then, from Gil et al. (2013), the KL divergence between p and q is given by:

KL (p || q) = log
{

Γ (aq) Γ (bq)
Γ (aq + bq)

}
− log

{
Γ (ap) Γ (bp)
Γ (ap + bp)

}
+ (ap − aq) {ψ (ap) − ψ (ap + bp)} + (bp − bq) {ψ (bp) − ψ (ap + bp)} ,

where ψ : R>0 → R is the digamma function. Next, suppose that ap = bq and aq = bp = 1, which leads to
the simplification

KL (p || q) = (ap − 1) {ψ (ap) − ψ(1)} .

Since ψ is strictly increasing, we observe that the right-hand side diverges as ap → ∞. Thus, the KL
divergence between beta distributions is unbounded. The h-lifted KL divergence in contrast does not suffer
from this problem, and does not require the restriction to Pα. This allows us to consider cases where p, q ∈ P
are not bounded away from 0.
Proposition 2. KLh (p || q) is bounded for all continuous densities p, q ∈ P.

Proof. Let p̃ = p + h and q̃ = q + h. Since h is positive, there exists some q̃∗ such that
q̃∗ = infx∈X {q(x) + h(x)} > 0. Similarly, since X is compact, there exists some positive p̃∗ such that
0 < p̃∗ = supx∈X {p(x) + h(x)} < ∞. Define M = supx∈X log{p̃(x)/q̃(x)}. Then M < ∞, and

KLh (p || q) =
∫

X
p̃ log p̃

q̃
dµ ≤ sup

x∈X
log p̃

q̃

∫
X
p̃dµ = 2M < ∞.

Let Lp(f, g) denote the standard Lp norm,

Lp(f, g) =
{∫

X
|f(x) − g(x)|p dµ(x)

}1/p
.

As remarked previously, Klemelä (2007) established empirical risk bounds in terms of the L2 norm distance.
Following results from Meir & Zeevi (1997), characterizing the relationship between the KL divergence in
terms of the L2 norm distance, we establish the corresponding relationship between the h-lifted KL divergence
and the L2 norm distance.
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Proposition 3. For probability density functions f, g, and h, where h is such that h(x) ≥ γ > 0 for all
x ∈ X , the following inequality holds:

KLh (f || g) ≤ γ−1L2
2(f, g).

Proof. Defining f̃ and g̃ as above, we have

KLh (f || g) =
∫

X
f̃ log f̃

g̃
dµ ≤

∫
X
f̃

(
f̃

g̃
− 1
)

dµ =
∫

X

(f − g)2

g̃
dµ ≤ γ−1L2

2(f, g),

The following section is devoted to establishing some technical definitions and instrumental results which
will be utilized in later sections.

3 Preliminaries

Recall that we are interested in bounds of the form (1). Note that P is a subset of the linear space

V = cl

⋃
k∈N


k∑
j=1

ϖjφ (·; θj) | φ (·; θj) ∈ P, ϖj ∈ R, j ∈ [k]


 ,

and hence we can apply the following result, paraphrased from Zhang (2003, Thm. II.1).
Lemma 4. Let κ be a differentiable and convex function on V, and let

(
f̄k
)
k∈N be a sequence of functions

obtained by Algorithm 1. If

sup
p,q∈C,π∈(0,1)

d2

dπ2κ ((1 − π) p+ πq) ≤ M < ∞,

then, for each k ∈ N,
κ
(
f̄k
)

− inf
p∈C

κ (p) ≤ 2M
k + 2 .

Algorithm 1 Algorithm for computing a greedy approximation sequence.
1: Input: f̄0 ∈ P
2: for k ∈ N do
3: Compute

(
π̄k, θ̄k

)
= arg min

(π,θ)∈[0,1]×Θ
κ
(
(1 − π) f̄k−1 + πφ (·; θ)

)
4: Define f̄k = (1 − π̄k) f̄k−1 + π̄kφ

(
·; θ̄k

)
5: end for

We are interested in two choices for κ:
κ (p) = KLh (f || p) (7)

and its sample counterpart,

κn (p) = 1
n

n∑
i=1

log f (Xi) + h (Xi)
p (Xi) + h (Xi)

+ 1
n

n∑
i=1

log f (Yi) + h (Yi)
p (Yi) + h (Yi)

, (8)

where (Xi)i∈[n] and (Yi)i∈[n] are realisations of X and Y , respectively. For choice (7), by the dominated
convergence theorem, we observe that

d2

dπ2κ ((1 − π) p+ πq)
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= Ef

{
d2

dπ2 log f + h

(1 − π) p+ πq + h

}
+ Eh

{
d2

dπ2 log f + h

(1 − π) p+ πq + h

}
= Ef

{
(p− q)2

[(1 − π) p+ πq + h]2

}
+ Eh

{
(p− q)2

[(1 − π) p+ πq + h]2

}
.

Suppose that each φ (·; θ) ∈ P is bounded from above by c < ∞. Then, since p, q ∈ C are non-
negative functions, we have the fact that (p− q)2 ≤ c2. If we further have a ≤ h for some a > 0, then
[(1 − π) p+ πq + h]2 ≥ a2, which implies that

d2

dπ2κ ((1 − π) p+ πq) ≤ 2 × c2

a2

for every p, q ∈ C and π ∈ (0, 1), and thus

sup
p,q∈C,π∈(0,1)

d2

dπ2κ ((1 − π) p+ πq) ≤ 2c2

a2 < ∞.

Similarly, for case (8), we have

d2

dπ2κn ((1 − π) p+ πq) = 1
n

n∑
i=1

d2

dπ2 log f (xi) + h (xi)
(1 − π) p (xi) + πq (xi) + h (xi)

+ 1
n

n∑
i=1

d2

dπ2 log f (yi) + h (yi)
(1 − π) p (yi) + πq (yi) + h (yi)

= 1
n

n∑
i=1

(p (xi) − q (xi))2

[(1 − π) p (xi) + πq (xi) + h (xi)]2
+ 1
n

n∑
i=1

(p (yi) − q (yi))2

[(1 − π) p (yi) + πq (yi) + h (yi)]2
.

By the same argument, as for κ, we have the fact that (p (x) − q (x))2 ≤ c2, for every p, q ∈ C and every
x ∈ X , and furthermore [(1 − π) p (x) + πq (x) + h (x)]2 ≥ a2, for any π ∈ (0, 1). Thus,

sup
p,q∈C,π∈(0,1)

d2

dπ2κ ((1 − π) p+ πq) ≤ 2c2

a2 < ∞,

as required. We therefore obtain the following result.
Proposition 5. Let □ denote either κ, the KLh divergence (7), or κn, the sample KLh divergence (8), and
assume that h ≥ a and φ (·; θ) ≤ c, for each θ ∈ Θ. Then,

□
(
f̄k
)

− inf
p∈C

□ (p) ≤ 4a−2c2

k + 2 ,

for each k ∈ N, where
(
f̄k
)
k∈N is obtained as per Algorithm 1.

Notice that sequences
(
f̄k
)
k∈N obtained via Lemma 4 are greedy approximation sequences, and that f̄k ∈ Ck,

for each k ∈ N. Let (fk)k∈N be the sequence of minimizers defined by

fk = arg min
ψk∈Sk×Θk

KLh (f || fk (·;ψk)) , (9)

and let (fk,n)k∈N be the sequence of h-MLLEs, as per (4). Then, by definition, we have the fact that
κ (fk) ≤ κ

(
f̄k
)

and κ (fk,n) ≤ κ
(
f̄k
)
, for κ set as (7) or (8), respectively. Thus, we have the following result.

Proposition 6. For the KLh divergence (7), under the assumption that h ≥ a and φ (·; θ) ≤ c, for each
θ ∈ Θ, we have

κ (fk) − inf
p∈C

κ (p) ≤ 4a−2c2

k + 2 (10)

7



Under review as submission to TMLR

for each k ∈ N, where (fk)k∈N is the sequence of minimizers defined via (9). Furthermore, for the sample
KLh divergence (8), under the same assumptions as above, we have

κn (fk,n) − inf
p∈C

κn (p) ≤ 4a−2c2

k + 2 , (11)

for each k ∈ N, where (fk,n)k∈N are h-MLLEs defined via (4).

As is common in many statistical learning/uniform convergence results (e.g., Bartlett & Mendelson, 2002,
Koltchinskii & Panchenko, 2004), we employ the use of Rademacher processes and associated bounds. Let
(εi)i∈[n] be i.i.d. Rademacher random variables, that is P(εi = −1) = P(εi = 1) = 1/2, that are independent
of (Xi)i∈[n]. The Rademacher process, indexed by a class of real measurable functions S, is defined as the
quantity

Rn(s) = 1
n

n∑
i=1

s(Xi)εi,

for s ∈ S. The Rademacher complexity of the class S is given by Rn(S) = E sups∈S |Rn(s)|.

In the subsequent section, we make use of the following result regarding the supremum of convex functions:
Lemma 7 (Rockafellar, 1997, Thm. 32.2). Let η be a convex function on a linear space T , and let S ⊂ T
be an arbitrary subset. Then,

sup
p∈S

η (p) = sup
p∈co(S)

η (p) .

In particular, we use the fact that since a linear functional of convex combinations achieves its maximum
value at vertices, the Rademacher complexity of S is equal to the Rademacher complexity of co(S) (see
Lemma 19). We consequently obtain the following result.
Lemma 8. Let (εi)i∈[n] be i.i.d. Rademacher random variables, independent of (Xi)i∈[n] and P be defined as
above. The sets C and P will have equal complexity, Rn(C) = Rn(P), and the supremum of the Rademacher
process indexed by C is equal to the supremum on the basis functions of P:

Eε sup
g∈C

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)εi

∣∣∣∣∣ = Eε sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

φ(Xi; θ)εi

∣∣∣∣∣ .
Proof. Follows immediately from Lemma 7.

4 Main results

Here we provide explicit statements regarding the convergence rates claimed in (5). We assume that f is
bounded above by some constant c and that the lifting function h is bounded above and below by constants
a and b, respectively.
Theorem 9. Let h be a positive density satisfying 0 < a ≤ h(x) ≤ b, for all x ∈ X . For any target density
f satisfying 0 ≤ f(x) ≤ c, for all x ∈ X and where fk,n is the minimizer of KLh over k-component mixtures,
the following inequality holds:

E {KLh (f || fk,n)} − KLh (f || C) ≤ u1

k + 2 + u2√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ u3√

n
,

where u1, u2, and u3 are positive constants that depend on some or all of a, b, and c.
Corollary 10. Let X and Θ be compact and assume the following Lipschitz condition holds: for each x ∈ X ,
and for each θ, τ ∈ Θ,

|φ (x; θ) − φ (x; τ)| ≤ Φ (x) ∥θ − τ∥1 , (12)
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for some function Φ : X → R≥0, where ∥Φ∥∞ = supx∈X |Φ(x)| < ∞. Then the bound in Theorem 9 becomes

E {KLh (f || fk,n)} − KLh (f || C) ≤ c1

k + 2 + c2√
n
,

where c1 and c2 are positive constants.

5 Proofs

We first present a result establishing a uniform concentration bound for the h-lifted log-likelihood ratios,
which is instrumental in the proof of Theorem 9. Our proofs broadly follow the structure of Rakhlin et al.
(2005), modified as needed for the use of KLh.

Assume that 0 ≤ φ(·; θ) < c for some c ∈ R>0. For brevity, we adopt the notation: ∥T (g)∥C = supg∈C |T (g)|.
Theorem 11. Let X1, . . . , Xn be an i.i.d. sample of size n drawn from a fixed density f such that 0 ≤
f(x) ≤ c for all x ∈ X , and let h be a positive density with 0 < a ≤ h(x) ≤ b for all x ∈ X . Then with
probability at least 1 − e−t,∥∥∥∥∥ 1

n

n∑
i=1

log g(Xi) + h(Xi)
f(Xi) + h(Xi)

− Ef log g + h

f + h

∥∥∥∥∥
C

≤ w1√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε+ w2√

n
+ w3

√
t

n
,

where w1, w2, and w3 are constants that each depend on some or all of a, b, and c, and N(P, ε, dn,x) is the
ε-covering number of P with respect to the following empirical L2 metric

d2
n,x(φ1, φ2) = 1

n

n∑
i=1

(φ1(Xi) − φ2(Xi))2.

Remark 12. The bound on the term∥∥∥∥∥ 1
n

n∑
i=1

log g(Yi) + h(Yi)
f(Yi) + h(Yi)

− Eh log g + h

f + h

∥∥∥∥∥
C

is the same as the above, except where the empirical distance dn,x is replaced by dn,y, defined in the same
way as dn,x but with Yi replacing Xi.

Proof. [of Theorem 11]. Fix h and define the following quantities: g̃ = g + h, f̃ = f + h, C̃ = C + h,

mi = log g̃(Xi)
f̃(Xi)

, m′
i = log g̃(X ′

i)
f̃(X ′

i)
, Z(x1, . . . , xn) =

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− E log g̃
f̃

∥∥∥∥∥
C̃

.

We first apply McDiarmid’s inequality (Lemma 21) to the random variable Z. The bound on the martingale
difference is given by

|Z(X1, . . . , Xi, . . . , Xn) − Z(X1, . . . , X
′
i, . . . , Xn)| =

∣∣∣∣∥∥∥∥E log g̃
f̃

− 1
n

(m1 +...+mi +...+mn)
∥∥∥∥

C̃

−
∥∥∥∥E log g̃

f̃
− 1
n

(m1 +...+m′
i +...+mn)

∥∥∥∥
C̃

∣∣∣∣
≤ 1
n

∥∥∥∥log g̃(X ′
i)

f̃(X ′
i)

− log g̃(Xi)
f̃(Xi)

∥∥∥∥
C̃

≤ 1
n

(
log c+ b

a
− log a

c+ b

)
= 1
n

2 log c+ b

a
= ci.

9
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The chain of inequalities holds because of the triangle inequality and the properties of the supremum. By
Lemma 21, we have

P(Z − EZ > ε) ≤ exp
{

− nε2

(
√

2 log c+b
a )2

}
,

so

P(Z ≤ ε+ EZ) ≥ 1 − exp
{

− nε2

(
√

2 log c+b
a )2

}
,

where it follows from t = nε2/(
√

2 log c+b
a )2 that ε =

√
2 log

(
c+b
a

)√
t
n . Therefore with probability at least

1 − e−t, ∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

≤ E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

+
√

2 log
(
c+ b

a

)√
t

n
.

Let (εi)i∈[n] be i.i.d. Rademacher random variables, independent of (Xi)i∈[n]. By Lemma 22,

E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

≤ 2 E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

.

By combining the results above, the following inequality holds with probability at least 1 − e−t∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
C̃

≤ 2 E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

+
√

2 log
(
c+ b

a

)√
t

n
.

Now let pi = g̃(Xi)
f̃(Xi) − 1, such that a

c+b ≤ pi + 1 ≤ c+b
a holds for all i ∈ [n]. Additionally, let η(p) = log(p+ 1)

so that η(0) = 0 and note that for p ∈
[
a
c+b − 1, c+ba − 1

]
, the derivative of η(p) is maximal at p∗ = a

c+b − 1,
and equal to η′(p∗) = (c+ b)/a. Therefore, a

b+c log(p+ 1) is 1-Lipschitz. By Lemma 20 applied to η(p),

2 E

∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

= 2 E

∥∥∥∥∥ 1
n

n∑
i=1

η(pi)εi

∥∥∥∥∥
C̃

≤ 4(c+ b)
a

E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi − 1
n

n∑
i=1

εi

∥∥∥∥∥
C̃

≤ 4(c+ b)
a

E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

+ 4(c+ b)
a

Eε

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
≤ 4(c+ b)

a
E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

+ 4(c+ b)
a

1√
n
,

where the final inequality follows from the following result, proved in Haagerup (1981):

Eε

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣ ≤

Eε

{
1
n

n∑
i=1

εi

}2
1/2

= 1√
n
.

Now, let ξi(g̃i) = a · g̃(Xi)/f̃(Xi), and note that

|ξi(ui) − ξi(vi)| = a

|f̃(Xi)|
|u(Xi) − v(Xi)| ≤ |u(Xi) − v(Xi)|.

By again applying Lemma 20, we have

4(c+ b)
a

E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)
f̃(Xi)

εi

∥∥∥∥∥
C̃

≤ 8(c+ b)
a2 E

∥∥∥∥∥ 1
n

n∑
i=1

g̃(Xi)εi

∥∥∥∥∥
C̃

10
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≤ 8(c+ b)
a2 E

∥∥∥∥∥ 1
n

n∑
i=1

g(Xi)εi

∥∥∥∥∥
C

+ 8(c+ b)
a2 E

∣∣∣∣∣ 1n
n∑
i=1

h(Xi)εi

∣∣∣∣∣
≤ 8(c+ b)

a2 E

∥∥∥∥∥ 1
n

n∑
i=1

g(Xi)εi

∥∥∥∥∥
C

+ 8(c+ b)
a2

b√
n
.

Applying Lemmas 8 and 23, the following inequality holds for some constant K > 0:

Eε sup
g∈C

∣∣∣∣∣ 1n
n∑
i=1

g(Xi)εi

∣∣∣∣∣ = Eε sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

φ(Xi; θ)εi

∣∣∣∣∣ ≤ K√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε, (13)

and combining the results together, the following inequality holds with probability at least 1 − e−t:∥∥∥∥∥ 1
n

n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∥∥∥∥∥
≤ 8(c+ b)K

a2√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε+ (8b+ 4a)(c+ b)

a2√
n

+
√

2 log
(
c+ b

a

)√
t

n
,

= w1√
n

E
∫ c

0
log1/2 N(P, ε, dn,x)dε+ w2√

n
+ w3

√
t

n
,

where w1, w2, and w3 are constants that each depend on some or all of a, b, and c.

Remark 13. From Lemma 23 we have that σ2
n := supf∈F Pnf

2. To make explicit why 2σn =(
supg∈C Png

2)1/2 = 2c, let F = C and observe

σ2
n = sup

g∈C
Png

2 = sup
g∈C

1
n

n∑
i=1

g(Xi)2 ≤ 1
n

n∑
i=1

c2 = c2.

Since our basis functions φ(·, θ) are bounded by c, everything greater than c will have value 0 and hence the
change from 2c to c is inconsequential. However, it can also be motivated by the fact that φ(·, θ) are positive
functions.

As highlighted in Remark 12, the full result of Theorem 11 relies on the empirical L2 distances dn,x and
dn,y. In the result of Theorem 9, we make use of the following result to bound dn,x and dn,y.
Proposition 14. By combining Lemmas 16 and 17, the following inequality holds:

logN(P, ε, ∥ · ∥) ≤ logN[](P, ε, ∥ · ∥) ≤ logN(P, ε/2, ∥ · ∥∞),

where N[](P, ε, ∥ · ∥) is the ε-bracketing number of P. Therefore, we have that

logN(P, ε, dn,x) ≤ logN(P, ε/2, ∥ · ∥∞),

and
logN(P, ε, dn,y) ≤ logN(P, ε/2, ∥ · ∥∞).

With this result, we can now prove Theorem 9.

Proof. [of Theorem 9] The notation is the same as in the proof of Theorem 11. The values of the constants
may change from line to line.

KLh (f || fk,n) − KLh (f || fk)

= Ef log f̃

f̃k,n
+ Eh log f̃

f̃k,n
− Ef log f̃

f̃k
− Eh log f̃

f̃k

11
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= Ef log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

+ 1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

+ Eh log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

+ 1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

− Ef log f̃

f̃k
+ 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

− 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

− Eh log f̃

f̃k
+ 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

− 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

=
(

Ef log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

)
+
(

Eh log f̃

f̃k,n
− 1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

)

+
(

1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

− Ef log f̃

f̃k

)
+
(

1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

− Eh log f̃

f̃k

)

+
(

1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

− 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

)
+
(

1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

− 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

)

≤ 2 sup
g̃∈C̃

∣∣∣∣∣ 1n
n∑
i=1

log g̃(Xi)
f̃(Xi)

− Ef log g̃
f̃

∣∣∣∣∣+ 2 sup
g̃∈C̃

∣∣∣∣∣ 1n
n∑
i=1

log g̃(Yi)
f̃(Yi)

− Eh log g̃
f̃

∣∣∣∣∣
+
(

1
n

n∑
i=1

log f̃(Xi)
f̃k,n(Xi)

− 1
n

n∑
i=1

log f̃(Xi)
f̃k(Xi)

)
+
(

1
n

n∑
i=1

log f̃(Yi)
f̃k,n(Yi)

− 1
n

n∑
i=1

log f̃(Yi)
f̃k(Yi)

)

≤ 2 E
{
wx1√
n

∫ c

0
log1/2 N(P, ε, dn,x)dε

}
+ wx2√

n
+ wx3

√
t

n
+ 1
n

n∑
i=1

log f̃k(Xi)
f̃k,n(Xi)

+ 2 E
{
wy1√
n

∫ c

0
log1/2 N(P, ε, dn,y)dε

}
+ wy2√

n
+ wy3

√
t

n
+ 1
n

n∑
i=1

log f̃k(Yi)
f̃k,n(Yi)

≤ w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n

+ 1
n

n∑
i=1

log f̃k(Xi)
f̃k,n(Xi)

+ 1
n

n∑
i=1

log f̃k(Yi)
f̃k,n(Yi)

,

with probability at least 1 − e−t, by Theorem 11. Now, we can use (11) from Proposition 6 applied to the
target density fk, obtaining the following:

KLh (fk || fk,n) = 1
n

n∑
i=1

log f̃k(Xi)
f̃k,n(Xi)

+ 1
n

n∑
i=1

log f̃k(Yi)
f̃k,n(Yi)

≤ 4a−2c2

k + 2 + inf
p∈C

KLh (fk || p) .

Since by definition we have that fk ∈ C, infp∈C KLh (fk || p) = 0, and so with probability at least 1 − e−t we
have:

KLh (f || fk,n) − KLh (f || fk)

≤ w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n
+ w4

k + 2 . (14)

We can write the overall error as the sum of the approximation and estimation errors as follows. The former
is bounded by (10), and the latter is bounded as above in (14). Therefore, with probability at least 1 − e−t,

KLh (f || fk,n) − KLh (f || C) = [KLh (f || fk) − KLh (f || C)] + [KLh (f || fk,n) − KLh (f || fk)]

12
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≤ w4

k + 2 + w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
+ w3

√
t

n
.

As in Rakhlin et al. (2005), we rewrite the above probabilistic statement as a statement in terms of expec-
tations. To this end, let

A := w4

k + 2 + w1√
n

∫ c

0
log1/2 N(P, ε/2, ∥ · ∥∞)dε+ w2√

n
,

and Z := KLh (f || fk,n) − KLh (f || C). We have shown P
(

Z ≥ A + w3

√
t
n

)
≤ e−t. Since Z ≥ 0,

E{Z} =
∫ A

0
P(Z > s)ds+

∫ ∞

A
P(Z > s)ds ≤ A +

∫ ∞

0
P(Z > A + s)ds.

Setting s = w3

√
t
n , we have t = w5ns

2 and E{Z} ≤ A +
∫∞

0 e−w5ns
2ds ≤ A + w√

n
. Hence,

E {KLh (f || fk,n)} − KLh (f || C) ≤ c1

k + 2 + c2√
n

∫ c

0
log1/2 N (P, ε/2, ∥ · ∥∞) dε+ c3√

n
,

where c1, c2, and c3 are constants that depend on some or all of a, b, and c.

Remark 15. The approximation error characterises the suitability of the class C, i.e., how well functions
in C are able to estimate a target f which does not necessarily lie in C. The estimation error characterises
the error arising from the estimation of the target f on the basis of the finite sample of size n.

Proof. [of Corollary 10] Let X and Θ be compact and assume the Lipshitz condition given in (12). If φ(x; ·)
is continuously differentiable, then

|φ (x; θ) − φ (x; τ)| ≤
d∑
k=1

∣∣∣∣∂φ (x; ·)
∂θk

(θ∗
k)
∣∣∣∣ |θk − τk|

≤ sup
θ∗∈Θ

∥∥∥∥∂φ (x; ·)
∂θ

(θ∗)
∥∥∥∥

1
∥θ − τ∥1 .

Setting

Φ (x) = sup
θ∗∈Θ

∥∥∥∥∂φ (x; ·)
∂θ

(θ∗)
∥∥∥∥

1
,

we have ∥Φ∥∞ < ∞. From Lemma 18, we obtain the fact that

logN[] (P, 2ε∥Φ∥∞, ∥ · ∥∞) ≤ logN (Θ, ε, ∥ · ∥∞) ,

which by the change of variable δ = 2ε∥Φ∥∞ =⇒ ε = δ/2∥Φ∥∞ implies

logN[] (P, ε/2, ∥ · ∥∞) ≤ logN
(

Θ, ε

4∥Φ∥∞
, ∥ · ∥1

)
.

Since Θ ⊂ Rd, using the fact that a Euclidean set of radius r has covering number

N (r, ε) ≤
(

3r
ε

)d
,

we have
logN

(
Θ, ε

4∥Φ∥∞
, ∥ · ∥1

)
≤ d log

[
12∥Φ∥∞diam (Θ)

ε

]
.

So ∫ c

0

√
logN

(
Θ, ε

4∥Φ∥∞
, ∥ · ∥1

)
dε ≤

∫ c

0

√
d log

[
12∥Φ∥∞diam (Θ)

ε

]
dε,

and since c < ∞, the integral is finite, as required.

13
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6 Numerical experiments

In this section, we discuss the computability and computation of KLh estimation problems and provide
empirical evidence towards the rates obtained in Theorem 9. Namely, we seek to develop a methodology
for computing h-MLLEs, and to use numerical experiments to demonstrate that the sequence of expected
h-lifted KL divergences between some density f and a sequence of k-component mixture densities from a
suitable class P, estimated using n observations does indeed decrease at rates proportional to 1/k and 1/

√
n,

as k and n increase.

6.1 Minorization–Maximization algorithm

One solution for computing problems of kind (4) is to employ an MM algorithm. To do so, we first write
the objective of (4) as

Lh,n (ψk) = 1
n

n∑
i=1

log


k∑
j=1

πjφ (Xi; θj) + h (Xi)

+ log


k∑
j=1

πjφ (Yi; θj) + h (Yi)


 ,

where ψk ∈ Ψk = Sk ×Θk. We then require the definition of a minorizer Qn for Lh,n on the space Ψk, where
Qn : Ψk × Ψk → R is a function with the properties:

(i) Qn (ψk, ψk) = Lh,n (ψk), and

(ii) Qn (ψk, χk) ≤ Lh,n (ψk),

for each ψk, χk ∈ Ψk. In this context, given a fixed χk, the minorizer Qn (·, χk) should possess properties
that simplify it compared to the original objective Lh,n. These properties should make the minorizer more
tractable and might include features such as parametric separability, differentiability, convexity, among
others.

In order to build an appropriate minorizer for Lh,n, we make use of the so-called Jensen’s inequality minorizer,
as detailed in Lange (2016, Sec. 4.3), applied to the logarithm function. This construction results in a
minorizer of the form

Qn (ψk, χk) = 1
n

n∑
i=1

k∑
j=1

{τj (Xi;χk) log πj + τj (Xi;χk) logφ (Xi; θj)}

+ 1
n

n∑
i=1

k∑
j=1

{τj (Yi;χk) log πj + τj (Yi;χk) logφ (Yi; θj)}

+ 1
n

n∑
i=1

{γ (Xi;χk) log h (Xi) + γ (Yi;χk) log h (Yi)}

− 1
n

n∑
i=1

k∑
j=1

{τj (Xi;χk) log τj (Xi;χk) + τj (Yi;χk) log τj (Yi;χk)}

− 1
n

n∑
i=1

{γ (Xi;χk) log γ (Xi;χk) + γ (Yi;χk) log γ (Yi;χk)}

where

γ (Xi;ψk) = h (Xi) /


k∑
j=1

πjφ (Xi; θj) + h (Xi)


and

τj (Xi;ψk) = πjφ (Xi; θj) /


k∑
j=1

πjφ (Xi; θj) + h (Xi)

 .

14
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Observe that Qn (·, χk) now takes the form of a sum-of-logarithms, as opposed to the more challenging
log-of-sum form of Lh,n. This change produces a functional separation of the elements of ψk.

Using Qn, we then define the MM algorithm via the parameter sequence
(
ψ

(s)
k

)
s∈N

, where

ψ
(s)
k = arg max

ψk∈Ψk

Qn

(
ψk, ψ

(s−1)
k

)
, (15)

for each s > 0, and where ψ
(0)
k is user chosen and is typically referred to as the initialization of the

algorithm. Notice that for each s, (15) is a simpler optimization problem than (4). Writing ψ
(s)
k =(

π
(s)
1 , . . . , π

(s)
k , θ

(s)
1 , . . . , θ

(s)
k

)
, we observe that (15) simplifies to the separated expressions:

π
(s)
j =

∑n
i=1

{
τj

(
Xi;ψ(s−1)

k

)
+ τj

(
Yi;ψ(s−1)

k

)}
∑n
i=1
∑k
l=1

{
τl

(
Xi;ψ(s−1)

k

)
+ τl

(
Yi;ψ(s−1)

k

)}
and

θ
(s)
j = arg max

θj∈Θ

1
n

n∑
i=1

{
τj

(
Xi;ψ(s−1)

k

)
logφ (Xi; θj) + τj

(
Yi;ψ(s−1)

k

)
logφ (Yi; θj)

}
,

for each j ∈ [k].

A noteworthy property of the MM sequence
(
ψ

(s)
k

)
s∈N

is that it generates an increasing sequence of objective
values, due to the chain of inequalities

Lh,n

(
ψ

(s−1)
k

)
= Qn

(
ψ

(s−1)
k , ψ

(s−1)
k

)
≤ Qn

(
ψ

(s)
k , ψ

(s−1)
k

)
≤ Lh,n

(
ψ

(s)
k

)
,

where the equality is due to property (i) of Qn, the first in equality is due to the definition of ψ(s)
k , and

the second inequality is due to property (ii) of Qn. This provides a kind of stability and regularity to the
sequence

(
Lh,n

(
ψ

(s)
k

))
s∈N

.

Of course, we can provide stronger guarantees under additional assumptions. Namely, assume that (iii)
Ψk ⊂ Ψk, where Ψk is an open set in a finite dimensional Euclidean space on which Lh,n and Qn (·, χk) is
differentiable, for each χk ∈ Ψk. Then, under assumptions (i)–(iii) regarding Lh,n and Qn, and due to the
compactness of Ψk and the continuity of Qn on Ψk × Ψk, Razaviyayn et al. (2013, Cor. 1) implies that(
ψ

(s)
k

)
s∈N

converges to the set of stationary points of Lh,n in the sense that

lim
s→∞

inf
ψ∗

k
∈Ψ∗

k

∥∥∥ψ(s)
k − ψ∗

k

∥∥∥
2

= 0

where,

Ψ∗
k =

{
ψ∗
k ∈ Ψk : ∂Lh,n

∂ψk

∣∣∣∣
ψk=ψ∗

k

= 0
}
.

More concisely, we say that the sequence
(
ψ

(s)
k

)
s∈N

globally converges to the set of stationary points Ψ∗
k.

6.2 Experimental setup

Towards the task of demonstrating empirical evidence of the rates in Theorem 9, we consider the family of
beta distributions on the unit interval X = [0, 1] as our base class (i.e., (6)) to estimate a pair of target
densities

f1 (x) = 1
2χ[0,2/5] (x) + 1

2χ[3/5,1] (x) ,

15



Under review as submission to TMLR

and

f2 (x) = χ[0,1] (x)
{

2 − 4x if x ≤ 1/2,
−2 + 4x if x > 1/2,

where χA is the characteristic function that takes value 1 if x ∈ A and 0, otherwise. Note that neither f1
nor f2 are in C. In particular, f1 (x) = 0 when x ∈ (2/5, 3/5), and f2(x) = 0 when x = 1/2, and hence neither
densities are bounded away from 0, on X . Thus, the theory of Rakhlin et al. (2005) cannot be applied to
provide bounds for the expected KL divergence between MLEs of beta mixtures and the pair of targets. We
visualize f1 and f2 in Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

de
ns

ity

Figure 1: Simulation target densities f1 (solid line) and f2 (dashed line).

To observe the rate of decrease of the h-lifted KL divergence between the targets and respective sequences
of h-MLLEs, we conduct two experiments E1 and E2. In E1, our target density is set to f1 and h1 =
β (·; 1/2, 1/2). For each n ∈

{
210, . . . , 215} and k ∈ {2, . . . , 8}, we independently simulate Xn and Yn with

each Xi and Yi (i ∈ [n]), i.i.d., from the distributions characterized by f1 and h1, respectively. In E2, we
target f2 with h-MLLEs over the same ranges of k and n, but with h2 = β (·; 1, 1)–the density of the uniform
distribution. For each k and n, we simulate Xn and Yn respectively from distributions characterized by f2
and h2.

In both experiments, we simulate r = 50 replicates of each (k, n)-scenario and compute the corresponding
h-MLLEs, (fk,n,l)l∈[r], using the previously described MM algorithm. For each l ∈ [r], we compute the
corresponding negative log h-lifted likelihood between the target f and fk,n,l:

Kk,n,l = −
∫

X
(f + h) log (fk,n,l + h) dµ

to assess the rates, and note that

KLh (f || fk,n,l) =
∫

X
(f + h) log (f + h) dµ+Kk,n,l,

where the prior term is a constant with respect to k and n.

16
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To analyze the sample of 7 × 6 × 50 = 2100 observations of relationship between the values (Kk,n,l)l∈[r] and
the corresponding values of k and n, we use non-linear least squares (Amemiya, 1985, Sec. 4.3) to fit the
regression relationship:

E [Kk,n,l] = a0 + a1

(k + 2)b1
+ a2

nb2
. (16)

We obtain 95% asymptotic confidence intervals for the estimates of the regression parameters
a0, a1, a2, b1, b2 ∈ R, under the assumption of potential mis-specification of (16), by using the sandwich
estimator for the asymptotic covariance matrix (cf. White 1982). We include the code for these experiments
in Appendix B.

6.3 Results

We report the estimates along with 95% asymptotic confidence intervals for the parameters of (16) for E1
and E2 in Table 1. Plots of the average negative log h-lifted likelihood values by sample sizes n and numbers
of components k are provided in Figure 2.

Table 1: Estimates of parameters for fitted relationships (with 95% confidence intervals) between negative
log h-lifted likelihood values, sample size and number of mixture components for experiments E1 and E2.

E1 a0 a1 a2 b1 b2
Est. −1.68 0.73 6.80 1.87 0.99

95% CI (−1.68,−1.67) (0.68, 0.78) (1.24, 12.36) (1.81, 1.93) (0.87, 1.11)
E2 a0 a1 a2 b1 b2
Est. −1.47 1.49 6.75 4.36 1.07

95% CI (−1.48,−1.47) (0.58, 2.41) (2.17, 11.32) (3.91, 4.81) (0.97, 1.16)

From Table 1, we observe that E [Kk,n,l] decreases with both n and k in both simulations, and that the rates
at which the averages decrease are faster than anticipated by Theorem 9, with respect to both n and k. We
can visually confirm the decreases in the estimate of E [Kk,n,l] via Figure 2. In both E1 and E2, the rate
of decrease over the assessed range of n is approximately proportional to 1/n, as opposed to the anticipated
rate of 1/

√
n, whereas the rate of decrease in k is far larger, at approximately 1/k1.87 for E1 and 1/k4.36 for

E2.

These observations provide empirical evidence towards the fact that the rate of decrease of E [Kk,n,l] is at
least 1/k and 1/

√
n, respectively, for k and n, at least over the simulation scenarios. These fast rates of fit

over small values of n and k may be indicative of a diminishing returns of fit phenomenon, as discussed in
Cadez & Smyth (2000) or the so-called elbow phenomenon (see, e.g., Ritter 2014, Sec. 4.2), whereupon the
rate of decrease in average loss for small values of k is fast and becomes slower as k increases, converging
to some asymptotic rate. This is also the reason why we do not include the outcomes when k = 1, as the
drop in E [Kk,n,l] between k = 1 and k = 2 is so dramatic that it makes our simulated data ill-fitted by any
model of form (16). As such, we do not view Theorem 9 as being pessimistic in light of these phenomena,
as it applies uniformly over all values of k and n.

7 Conclusion

The estimation of probability densities using finite mixtures from some base class P appears often in machine
learning and statistical inference as a natural method for modeling underlying data generating processes.
In this work, we sought to provide novel generalization bounds for such mixture estimators. To this end,
we introduce the family of h-lifted KL divergences for densities on compact supports, within the family of
Bregman divergences, which correspond to risk functions that can be bounded, even when densities in the
class P are not bounded away from zero, unlike the standard KL divergence. Unlike the least-squares loss, the
corresponding maximum h-likelihood estimation problem can be computed via an MM algorithm, mirroring
the availability of EM algorithms for the maximum likelihood problem corresponding to the KL divergence.
Along with our derivations of generalization bounds that achieve the same rates as the best-known bounds
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Figure 2: Average negative log h-lifted likelihood values by sample sizes n and numbers of components k for
experiments E1 and E2.
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for the KL divergence and least square loss, we also provide numerical evidence towards the correctness of
these bounds in the case when P corresponds to beta distribution densities.

Aside from beta distributions, mixture densities on compact supports that can be analysed under our frame-
work appear frequently in the literature. For supports on compact Euclidean subset, examples include
mixtures of Dirichlet distributions (Fan et al., 2012) and bivariate binomial distributions (Papageorgiou &
David, 1994). Alternatively, one can consider distributions on compact Euclidean manifolds, such as mix-
tures of Kent (Peel et al., 2001) distributions and von Mises–Fisher distributions (Banerjee et al., 2005,
Ng & Kwong, 2022). We defer investigating the practical performance of the maximum h-lifted likelihood
estimators and accompanying theory for such models to future work.
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A The h-lifted KL divergence as a Bregman divergence

Let ũ = u+ h, so that ϕ(u) = ũ log(ũ) − ũ+ 1. Then ϕ′(u) = log(ũ), and

Dϕ(p || q) =
∫
X

{p̃ log(p̃) − p̃− 1} − {q̃ log(q̃) − q̃ − 1} − log(q̃)(p− q)dµ

=
∫

X
p̃ log(p̃) − q̃ log(q̃) − p log(q̃) + q log(q̃)dµ

=
∫

X
{p+ h} log(p̃) − {q + h} log(q̃) − p log(q̃) + q log(q̃)dµ

=
∫

X
{p+ h} log p+ h

q + h
dµ = KLh (p || q) .

B Experimental results

The code for all simulations and analyses of Experiment 1 and 2 is available in both the R and Python
programming languages. The experiments and analyses presented were conducted in R. The figures were
created in Python. The code repository is available here: https://github.com/XXXX.

C Technical results

Here we collect some technical results that are required in our proofs but appear elsewhere in the literature.
In some places, notation may be modified from the original text to keep with the established conventions
herein.
Lemma 16 (Kosorok, 2007. Lem 9.18). Let N(F , ε, ∥ · ∥) denote the ε-covering number of F , and
N[](F , ε, ∥ · ∥) the ε-bracketing number of F . Let ∥ · ∥ be any norm on F . Then

N(F , ε, ∥ · ∥) ≤ N[](F , ε, ∥ · ∥)

for all ε > 0.
Lemma 17 (Kosorok, 2007. Lem 9.22). For any norm ∥ · ∥ dominated by ∥ · ∥∞ and any class of functions
F ,

logN[](F , 2ε, ∥ · ∥) ≤ logN(F , ε, ∥ · ∥∞),
for all ε > 0.
Lemma 18 (Kosorok, 2007. Thm 9.23). Let F = {ft : t ∈ T} be a function class satisfying

|fs(x) − ft(x)| ≤ d(s, t)F (x),

for some metric d on T , some fixed function F on X , and for all x ∈ X and s, t ∈ T . Then, for any norm
∥ · ∥,

N[](F , 2ε∥F∥, ∥ · ∥) ≤ N(T, ε, d).
Lemma 19 (Shalev-Shwartz & Ben-David (2014), Lem 26.7). Let A be a subset of Rm and let

A′ =


n∑
j=1

αjaj | n ∈ N,aj ∈ A,αj ≥ 0, ∥α∥1 = 1

 .

Then, Rn(A′) = Rn(A), i.e., both A and A′ have the same Rademacher complexity.
Lemma 20 (van de Geer, 2016, Thm. 16.2). Let (Xi)i∈[n] be non-random elements of X and let F be a
class of real-valued functions on X . If φi : R → R, i ∈ [n], are functions vanishing at zero that satisfy for
all u, v ∈ R,

|φi(u) − φi(v)| ≤ |u− v|,
then we have

E
{∥∥∥∥∥

n∑
i=1

φi(f(Xi))εi

∥∥∥∥∥
F

}
≤ 2E

{∥∥∥∥∥
n∑
i=1

f(Xi)εi

∥∥∥∥∥
F

}
.
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Lemma 21 (McDiarmid, 1998, Thm. 3.1 or McDiarmid, 1989). Suppose (Xi)i∈[n] are independent random
variables and let Z = g(X1, . . . , Xn), for some function g. If g satisfies the bounded difference condition,
that is there exists constant cj such that for all j ∈ [n] and all x1, . . . , xj , x

′
j , . . . , xn,

|g(x1, . . . , xj−1, xj , xj+1, . . . , xn) − g(x1, . . . , xj−1, x
′
j , xj+1, . . . , xn)| ≤ cj ,

then

P(Z − EZ ≥ t) ≤ exp
{

−2t2∑n
j=1 c

2
j

}
.

Lemma 22 (van der Vaart & Wellner, 1996, Lem. 2.3.1). Let R(f) = Ef and Rn(f) = n−1∑n
i=1 f(Xi). If

Φ : R>0 → R>0 is a convex function, then the following inequality holds for any class of measurable functions
F :

EΦ (∥R(f) − Rn(f)∥F ) ≤ EΦ (2 ∥Rn(f)∥F ) ,

where Rn(f) is the Rademacher process indexed by F . In particular, since the identity map is convex,

E {∥R(f) − Rn(f)∥F } ≤ 2E {∥Rn(f)∥F } .

Lemma 23 (Koltchinskii, 2011, Thm. 3.11). Let dn be the empirical distance

d2
n(f1, f2) = 1

n

n∑
i=1

(f1(Xi) − f2(Xi))2

and denote by N(F , ε, dn) the ε-covering number of F . Let σ2
n := supf∈F Pnf

2. Then the following
inequality holds

E {∥Rn(f)∥F } ≤ K√
n

E
∫ 2σn

0
log1/2 N(F , ε, dn)dε

for some constant K > 0.

23
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