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Abstract001

The rise of large language models (LLMs) has002
led to dramatic improvements across a wide003
range of natural language tasks. These advance-004
ments have extended into the domain of code,005
facilitating complex tasks such as code gener-006
ation, translation, summarization, and repair.007
However, their utility for real-world deploy-008
ment in-the-wild has only recently been studied,009
on Software Engineering (SWE) tasks such as010
GitHub issue resolution. In this study, we exam-011
ine the code reasoning techniques that underlie012
the ability to perform such tasks, and examine013
the paradigms used to drive their performance.014
Our contributions in this paper are: (1) the first015
dedicated survey on code reasoning for code016
tasks, highlighting overarching strategies, hy-017
brid and agentic approaches; (2) a taxonomy of018
various techniques used to drive code reason-019
ing; (3) a comprehensive overview of perfor-020
mance on common benchmarks and showcase021
new, under-explored benchmarks with high po-022
tential in SWE; (4) an exploration on how core023
properties of code can be used to explain dif-024
ferent reasoning techniques; and (5) gaps and025
under-explored areas for future research.026

1 Introduction027

Hindle et al., 2012 show that software is repetitive028

and predictable like natural language, and hence029

can be modeled using statistical techniques like030

LLMs. Subsequently, LLMs have been used effec-031

tively for a wide variety of Software Engineering032

(SWE) tasks1, including code generation (Chen033

et al., 2021b), language translation (Roziere et al.,034

2020) code summarization (Sun et al., 2025) and035

others. Many code specific datasets (Puri et al.,036

2021; Khan et al., 2024), models (Li et al., 2023;037

Nijkamp et al., 2023) and benchmarks (Hendrycks038

et al., 2021b; Zhuo et al., 2025) have also been039

developed. Despite this progress, LLMs have040

1We use SWE tasks, Code tasks and Software engineering
tasks interchangeably.

been shown to be limited in their capacity to solve 041

real-world SWE tasks, like GitHub issue resolu- 042

tion (Jimenez et al., 2024b). Recent development of 043

large reasoning models (LRMs) (Guo et al., 2025; 044

Anthropic, 2025; Jaech et al., 2024) and SWE 045

Agents have resulted in tremendous improvement 046

on code generation, test generation and GitHub 047

issue resolution as well. 048

In a recent survey, Yang et al., 2025 explore how 049

code and reasoning reinforce each other. They com- 050

pile works showing how incorporating code data 051

improves reasoning, and how better reasoning leads 052

to improvement on SWE tasks. Many underlying 053

techniques contribute to reasoning models, includ- 054

ing Chain-of-Thought or CoT (Wei et al., 2022b) 055

which elicits reasoning, learning from environment 056

feedback (Chen et al., 2024c) and exploring mul- 057

tiple reasoning paths (Yao et al., 2023a). Many 058

recent surveys explore reasoning techniques, SWE 059

LLMs, benchmarks and Agents, and we discuss 060

them in Sec. B. However we did not find any survey 061

that explores the impact of reasoning, and specif- 062

ically code-based reasoning techniques on SWE 063

tasks. SWE is one of the most interesting applica- 064

tions areas of Artificial Intelligence (AI) and there 065

is growing research in this space. As different rea- 066

soning techniques mature and agents become more 067

robust, it is reasonable to expect more and more 068

SWE tasks will be automated. With our survey on 069

code reasoning for code tasks, we hope to address 070

this gap by making the following contributions: 071

(1) The first survey specific to reasoning for cod- 072

ing tasks, emphasizing reasoning techniques which 073

borrow ideas from coding principles (Sec. 2). SWE 074

Agents are given a special focus (Sec. 3) given they 075

depend on multiple reasoning techniques. 076

(2) A Taxonomy covering different reasoning 077

approaches and benchmarks for code Fig. 1. We 078

also highlight approaches employing multiple rea- 079

soning techniques for LLMs in general (Tab. 1) and 080

agents in particular (Tab. 2). 081
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Code Reasoning
Taxonomy of
Techniques

CoT Reasoning (§2.1)

Plan based CoT
Prompting (2.1)

PlanSearch (Wang et al., 2024a); Self-Planning
(Jiang et al., 2024b); ClarifyGPT (Mu et al., 2023)

Code Structure based
CoT Prompt (§2.1)

SCoT (Li et al., 2025b); MoT (Pan and Zhang, 2025); CodeChain (Le
et al., 2023); SemCoder (Ding et al., 2024b); CGO (Yeo et al., 2025)

CoT fine-tuning (§2.1)
UniCoder (Sun et al., 2024b); COTTON (Yang et al., 2024b);
MSCoT (Jin et al., 2025); ChainCoder (Zheng et al., 2023b)

Execution based
reasoning (§2.2)

Self-evaluation of
execution behavior (§2.2)

Self-debugging (Chen et al., 2024c); AlphaCodium (Ridnik et al., 2024);
Revisiting Self-debugging (Chen et al., 2025b); µFix (Tian et al., 2025)

Training with Execution
based feedback (§2.2)

LEVER (Ni et al., 2023); CYCLE (Ding
et al., 2024a); LEDEX (Jiang et al., 2025)

Inference Scaling (§2.3) Sampling (§2.3)
AlphaCode (Li et al., 2022a); REx (Tang et al.,
2024); S*: Test-time Scaling (Li et al., 2025a)

Search (§2.3) ToT (Yao et al., 2023a); GToT (Long, 2023); ORPS (Yu et al., 2024)

Taxonomy
of Tasks

Agentic (§3)

Workflow (§3) Agentless (Xia et al., 2024); AutoCodeRover (Zhang et al., 2024b)

Agent Optimization (§3)

SWE-Agent (Yang et al., 2024c); CodeAct (Wang et al., 2024c);
MASAI (Arora et al., 2024); CodeR (Chen et al., 2024a); Pair-

Coder (Zhang et al., 2024a); HyperAgent (Phan et al., 2024); Ag-
ileCoder (Nguyen et al., 2024); OpenHands (Wang et al., 2024e)

Reasoning Model
Improvement (§3)

Lingma (Ma et al., 2024); SWE-Gym (Pan et al., 2024);
SWE-Fixer (Xie et al., 2025); SWE-RL (Wei et al., 2025)

Inference Scaling (§3)
CodeTree (Li et al., 2024); SWE-Search (Antoni-
ades et al., 2024); Tree-of-Code (Ni et al., 2024)

Non-Agentic (§4) Code Tasks (§4.1)

HE (Chen et al., 2021a); MBPP (Austin et al., 2021a); APPS
(Hendrycks et al., 2021a); CodeContests(Li et al., 2022b); LCB
(Jain et al., 2024); BigCodeBench (Zhuo et al., 2025); CRUXE-
val (Gu et al., 2024); HEPack (Muennighoff et al., 2023); Spi-
der (Yu et al., 2018) (Lei et al., 2025); TestEval (Wang et al.,
2025); SWE-Bench (Jimenez et al., 2024a); SWE-Bench Multi-

modal (Yang et al., 2024d); Multi-SWE-Bench (Zan et al., 2025);
M3ToolEval (Wang et al., 2024d); SWT-Bench (Mündler et al., 2025)

Code Reason-
ing Tasks (§4.2)

CRUXEval (Gu et al., 2024); CodeMind (Liu et al.,
2024a); ReEval (Chen et al., 2025a); ExeRScope (Liu

and Jabbarvand, 2025); CodeMMLU (Manh et al., 2025)

Figure 1: Code Reasoning Taxonomy.

(3) Showcase benchmarks used to study the im-082

pact of reasoning on SWE tasks. We compiled083

comparison tables (Tab. 4, 6, 7, 8) showing the per-084

formance of different code reasoning and agentic085

approaches (Sec. 4.1). We also highlight promising086

benchmarks specific to code reasoning (Sec. 4.2),087

and surface some new agent-specific benchmarks088

with potential for furthering SWE research.089

(4) Discussion on how the performance of differ-090

ent code reasoning techniques might be connected091

to different code properties (Sec. 3). In Sec. 6, we092

use this discussion to motivate future work.093

2 Taxonomy of Techniques094

Brown et al., 2020 show that LLMs are few-shot095

learners. Performance of LLMs on reasoning tasks096

is further enhanced by a certain kind of prompt-097

ing called Chain-of-Thought or CoT (Wei et al.,098

2022b) prompting which elicits LLM reasoning.099

Wei et al., 2022a suggest that in-context learning100

ability of LLMs, including CoT reasoning, is an101

emergent property of LLMs. Code CoT papers (Li102

et al., 2025b; Jiang et al., 2024b; Pan and Zhang,103

2025 and others) suggest that code reasoning is a104

specific kind of reasoning and CoT can be more105

impactful when induced with prompts that recog-106

nize this difference. We survey such techniques in 107

Sec. 2.1. 108

Yao et al., 2023a state that "System 2" think- 109

ing should involve exploring diverse solution paths 110

rather than greedily picking one. They connect 111

CoT with sampling and search to enable explo- 112

ration of multiple reasoning paths. Li et al., 2022a 113

effectively leverage sampling and search tech- 114

niques to generate competition level code. Sec. 2.3 115

covers sampling and search techniques used to ex- 116

plore multiple reasoning paths for software engi- 117

neering tasks. 118

One way code output is different from natural 119

language output is that it can be executed and tested 120

to validate it’s correctness. Yao et al., 2023a high- 121

light that execution can be a way to check if the 122

reasoning is correct. Li et al., 2022a use code exe- 123

cution and sample tests as a way to filter generated 124

output. Chen et al., 2024c teach the model to self- 125

debug based on reasoning from execution results. 126

Other such techniques based on code execution are 127

covered in Sec. 2.2. 128

Agents bring most of these reasoning tech- 129

niques together. ReAct (Yao et al., 2023b) en- 130

ables problem-solving through real-time environ- 131
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Approach CoT Exe
Based

Inf.
Scaling Other

PlanSearch P B S
Self-Planning, ClarifyGPT P
SCoT, CGO, MoT, CodeChain S
UniCoder, ChainCoder, MSCoT S-FT
COTTON P-FT
SemCoder S-FT G
MSCoT S-FT
Self-Debug B MV
CodeCOT, AlphaCodium P G-B
Revisit Self-Debug G-B MV
muFix P G
LEVER B S RR
CYCLE B S
LEDEX P B S RL
ORPS G-B
GToT LM
S* G-B S

Table 1: LLM reasoning approaches for code tasks and
key components. CoT (Chain-of-Thought, including
Plan (P), Structure (S), or Finetuning (FT)); Exe-based
(Execution-based feedback using model-generated (G)
or benchmark (B) tests); Other includes MV (Major-
ity Vote), RR (Re-Ranking), and RL (Reinforcement
Learning). Approaches are categorized by dominant
strategy: CoT and Planning , Execution-driven , and

sampling or search

Approach Work
Flow

Reasoning
Model

Agent
Optim.

Inf.
Scaling

Agentless ¥

AutoCodeRover ¥ T
SWE-Agent T
CodeAct SFT T
OpenHands MA-T
MASAI MA-T
CodeR MA-T
AgileCoder MA-T
PairCoder ¥ MA
HyperAgent MA
Lingma ¥ SFT
SWE-Fixer ¥ SFT
SWE-Gym SFT-V T ¥

SWE-RL RL MA
CodeTree MA ¥

ToC ¥

SWE-Search MA-T ¥

Table 2: In our taxonomy Agents are classified as
employing one of the following techniques (1) Work-
flow (2) Reasoning Model improvement (3) Agent
optimization (4) Inference scaling. However many
agents employ multiple techniques. For ex., SWE-
Gym is classified in Reasoning model improvement
category, but they also train a verifier model for infer-
ence scaling. This table highlights such nuances.

mental engagement. Reflexion (Shinn et al., 2023)132

leverages linguistic reflection to enhance perfor-133

mance. Sec. 3 surveys different software engineer-134

ing agents which build on reasoning techniques135

mentioned above.136
2.1 Code Chain-of-Thought Reasoning137
Chain-of-Thought or CoT (Wei et al., 2022b) is138

a prompting technique for large language mod-139

els (LLMs) designed to elicit step-by-step reason-140

ing, making it likelier that the LLMs arrive at the141

correct answer and in the process making their142

"thoughts" more transparent. CoT prompts for143

code can be categorized as plan-based or struc-144

ture based. Plan-based CoT is a natural language145

articulation of steps that need to be taken to solve a146

coding problem. Code structure based CoT utilize147

some code structure or programming concepts. Be-148

sides prompting only techniques, another approach149

used by many is fine-tuning or instruction tuning150

for software engineering tasks with code CoT data.151

Plan-based CoT Prompting. Several recent152

approaches enhance code generation by explicitly153

modeling intermediate reasoning or problem under-154

standing steps. For instance, PlanSearch Wang155

et al., 2024a generates 3–6 problem observa-156

tions, combines them into natural language plans,157

and translates these into pseudocode and then 158

code. Self-Planning Jiang et al., 2024b uses 159

few-shot prompting to extract a high-level plan 160

from the problem, which guides code generation. 161

ClarifyGPT Mu et al., 2023 employs test genera- 162

tion to construct clarifying questions and answers 163

that are appended to the prompt for code synthesis. 164

Code Structure based CoT Prompting. In 165

SCoT, Li et al., 2025b use programming structures, 166

like sequence, branch and loop, as steps towards 167

intermediate code, which is used to prompt the 168

model to generate code. Chain of grounded 169

objectives (CGO) (Yeo et al., 2025) embed ap- 170

propriately structured functional objectives into the 171

input prompts to enhance code generation. Pan and 172

Zhang, 2025 propose a novel prompting technique, 173

Modularization-of-thought (MoT), which ex- 174

ploits modularization principals to decompose com- 175

plex programming problems into smaller indepen- 176

dent reasoning steps, via a multi-level reasoning 177

graph. Le et al., 2023 also elicit modularized code 178

generation but in a multi-step technique called 179

CodeChain, which is a chain of self-revisions ap- 180

plied by picking potentially correct representative 181

sub-modules. 182
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CoT fine-tuning. Sun et al., 2024b define183

UniCoder; they use an intermediate representa-184

tion CoT based on PL conventions and use this185

to instruction-tune a model on a multi-task learn-186

ing objective. Yang et al., 2024b generate high-187

quality CoTs based on the COTTON framework,188

which trains light-LMs (< 10B parameters) to gen-189

erate CoT comparable to those generated by strong190

teacher LLMs. ChainCoder (Zheng et al., 2023b)191

generates code iteratively in a "course-to-fine" ap-192

proach and trains a model using an AST-based vo-193

cabulary. SemCoder (Ding et al., 2024b) uses a194

monologue reasoning approach to train a model195

to learn program semantics, which is generated196

by asking the Code LLM to summarize the pro-197

gram functionalities, key properties and constraints,198

and reason about code execution step-by-step us-199

ing a bi-directional monologue reasoning method.200

MSCoT (Jin et al., 2025) extends SCoT (Li et al.,201

2025b) to 11 more programming languages be-202

yond Python; a trained MSCoT model generates203

structured-CoT before producing code in multiple204

languages.205

2.2 Execution-based Reasoning206

Execution-based reasoning involves execut-207

ing LLM-generated code in a given envi-208

ronment and having the LLM reason and209

learn from the execution environment output.210

Self-Evaluation of Execution Behavior. These211

strategies utilize code execution feedback to212

select the final prediction from a LLM. In Chen213

et al. (2024c), the Self-debugging approach,214

teaches the model to self-debug i.e., debug the215

model’s predicted code, via few shot prompting216

and without additional model training. The217

model is instructed to execute the code and218

then generate a feedback message based on the219

code and its execution result from running Unit220

Tests (UT). A similar approach was taken in221

Code Chain-of-Thought (CodeCoT) by Huang222

et al. (2023), where CoT is used as a first step to223

generate the code, then a LLM generates test cases224

to validate whether the code has syntax errors225

during the execution. AlphaCodium, proposed by226

Ridnik et al. (2024), is a flow to improve code227

LLM performance that does not require training228

a model. The two key phases in AlphaCodium’s229

flow are: (a) a pre-processing phase, where it230

generates problem reflection and test reasoning;231

and (b) an iterative code generation phase, where232

code is generated, run, and fixed against both233

public and AI-generated tests. In revisited234

self-debugging (Chen et al., 2025b) authors 235

explored both post-execution and in-execution 236

self-debugging, leveraging self-generated tests. In 237

post-execution self-debugging, the process directly 238

validates the correctness of code by checking 239

whether the output after execution matches the test 240

output or not, whereas in-execution self-debugging 241

analyzes the intermediate runtime states during 242

program execution without knowing the results 243

from post-execution. More recently, Tian et al. 244

(2025) proposed µFix (Misunderstanding Fixing) 245

where thought-eliciting prompting techniques 246

are combined with feedback-based prompting to 247

improve the code generation performance of LLMs. 248

They show that CoT, SCoT, and Self-repair can 249

fail due to specification misunderstandings, which 250

test case analysis helps mitigate to improve both 251

feedback-based prompting and code generation. 252

Training with Execution-based Feedback. We 253

pinpoint approaches that train an LLM, leveraging 254

execution data, to improve model performance. 255

LEarning to VERify (Ni et al., 2023) (LEVER) 256

is an approach where verifiers are trained to 257

check whether the generated code is correct or 258

not based on three sources of information: the 259

natural language input, the program itself, and 260

its execution results. The generated code is 261

re-ranked based on the verification score and the 262

LLM generation probability, and marginalizing 263

over programs with the same execution results. 264

CYCLE (Ding et al., 2024a) trains code LLMs to 265

self-refine using natural language specifications, 266

generated code, and execution feedback, while 267

avoiding repeated errors via a Past Generation 268

Mask. Similarly, (Jiang et al., 2025) proposed 269

LEDEX, a training framework to improve the 270

self-debugging capability of LLMs using a chain 271

of explanations on the wrong code followed by 272

code refinement. Both Supervised Full Tuning 273

(SFT) and Reinforcement Learning (RL) train the 274

code model using success and failure trajectories. 275

Automated Test Generation. Unit Tests (UT) 276

are one of the fundamental pieces to assess the cor- 277

rectness of code and give execution-based feedback 278

to code generation models. We present different 279

strategies to generate UTs with LLMs. For instance, 280

UTGEN (Prasad et al., 2025) is a data creation 281

and training recipe that bootstraps training data for 282

UT generation and works by perturbing code to 283

simulate errors, generating failing tests and aug- 284

menting it with CoT rationales. AceCoder (Zeng 285

et al., 2025) leverages automated large-scale test- 286
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case synthesis to enhance code model training, they287

proposed a pipeline that generates extensive (ques-288

tion, test-cases) pairs from existing code data. Sim-289

ilarly, Liu et al. (2024b) propose Direct Preference290

Learning with Only Self-Generated Tests and Code291

(DSTC), using only self-generated code snippets292

and tests to construct preference pairs with direct293

preference learning to improve LM coding accu-294

racy without external annotations. More recently,295

ASTER (Pan et al., 2025a) is a multilingual UT-296

generator built with LLMs guided by lightweight297

program analysis.298

2.3 Search and Sampling for SE Tasks299

Several approaches to code generation, code re-300

pair, and test-case generation use tree-based strate-301

gies to guide decisions and explore reasoning302

paths, while others use sampling.303

Sampling. In AlphaCode, Li et al. (2022a) filter304

and cluster samples according to program behav-305

ior on model-generated test inputs, selecting one306

candidate per cluster. The authors of REx (Tang307

et al., 2024) frame iterative code repair, or refine-308

ment, as a multi-armed bandit problem which is309

solved using Thompson sampling. The heuristic310

reward is the fraction of specifications (test cases)311

satisfied by the program. In S*, Li et al. (2025a)312

take a hybrid sampling approach, first generating N313

diverse programs in parallel then refining them us-314

ing iterative debugging (informed by execution).315

Search. Tree-of-Thoughts (ToT) (Yao et al.,316

2023a) allows LMs to explore multiple reason-317

ing paths over thoughts, where thoughts are lan-318

guage sequences that serve as intermediate steps319

towards problem solutions and represent the states320

or nodes of the tree. The LM’s reasoning acts as the321

heuristic, contrasting traditional approaches that322

use learned or programmed rules. ToT traverses323

the tree using BFS or DFS. Similarly, Guided324

tree-of-thought (GToT) (Long, 2023) uses tree-325

search guided by an LLM heuristic;it generates in-326

termediate solutions through prompting, employs a327

checker to validate these solutions, and uses a con-328

troller to manage search and backtracking, enabling329

long-range reasoning. For test generation, Oué-330

draogo et al. (2024) show that GToT effectively pro-331

duces syntactically-correct, compilable test suites332

with superior code coverage. Yu et al. (2024) pro-333

pose Outcome-Refining Process Supervision334

(ORPS), a beam-search approach for code gener-335

ation over a "reasoning tree." Each tree state in-336

cludes theoretical reasoning, code implementation,337

and execution outcomes. ORPS updates states with338

LM-generated reasoning, executes code for feed- 339

back, applies critique and rewards, and retains top 340

solutions via self-refinement. 341

3 Taxonomy of Tasks: Agentic 342

Agentic systems use many of the reasoning tech- 343

niques described in Sec. 2 for different tasks. Soft- 344

ware Engineering (SE) Agents take a programming 345

problem and iteratively solve it by self-debugging 346

based on the feedback provided by the environ- 347

ment. The self-debugging is enabled by CoT style 348

natural language reflection (Shinn et al., 2023) on 349

environment feedback. The reasoning is done by 350

an LLM which interacts with the agent execution 351

environment with tool calls (Yao et al., 2023b). 352

Workflow. Schluntz and Zhang, 2024 draw a dis- 353

tinction between Agents and LLM-based work- 354

flows stating that the latter are simpler, have 355

a fixed path and do not require an LLM to 356

make a decision. Agentless (Xia et al., 2024) 357

is a three step process for Github issue resolu- 358

tion involving localization, repair and patch val- 359

idation. AutoCodeRover (Zhang et al., 2024b) 360

uses program structure, in the form of an Ab- 361

stract Syntax Tree (AST), to enhance code search 362

and look at a software project as classes and 363

functions, rather than as a collection of files. 364

Agent Optimization can often lead to performance 365

gains. There can be many ways to improve an 366

SE agent, including but not limited to, better en- 367

vironment management or agent-environment in- 368

terface, improved workflow or architecture, and 369

incorporating more tools. SWE-Agent (Yang et al., 370

2024c) is an agent capable of editing repository- 371

level code by generating a thought and a command, 372

and subsequently incorporating the feedback from 373

the command’s execution into the environment. In 374

CodeAct, Wang et al., 2024c propose to use exe- 375

cutable Python code to consolidate LLM agents’ 376

actions into a unified action space. This is claimed 377

to be better than the existing technique of pro- 378

ducing actions by generating JSON or text in a 379

predefined format, which is less flexible and has 380

a constrained action space. OpenHands (Wang 381

et al., 2024e) is a platform for developing flexible 382

AI Agents that interact with the digital world the 383

same way a human would, by writing code, inter- 384

acting with the command line or browsing the web. 385

This platform allows for integration of other spe- 386

cialist agents, like CodeAct (Wang et al., 2024c) 387

for software engineering. There are other multi- 388

agent techniques like MASAI (Arora et al., 2024), 389
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CodeR (Chen et al., 2024a), PairCoder (Zhang390

et al., 2024a), HyperAgent (Phan et al., 2024) and391

AgileCoder (Nguyen et al., 2024) described in Ap-392

pendix. C.393

Reasoning Model Improvement. Some agentic394

systems improve the underlying reasoning model395

by training on agent trajectories, which include396

steps like CoT, tool calls, and patches. Ma et al.,397

2024 observe that software evolution involves not398

just code but developers’ reasoning, tools, and399

cross-role interactions. Their Lingma SWE-GPT400

models (7B, 72B) are fine-tuned on repository401

understanding, bug localization, patching, and402

rejection sampling using pull-requests from re-403

pos. Training starts from Qwen2.5-Coder-7B (Hui404

et al., 2024) and Qwen2.5-72B-Instruct (Yang et al.,405

2024a), and inference runs through SWESynInfer,406

an AutoCodeRover-based workflow (Zhang et al.,407

2024b). Pan et al., 2024 build SWE-Gym from 2,438408

real-world Python tasks—each with a runnable409

codebase, unit tests, and an NL spec. Using410

OpenHands scaffolding (Wang et al., 2024e), they411

fine-tune Qwen2.5-Coder-32B (Hui et al., 2024)412

on 491 agent–environment trajectories and train413

a verifier on the same data for scalable infer-414

ence. SWE-Fixer (Xie et al., 2025) is an open-415

source, two-stage GitHub issue fixer. A fine-tuned416

Qwen2.5-7B retriever, boosted with BM25, iden-417

tifies relevant files, while a fine-tuned Qwen2.5-418

72B editor generates patches. Each model was419

trained on 110k issue–patch pairs, with the editor420

further tuned on CoT data synthesized by GPT-421

4o (Hurst et al., 2024). SWE-RL (Wei et al., 2025) is422

the first scalable RL-based reasoning approach for423

SE. Llama 3 (Grattafiori et al., 2024) is trained with424

lightweight rule rewards and GRPO (Shao et al.,425

2024) on 11M filtered PRs, producing Llama3-426

SWE-RL-70B, the top medium-sized model on427

SWE-bench Verified (OpenAI, 2024).428

Inference Scaling. Agentic systems often in-429

volve a component that scales inference time com-430

pute and improves agent performance by search-431

ing over multiple samples. CodeTree (Li et al.,432

2024) and ToC (Ni et al., 2024) both model reason-433

ing as tree search—CodeTree combines planning,434

execution-guided reasoning, and heuristics (test-435

pass rate, LM critique) via multi-agent roles, while436

ToC uses a binary pass/fail heuristic with reflec-437

tive, multi-strategy execution for diverse solutions.438

SWE-Search (Antoniades et al., 2024) is a moatless-439

tools (Orwall, 2024) based multi-agent framework440

which integrates Monte-Carlo Tree Search with441

self-improvement for bug-fixing. An LLM-backed 442

hybrid value function combines numeric and quali- 443

tative scores from trajectories, file context, and test 444

output to steer node expansion. 445

4 Taxonomy of Tasks: Non-Agentic 446

In this section we discuss the different non-agentic 447

reasoning and non-reasoning tasks which are used 448

to evaluate reasoning techniques described in 449

Sec. 2. 450

4.1 Code Tasks 451

For code generation, a popular task, most com- 452

mon benchmarks include HumanEval (HE) (Chen 453

et al., 2021a), HumanEvalPack (Muennighoff et al., 454

2023), MBPP (Austin et al., 2021a), APPS 455

(Hendrycks et al., 2021a), and CodeContests(Li 456

et al., 2022b). 457

More recently, LiveCodeBench (LCB) (Jain et al., 458

2024) collected new problems for over time from 459

contests platforms including LeetCode, AtCoder, 460

and CodeForces. BigCodeBench (Zhuo et al., 2025) 461

challenges LLMs to invoke multiple function calls 462

as tools from multiple libraries and domains for 463

different fine-grained tasks. CRUXEval (Gu et al., 464

2024) includes both input and output predictions 465

to evaluate code reasoning and code execution, re- 466

spectively. ConvCodeBench (Han et al., 2025) is a 467

benchmark for interactive code generation, it uses 468

pre-generated feedback logs, avoiding costly LLM 469

calls for verbal feedback while maintaining strong 470

correlation with live results; Spider (Yu et al., 2018) 471

(Lei et al., 2025) is a benchmark to evaluate the 472

generation of SQL queries from natural language. 473

For test generation, benchmarks like TestE- 474

val (Wang et al., 2025) can help w.r.t. three differ- 475

ent aspects: overall coverage, targeted line/branch 476

coverage, and targeted path coverage. For Github 477

issue resoultion, SWE-Bench (Jimenez et al., 478

2024a) is a popular benchmark. Other variations 479

of SWE-Bench include: SWE-Bench Multimodal 480

(Yang et al., 2024d) for visual and user-facing com- 481

ponents, and Multi-SWE-Bench (Zan et al., 2025) 482

for more programming languages besides Python. 483

M3ToolEval (Wang et al., 2024d) is used for 484

multi-turn, multi-tool complex tasks. SWT-Bench 485

(Mündler et al., 2025) is another github based test- 486

generation benchmark; Otter, too, (Ahmed et al., 487

2025) proposed an LLM-based solution to generate 488

test cases from issues. 2 489

2Appendix E lists metrics that can be used to assess code
LLM performance.
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4.2 Code Reasoning Tasks490
ReEval (Chen et al., 2025a) helps to analyze how491

Code LLMs reason about runtime behaviors (e.g.,492

program state, execution paths) of programs. The493

ExeRScope (Liu and Jabbarvand, 2025) tool helps494

to analyze the result of code execution reasoning495

frameworks and understand the impact of code496

properties. CodeMMLU (Manh et al., 2025) is a497

large benchmark to evaluate both code understand-498

ing and code reasoning through a multiple-choice499

question-answering approach. CodeMind (Liu500

et al., 2024a) is a code reasoning benchmark for501

LLMs, evaluating Independent Execution Reason-502

ing (IER), Dependent Execution Reasoning (DER),503

and Specification Reasoning (SR) tasks and met-504

rics.505

5 Comparison and Discussion506

How can variance in performance of different tech-507

niques (planning, structure-aware, execution-based,508

inference scaling, etc.) on common benchmarks509

be explained by properties of code? First, we must510

understand why chain-of-thought (CoT) prompting511

helps over direct prompting. One hypothesis from512

Prystawski et al. (2023)’s work provides theoret-513

ical and experimental evidence that intermediate514

steps (i.e., chain-of-thought reasoning) reduce bias515

in transformers. They show that when training data516

has local structure (as textual data does), interme-517

diate variables (CoT) can outperform direct predic-518

tion (no CoT). This suggests that CoT reasoning519

helps most when a model is asked to make infer-520

ences about concepts that do not co-occur in the521

training data, but which can be chained together522

through topics that do. This may shed light on523

the variance in performance across different CoT524

patterns. Section 2.1 surveys works that formulate525

CoT in plan-based, structure-based, and modular526

arrangements. The results suggest that structure-527

aware strategies outperform plan-based approaches,528

and modular formats outperform structure-aware529

ones.530

Observation G.1: Structure-aware CoT strate-531

gies are better than planning-based CoT strategies,532

especially for self-contained code-contest bench-533

marks like MBPP and HE benchmarks.534

We posit that because code has properties of535

structured syntax, the primitive structures invoked536

within the CoT are highly local in the training data.537

Structures (such as idents, branches, loop invari-538

ants, functions, etc) are seen countless times in the539

training corpus. The model’s ability to estimate540

probabilities (and thus its ability to arrive at a cor-541

rect solution) become sharper by eliciting these 542

localities. Modular structures may push this same 543

principle further, which explains the next finding. 544

Observation G.2: Modularity helps in CoT, as 545

is evident when modular techniques dominate other 546

structured and plan-based CoT approaches. 547

Modularity improves upon structure-based CoT 548

by providing ultra-localized scoping; with more 549

clearly defined and specific functionality, modular- 550

ity eliminates the chance of error propagating to 551

subsequent steps. Additionally, text lacks the pre- 552

cision required for computational tasks, whereas 553

structure and modularity are more precise and un- 554

ambiguous. Still, there are other fascinating prop- 555

erties of code that can be leveraged: code exhibits 556

deterministic output, executable nature, and error 557

feedback. These properties can be leveraged to val- 558

idate or verify a solution, which explains the next 559

observation: 560

Observation G.3: Execution-aware strategies 561

dominate CoT-based strategies. 562

We posit that execution may help because exe- 563

cuting code can be used as a deterministic check. 564

Any chain that violates the check can be discarded. 565

Hence, bad chains are filtered out, so variance may 566

collapse faster. However, even with reduced vari- 567

ance, LLMs can still exhibit issues, such as model 568

rigidity. Because code is inherently determinis- 569

tic (i.e. under certain assumptions, a given input 570

consistently produces the same output), this can 571

lead models to develop rigid generation patterns 572

in training. For example, Twist et al. (2025) show 573

that LLMs exhibit a strong bias towards certain 574

programming languages, like Python; Liu et al. 575

(2025) document the pervasiveness of repetition 576

in LLM-based code generation, where models of- 577

ten reproduce patterns observed in training. Zhang 578

et al. (2025) demonstrate that LLMs favor certain 579

libraries and APIs by default, reflecting the distri- 580

bution of their training corpora. Furthermore, Pan 581

et al. (2025b) show that LLMs struggle to general- 582

ize to the architectural design principles of given 583

projects, leading to the generation of conflicting 584

code. This phenomenon compels the integration 585

of search in order to explore diverse trajectories, 586

which explains the recent success of inference scal- 587

ing techniques. 588

Observation G.4: Approaches that integrate in- 589

ference scaling outperform execution-dominant or 590

CoT-dominant strategies. 591

Due to the issues mentioned prior, methods that 592

incorporate both exploration and feedback (as these 593
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Approach Model SWE-Bench Verified SWE-Bench Lite

Agentless (Xia et al., 2024) gpt-4o 33.2 24.3
Claude-3.5-Sonnet 53.0 -

AutoCodeRover (Zhang et al., 2024b) gpt-4o 28.8 22.7
gpt-4 - 19.0

MASAI (Arora et al., 2024) gpt-4o – 28.3

SWE-Agent (Yang et al., 2024c) Claude-3.5-Sonnet 33.6 23.0
gpt-4o 23.2 18.3

SWE-Gym (Pan et al., 2024) SWE-Gym-32B 32.0 26.0

SWE-Search (Antoniades et al., 2024) gpt-4o - 31.0

Lingma (Ma et al., 2024) Lingma SWE-GPT 72B 30.2 22.0

SWE-Fixer (Xie et al., 2025) SWE-Fixer-72B 32.8 24.7

HyperAgent (Phan et al., 2024) - 33.0 26.0

SWE-RL (Wei et al., 2025) Llama3-SWE-RL-70B 41.0 -

CodeR (Chen et al., 2024a) gpt-4 – 28.3

OpenHands (Wang et al., 2024e) gpt-4o – 22.0
Claude-3.5-Sonnet – 26.0

Table 3: Performance on SWE-Bench Verified and SWE-Bench Lite; Performance is measured by resolved rate.

search-based techniques do) have shown superior594

performance. These methods can actively coun-595

teract model rigidity by encouraging the model to596

deviate from its default generation paths, result-597

ing in more diverse and contextually appropriate598

outputs. In fact, several works support the case599

for re-sampling, or exploring multiple and diverse600

paths through a combination of models.601

Observation G.5: Agentic approaches appear602

to dominate both execution-based and CoT strate-603

gies.604

Agentic approaches succeed by integrating605

chain-of-thought reasoning, execution-based vali-606

dation, and sampling into a unified framework–thus607

leveraging code’s structured syntax, executable se-608

mantics, and error feedback all in one.609

Observation G.6: Agentic approaches that610

scale inference with search are highly competitive611

and can even outperform other strategies.612

Furthering the case for counteracting model613

rigidity, agents that integrate search to scale their in-614

ference achieve state-of-the-art performance. ToC615

and SWE-Search in particular show that integrating616

diverse trajectories (either via multiple models or617

collaborative agents) and incorporating backtrack-618

ing can lead to major gains. This reinforces the619

case for exploration. Indeed, SWE-Search tops the620

leaderboard, achieving 31% on SWE-Bench Lite621

(Table 3). We leave it to future work to undertake622

the validation and theoretical substantiation of the623

premises discussed here.624

6 Conclusion and Future Work 625

Reasoning techniques and agents have driven major 626

AI gains and been successfully adapted for software 627

engineering (SE). AI for SE is a rapidly-evolving 628

field, with reasoning/agents at the cutting edge. We 629

present the first survey focused on code reason- 630

ing for SE tasks, with a taxonomy of techniques 631

and special attention to SE agents. We compare 632

methods across benchmarks, highlight hybrid and 633

agent-specific strategies, and analyze how code 634

properties influence performance. Our discussion 635

surfaces promising benchmarks and motivates fu- 636

ture directions in code reasoning and SE agents. 637

We highlight several directions: it’s clear that 638

adapting reasoning techniques to code improves 639

performance on code tasks; this should be explored 640

for diverse programming languages; we observe 641

that code-oriented plans, combined with other tech- 642

niques (search, execution feedback) are more ro- 643

bust; however, incorporating code-specific plans 644

or using structure in CoT for agents is still under- 645

explored. Most approaches have been applied to 646

Python (and Python-specific benchmarks); multi- 647

lingual reasoning techniques and benchmarks can 648

lead to the development of a more general code rea- 649

soning capability; moreover, different approaches 650

need to be explored for other tasks (e.g., search- 651

based techniques that leverage modularity, LM 652

and execution-based heuristics for test-case gener- 653

ation). 654
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Limitations655

This is a survey on Code Reasoning techniques,656

which is a new and evolving field. We covered657

reasoning techniques where we found a reasonable658

volume of work for code tasks. It is possible that we659

may have missed some reasoning techniques, but660

if so, it is likely the case that those techniques have661

not yet been explored by the software engineering662

community.663

Based on our survey methodology (described664

in A.1) we tried our best to find all relevant code665

reasoning papers which are applied to code or soft-666

ware engineering tasks. Since it is difficult for any667

search method to be through, we acknowledge that668

we may have missed some papers. We are happy to669

take suggestions on what can be included and hope670

to expand the survey in the future.671

Many papers use a combination of reasoning672

techniques. Our taxonomy and categorization is673

based on what we considered to be the dominant674

technique, which can be contested. To ensure there675

is no misrepresentation, we highlight papers with676

multiple techniques in Tab. 1 and Tab. 2.677

Since many papers use sophisticated approaches,678

it was difficult for us to explain every detail given679

space constraints. For every paper we tried to high-680

light what we thought were the most relevant, rep-681

resentative and general ideas for the reader.682
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A Appendix1341

A.1 Survey Methodology1342

We used arXiv and Google Scholar to ensure com-1343

prehensive coverage of all relevant works. In partic-1344

ular, we utilized their advanced search functional-1345

ity, querying combinations of terms such as "code1346

reasoning", "reasoning" + "LLM", and "agents" +1347

"software engineering".1348

To rigorously account for recent work building1349

on existing foundations, we also examined citation1350

graphs in Google Scholar—manually inspecting1351

entries that cited foundational papers.1352

We focused our review on publications in1353

premier venues including ACL, EMNLP, ICLR,1354

NeurIPS, and others, while also incorporating1355

cutting-edge preprints that may not yet have re-1356

ceived broad recognition. This emphasis on both1357

established and emerging work allowed us to cap-1358

ture the state of the art as well as frontier directions1359

in the field.1360

B Related Surveys1361

Wei et al., 2022b introduce CoT as a form of in-1362

context learning which induces reasoning in LLMs.1363

In the same year, Dong et al., 2022 survey in- 1364

context learning techniques and reference CoT rea- 1365

soning but do not expand on it. Qiao et al., 2022 1366

and Huang and Chang, 2022 survey methods and 1367

tasks for reasoning and extensively study CoT and 1368

other prompting approaches, but do not include 1369

software engineering tasks. Chu et al., 2023 also 1370

cover CoT reasoning extensively in a recent work. 1371

They define a more general concept of XoT or X-of- 1372

Thought, which covers concepts like Program-of- 1373

Thought (Chen et al., 2022), Tree-of-Thought (Yao 1374

et al., 2023a) etc. apart from CoT. However, they 1375

focus on the impact of these techniques on reason- 1376

ing benchmarks while we are more interested in 1377

how reasoning impacts code specific or software 1378

engineering benchmarks. Other recent surveys also 1379

cover different types of reasoning techniques for 1380

LLMs. Xu et al., 2025 discuss reinforcement learn- 1381

ing based reasoning techniques, but they don’t dis- 1382

cuss code specific reasoning strategies. Plaat et al., 1383

2024 classify the in-context reasoning approaches 1384

into prompting, evaluating and control (inference 1385

scaling and search) based strategies, but they don’t 1386

focus on coding tasks. 1387

In their work titled "Code to Think, Think to 1388

Code", Yang et al., 2025 highlight the interplay 1389

between code properties and reasoning capabili- 1390

ties and how one enhances the other. This sur- 1391

vey makes the case that training with code related 1392

data improves performance on Math and reason- 1393

ing benchmarks, while incorporating reasoning im- 1394

proves performance on coding benchmarks because 1395

some code properties reinforce reasoning capabili- 1396

ties and vice versa. Compared to this work, we dive 1397

deeper into reasoning techniques used for coding 1398

tasks and provide a taxonomy covering different 1399

strategies. 1400

A lot of surveys do cover impact of LLMs and 1401

Agents on Software Engineering tasks but none so 1402

far have focused on reasoning based strategies. Zan 1403

et al., 2022 survey 27 LLMs for natural language to 1404

code generation task. Jiang et al., 2024a undertake 1405

an extensive survey covering not just LLMs but also 1406

LLM architectures, many different research topics, 1407

benchmarks and datasets, encompassing a total of 1408

235 papers. (Sun et al., 2024a) also do a wide 1409

ranging survey covering 50 different models and 1410

their variants along with 20 different code-related 1411

task categories. (Huynh and Lin, 2025) survey 1412

many topics in this space including challenges and 1413

applications. Apart from surveys covering multiple 1414

topics from the domain of AI for code/software 1415

15
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engineering, there are also surveys that are more1416

topic specific. Wang et al., 2024b focus exclusively1417

on reinforcement learning in code generation. Chen1418

et al., 2024b survey different evaluation techniques1419

for coding tasks. Yehudai et al., 2025 also focus1420

on evaluation, but of LLM-agents and including1421

Software Engineering (SWE) Agents.1422

We did not find any survey specific to code1423

based reasoning techniques for software engineer-1424

ing tasks.1425

B.1 Summaries1426

Chen et al. (2024d) show that larger models favor1427

textual reasoning over code execution. However,1428

textual reasoning has inherent limitations in solv-1429

ing challenges in math, logic, optimization, search-1430

ing which is unlikely to be solved by scaling up the1431

model and data size. Inverse Scaling issue: GPT-4o1432

might perform worse than GPT-3.5 on some tasks1433

like Game of 24 because it defaults to using textual1434

reasoning as opposed to code generation (GPT 3.5).1435

Introduce a method to steer the model towards code1436

generation over textual reasoning. Introduce a hy-1437

brid approach to mix both textual reasoning and1438

code reasoning. Introduce a mechanism to allow1439

the model to assess whether textual or code-based1440

reasoning are appropriate. Insights from the pa-1441

per are: textual reasoning alone lacks the precision1442

required for computational tasks. Code is more1443

precise and unambiguous. Text-based reasoning1444

may struggle on tasks that require exact calcula-1445

tions or procedural steps. Suggests there is an open1446

area for developing a method that can intelligently1447

decide when to use code reasoning and when to1448

use textual reasoning. They seem to show that it-1449

erative refinement helps for code-based reasoning.1450

Overall, combining code-based and text-based rea-1451

soning is an effective strategy. "The methods that1452

rely more on code tend to improve with multi-turn1453

refinement, likely because code execution provides1454

additional feedback for reflection (Gou et al., 2023).1455

In contrast, the degradation of text-based methods1456

suggests that LLMs can worsen answers through1457

self-reflection alone, supporting findings from pre-1458

vious studies (Huang et al., 2023)." They test on1459

several tasks involving arithmetic, logic, puzzles. A1460

recurring task is Game 24. Date-related questions,1461

boolean expressions, math.1462

Chae et al. (2024) has a think phase and an ex-1463

ecution phase. Generates firstly a plan in pseudo-1464

code then simulates execution of the pseudocode.1465

Having a model plan in pseudocode seems to signif-1466

icantly boost reasoning. Dominant strategy might 1467

be structure-aware? 1468

B.2 Execution-driven Reasoning 1469

B.2.1 Self-Evaluation of Execution Behavior 1470

Self-debugging (Chen et al., 2024c) approach, 1471

teaches the model to self-debug. The code explana- 1472

tion along with the execution results constitute the 1473

feedback message that is used for debugging the 1474

generated code. When unit tests are not available, 1475

the feedback is purely based on code explanation. 1476

AlphaCodium, proposed by (Ridnik et al., 2024), 1477

is a flow to improve code LLM performance that 1478

does not require training a model. Best practices in 1479

AlphaCodium’s flow are: using YAML structured 1480

output, bullet point analysis for semantic reasoning, 1481

modular code generation, soft decision with dou- 1482

ble validation, encourage exploration and postpone 1483

direct decisions, and use of test anchors. 1484

In revisited self-debugging (Chen et al., 1485

2025b) authors explored both post-execution 1486

and in-execution self-debugging, leveraging self- 1487

generated tests. They found that post-execution 1488

suffers from bias in self-generated tests, while in- 1489

execution self-debugging minimizes the bias by 1490

focusing on the intermediate states during the pro- 1491

gram execution, and consistently outperforms post- 1492

execution approach on both basic and competitive 1493

tasks. 1494

µFix (Misunderstanding Fixing) (Tian et al., 1495

2025) thought-eliciting prompting techniques are 1496

combined with feedback-based prompting to im- 1497

prove the code generation performance of LLMs. 1498

Feedback-based prompting focuses on trying to 1499

understand the root cause of failure of tests by ana- 1500

lyzing the actual understanding implicitly utilized 1501

by LLMs for code generation through code sum- 1502

marization. 1503

B.2.2 Training with Execution-based 1504

Feedback 1505

LEarning to VERify (Ni et al., 2023) (LEVER) is 1506

an approach where verifiers are trained to check 1507

whether the generated code is correct or not based 1508

on three sources of information: the natural lan- 1509

guage input, the program itself, and its execution 1510

results. The generated code is re-ranked based on 1511

the verification score and the LLM generation prob- 1512

ability, and marginalizing over programs with the 1513

same execution results. 1514

(Jiang et al., 2025) proposed LEDEX, a training 1515

framework to improve the self-debugging capabil- 1516

16



ity of LLMs using a chain of explanations on the1517

wrong code followed by code refinement. Their1518

automated pipeline collects a high-quality dataset1519

for code explanation and refinement by generating1520

a number of explanations and refinement trajecto-1521

ries from the LLM itself, or a larger teacher model,1522

and filtering via execution verification. Then a1523

combined Supervised Full Tuning (SFT) and Rein-1524

forcement Learning (RL) technique is used on both1525

success and failure trajectories to train the code1526

model.1527

B.2.3 Automated Test Generation1528

UTGEN (Prasad et al., 2025) is a data creation and1529

training recipe that bootstraps training data for UT1530

generation from existing code generation datasets1531

by perturbing code to simulate errors, generating1532

failing unit test and augmenting it with CoT ratio-1533

nales. UTGen yields a higher number of unit tests1534

that have both attacking inputs and correct outputs.1535

Along with UTGEN , authors presented UTDE-1536

BUG, an improved multi- turn debugging method1537

that improves the output accuracy of generated UTs1538

by scaling test-time compute via self-consistency,1539

and regularizes the debugging process by generat-1540

ing multiple UTs and accepting code edits only if1541

the revised code passes more generated UTs, back-1542

tracking edits otherwise.1543

AceCoder (Zeng et al., 2025) leverages auto-1544

mated large-scale test case synthesis to enhance1545

code model training, they proposed a pipeline1546

that generates extensive (question, test-cases) pairs1547

from existing code data. In the UT generation pro-1548

cess, a LLM is asked to imagine and generate 201549

test cases from a refined code problem description1550

(instruction), then another stronger LLM is used as1551

a proxy to validate the quality of the generated UTs.1552

With the aid of test cases they create preference1553

pairs based on pass rates over sampled programs to1554

train reward models with Bradley-Terry loss. Us-1555

ing the preference pairs data, they leverage RL on1556

both reward models and test-case pass rewards, re-1557

sulting in improvements of the models for several1558

benchmarks.1559

In a similar way, (Liu et al., 2024b) proposes Di-1560

rect Preference Learning with Only Self-Generated1561

Tests and Code (DSTC), a framework that uses only1562

self-generated code snippets and tests to construct1563

preference pairs with direct preference learning to1564

improve LM coding accuracy without external an-1565

notations. The UT generation process is joint with1566

the code generation process, where the LLM is1567

prompted to generate multiple code snippets and 1568

tests for each given instruction. ASTER (Pan et al., 1569

2025a) is a multilingual unit test generator built 1570

with LLMs guided by lightweight program analy- 1571

sis. ASTER is a generic pipeline that incorporates 1572

static analysis to guide LLMs in generating compi- 1573

lable and high-coverage test cases for Python and 1574

Java. They showed that LLM-based test generation, 1575

guided by static analysis, can be competitive some- 1576

times outperform, state-of-the-art test- generation 1577

techniques in coverage while also producing con- 1578

siderably more natural test cases that developers 1579

find easy to understand. 1580

More recently, SWT-Bench (Mündler et al., 1581

2025) is a benchmark based on GitHub reposi- 1582

tories, containing real-world issues, ground-truth 1583

bug-fixes, and golden tests for Python. This bench- 1584

marks has over 1, 900 samples that were created 1585

by transforming SWE-BENCH (Jimenez et al., 1586

2024a) from code repair to test generation. Au- 1587

thors of SWT-Bench performed a study and found 1588

out that LLMs perform well at generating relevant 1589

test cases, where Code Agents designed for code re- 1590

pair have better performance than systems designed 1591

specifically for test generation. 1592

B.3 Inference Scaling 1593

B.3.1 Sampling 1594

AlphaCode. (Li et al., 2022a) solve competitive 1595

programming problems using large-scale sampling 1596

followed by filtering and clustering. AlphaCode 1597

diversifies the generation process by generating 1598

half of its samples in Python and half in C++, ran- 1599

domizing problem tags and ratings in the prompt, 1600

and using a high sampling temperature. With these 1601

techniques, they are able to generate millions of 1602

sample solutions per programming problem. This 1603

generation phase is then followed by filtering and 1604

clustering. Test cases are integral to these phases 1605

and are either (1) provided along with the problem 1606

statement or (2) generated using another model. Af- 1607

ter filtering samples by (1), thousands of candidate 1608

solutions remain. Thus, in (2) a trained model is 1609

used to generate new test inputs, which are then 1610

used to assess the remaining generated samples. 1611

The samples are clustered according to their pro- 1612

gramming behavior after being run against the gen- 1613

erated tests. One solution is selected from each 1614

cluster to constitute the final pool of candidates. 1615

REx. The authors of REx (Tang et al., 2024) 1616

frame iterative code repair, or refinement, as a 1617

17



multi-armed bandit problem which is solved using1618

Thompson sampling. In their problem formulation,1619

each "arm" is a program, and "pulling the arm"1620

corresponds to refining a program. The heuristic1621

reward is the fraction of specifications (test cases)1622

satisfied by the program. Using this sampling tech-1623

nique, they are able to select the program according1624

to its probability of giving the best reward. This is1625

equivalent to solving the programming task using1626

the fewest LLM calls possible. They show promis-1627

ing results on competitive programming problems.1628

S*. Li et al. (2025a) takes a hybrid approach to1629

sampling, first generating N diverse programs in1630

parallel then refining the programs using iterative1631

debugging. Their iterative debugging is informed1632

by execution results on public test cases. The revi-1633

sion process is complete once the program passes1634

all public test cases or reaches the max number of1635

attempts. They evaluate on code generation bench-1636

marks, including LiveCodeBench and CodeCon-1637

tests.1638

B.3.2 Search1639

Tree of Thoughts and Guided Tree-of-Thought.1640

In (Yao et al., 2023a)’s work, Tree-of-thoughts,1641

or ToT, takes inspiration from the human nature1642

of problem-solving, where people solve a prob-1643

lem by searching through a combinatorial prob-1644

lem search space. The ToT paradigm allows LMs1645

to explore multiple reasoning paths over thoughts,1646

where thoughts are language sequences that serve1647

as intermediate steps towards problem solutions1648

and represent the states or nodes of the tree. The1649

language model’s reasoning is used as the heuristic,1650

which contrasts with traditional approaches that1651

use learned or programmed rules. To travers the1652

tree, ToT uses classic search strategies: breadth-1653

first search (BFS) or depth-first search (DFS).1654

Similarly, guided tree-of-thought (Long, 2023)1655

also uses a tree-search algorithm, where the LLM1656

is used as a heuristic for generating search steps.1657

GToT uses prompting to reach an intermediate solu-1658

tion to a problem, then introduces a checker, which1659

assesses the correctness or validity of the interme-1660

diate solution. A controller module oversees the1661

entire tree search and can control backtracking if a1662

partial solution is invalid or unpromising, allowing1663

the system to explore long-range reasoning.1664

Ouédraogo et al. (2024) explore the effective-1665

ness of various prompting techniques, including1666

ToT and GToT, on the task of test generation. They1667

show that GToT prompting is effective in generat-1668

ing syntactically-correct and compilable test suites, 1669

and can also lead to test suites with superior code 1670

coverage. 1671

Outcome-Refining Process. (Yu et al., 2024) 1672

propose ORPS, Outcome-Refining Process Super- 1673

vision for code generation. Their paradigm per- 1674

forms beam-search over a "reasoning tree." In this 1675

tree, each state captures the complex nature of code; 1676

a state contains information about the theoretical 1677

reasoning, code implementation, and execution out- 1678

come of a potential solution. The beam-search 1679

implementation works as follows: for each state, 1680

multiple reasoning chains are stored at once. For 1681

every chain, the algorithm (1) updates the state with 1682

LM-generated reasoning and code implementation 1683

(2) runs the code to obtain feedback (i.e. records its 1684

performance on tests, its memory usage, number 1685

of AST nodes, etc), then (3) uses the same LM as 1686

a critic to generate a critique and numerical "step" 1687

reward. Using these notions of self-refinement 1688

and self-critique, only the most promising solution 1689

paths are retained. 1690

C Agents 1691

CodeTree. CodeTree (Li et al., 2024) frames code 1692

generation as a tree-search problem using a com- 1693

bination of planning, execution-guided reasoning, 1694

and sampling. CodeTree employs heuristic strate- 1695

gies similar to other search-based approaches, us- 1696

ing testing pass rate (as in REx, S*) combined with 1697

LM critique as a heuristic (as in ORPS, ToT/GToT) 1698

to guide the traversal of the tree. Unlike other ap- 1699

proaches, it uses a collaborative, multi-agent frame- 1700

work; each sub-agent is specialized for a particular 1701

type of reasoning. The thinker agent generates a 1702

strategy plan and decides the number of samples to 1703

generate; the solver implements the plan and gener- 1704

ates code solutions; the critic agent, which scores 1705

the solution based on test pass rate and robustness, 1706

then decides whether to accept, dismiss, or refine 1707

a solution. The debugger then outputs a refined 1708

program using the critic agent’s feedback. Once 1709

the code has been generated and feedback obtained, 1710

the solution is added as a tree node along with the 1711

relevant attributes, like the strategy plan. 1712

ToC. ToC (Ni et al., 2024) also presents the rea- 1713

soning process as a tree. They represent nodes in a 1714

similar way to CodeTree, using the thought, gener- 1715

ated code, and execution results as attributes of the 1716

node. Contrary to CodeTree, which uses a combi- 1717

nation of test-pass rates and a soft score to judge 1718

18



robustness of a solution, ToC uses a binary heuris-1719

tic: execution pass or execution fail. If a node fails,1720

the children will be explored until a viable solution1721

is reached. ToC integrates execution-based reason-1722

ing with a search-based, multi-strategy sampling1723

approach. Following code execution, they incorpo-1724

rate a post-execution reflective phase, which allows1725

them to perform iterative improvements. Here, they1726

leverage multiple models and varying temperature1727

settings to expand the diversity of potential solu-1728

tions.1729

Arora et al., 2024 take inspiration from modular-1730

ization and develop MASAI, a modular SE agent1731

with 5 sub-agents for different tasks: Test Template1732

Generator, Issue Reproducer, Edit Localizer, Fixer,1733

and Ranker. CodeR (Chen et al., 2024a) is a multi-1734

agent framework with task graphs for resolving1735

issues. Similar to role-based teams of humans that1736

resolve issues, the framework also defines roles and1737

actions like Manager, Reproducer, Fault Localizer,1738

Editor and Verifier. PairCoder (Zhang et al., 2024a)1739

is inspired by the software development practice1740

of pair programming. It incorporates two collabo-1741

rative agents: NAVIGATOR agent for high-level1742

planning and DRIVER for specific implementation.1743

HyperAgent (Phan et al., 2024) is a multi-lingual1744

(Python/ Java), multi-agent system that emulates1745

the workflow of human developers. It consists of1746

four specialized agents called Planner, Navigator,1747

Code Editor and Executor, which are capable of1748

managing the full SE task life-cycle from planning1749

to verification. AgileCoder (Nguyen et al., 2024)1750

is a multi-agent system that uses sprints and agile1751

roles (e.g., Product Manager, Developer, Scrum1752

Master) to coordinate work based on user input.1753

D Benchmarks1754

HumanEval (HE) (Chen et al., 2021a) is a set of1755

164 hand-written programming problems. Each1756

problem includes a function signature, docstring,1757

body, and several unit tests, with an average of 7.71758

tests per problem. A multi-language version of HE1759

is also available in HumanEval-XL (Peng et al.,1760

2024a).1761

MBPP (Austin et al., 2021a) (The Most Basic1762

Programming Problems) benchmark has 1k crowd-1763

sourced Python programming problems and was1764

designed to be solvable by entry level program-1765

mers. Each problem consists of a task descrip-1766

tion, code solution and three automated test cases.1767

EvalPlus (Liu et al., 2023a) augments a given1768

evaluation dataset with large amounts of new test 1769

cases created by an automatic test input generator, 1770

powered by both LLM- and mutation-based strate- 1771

gies. EvalPlus includes MBPP+, HumanEval+, 1772

and EvalPerf. 1773

APPS (Hendrycks et al., 2021a) is another bench- 1774

mark for code generation with 10k samples that 1775

measures the ability of models to take an arbitrary 1776

natural language specification and generate satis- 1777

factory Python code. More recent extensions of 1778

some of the above benchmarks such as HumanEval- 1779

ET, MBPP-ET, and APPS-ET were introduced by 1780

(Dong et al., 2025a), where the amount of correct 1781

test cases were extended for each benchmark 100+ 1782

on average according to the reference code. 1783

CodeContests(Li et al., 2022b) is a code gener- 1784

ation dataset with problems curated from compet- 1785

itive programming platforms such as Codeforces, 1786

requiring solutions to challenging code generation 1787

problems. This dataset has solutions to the given 1788

problems in Python, Java, and C++, with an En- 1789

glish description of the code problems. 1790

E Code Evaluation 1791

To address the poor correlation with human evalu- 1792

ation of exact or fuzzy match metrics, ICE-Score 1793

was recently proposed as an evaluation metric that 1794

instructs LLMs for code assessments (Zhuo, 2024). 1795

The ICE-Score evaluation showed superior correla- 1796

tions with functional correctness and human pref- 1797

erences, without the need for test oracles or refer- 1798

ences. The efficacy of ICE-Score was measured 1799

w.r.t. human preference and execution success for 1800

four programming languages. 1801

Additionally, CodeScore (Dong et al., 2025a) is 1802

another code evaluation metric that was recently 1803

proposed to measure the functional correctness 1804

of generated codes on three input formats (Ref- 1805

only, NL-only, and Ref&NL). CodeScore can be 1806

obtained through the UniCE framework that assists 1807

models in learning code execution and predicting 1808

an estimate of execution PassRatio. 1809

E.1 Metrics 1810

Functional correctness of generated code by LLMs 1811

is mainly measured by passing tests. One of the 1812

basic metrics to measure the correctness of code 1813

is the percentage of tasks in a given benchmark 1814

where the generated code successfully passes all 1815

tests. (Chen et al., 2021a) shows that exact or fuzzy 1816

match metrics (e.g., BLEU) are not adequate or 1817

reliable indicators of functional correctness of code, 1818
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by showing that functionally different programs1819

generated by a model often have higher BLEU1820

scores than functionally equivalent ones.1821

The metric pass@k is the probability of gener-1822

ating at least one solution passing all test cases1823

successfully in k trials. The AvgPassRatio mea-1824

sures the degree of correctness of generated code1825

on evaluation test cases, it considers whether the1826

generated code is completely correct on evaluation1827

test cases or not. Another metric is the percentage1828

of problems solved using n submissions from k1829

samples per problem, denoted as n@k.1830

F Results Tables1831

We manually inspected every work in our sur-1832

vey and collated self-reported and cross-reported1833

entries on common benchmarks. We report1834

on benchmarks that intersect across approaches1835

and use intersecting models/benchmarks to make1836

observations of their trends. In our surveyed1837

works, they were the following: APPS (Hendrycks1838

et al., 2021b), HumanEval (Chen et al., 2021b),1839

HumanEval+ (Liu et al., 2023b), HumanEval-1840

ET (Dong et al., 2025b), multi-language bench-1841

marks HumanEval-X (Zheng et al., 2023a) and1842

HumanEval-XL (Peng et al., 2024b). MBPP1843

(Austin et al., 2021b), MBPP+, MBPP-sanitized1844

(Austin et al., 2021c), MBPP-ET. See tables: 4, 5,1845

6, 8, 7.1846

G Observations Extended1847

G.1 Observation 1:1848

Chain of Grounded Objectives (CGO) outperforms1849

Self-Planning and ClarifyGPT with gpt-3.5 on1850

MBPP-S; it is also better than Self-Planning on1851

MBPP+. This also holds true for Llama-3-8B-Instr,1852

where CGO is better than Self-Planning. On MBPP1853

and MBPP+ with gpt-4o-mini, ScoT is better than1854

Self-Planning (Table 7).1855

G.2 Observation 2:1856

MoT outperforms SCoT and Self-Planning with1857

DS-R1 on MBPP and HE. This is also true for1858

MBPP and MBPP+ with gpt-4o-mini. CodeChain1859

(a modular approach) also outperforms SCoT on1860

APPs overall with gpt-3.5 (Table 4, 7, 8).1861

G.3 Observation 3:1862

MuFix and Self-Debugging surpass other CoT base-1863

lines (CGO, SCoT, Self-Plan, Clarify-GPT) on1864

HumanEval (gpt-3.5). Revisiting Self-Debugging1865

beats PlanSearch on HE+ (Claude-3.5-Sonnet).1866

MuFix and Self-Debugging outperform Clari- 1867

fyGPT on MBPP-ET (gpt-3.5), further reinforcing 1868

dominance of execution-based methods. On MBPP 1869

with gpt-3.5, Self-Debugging surpasses SCoT by a 1870

large margin. MuFix and Self-Debugging outper- 1871

form UniCoder on HE. The findings hold true on 1872

the APPS benchmark, where MuFix outperforms 1873

CodeChain, SCoT, and Self-Planning with gpt-3.5. 1874

This is true for DeepSeek-Coder as well, where Mu- 1875

Fix, Self-Debugging, and CYCLE models, which 1876

are smaller-sized parameter models but finetuned, 1877

outperform SCoT. (Tables 4, 7, 8) 1878

G.4 Observation 4: 1879

CodeTree outperforms Revisiting Self Debugging 1880

on MBPP+ with gpt-4o. ORPS outperforms 1881

MoT and other structure-based and plan-based ap- 1882

proaches (like SCoT and Self-Planning) on MBPP 1883

with gpt-4o-mini. This is also true for MBPP with 1884

DeepSeekCoder, ORPS outperforms UniCoder by 1885

a large margin. REx with gpt-4 also claims to 1886

achieve the state-of-the art on APPS, with roughly 1887

70%. S* also beats PlanSearch on LCB with o1- 1888

mini and 4o-min. (Tables 5, 7) 1889

G.5 Observation 5: 1890

PairCoder and AgileCoder significantly outperform 1891

ClarifyGPT with gpt-4 on HE. PairCoder is bet- 1892

ter than CGO and Self-Planning on MBPP+ with 1893

gpt-3.5. Both PairCoder and Agile coder are bet- 1894

ter than SCoT on MBPP with gpt-3.5; both dom- 1895

inate Self-Debugging as well. With DeepSeek- 1896

coder on HE, Paircoder outperforms MuFix, Self- 1897

Debugging, and UniCoder; also with DeepSeek- 1898

Coder, PairCoder outperforms UniCoder on MBPP. 1899

Also true for gpt-4 on MBPP-S, where PairCoder 1900

outperforms ClarifyGPT. (Tables 4, 7, 8) 1901

G.6 Observation 6: 1902

CodeTree outperforms MoT, SCoT, Self-Planning, 1903

and PlanSearch on HE+ and MBPP+ with gpt-4o- 1904

mini; CodeTree outperforms these strategies with 1905

gpt-4o as well. CodeTree also outperforms ORPS 1906

on MBPP with gpt-4o-mini. On M3ToolEval, ToC 1907

is better than CodeAct. Moreover, SWE-Search, 1908

which combines inference scaling in an agentic ap- 1909

proach, dominates the leaderboard on SWE-Bench 1910

Lite. (Tables 5, 6, 7, 8). 1911
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Approach Model APPS
Introductory

APPS
Interview

APPS
Competition APPS-ET APPS

CodeChain (Le et al., 2023) gpt-4 71.1 55.0 23.3 – 61.5
gpt-3.5-turbo-16k 54.5 28.1 12.4 – 26.4
WizardCoder 26.3 7.5 3.8 – 10.5

ChainCoder ♢ (Zheng et al., 2023b) ChainCoder-1B 17.5 7.4 5.5 – –

AlphaCode ♢ (Li et al., 2022a) AlphaCode-1B 14.4 5.6 4.6 – –

Self-Planning (Jiang et al., 2024b) gpt-3.5-turbo – – – 8.3 21.3
DeepSeekCoder – – – 1.0 4.0

SCoT (Li et al., 2025b) gpt-3.5-turbo – – – 7.7 22.0
DeepSeek-Coder-6.7B-Instr – – – 1.3 4.3

Self-Debugging (Chen et al., 2024c) gpt-3.5-turbo – – – 6.2 18.7
DeepSeek-Coder-6.7B-Instr – – – 1.3 4.7

CYCLE (Ding et al., 2024a) CYCLE-350M – – – – 8.7
CYCLE-1B – – – – 10.9
CYCLE-2.7B – – – – 11.6
CYCLE-3B – – – – 11.3

µ-Fix (Tian et al., 2025) gpt-3.5-turbo – – – 10.3 35.7
DeepSeek-Coder-6.7B-Instr – – – 5.0 14.0

REx (Tang et al., 2024) gpt-4 – – – – ∼ 70

Table 4: Performance across the APPS benchmark (Hendrycks et al., 2021b), including the APPS Introductory,
Interview, Competition, APPS-ET, and APPS overall sets. Default performance is reported as pass@1 (%).
Approaches marked with ♢ use the n@k metric, where n = 5 and k = 1,000.

Approach Model LCB CodeContests M3ToolEval

S* (Li et al., 2025a) Qwen-2.5-Coder-Instruct 32B 70.1 21.8 -
gpt-4o-mini 61.3 23.0 -
R1-Distill-32B 85.7 - -
o1-mini 85.3 48.5 -

PlanSearch (Wang et al., 2024a) DeepSeek-Coder-V2 41.4 – -
gpt-4o-mini 39.0 – -
gpt-4o 41.3 – -
Claude-Sonnet-3.5 40.3 - -
o1-mini 69.5 – -

CodeChain † (Le et al., 2023) gpt-3.5 - 14.1 -

ChainCoder ‡ (Zheng et al., 2023b) ChainCoder-1B - ∼ 15 -

AlphaCode ‡ (Li et al., 2022a) AlphaCode-9B - 14.3 -
AlphaCode-41B - 15.6 -

PairCoder (Zhang et al., 2024a) gpt-3.5-turbo - 15.2 -
DeepSeek-Coder - 14.6 -

CodeTree (Zhang et al., 2024a) gpt-4o-mini - 26.4 -
gpt-4o - 43.0 -
Llama-3.1-8B - 12.1 -

AlphaCodium † (Ridnik et al., 2024) DeepSeek-33B - 24.0 -
gpt-3.5 - 17.0 -
gpt-4 - 29.0 -

CodeAct (Wang et al., 2024c) gpt-4 – – 74.4

Tree-of-Code (Ni et al., 2024) Mix-modal – – 81.6

Table 5: Performance across the LiveCodeBench (LCB), CodeContests (test set), and M3ToolEval. Default
results are reported as pass@1. Approaches marked with † indicate pass@5, while those marked with ‡ use the
n@k of 10@1k rate. S* results reflect performance on LCB v2.
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Approach Model SWE-Bench Verified SWE-Bench Lite SWE-Bench

Agentless (Xia et al., 2024) gpt-4o 33.2 24.3 -
o1-preview 41.3 - -
DeepSeek-V3 42.0 - -
DeepSeek-R1 49.2 - -
Claude-3.5-Sonnet 53.0 - -

AutoCodeRover (Zhang et al., 2024b) Qwen2-72B-Instruct - 9.3 -
gpt-4o 28.8 22.7 -
gpt-4 - 19.0 -

MASAI (Arora et al., 2024) gpt-4o – 28.3 -

SWE-Agent (Yang et al., 2024c) Claude-3.5-Sonnet 33.6 23.0 -
gpt-4o 23.2 18.3 -

SWE-Gym (Pan et al., 2024) Qwen-2.5-Coder-Instruct 32B 20.6 15.3 -
SWE-Gym-32B 32.0 26.0 -

SWE-Search (Antoniades et al., 2024) gpt-4o - 31.0 -
gpt-4o-mini - 17.0 -
Qwen-2.5-72b-Instruct - 24.7 -
Deepseek-V2.5 - 21.0 -
Llama-3.1-70b-Instruct - 17.7 -

Lingma (Ma et al., 2024) Lingma SWE-GPT 72B 30.2 22.0 -
Lingma SWE-GPT 7B 18.2 12.0 -

SWE-Fixer (Xie et al., 2025) SWE-Fixer-72B 32.8 24.7 -

HyperAgent (Phan et al., 2024) - 33.0 26.0 -

SWE-RL (Wei et al., 2025) Llama3-SWE-RL-70B 41.0 - -

CodeR (Chen et al., 2024a) gpt-4 – 28.3 -

CodeTree (Li et al., 2024) gpt-4o-mini – – 27.6

OpenHands (Wang et al., 2024e) gpt-4o-mini – 7.0 -
gpt-4o – 22.0 -
Claude-3.5-Sonnet – 26.0 -

Table 6: Performance on SWE-Bench Verified, and SWE-Bench Lite, and SWE-Bench. Performance is measured
by resolved rate.
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Approach Model MBPP+ MBPP MBPP-ET MBPP-S

PlanSearch (Wang et al., 2024a) gpt-4o-mini 73.5 – – –
gpt-4o 77.2 – – –
DeepSeekCoder-V2 76.3 – – –
Claude-3.5-sonnet 77.1 – – –

ClarifyGPT (Mu et al., 2023) gpt-3.5-turbo – – 55.6 74.1
gpt-4 – – 58.5 78.7

Self-Planning (Jiang et al., 2024b) Codex – – 41.9 55.7
gpt-4o-mini 42.4 52.1 48.2 –
DeepSeek-R1 55.4 68.4 65.5 –
gpt-3.5-turbo 68.1 – – 82.6
Llama-3 8B Instr. 56.9 – – 67.9

SCoT (Li et al., 2025b) gpt-3.5-turbo – 47.0 – –
Codex – 38.3 – –
gpt-4o-mini 51.4 63.9 55.6 –
DeepSeek-R1 46.9 57.9 61.3 –

MoT (Pan and Zhang, 2025) DeepSeek-R1 60.4 74.9 68.0 –
gpt-4o-mini 58.1 73.9 58.9 –

CGO (Yeo et al., 2025) gpt-3.5-turbo 73.7 – – 86.0
Llama-3 8B Instr. 57.9 – – 68.1

UniCoder (Sun et al., 2024b) Deepseek-Coder – 64.3 – –
CodeLlama-7B – 65.2 – –

Self-Debugging (Chen et al., 2024c) Codex – 70.8 – –
gpt-3.5-turbo – 74.2 60.4 –
gpt-4 – 80.6 – –
StarCoder – 53.2 – –
DeepSeek-Coder-6.7B-Instruct – – 56.9 –

LeDex (Jiang et al., 2025) StarCoder-15B 54.3 58.2 – –
CodeLlama-7B 52.9 58.1 – –
CodeLlama-13B 57.9 61.9 – –

Revisiting Self-Debugging (Chen et al., 2025b) gpt-4o 76.5 91.5 – –
Claude-3.5-sonnet 77.0 92.6 – –
Llama-3-70B-Instr. 71.2 84.4 – –
Qwen-2.5-Coder-7B-Instr 70.6 84.7 – –

ORPS (Yu et al., 2024) Llama-3.1-8B-Instruct - 90.4 – –
DeepSeek-Coder-7B-Instruct-v1.5 - 93.0 – –
Qwen-2.5-Coder-7B-Instruct - 94.9 – –
Qwen-2.5-Coder-14B-Instruct - 95.3 – –
gpt-4o-mini - 95.7 – –

CodeTree (Li et al., 2024) gpt-4o-mini 77.0 96.8 – –
gpt-4o 80.7 98.7 – –
Llama-3.1-8B-Instr. 73.3 90.5 – –

AgileCoder (Nguyen et al., 2024) gpt-3.5-turbo – 80.9 – –
claude-3-haiku – 84.3 – –

PairCoder (Zhang et al., 2024a) gpt-3.5-turbo 77.7 80.6 – –
DeepSeek-Coder 75.7 78.8 – –
gpt-4 – – – 91.2

CYCLE (Ding et al., 2024a) CYCLE-350M – – – 32.6
CYCLE-1B – – – 35.8
CYCLE-2.7B – – – 48.5
CYCLE-3B – – – 51.3

µ-Fix (Tian et al., 2025) gpt-3.5-turbo – – 69.1 –
DeepSeek-Coder-6.7B-Instruct – – 63.3 –

SemCoder (Ding et al., 2024b) SemCoder-S-6.7B 68.5 79.6 – –
SemCoder-6.7B 65.3 79.9 – –

Table 7: Performance on the MBPP +, MBPP, MBPP-ET, and MBPP-sanitized benchmarks. All results are
reported as pass@1.
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Approach Model HE+ HE HE-XL HE-X HE-ET

PlanSearch (Wang et al., 2024a) gpt-4o-mini 83.7 – – – –
gpt-4o 86.4 – – – –
DeepSeekCoder-V2 82.8 – – – –
Claude-3.5-sonnet 81.6 – – – –

ClarifyGPT (Mu et al., 2023) gpt-3.5-turbo – 74.4 – – 64.8
gpt-4 – 87.8 – – 78.1

Self-Planning (Jiang et al., 2024b) Codex – 60.3 – 60.3 46.2
gpt-4o-mini 79.9 87.2 – – 87.1
DeepSeek-R1 79.3 85.4 – – 85.3
gpt-3.5-turbo 67.3 72.7 – – –
LLaMA-3 8B Instr. 52.8 60.1 – – –

SCoT (Li et al., 2025b) gpt-3.5-turbo – 60.6 – – –
Codex – 49.8 – – –
gpt-4o-mini 78.7 86.6 – – 86.0
DeepSeek-R1 79.3 84.8 – – –
DeepSeekCoder – – 69.3 – –
Qwen-2.5-Coder – – 74.4 – –

MoT (Pan and Zhang, 2025) DeepSeek-R1 88.4 95.1 – – 94.5
gpt-4o-mini 83.5 92.1 – – 91.5

MSCoT (Pan and Zhang, 2025) DeepSeek-Coder – – 66.0 – –
Qwen2.5-Coder – – 72.3 – –

CGO (Yeo et al., 2025) gpt-3.5-turbo 68.5 74.6 – – –
LLaMA-3 8B Instr. 56.2 62.4 – – –

UniCoder (Sun et al., 2024b) DeepSeek-Coder – 70.6 – – –
CodeLlama-7B – 65.4 – – –

COTTON (Yang et al., 2024b) gpt-3.5-turbo 76.2 74.4 – – –
DeepSeekCoder – – 61.8 – –
Qwen-2.5-Coder – – 68.7 – –

Agile Coder (Nguyen et al., 2024) gpt-3.5-turbo – 70.5 – – –
claude-3-haiku – 79.3 – – –
gpt-4 – 90.9 – – –

CodeAct (Wang et al., 2024c) CodeActAgent(LLaMA-2-7B) – 18.1 – – –
CodeActAgent(Mistral-7B) – 34.7 – – –

PairCoder (Zhang et al., 2024a) gpt-3.5-turbo 77.4 87.8 – – –
DeepSeek-Coder 76.2 85.4 – – –
gpt-4 – 93.9 – – –

CodeTree (Li et al., 2024) gpt-4o-mini 84.8 94.5 – – –
gpt-4o 86.0 94.5 – – –
Llama-3.1-8B 72.0 82.3 – – –

µ-Fix (Tian et al., 2025) gpt-3.5-turbo 80.5 90.2 – – 79.9
DeepSeek-Coder-6.7B-Instr 78.7 83.5 – – 75.0

Self-Debugging (Chen et al., 2024c) gpt-3.5-turbo 71.3 77.4 – – –
DeepSeek-Coder-6.7B-Instr 73.2 77.4 – – –

LeDex (Jiang et al., 2025) StarCoder-15B 46.3 52.3 – – –
CodeLlama-7B 50.0 55.8 – – –
CodeLlama-13B 56.7 61.7 – – –

CYCLE (Ding et al., 2024a) CYCLE-350M – 20.7 – – –
CYCLE-1B – 22.0 – – –
CYCLE-2.7B – 29.3 – – –
CYCLE-3B – 29.9 – – –

Revisiting Self-Debugging (Chen et al., 2025b) gpt-4o 87.8 92.1 – – –
Claude-3.5-Sonnet 89.0 94.5 – – –
Llama-3-70B Instr. 73.8 79.9 – – –
Qwen-2.5-Coder 81.7 86.0 – – –

SemCoder (Ding et al., 2024b) SemCoder-S-6.7B 74.4 79.3 – – –
SemCoder-6.7B 68.9 73.2 – – –

Table 8: Performance on the HumanEval +, HumanEval, HumanEval-XL, HumanEval-X, and HumanEval-ET
benchmarks. All results are reported as pass@1.
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Approach CoT Execution-based Inference Scaling Other

Plan Struct FT
Gen-AI

Tests
Benchmark

Tests
Sampling

LM
Heuristic

Exec.
Heuristic

MV RR RL

PlanSearch ¥ ¥ ¥

Self-Planning,
ClarifyGPT

¥

SCoT,CGO,MoT,CodeChain ¥

UniCoder,ChainCoder,MSCoT ¥ ¥

COTTON ¥ ¥

SemCoder ¥ ¥ ¥

MSCoT ¥ ¥

Self-Debug ¥ ¥

CodeCOT,AlphaCodium ¥ ¥ ¥

Revisit Self-Debug ¥ ¥ ¥

µFix ¥ ¥

LEVER ¥ ¥ ¥

CYCLE ¥ ¥

LEDEX ¥ ¥ ¥ ¥

ORPS ¥ ¥

GToT ¥

S* ¥ ¥ ¥ ¥?
REx

Table 9: LLM Reasoning based approaches for code tasks and key components. CoT (Chain-of-Thought); Exe-based
(Execution-based feedback); GenAI Tests (Generated Tests with LLMs); MV (Majority Vote); RR (Re-Ranking);
RL (Reinforcement-Learning). Each approach has a dominant strategy by which we categorize our taxonomy:
CoT and Planning , Execution-driven , and sampling or search . For agentic see Tab. 10.

Approach Workflow Reason. Model Agent Optim. Inf. Scaling
SFT RL Verifier Multi-Agent Tools

Agentless ¥

AutoCodeRover ¥ ¥

SWE-Agent ¥

CodeAct ¥ ¥

OpenHands, MASAI, CodeR, AgileCoder ¥ ¥

PairCoder ¥ ¥

HyperAgent ¥

Lingma, SWE-Fixer ¥ ¥

SWE-Gym ¥ ¥ ¥ ¥

SWE-RL ¥

CodeTree ¥ ¥

ToC ¥

SWE-Search ¥ ¥ ¥

Table 10: In our taxonomy Agents are classified as employing one of the following techniques 1. Workflow 2.
Reasoning Model improvement 3. Agent optimization 4. Inference scaling. However many agents employ multiple
techniques. For example, SWE-Gym is classified in Reasoning model improvement category, but they also train a
verifier model for inference scaling. This table highlights such nuances.
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