
Code Reasoning for Code Tasks: A Survey and A Call to Action

Anonymous ACL submission

Abstract001

The rise of large language models (LLMs) has002
led to dramatic improvements across a wide003
range of natural language tasks. These advance-004
ments have extended into the domain of code,005
facilitating complex tasks such as code gener-006
ation, translation, summarization, and repair.007
However, their utility for real-world deploy-008
ment in-the-wild has only recently been studied,009
on Software Engineering (SWE) tasks such as010
GitHub issue resolution. In this study, we exam-011
ine the code reasoning techniques that underlie012
the ability to perform such tasks, and examine013
the paradigms used to drive their performance.014
Our contributions in this paper are: (1) the first015
dedicated survey on code reasoning for code016
tasks, highlighting overarching strategies, hy-017
brid and agentic approaches; (2) a taxonomy of018
various techniques used to drive code reason-019
ing; (3) a comprehensive overview of perfor-020
mance on common benchmarks and showcase021
new, under-explored benchmarks with high po-022
tential in SWE; (4) an exploration on how core023
properties of code can be used to explain dif-024
ferent reasoning techniques; and (5) gaps and025
under-explored areas for future research.026

1 Introduction027

Hindle et al., 2012 show that software is repetitive028

and predictable like natural language, and hence029

can be modeled using statistical techniques like030

LLMs. Subsequently, LLMs have been used effec-031

tively for a wide variety of Software Engineering032

(SWE) tasks1, including code generation (Chen033

et al., 2021b), language translation (Roziere et al.,034

2020) code summarization (Sun et al., 2025) and035

others. Many code specific datasets (Puri et al.,036

2021; Khan et al., 2024), models (Li et al., 2023;037

Nijkamp et al., 2023) and benchmarks (Hendrycks038

et al., 2021b; Zhuo et al., 2025) have also been039

developed. Despite this progress, LLMs have040

1We use SWE tasks, Code tasks and Software engineering
tasks interchangeably.

been shown to be limited in their capacity to solve 041

real-world SWE tasks, like GitHub issue resolu- 042

tion (Jimenez et al., 2024b). Recent development of 043

large reasoning models (LRMs) (Guo et al., 2025; 044

Anthropic, 2025; Jaech et al., 2024) and SWE 045

Agents have resulted in tremendous improvement 046

on code generation, test generation and GitHub 047

issue resolution as well. 048

In a recent survey, Yang et al., 2025 explore how 049

code and reasoning reinforce each other. They com- 050

pile works showing how incorporating code data 051

improves reasoning, and how better reasoning leads 052

to improvement on SWE tasks. Many underlying 053

techniques contribute to reasoning models, includ- 054

ing Chain-of-Thought or CoT (Wei et al., 2022b) 055

which elicits reasoning, learning from environment 056

feedback (Chen et al., 2024c) and exploring mul- 057

tiple reasoning paths (Yao et al., 2023a). Many 058

recent surveys explore reasoning techniques, SWE 059

LLMs, benchmarks and Agents, and we discuss 060

them in Sec. B. However we did not find any survey 061

that explores the impact of reasoning, and specif- 062

ically code-based reasoning techniques on SWE 063

tasks. SWE is one of the most interesting applica- 064

tions areas of Artificial Intelligence (AI) and there 065

is growing research in this space. As different rea- 066

soning techniques mature and agents become more 067

robust, it is reasonable to expect more and more 068

SWE tasks will be automated. With our survey on 069

code reasoning for code tasks, we hope to address 070

this gap by making the following contributions: 071

(1) The first survey specific to reasoning for cod- 072

ing tasks, emphasizing reasoning techniques which 073

borrow ideas from coding principles (Sec. 2). SWE 074

Agents are given a special focus (Sec. 3) given they 075

depend on multiple reasoning techniques. 076

(2) A Taxonomy covering different reasoning 077

approaches and benchmarks for code Fig. 1. We 078

also highlight approaches employing multiple rea- 079

soning techniques for LLMs in general (Tab. 1) and 080

agents in particular (Tab. 2). 081

1



Code Reasoning
Taxonomy of
Techniques

CoT Reasoning (§2.1)

Plan based CoT
Prompting (2.1)

PlanSearch (Wang et al., 2024a); Self-Planning
(Jiang et al., 2024b); ClarifyGPT (Mu et al., 2023)

Code Structure based
CoT Prompt (§2.1)

SCoT (Li et al., 2025b); MoT (Pan and Zhang, 2025); CodeChain (Le
et al., 2023); SemCoder (Ding et al., 2024b); CGO (Yeo et al., 2025)

CoT fine-tuning (§2.1)
UniCoder (Sun et al., 2024b); COTTON (Yang et al., 2024b);
MSCoT (Jin et al., 2025); ChainCoder (Zheng et al., 2023b)

Execution based
reasoning (§2.2)

Self-evaluation of
execution behavior (§2.2)

Self-debugging (Chen et al., 2024c); AlphaCodium (Ridnik et al., 2024);
Revisiting Self-debugging (Chen et al., 2025b); µFix (Tian et al., 2025)

Training with Execution
based feedback (§2.2)

LEVER (Ni et al., 2023); CYCLE (Ding
et al., 2024a); LEDEX (Jiang et al., 2025)

Inference Scaling (§2.3) Sampling (§2.3)
AlphaCode (Li et al., 2022a); REx (Tang et al.,
2024); S*: Test-time Scaling (Li et al., 2025a)

Search (§2.3) ToT (Yao et al., 2023a); GToT (Long, 2023); ORPS (Yu et al., 2024)

Taxonomy
of Tasks

Agentic (§3)

Workflow (§3) Agentless (Xia et al., 2024); AutoCodeRover (Zhang et al., 2024b)

Agent Optimization (§3)

SWE-Agent (Yang et al., 2024c); CodeAct (Wang et al., 2024c);
MASAI (Arora et al., 2024); CodeR (Chen et al., 2024a); Pair-

Coder (Zhang et al., 2024a); HyperAgent (Phan et al., 2024); Ag-
ileCoder (Nguyen et al., 2024); OpenHands (Wang et al., 2024e)

Reasoning Model
Improvement (§3)

Lingma (Ma et al., 2024); SWE-Gym (Pan et al., 2024);
SWE-Fixer (Xie et al., 2025); SWE-RL (Wei et al., 2025)

Inference Scaling (§3)
CodeTree (Li et al., 2024); SWE-Search (Antoni-
ades et al., 2024); Tree-of-Code (Ni et al., 2024)

Non-Agentic (§4) Code Tasks (§4.1)

HE (Chen et al., 2021a); MBPP (Austin et al., 2021a); APPS
(Hendrycks et al., 2021a); CodeContests(Li et al., 2022b); LCB
(Jain et al., 2024); BigCodeBench (Zhuo et al., 2025); CRUXE-
val (Gu et al., 2024); HEPack (Muennighoff et al., 2023); Spi-
der (Yu et al., 2018) (Lei et al., 2025); TestEval (Wang et al.,
2025); SWE-Bench (Jimenez et al., 2024a); SWE-Bench Multi-

modal (Yang et al., 2024d); Multi-SWE-Bench (Zan et al., 2025);
M3ToolEval (Wang et al., 2024d); SWT-Bench (Mündler et al., 2025)

Code Reason-
ing Tasks (§4.2)

CRUXEval (Gu et al., 2024); CodeMind (Liu et al.,
2024a); ReEval (Chen et al., 2025a); ExeRScope (Liu

and Jabbarvand, 2025); CodeMMLU (Manh et al., 2025)

Figure 1: Code Reasoning Taxonomy.

(3) Showcase benchmarks used to study the im-082

pact of reasoning on SWE tasks. We compiled083

comparison tables (Tab. 4, 6, 7, 8) showing the per-084

formance of different code reasoning and agentic085

approaches (Sec. 4.1). We also highlight promising086

benchmarks specific to code reasoning (Sec. 4.2),087

and surface some new agent-specific benchmarks088

with potential for furthering SWE research.089

(4) Discussion on how the performance of differ-090

ent code reasoning techniques might be connected091

to different code properties (Sec. 3). In Sec. 6, we092

use this discussion to motivate future work.093

2 Taxonomy of Techniques094

Brown et al., 2020 show that LLMs are few-shot095

learners. Performance of LLMs on reasoning tasks096

is further enhanced by a certain kind of prompt-097

ing called Chain-of-Thought or CoT (Wei et al.,098

2022b) prompting which elicits LLM reasoning.099

Wei et al., 2022a suggest that in-context learning100

ability of LLMs, including CoT reasoning, is an101

emergent property of LLMs. Code CoT papers (Li102

et al., 2025b; Jiang et al., 2024b; Pan and Zhang,103

2025 and others) suggest that code reasoning is a104

specific kind of reasoning and CoT can be more105

impactful when induced with prompts that recog-106

nize this difference. We survey such techniques in 107

Sec. 2.1. 108

Yao et al., 2023a state that "System 2" think- 109

ing should involve exploring diverse solution paths 110

rather than greedily picking one. They connect 111

CoT with sampling and search to enable explo- 112

ration of multiple reasoning paths. Li et al., 2022a 113

effectively leverage sampling and search tech- 114

niques to generate competition level code. Sec. 2.3 115

covers sampling and search techniques used to ex- 116

plore multiple reasoning paths for software engi- 117

neering tasks. 118

One way code output is different from natural 119

language output is that it can be executed and tested 120

to validate it’s correctness. Yao et al., 2023a high- 121

light that execution can be a way to check if the 122

reasoning is correct. Li et al., 2022a use code exe- 123

cution and sample tests as a way to filter generated 124

output. Chen et al., 2024c teach the model to self- 125

debug based on reasoning from execution results. 126

Other such techniques based on code execution are 127

covered in Sec. 2.2. 128

Agents bring most of these reasoning tech- 129

niques together. ReAct (Yao et al., 2023b) en- 130

ables problem-solving through real-time environ- 131

2



Approach CoT Exe
Based

Inf.
Scaling Other

PlanSearch P B S
Self-Planning, ClarifyGPT P
SCoT, CGO, MoT, CodeChain S
UniCoder, ChainCoder, MSCoT S-FT
COTTON P-FT
SemCoder S-FT G
MSCoT S-FT
Self-Debug B MV
CodeCOT, AlphaCodium P G-B
Revisit Self-Debug G-B MV
muFix P G
LEVER B S RR
CYCLE B S
LEDEX P B S RL
ORPS G-B
GToT LM
S* G-B S

Table 1: LLM reasoning approaches for code tasks and
key components. CoT (Chain-of-Thought, including
Plan (P), Structure (S), or Finetuning (FT)); Exe-based
(Execution-based feedback using model-generated (G)
or benchmark (B) tests); Other includes MV (Major-
ity Vote), RR (Re-Ranking), and RL (Reinforcement
Learning). Approaches are categorized by dominant
strategy: CoT and Planning , Execution-driven , and

sampling or search

Approach Work
Flow

Reasoning
Model

Agent
Optim.

Inf.
Scaling

Agentless ¥

AutoCodeRover ¥ T
SWE-Agent T
CodeAct SFT T
OpenHands MA-T
MASAI MA-T
CodeR MA-T
AgileCoder MA-T
PairCoder ¥ MA
HyperAgent MA
Lingma ¥ SFT
SWE-Fixer ¥ SFT
SWE-Gym SFT-V T ¥

SWE-RL RL MA
CodeTree MA ¥

ToC ¥

SWE-Search MA-T ¥

Table 2: In our taxonomy Agents are classified as
employing one of the following techniques (1) Work-
flow (2) Reasoning Model improvement (3) Agent
optimization (4) Inference scaling. However many
agents employ multiple techniques. For ex., SWE-
Gym is classified in Reasoning model improvement
category, but they also train a verifier model for infer-
ence scaling. This table highlights such nuances.

mental engagement. Reflexion (Shinn et al., 2023)132

leverages linguistic reflection to enhance perfor-133

mance. Sec. 3 surveys different software engineer-134

ing agents which build on reasoning techniques135

mentioned above.136
2.1 Code Chain-of-Thought Reasoning137
Chain-of-Thought or CoT (Wei et al., 2022b) is138

a prompting technique for large language mod-139

els (LLMs) designed to elicit step-by-step reason-140

ing, making it likelier that the LLMs arrive at the141

correct answer and in the process making their142

"thoughts" more transparent. CoT prompts for143

code can be categorized as plan-based or struc-144

ture based. Plan-based CoT is a natural language145

articulation of steps that need to be taken to solve a146

coding problem. Code structure based CoT utilize147

some code structure or programming concepts. Be-148

sides prompting only techniques, another approach149

used by many is fine-tuning or instruction tuning150

for software engineering tasks with code CoT data.151

Plan-based CoT Prompting. Several recent152

approaches enhance code generation by explicitly153

modeling intermediate reasoning or problem under-154

standing steps. For instance, PlanSearch Wang155

et al., 2024a generates 3–6 problem observa-156

tions, combines them into natural language plans,157

and translates these into pseudocode and then 158

code. Self-Planning Jiang et al., 2024b uses 159

few-shot prompting to extract a high-level plan 160

from the problem, which guides code generation. 161

ClarifyGPT Mu et al., 2023 employs test genera- 162

tion to construct clarifying questions and answers 163

that are appended to the prompt for code synthesis. 164

Code Structure based CoT Prompting. In 165

SCoT, Li et al., 2025b use programming structures, 166

like sequence, branch and loop, as steps towards 167

intermediate code, which is used to prompt the 168

model to generate code. Chain of grounded 169

objectives (CGO) (Yeo et al., 2025) embed ap- 170

propriately structured functional objectives into the 171

input prompts to enhance code generation. Pan and 172

Zhang, 2025 propose a novel prompting technique, 173

Modularization-of-thought (MoT), which ex- 174

ploits modularization principals to decompose com- 175

plex programming problems into smaller indepen- 176

dent reasoning steps, via a multi-level reasoning 177

graph. Le et al., 2023 also elicit modularized code 178

generation but in a multi-step technique called 179

CodeChain, which is a chain of self-revisions ap- 180

plied by picking potentially correct representative 181

sub-modules. 182

3



CoT fine-tuning. Sun et al., 2024b define183

UniCoder; they use an intermediate representa-184

tion CoT based on PL conventions and use this185

to instruction-tune a model on a multi-task learn-186

ing objective. Yang et al., 2024b generate high-187

quality CoTs based on the COTTON framework,188

which trains light-LMs (< 10B parameters) to gen-189

erate CoT comparable to those generated by strong190

teacher LLMs. ChainCoder (Zheng et al., 2023b)191

generates code iteratively in a "course-to-fine" ap-192

proach and trains a model using an AST-based vo-193

cabulary. SemCoder (Ding et al., 2024b) uses a194

monologue reasoning approach to train a model195

to learn program semantics, which is generated196

by asking the Code LLM to summarize the pro-197

gram functionalities, key properties and constraints,198

and reason about code execution step-by-step us-199

ing a bi-directional monologue reasoning method.200

MSCoT (Jin et al., 2025) extends SCoT (Li et al.,201

2025b) to 11 more programming languages be-202

yond Python; a trained MSCoT model generates203

structured-CoT before producing code in multiple204

languages.205

2.2 Execution-based Reasoning206

Execution-based reasoning involves execut-207

ing LLM-generated code in a given envi-208

ronment and having the LLM reason and209

learn from the execution environment output.210

Self-Evaluation of Execution Behavior. These211

strategies utilize code execution feedback to212

select the final prediction from a LLM. In Chen213

et al. (2024c), the Self-debugging approach,214

teaches the model to self-debug i.e., debug the215

model’s predicted code, via few shot prompting216

and without additional model training. The217

model is instructed to execute the code and218

then generate a feedback message based on the219

code and its execution result from running Unit220

Tests (UT). A similar approach was taken in221

Code Chain-of-Thought (CodeCoT) by Huang222

et al. (2023), where CoT is used as a first step to223

generate the code, then a LLM generates test cases224

to validate whether the code has syntax errors225

during the execution. AlphaCodium, proposed by226

Ridnik et al. (2024), is a flow to improve code227

LLM performance that does not require training228

a model. The two key phases in AlphaCodium’s229

flow are: (a) a pre-processing phase, where it230

generates problem reflection and test reasoning;231

and (b) an iterative code generation phase, where232

code is generated, run, and fixed against both233

public and AI-generated tests. In revisited234

self-debugging (Chen et al., 2025b) authors 235

explored both post-execution and in-execution 236

self-debugging, leveraging self-generated tests. In 237

post-execution self-debugging, the process directly 238

validates the correctness of code by checking 239

whether the output after execution matches the test 240

output or not, whereas in-execution self-debugging 241

analyzes the intermediate runtime states during 242

program execution without knowing the results 243

from post-execution. More recently, Tian et al. 244

(2025) proposed µFix (Misunderstanding Fixing) 245

where thought-eliciting prompting techniques 246

are combined with feedback-based prompting to 247

improve the code generation performance of LLMs. 248

They show that CoT, SCoT, and Self-repair can 249

fail due to specification misunderstandings, which 250

test case analysis helps mitigate to improve both 251

feedback-based prompting and code generation. 252

Training with Execution-based Feedback. We 253

pinpoint approaches that train an LLM, leveraging 254

execution data, to improve model performance. 255

LEarning to VERify (Ni et al., 2023) (LEVER) 256

is an approach where verifiers are trained to 257

check whether the generated code is correct or 258

not based on three sources of information: the 259

natural language input, the program itself, and 260

its execution results. The generated code is 261

re-ranked based on the verification score and the 262

LLM generation probability, and marginalizing 263

over programs with the same execution results. 264

CYCLE (Ding et al., 2024a) trains code LLMs to 265

self-refine using natural language specifications, 266

generated code, and execution feedback, while 267

avoiding repeated errors via a Past Generation 268

Mask. Similarly, (Jiang et al., 2025) proposed 269

LEDEX, a training framework to improve the 270

self-debugging capability of LLMs using a chain 271

of explanations on the wrong code followed by 272

code refinement. Both Supervised Full Tuning 273

(SFT) and Reinforcement Learning (RL) train the 274

code model using success and failure trajectories. 275

Automated Test Generation. Unit Tests (UT) 276

are one of the fundamental pieces to assess the cor- 277

rectness of code and give execution-based feedback 278

to code generation models. We present different 279

strategies to generate UTs with LLMs. For instance, 280

UTGEN (Prasad et al., 2025) is a data creation 281

and training recipe that bootstraps training data for 282

UT generation and works by perturbing code to 283

simulate errors, generating failing tests and aug- 284

menting it with CoT rationales. AceCoder (Zeng 285

et al., 2025) leverages automated large-scale test- 286

4



case synthesis to enhance code model training, they287

proposed a pipeline that generates extensive (ques-288

tion, test-cases) pairs from existing code data. Sim-289

ilarly, Liu et al. (2024b) propose Direct Preference290

Learning with Only Self-Generated Tests and Code291

(DSTC), using only self-generated code snippets292

and tests to construct preference pairs with direct293

preference learning to improve LM coding accu-294

racy without external annotations. More recently,295

ASTER (Pan et al., 2025a) is a multilingual UT-296

generator built with LLMs guided by lightweight297

program analysis.298

2.3 Search and Sampling for SE Tasks299

Several approaches to code generation, code re-300

pair, and test-case generation use tree-based strate-301

gies to guide decisions and explore reasoning302

paths, while others use sampling.303

Sampling. In AlphaCode, Li et al. (2022a) filter304

and cluster samples according to program behav-305

ior on model-generated test inputs, selecting one306

candidate per cluster. The authors of REx (Tang307

et al., 2024) frame iterative code repair, or refine-308

ment, as a multi-armed bandit problem which is309

solved using Thompson sampling. The heuristic310

reward is the fraction of specifications (test cases)311

satisfied by the program. In S*, Li et al. (2025a)312

take a hybrid sampling approach, first generating N313

diverse programs in parallel then refining them us-314

ing iterative debugging (informed by execution).315

Search. Tree-of-Thoughts (ToT) (Yao et al.,316

2023a) allows LMs to explore multiple reason-317

ing paths over thoughts, where thoughts are lan-318

guage sequences that serve as intermediate steps319

towards problem solutions and represent the states320

or nodes of the tree. The LM’s reasoning acts as the321

heuristic, contrasting traditional approaches that322

use learned or programmed rules. ToT traverses323

the tree using BFS or DFS. Similarly, Guided324

tree-of-thought (GToT) (Long, 2023) uses tree-325

search guided by an LLM heuristic;it generates in-326

termediate solutions through prompting, employs a327

checker to validate these solutions, and uses a con-328

troller to manage search and backtracking, enabling329

long-range reasoning. For test generation, Oué-330

draogo et al. (2024) show that GToT effectively pro-331

duces syntactically-correct, compilable test suites332

with superior code coverage. Yu et al. (2024) pro-333

pose Outcome-Refining Process Supervision334

(ORPS), a beam-search approach for code gener-335

ation over a "reasoning tree." Each tree state in-336

cludes theoretical reasoning, code implementation,337

and execution outcomes. ORPS updates states with338

LM-generated reasoning, executes code for feed- 339

back, applies critique and rewards, and retains top 340

solutions via self-refinement. 341

3 Taxonomy of Tasks: Agentic 342

Agentic systems use many of the reasoning tech- 343

niques described in Sec. 2 for different tasks. Soft- 344

ware Engineering (SE) Agents take a programming 345

problem and iteratively solve it by self-debugging 346

based on the feedback provided by the environ- 347

ment. The self-debugging is enabled by CoT style 348

natural language reflection (Shinn et al., 2023) on 349

environment feedback. The reasoning is done by 350

an LLM which interacts with the agent execution 351

environment with tool calls (Yao et al., 2023b). 352

Workflow. Schluntz and Zhang, 2024 draw a dis- 353

tinction between Agents and LLM-based work- 354

flows stating that the latter are simpler, have 355

a fixed path and do not require an LLM to 356

make a decision. Agentless (Xia et al., 2024) 357

is a three step process for Github issue resolu- 358

tion involving localization, repair and patch val- 359

idation. AutoCodeRover (Zhang et al., 2024b) 360

uses program structure, in the form of an Ab- 361

stract Syntax Tree (AST), to enhance code search 362

and look at a software project as classes and 363

functions, rather than as a collection of files. 364

Agent Optimization can often lead to performance 365

gains. There can be many ways to improve an 366

SE agent, including but not limited to, better en- 367

vironment management or agent-environment in- 368

terface, improved workflow or architecture, and 369

incorporating more tools. SWE-Agent (Yang et al., 370

2024c) is an agent capable of editing repository- 371

level code by generating a thought and a command, 372

and subsequently incorporating the feedback from 373

the command’s execution into the environment. In 374

CodeAct, Wang et al., 2024c propose to use exe- 375

cutable Python code to consolidate LLM agents’ 376

actions into a unified action space. This is claimed 377

to be better than the existing technique of pro- 378

ducing actions by generating JSON or text in a 379

predefined format, which is less flexible and has 380

a constrained action space. OpenHands (Wang 381

et al., 2024e) is a platform for developing flexible 382

AI Agents that interact with the digital world the 383

same way a human would, by writing code, inter- 384

acting with the command line or browsing the web. 385

This platform allows for integration of other spe- 386

cialist agents, like CodeAct (Wang et al., 2024c) 387

for software engineering. There are other multi- 388

agent techniques like MASAI (Arora et al., 2024), 389

5



CodeR (Chen et al., 2024a), PairCoder (Zhang390

et al., 2024a), HyperAgent (Phan et al., 2024) and391

AgileCoder (Nguyen et al., 2024) described in Ap-392

pendix. C.393

Reasoning Model Improvement. Some agentic394

systems improve the underlying reasoning model395

by training on agent trajectories, which include396

steps like CoT, tool calls, and patches. Ma et al.,397

2024 observe that software evolution involves not398

just code but developers’ reasoning, tools, and399

cross-role interactions. Their Lingma SWE-GPT400

models (7B, 72B) are fine-tuned on repository401

understanding, bug localization, patching, and402

rejection sampling using pull-requests from re-403

pos. Training starts from Qwen2.5-Coder-7B (Hui404

et al., 2024) and Qwen2.5-72B-Instruct (Yang et al.,405

2024a), and inference runs through SWESynInfer,406

an AutoCodeRover-based workflow (Zhang et al.,407

2024b). Pan et al., 2024 build SWE-Gym from 2,438408

real-world Python tasks—each with a runnable409

codebase, unit tests, and an NL spec. Using410

OpenHands scaffolding (Wang et al., 2024e), they411

fine-tune Qwen2.5-Coder-32B (Hui et al., 2024)412

on 491 agent–environment trajectories and train413

a verifier on the same data for scalable infer-414

ence. SWE-Fixer (Xie et al., 2025) is an open-415

source, two-stage GitHub issue fixer. A fine-tuned416

Qwen2.5-7B retriever, boosted with BM25, iden-417

tifies relevant files, while a fine-tuned Qwen2.5-418

72B editor generates patches. Each model was419

trained on 110k issue–patch pairs, with the editor420

further tuned on CoT data synthesized by GPT-421

4o (Hurst et al., 2024). SWE-RL (Wei et al., 2025) is422

the first scalable RL-based reasoning approach for423

SE. Llama 3 (Grattafiori et al., 2024) is trained with424

lightweight rule rewards and GRPO (Shao et al.,425

2024) on 11M filtered PRs, producing Llama3-426

SWE-RL-70B, the top medium-sized model on427

SWE-bench Verified (OpenAI, 2024).428

Inference Scaling. Agentic systems often in-429

volve a component that scales inference time com-430

pute and improves agent performance by search-431

ing over multiple samples. CodeTree (Li et al.,432

2024) and ToC (Ni et al., 2024) both model reason-433

ing as tree search—CodeTree combines planning,434

execution-guided reasoning, and heuristics (test-435

pass rate, LM critique) via multi-agent roles, while436

ToC uses a binary pass/fail heuristic with reflec-437

tive, multi-strategy execution for diverse solutions.438

SWE-Search (Antoniades et al., 2024) is a moatless-439

tools (Orwall, 2024) based multi-agent framework440

which integrates Monte-Carlo Tree Search with441

self-improvement for bug-fixing. An LLM-backed 442

hybrid value function combines numeric and quali- 443

tative scores from trajectories, file context, and test 444

output to steer node expansion. 445

4 Taxonomy of Tasks: Non-Agentic 446

In this section we discuss the different non-agentic 447

reasoning and non-reasoning tasks which are used 448

to evaluate reasoning techniques described in 449

Sec. 2. 450

4.1 Code Tasks 451

For code generation, a popular task, most com- 452

mon benchmarks include HumanEval (HE) (Chen 453

et al., 2021a), HumanEvalPack (Muennighoff et al., 454

2023), MBPP (Austin et al., 2021a), APPS 455

(Hendrycks et al., 2021a), and CodeContests(Li 456

et al., 2022b). 457

More recently, LiveCodeBench (LCB) (Jain et al., 458

2024) collected new problems for over time from 459

contests platforms including LeetCode, AtCoder, 460

and CodeForces. BigCodeBench (Zhuo et al., 2025) 461

challenges LLMs to invoke multiple function calls 462

as tools from multiple libraries and domains for 463

different fine-grained tasks. CRUXEval (Gu et al., 464

2024) includes both input and output predictions 465

to evaluate code reasoning and code execution, re- 466

spectively. ConvCodeBench (Han et al., 2025) is a 467

benchmark for interactive code generation, it uses 468

pre-generated feedback logs, avoiding costly LLM 469

calls for verbal feedback while maintaining strong 470

correlation with live results; Spider (Yu et al., 2018) 471

(Lei et al., 2025) is a benchmark to evaluate the 472

generation of SQL queries from natural language. 473

For test generation, benchmarks like TestE- 474

val (Wang et al., 2025) can help w.r.t. three differ- 475

ent aspects: overall coverage, targeted line/branch 476

coverage, and targeted path coverage. For Github 477

issue resoultion, SWE-Bench (Jimenez et al., 478

2024a) is a popular benchmark. Other variations 479

of SWE-Bench include: SWE-Bench Multimodal 480

(Yang et al., 2024d) for visual and user-facing com- 481

ponents, and Multi-SWE-Bench (Zan et al., 2025) 482

for more programming languages besides Python. 483

M3ToolEval (Wang et al., 2024d) is used for 484

multi-turn, multi-tool complex tasks. SWT-Bench 485

(Mündler et al., 2025) is another github based test- 486

generation benchmark; Otter, too, (Ahmed et al., 487

2025) proposed an LLM-based solution to generate 488

test cases from issues. 2 489

2Appendix E lists metrics that can be used to assess code
LLM performance.

6



4.2 Code Reasoning Tasks490
ReEval (Chen et al., 2025a) helps to analyze how491

Code LLMs reason about runtime behaviors (e.g.,492

program state, execution paths) of programs. The493

ExeRScope (Liu and Jabbarvand, 2025) tool helps494

to analyze the result of code execution reasoning495

frameworks and understand the impact of code496

properties. CodeMMLU (Manh et al., 2025) is a497

large benchmark to evaluate both code understand-498

ing and code reasoning through a multiple-choice499

question-answering approach. CodeMind (Liu500

et al., 2024a) is a code reasoning benchmark for501

LLMs, evaluating Independent Execution Reason-502

ing (IER), Dependent Execution Reasoning (DER),503

and Specification Reasoning (SR) tasks and met-504

rics.505

5 Comparison and Discussion506

How can variance in performance of different tech-507

niques (planning, structure-aware, execution-based,508

inference scaling, etc.) on common benchmarks509

be explained by properties of code? First, we must510

understand why chain-of-thought (CoT) prompting511

helps over direct prompting. One hypothesis from512

Prystawski et al. (2023)’s work provides theoret-513

ical and experimental evidence that intermediate514

steps (i.e., chain-of-thought reasoning) reduce bias515

in transformers. They show that when training data516

has local structure (as textual data does), interme-517

diate variables (CoT) can outperform direct predic-518

tion (no CoT). This suggests that CoT reasoning519

helps most when a model is asked to make infer-520

ences about concepts that do not co-occur in the521

training data, but which can be chained together522

through topics that do. This may shed light on523

the variance in performance across different CoT524

patterns. Section 2.1 surveys works that formulate525

CoT in plan-based, structure-based, and modular526

arrangements. The results suggest that structure-527

aware strategies outperform plan-based approaches,528

and modular formats outperform structure-aware529

ones.530

Observation G.1: Structure-aware CoT strate-531

gies are better than planning-based CoT strategies,532

especially for self-contained code-contest bench-533

marks like MBPP and HE benchmarks.534

We posit that because code has properties of535

structured syntax, the primitive structures invoked536

within the CoT are highly local in the training data.537

Structures (such as idents, branches, loop invari-538

ants, functions, etc) are seen countless times in the539

training corpus. The model’s ability to estimate540

probabilities (and thus its ability to arrive at a cor-541

rect solution) become sharper by eliciting these 542

localities. Modular structures may push this same 543

principle further, which explains the next finding. 544

Observation G.2: Modularity helps in CoT, as 545

is evident when modular techniques dominate other 546

structured and plan-based CoT approaches. 547

Modularity improves upon structure-based CoT 548

by providing ultra-localized scoping; with more 549

clearly defined and specific functionality, modular- 550

ity eliminates the chance of error propagating to 551

subsequent steps. Additionally, text lacks the pre- 552

cision required for computational tasks, whereas 553

structure and modularity are more precise and un- 554

ambiguous. Still, there are other fascinating prop- 555

erties of code that can be leveraged: code exhibits 556

deterministic output, executable nature, and error 557

feedback. These properties can be leveraged to val- 558

idate or verify a solution, which explains the next 559

observation: 560

Observation G.3: Execution-aware strategies 561

dominate CoT-based strategies. 562

We posit that execution may help because exe- 563

cuting code can be used as a deterministic check. 564

Any chain that violates the check can be discarded. 565

Hence, bad chains are filtered out, so variance may 566

collapse faster. However, even with reduced vari- 567

ance, LLMs can still exhibit issues, such as model 568

rigidity. Because code is inherently determinis- 569

tic (i.e. under certain assumptions, a given input 570

consistently produces the same output), this can 571

lead models to develop rigid generation patterns 572

in training. For example, Twist et al. (2025) show 573

that LLMs exhibit a strong bias towards certain 574

programming languages, like Python; Liu et al. 575

(2025) document the pervasiveness of repetition 576

in LLM-based code generation, where models of- 577

ten reproduce patterns observed in training. Zhang 578

et al. (2025) demonstrate that LLMs favor certain 579

libraries and APIs by default, reflecting the distri- 580

bution of their training corpora. Furthermore, Pan 581

et al. (2025b) show that LLMs struggle to general- 582

ize to the architectural design principles of given 583

projects, leading to the generation of conflicting 584

code. This phenomenon compels the integration 585

of search in order to explore diverse trajectories, 586

which explains the recent success of inference scal- 587

ing techniques. 588

Observation G.4: Approaches that integrate in- 589

ference scaling outperform execution-dominant or 590

CoT-dominant strategies. 591

Due to the issues mentioned prior, methods that 592

incorporate both exploration and feedback (as these 593

7



Approach Model SWE-Bench Verified SWE-Bench Lite

Agentless (Xia et al., 2024) gpt-4o 33.2 24.3
Claude-3.5-Sonnet 53.0 -

AutoCodeRover (Zhang et al., 2024b) gpt-4o 28.8 22.7
gpt-4 - 19.0

MASAI (Arora et al., 2024) gpt-4o – 28.3

SWE-Agent (Yang et al., 2024c) Claude-3.5-Sonnet 33.6 23.0
gpt-4o 23.2 18.3

SWE-Gym (Pan et al., 2024) SWE-Gym-32B 32.0 26.0

SWE-Search (Antoniades et al., 2024) gpt-4o - 31.0

Lingma (Ma et al., 2024) Lingma SWE-GPT 72B 30.2 22.0

SWE-Fixer (Xie et al., 2025) SWE-Fixer-72B 32.8 24.7

HyperAgent (Phan et al., 2024) - 33.0 26.0

SWE-RL (Wei et al., 2025) Llama3-SWE-RL-70B 41.0 -

CodeR (Chen et al., 2024a) gpt-4 – 28.3

OpenHands (Wang et al., 2024e) gpt-4o – 22.0
Claude-3.5-Sonnet – 26.0

Table 3: Performance on SWE-Bench Verified and SWE-Bench Lite; Performance is measured by resolved rate.

search-based techniques do) have shown superior594

performance. These methods can actively coun-595

teract model rigidity by encouraging the model to596

deviate from its default generation paths, result-597

ing in more diverse and contextually appropriate598

outputs. In fact, several works support the case599

for re-sampling, or exploring multiple and diverse600

paths through a combination of models.601

Observation G.5: Agentic approaches appear602

to dominate both execution-based and CoT strate-603

gies.604

Agentic approaches succeed by integrating605

chain-of-thought reasoning, execution-based vali-606

dation, and sampling into a unified framework–thus607

leveraging code’s structured syntax, executable se-608

mantics, and error feedback all in one.609

Observation G.6: Agentic approaches that610

scale inference with search are highly competitive611

and can even outperform other strategies.612

Furthering the case for counteracting model613

rigidity, agents that integrate search to scale their in-614

ference achieve state-of-the-art performance. ToC615

and SWE-Search in particular show that integrating616

diverse trajectories (either via multiple models or617

collaborative agents) and incorporating backtrack-618

ing can lead to major gains. This reinforces the619

case for exploration. Indeed, SWE-Search tops the620

leaderboard, achieving 31% on SWE-Bench Lite621

(Table 3). We leave it to future work to undertake622

the validation and theoretical substantiation of the623

premises discussed here.624

6 Conclusion and Future Work 625

Reasoning techniques and agents have driven major 626

AI gains and been successfully adapted for software 627

engineering (SE). AI for SE is a rapidly-evolving 628

field, with reasoning/agents at the cutting edge. We 629

present the first survey focused on code reason- 630

ing for SE tasks, with a taxonomy of techniques 631

and special attention to SE agents. We compare 632

methods across benchmarks, highlight hybrid and 633

agent-specific strategies, and analyze how code 634

properties influence performance. Our discussion 635

surfaces promising benchmarks and motivates fu- 636

ture directions in code reasoning and SE agents. 637

We highlight several directions: it’s clear that 638

adapting reasoning techniques to code improves 639

performance on code tasks; this should be explored 640

for diverse programming languages; we observe 641

that code-oriented plans, combined with other tech- 642

niques (search, execution feedback) are more ro- 643

bust; however, incorporating code-specific plans 644

or using structure in CoT for agents is still under- 645

explored. Most approaches have been applied to 646

Python (and Python-specific benchmarks); multi- 647

lingual reasoning techniques and benchmarks can 648

lead to the development of a more general code rea- 649

soning capability; moreover, different approaches 650

need to be explored for other tasks (e.g., search- 651

based techniques that leverage modularity, LM 652

and execution-based heuristics for test-case gener- 653

ation). 654

8



Limitations655

This is a survey on Code Reasoning techniques,656

which is a new and evolving field. We covered657

reasoning techniques where we found a reasonable658

volume of work for code tasks. It is possible that we659

may have missed some reasoning techniques, but660

if so, it is likely the case that those techniques have661

not yet been explored by the software engineering662

community.663

Based on our survey methodology (described664

in A.1) we tried our best to find all relevant code665

reasoning papers which are applied to code or soft-666

ware engineering tasks. Since it is difficult for any667

search method to be through, we acknowledge that668

we may have missed some papers. We are happy to669

take suggestions on what can be included and hope670

to expand the survey in the future.671

Many papers use a combination of reasoning672

techniques. Our taxonomy and categorization is673

based on what we considered to be the dominant674

technique, which can be contested. To ensure there675

is no misrepresentation, we highlight papers with676

multiple techniques in Tab. 1 and Tab. 2.677

Since many papers use sophisticated approaches,678

it was difficult for us to explain every detail given679

space constraints. For every paper we tried to high-680

light what we thought were the most relevant, rep-681

resentative and general ideas for the reader.682

References683

Toufique Ahmed, Jatin Ganhotra, Rangeet Pan, Avra-684
ham Shinnar, Saurabh Sinha, and Martin Hirzel. 2025.685
Otter: Generating tests from issues to validate swe686
patches. Preprint, arXiv:2502.05368.687

Anthropic. 2025. Claude 3.7 sonnet and claude code.688

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi689
Xie, Anirudh Goyal, and William Wang. 2024. Swe-690
search: Enhancing software agents with monte carlo691
tree search and iterative refinement. arXiv preprint692
arXiv:2410.20285.693

Daman Arora, Atharv Sonwane, Nalin Wadhwa, Ab-694
hav Mehrotra, Saiteja Utpala, Ramakrishna Bairi,695
Aditya Kanade, and Nagarajan Natarajan. 2024. Ma-696
sai: Modular architecture for software-engineering ai697
agents. arXiv preprint arXiv:2406.11638.698

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten699
Bosma, Henryk Michalewski, David Dohan, Ellen700
Jiang, Carrie Cai, Michael Terry, Quoc Le, and701
Charles Sutton. 2021a. Program synthesis with large702
language models. Preprint, arXiv:2108.07732.703

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten704
Bosma, Henryk Michalewski, David Dohan, Ellen705

Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1 oth- 706
ers. 2021b. Program synthesis with large language 707
models. arXiv preprint arXiv:2108.07732. 708

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 709
Bosma, Henryk Michalewski, David Dohan, Ellen 710
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1 711
others. 2021c. Program synthesis with large language 712
models. arXiv preprint arXiv:2108.07732. 713

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 714
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 715
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 716
Askell, and 1 others. 2020. Language models are 717
few-shot learners. Advances in neural information 718
processing systems, 33:1877–1901. 719

Hyungjoo Chae, Yeonghyeon Kim, Seungone Kim, 720
Kai Tzu-iunn Ong, Beong-woo Kwak, Moohyeon 721
Kim, Seonghwan Kim, Taeyoon Kwon, Jiwan Chung, 722
Youngjae Yu, and 1 others. 2024. Language models 723
as compilers: Simulating pseudocode execution im- 724
proves algorithmic reasoning in language models. 725
arXiv preprint arXiv:2404.02575. 726

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, 727
Jian-Gang Wang, Anton Cheshkov, Jun Sun, Hao Yu, 728
Guoliang Dong, Artem Aliev, and 1 others. 2024a. 729
Coder: Issue resolving with multi-agent and task 730
graphs. arXiv preprint arXiv:2406.01304. 731

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, 732
and Xin Xia. 2025a. Reasoning Runtime Behavior 733
of a Program with LLM: How Far Are We? . In 734
2025 IEEE/ACM 47th International Conference on 735
Software Engineering (ICSE), pages 140–152, Los 736
Alamitos, CA, USA. IEEE Computer Society. 737

Liguo Chen, Qi Guo, Hongrui Jia, Zhengran Zeng, Xin 738
Wang, Yijiang Xu, Jian Wu, Yidong Wang, Qing Gao, 739
Jindong Wang, and 1 others. 2024b. A survey on 740
evaluating large language models in code generation 741
tasks. arXiv preprint arXiv:2408.16498. 742

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 743
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 744
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 745
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, 746
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela 747
Mishkin, Brooke Chan, Scott Gray, and 39 others. 748
2021a. Evaluating large language models trained on 749
code. Preprint, arXiv:2107.03374. 750

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 751
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 752
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 753
Brockman, and 1 others. 2021b. Evaluating large 754
language models trained on code. arXiv preprint 755
arXiv:2107.03374. 756

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 757
William W Cohen. 2022. Program of thoughts 758
prompting: Disentangling computation from reason- 759
ing for numerical reasoning tasks. arXiv preprint 760
arXiv:2211.12588. 761

9

https://arxiv.org/abs/2502.05368
https://arxiv.org/abs/2502.05368
https://arxiv.org/abs/2502.05368
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1109/ICSE55347.2025.00012
https://doi.org/10.1109/ICSE55347.2025.00012
https://doi.org/10.1109/ICSE55347.2025.00012
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374


Xiancai Chen, Zhengwei Tao, Kechi Zhang, Changzhi762
Zhou, Wanli Gu, Yuanpeng He, Mengdi Zhang, Xun-763
liang Cai, Haiyan Zhao, and Zhi Jin. 2025b. Revisit764
self-debugging with self-generated tests for code gen-765
eration. arXiv preprint arXiv:2501.12793.766

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and767
Denny Zhou. 2024c. Teaching large language mod-768
els to self-debug. In The Twelfth International Con-769
ference on Learning Representations.770

Yongchao Chen, Harsh Jhamtani, Srinagesh Sharma,771
Chuchu Fan, and Chi Wang. 2024d. Steering large772
language models between code execution and textual773
reasoning. arXiv preprint arXiv:2410.03524.774

Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang775
Yu, Tao He, Haotian Wang, Weihua Peng, Ming Liu,776
Bing Qin, and Ting Liu. 2023. Navigate through enig-777
matic labyrinth a survey of chain of thought reason-778
ing: Advances, frontiers and future. arXiv preprint779
arXiv:2309.15402.780

Yangruibo Ding, Marcus J Min, Gail Kaiser, and781
Baishakhi Ray. 2024a. Cycle: Learning to self-refine782
the code generation. Proceedings of the ACM on783
Programming Languages, 8(OOPSLA1):392–418.784

Yangruibo Ding, Jinjun Peng, Marcus Min, Gail Kaiser,785
Junfeng Yang, and Baishakhi Ray. 2024b. Semcoder:786
Training code language models with comprehensive787
semantics reasoning. Advances in Neural Informa-788
tion Processing Systems, 37:60275–60308.789

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan790
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,791
Tianyu Liu, and 1 others. 2022. A survey on in-792
context learning. arXiv preprint arXiv:2301.00234.793

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo794
Li, and Zhi Jin. 2025a. Codescore: Evaluating code795
generation by learning code execution. ACM Trans.796
Softw. Eng. Methodol., 34(3).797

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo798
Li, and Zhi Jin. 2025b. Codescore: Evaluating code799
generation by learning code execution. ACM Trans-800
actions on Software Engineering and Methodology,801
34(3):1–22.802

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,803
Abhinav Pandey, Abhishek Kadian, Ahmad Al-804
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,805
Alex Vaughan, and 1 others. 2024. The llama 3 herd806
of models. arXiv preprint arXiv:2407.21783.807

Alex Gu, Baptiste Rozière, Hugh Leather, Armando808
Solar-Lezama, Gabriel Synnaeve, and Sida I. Wang.809
2024. Cruxeval: A benchmark for code rea-810
soning, understanding and execution. Preprint,811
arXiv:2401.03065.812

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao813
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-814
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.815
Deepseek-r1: Incentivizing reasoning capability in816

llms via reinforcement learning. arXiv preprint 817
arXiv:2501.12948. 818

Hojae Han, Seung won Hwang, Rajhans Samdani, and 819
Yuxiong He. 2025. Convcodeworld: Benchmark- 820
ing conversational code generation in reproducible 821
feedback environments. Preprint, arXiv:2502.19852. 822

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 823
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 824
Samir Puranik, Horace He, Dawn Song, and Jacob 825
Steinhardt. 2021a. Measuring coding challenge com- 826
petence with apps. Preprint, arXiv:2105.09938. 827

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 828
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 829
Samir Puranik, Horace He, Dawn Song, and Jacob 830
Steinhardt. 2021b. Measuring coding challenge com- 831
petence with apps. Preprint, arXiv:2105.09938. 832

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, 833
and Premkumar Devanbu. 2012. On the naturalness 834
of software. In Proceedings of the 34th International 835
Conference on Software Engineering, ICSE ’12, page 836
837–847. IEEE Press. 837

Dong Huang, Qingwen Bu, Yuhao Qing, and Heming 838
Cui. 2023. Codecot: Tackling code syntax errors in 839
cot reasoning for code generation. arXiv preprint 840
arXiv:2308.08784. 841

Jie Huang and Kevin Chen-Chuan Chang. 2022. To- 842
wards reasoning in large language models: A survey. 843
arXiv preprint arXiv:2212.10403. 844

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, 845
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun 846
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024. 847
Qwen2. 5-coder technical report. arXiv preprint 848
arXiv:2409.12186. 849

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 850
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 851
Akila Welihinda, Alan Hayes, Alec Radford, and 1 852
others. 2024. Gpt-4o system card. arXiv preprint 853
arXiv:2410.21276. 854

Nam Huynh and Beiyu Lin. 2025. Large language mod- 855
els for code generation: A comprehensive survey of 856
challenges, techniques, evaluation, and applications. 857
arXiv preprint arXiv:2503.01245. 858

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 859
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 860
Aleksander Madry, Alex Beutel, Alex Carney, and 1 861
others. 2024. Openai o1 system card. arXiv preprint 862
arXiv:2412.16720. 863

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 864
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 865
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 866
codebench: Holistic and contamination free evalu- 867
ation of large language models for code. Preprint, 868
arXiv:2403.07974. 869

10

https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.1145/3695991
https://doi.org/10.1145/3695991
https://doi.org/10.1145/3695991
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/2502.19852
https://arxiv.org/abs/2502.19852
https://arxiv.org/abs/2502.19852
https://arxiv.org/abs/2502.19852
https://arxiv.org/abs/2502.19852
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2105.09938
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974


Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,870
and Sunghun Kim. 2024a. A survey on large lan-871
guage models for code generation. arXiv preprint872
arXiv:2406.00515.873

Nan Jiang, Xiaopeng Li, Shiqi Wang, Qiang Zhou,874
Soneya Binta Hossain, Baishakhi Ray, Varun Ku-875
mar, Xiaofei Ma, and Anoop Deoras. 2025. Ledex:876
Training llms to better self-debug and explain code.877
Preprint, arXiv:2405.18649.878

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,879
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024b.880
Self-planning code generation with large language881
models. ACM Transactions on Software Engineering882
and Methodology, 33(7):1–30.883

Carlos E. Jimenez, John Yang, Alexander Wettig,884
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik885
Narasimhan. 2024a. Swe-bench: Can language886
models resolve real-world github issues? Preprint,887
arXiv:2310.06770.888

Carlos E Jimenez, John Yang, Alexander Wettig,889
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R890
Narasimhan. 2024b. SWE-bench: Can language891
models resolve real-world github issues? In The892
Twelfth International Conference on Learning Repre-893
sentations.894

Naizhu Jin, Zhong Li, Tian Zhang, and Qingkai Zeng.895
2025. Mscot: Structured chain-of-thought generation896
for multiple programming languages. arXiv preprint897
arXiv:2504.10178.898

Mohammad Abdullah Matin Khan, M Saiful Bari,899
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,900
and Shafiq Joty. 2024. XCodeEval: An execution-901
based large scale multilingual multitask benchmark902
for code understanding, generation, translation and903
retrieval. In Proceedings of the 62nd Annual Meeting904
of the Association for Computational Linguistics (Vol-905
ume 1: Long Papers), pages 6766–6805, Bangkok,906
Thailand. Association for Computational Linguistics.907

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,908
Doyen Sahoo, and Shafiq Joty. 2023. Codechain: To-909
wards modular code generation through chain of self-910
revisions with representative sub-modules. arXiv911
preprint arXiv:2310.08992.912

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng913
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,914
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, Victor915
Zhong, Caiming Xiong, Ruoxi Sun, Qian Liu, Sida916
Wang, and Tao Yu. 2025. Spider 2.0: Evaluating917
language models on real-world enterprise text-to-sql918
workflows. Preprint, arXiv:2411.07763.919

Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li,920
Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E921
Gonzalez, and Ion Stoica. 2025a. S*: Test922
time scaling for code generation. arXiv preprint923
arXiv:2502.14382.924

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2025b. Struc- 925
tured chain-of-thought prompting for code genera- 926
tion. ACM Transactions on Software Engineering 927
and Methodology, 34(2):1–23. 928

Jierui Li, Hung Le, Yingbo Zhou, Caiming Xiong, 929
Silvio Savarese, and Doyen Sahoo. 2024. Code- 930
tree: Agent-guided tree search for code genera- 931
tion with large language models. arXiv preprint 932
arXiv:2411.04329. 933

Raymond Li, Loubna Ben allal, Yangtian Zi, Niklas 934
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 935
Marone, Christopher Akiki, Jia LI, Jenny Chim, 936
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 937
Thomas Wang, Olivier Dehaene, Joel Lamy-Poirier, 938
Joao Monteiro, Nicolas Gontier, Ming-Ho Yee, and 939
39 others. 2023. Starcoder: may the source be with 940
you! Transactions on Machine Learning Research. 941
Reproducibility Certification. 942

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 943
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 944
James Keeling, Felix Gimeno, Agustin Dal Lago, and 945
1 others. 2022a. Competition-level code generation 946
with alphacode. Science, 378(6624):1092–1097. 947

Yujia Li, David Choi, Junyoung Chung, Nate Kush- 948
man, Julian Schrittwieser, Rémi Leblond, Tom Ec- 949
cles, James Keeling, Felix Gimeno, Agustin Dal 950
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas- 951
son d’Autume, Igor Babuschkin, Xinyun Chen, Po- 952
Sen Huang, Johannes Welbl, Sven Gowal, Alexey 953
Cherepanov, and 7 others. 2022b. Competition- 954
level code generation with alphacode. Science, 955
378(6624):1092–1097. 956

Changshu Liu and Reyhaneh Jabbarvand. 2025. A tool 957
for in-depth analysis of code execution reasoning 958
of large language models. In Companion Proceed- 959
ings of the 33rd ACM International Conference on 960
the Foundations of Software Engineering, FSE 2025, 961
New York, NY, USA. Association for Computing 962
Machinery. 963

Changshu Liu, Shizhuo Dylan Zhang, Ali Reza 964
Ibrahimzada, and Reyhaneh Jabbarvand. 2024a. 965
Codemind: A framework to challenge large lan- 966
guage models for code reasoning. Preprint, 967
arXiv:2402.09664. 968

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 969
ming Zhang. 2023a. Is your code generated by chat- 970
GPT really correct? rigorous evaluation of large lan- 971
guage models for code generation. In Thirty-seventh 972
Conference on Neural Information Processing Sys- 973
tems. 974

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and 975
Lingming Zhang. 2023b. Is your code generated by 976
chatgpt really correct? rigorous evaluation of large 977
language models for code generation. Advances in 978
Neural Information Processing Systems, 36:21558– 979
21572. 980

11

https://arxiv.org/abs/2405.18649
https://arxiv.org/abs/2405.18649
https://arxiv.org/abs/2405.18649
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2310.06770
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://arxiv.org/abs/2411.07763
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/2501.18482
https://arxiv.org/abs/2501.18482
https://arxiv.org/abs/2501.18482
https://arxiv.org/abs/2501.18482
https://arxiv.org/abs/2501.18482
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://arxiv.org/abs/2402.09664
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7


Mingwei Liu, Juntao Li, Ying Wang, Xueying Du,981
Zuoyu Ou, Qiuyuan Chen, Bingxu An, Zhao Wei,982
Yong Xu, Fangming Zou, and 1 others. 2025.983
Code copycat conundrum: Demystifying repeti-984
tion in llm-based code generation. arXiv preprint985
arXiv:2504.12608.986

Zhihan Liu, Shenao Zhang, Yongfei Liu, Boyi Liu,987
Yingxiang Yang, and Zhaoran Wang. 2024b. Dstc:988
Direct preference learning with only self-generated989
tests and code to improve code lms. Preprint,990
arXiv:2411.13611.991

Jieyi Long. 2023. Large language model guided tree-of-992
thought. arXiv preprint arXiv:2305.08291.993

Yingwei Ma, Rongyu Cao, Yongchang Cao, Yue Zhang,994
Jue Chen, Yibo Liu, Yuchen Liu, Binhua Li, Fei995
Huang, and Yongbin Li. 2024. Lingma swe-gpt: An996
open development-process-centric language model997
for automated software improvement. arXiv preprint998
arXiv:2411.00622.999

Dung Nguyen Manh, Thang Phan Chau, Nam Le1000
Hai, Thong T. Doan, Nam V. Nguyen, Quang1001
Pham, and Nghi D. Q. Bui. 2025. Codemmlu: A1002
multi-task benchmark for assessing code understand-1003
ing reasoning capabilities of codellms. Preprint,1004
arXiv:2410.01999.1005

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Bin-1006
quan Zhang, Chenxue Wang, Shichao Liu, and Qing1007
Wang. 2023. Clarifygpt: Empowering llm-based1008
code generation with intention clarification. arXiv1009
preprint arXiv:2310.10996.1010

Niklas Muennighoff, Qian Liu, Qi Liu, Armel Randy1011
Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,1012
Swayam Singh, Xiangru Tang, Leandro von Werra,1013
and S. Longpre. 2023. Octopack: Instruction tuning1014
code large language models. ArXiv, abs/2308.07124.1015

Niels Mündler, Mark Niklas Müller, Jingxuan He, and1016
Martin Vechev. 2025. Swt-bench: Testing and1017
validating real-world bug-fixes with code agents.1018
Preprint, arXiv:2406.12952.1019

Minh Huynh Nguyen, Thang Phan Chau, Phong X1020
Nguyen, and Nghi DQ Bui. 2024. Agilecoder: Dy-1021
namic collaborative agents for software develop-1022
ment based on agile methodology. arXiv preprint1023
arXiv:2406.11912.1024

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov,1025
Wen-tau Yih, Sida I. Wang, and Xi Victoria Lin. 2023.1026
Lever: learning to verify language-to-code generation1027
with execution. In Proceedings of the 40th Interna-1028
tional Conference on Machine Learning, ICML’23.1029
JMLR.org.1030

Ziyi Ni, Yifan Li, and Daxiang Dong. 2024. Tree-1031
of-code: A hybrid approach for robust complex1032
task planning and execution. arXiv preprint1033
arXiv:2412.14212.1034

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 1035
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 1036
Xiong. 2023. Codegen: An open large language 1037
model for code with multi-turn program synthesis. In 1038
The Eleventh International Conference on Learning 1039
Representations. 1040

OpenAI. 2024. Introducing swe-bench verified. 1041

Albert Orwall. 2024. Moatless tools. 1042

Wendkûuni C Ouédraogo, Kader Kaboré, Haoye Tian, 1043
Yewei Song, Anil Koyuncu, Jacques Klein, David Lo, 1044
and Tegawendé F Bissyandé. 2024. Large-scale, in- 1045
dependent and comprehensive study of the power 1046
of llms for test case generation. arXiv preprint 1047
arXiv:2407.00225. 1048

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep 1049
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024. 1050
Training software engineering agents and verifiers 1051
with swe-gym. arXiv preprint arXiv:2412.21139. 1052

Rangeet Pan, Myeongsoo Kim, Rahul Krishna, Raju 1053
Pavuluri, and Saurabh Sinha. 2025a. Aster: Natural 1054
and multi-language unit test generation with llms. 1055
Preprint, arXiv:2409.03093. 1056

Ruwei Pan and Hongyu Zhang. 2025. Modularization 1057
is better: Effective code generation with modular 1058
prompting. arXiv preprint arXiv:2503.12483. 1059

Zhenyu Pan, Xuefeng Song, Yunkun Wang, Rongyu 1060
Cao, Binhua Li, Yongbin Li, and Han Liu. 2025b. 1061
Do code llms understand design patterns? arXiv 1062
preprint arXiv:2501.04835. 1063

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024a. 1064
Humaneval-xl: A multilingual code generation 1065
benchmark for cross-lingual natural language gen- 1066
eralization. Preprint, arXiv:2402.16694. 1067

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024b. 1068
HumanEval-XL: A multilingual code generation 1069
benchmark for cross-lingual natural language gen- 1070
eralization. In Proceedings of the 2024 Joint In- 1071
ternational Conference on Computational Linguis- 1072
tics, Language Resources and Evaluation (LREC- 1073
COLING 2024), pages 8383–8394, Torino, Italia. 1074
ELRA and ICCL. 1075

Huy Nhat Phan, Tien N Nguyen, Phong X Nguyen, 1076
and Nghi DQ Bui. 2024. Hyperagent: Generalist 1077
software engineering agents to solve coding tasks at 1078
scale. arXiv preprint arXiv:2409.16299. 1079

Aske Plaat, Annie Wong, Suzan Verberne, Joost 1080
Broekens, Niki van Stein, and Thomas Back. 2024. 1081
Reasoning with large language models, a survey. 1082
arXiv preprint arXiv:2407.11511. 1083

Archiki Prasad, Elias Stengel-Eskin, Justin Chih-Yao 1084
Chen, Zaid Khan, and Mohit Bansal. 2025. Learn- 1085
ing to generate unit tests for automated debugging. 1086
Preprint, arXiv:2502.01619. 1087

12

https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://arxiv.org/abs/2410.01999
https://api.semanticscholar.org/CorpusID:260886874
https://api.semanticscholar.org/CorpusID:260886874
https://api.semanticscholar.org/CorpusID:260886874
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://arxiv.org/abs/2406.12952
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://openai.com/index/introducing-swe-bench-verified
https://github.com/aorwall/moatless-tools
https://arxiv.org/abs/2409.03093
https://arxiv.org/abs/2409.03093
https://arxiv.org/abs/2409.03093
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://arxiv.org/abs/2402.16694
https://aclanthology.org/2024.lrec-main.735/
https://aclanthology.org/2024.lrec-main.735/
https://aclanthology.org/2024.lrec-main.735/
https://aclanthology.org/2024.lrec-main.735/
https://aclanthology.org/2024.lrec-main.735/
https://arxiv.org/abs/2502.01619
https://arxiv.org/abs/2502.01619
https://arxiv.org/abs/2502.01619


Ben Prystawski, Michael Li, and Noah Goodman. 2023.1088
Why think step by step? reasoning emerges from the1089
locality of experience. Advances in Neural Informa-1090
tion Processing Systems, 36:70926–70947.1091

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang,1092
Giacomo Domeniconi, Vladimir Zolotov, Julian T1093
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker,1094
Veronika Thost, Veronika Thost, Luca Buratti,1095
Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan1096
Malaika, and Frederick Reiss. 2021. Codenet: A1097
large-scale ai for code dataset for learning a diversity1098
of coding tasks. In Proceedings of the Neural Infor-1099
mation Processing Systems Track on Datasets and1100
Benchmarks, volume 1.1101

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen,1102
Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei Huang,1103
and Huajun Chen. 2022. Reasoning with lan-1104
guage model prompting: A survey. arXiv preprint1105
arXiv:2212.09597.1106

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024.1107
Code generation with alphacodium: From prompt1108
engineering to flow engineering. arXiv preprint1109
arXiv:2401.08500.1110

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-1111
sot, and Guillaume Lample. 2020. Unsupervised1112
translation of programming languages. In Proceed-1113
ings of the 34th International Conference on Neu-1114
ral Information Processing Systems, NIPS ’20, Red1115
Hook, NY, USA.1116

Erik Schluntz and Barry Zhang. 2024. Building effec-1117
tive agents.1118

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,1119
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan1120
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-1121
math: Pushing the limits of mathematical reason-1122
ing in open language models. arXiv preprint1123
arXiv:2402.03300.1124

Noah Shinn, Federico Cassano, Ashwin Gopinath,1125
Karthik Narasimhan, and Shunyu Yao. 2023. Re-1126
flexion: Language agents with verbal reinforcement1127
learning. Advances in Neural Information Process-1128
ing Systems, 36:8634–8652.1129

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi1130
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,1131
Chengcheng Han, Renyu Zhu, Shuai Yuan, and 11132
others. 2024a. A survey of neural code intelligence:1133
Paradigms, advances and beyond. arXiv preprint1134
arXiv:2403.14734.1135

Tao Sun, Linzheng Chai, Jian Yang, Yuwei Yin,1136
Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun1137
Yang, and Zhoujun Li. 2024b. Unicoder: Scaling1138
code large language model via universal code. arXiv1139
preprint arXiv:2406.16441.1140

Weisong Sun, Yun Miao, Yuekang Li, Hongyu Zhang,1141
Chunrong Fang, Yi Liu, Gelei Deng, Yang Liu, and1142

Zhenyu Chen. 2025. Source Code Summariza- 1143
tion in the Era of Large Language Models . In 1144
2025 IEEE/ACM 47th International Conference on 1145
Software Engineering (ICSE), pages 419–431, Los 1146
Alamitos, CA, USA. IEEE Computer Society. 1147

Hao Tang, Keya Hu, Jin Zhou, Si Cheng Zhong, Wei- 1148
Long Zheng, Xujie Si, and Kevin Ellis. 2024. Code 1149
repair with llms gives an exploration-exploitation 1150
tradeoff. Advances in Neural Information Processing 1151
Systems, 37:117954–117996. 1152

Zhao Tian, Junjie Chen, and Xiangyu Zhang. 2025. 1153
Fixing Large Language Models’ Specification Mis- 1154
understanding for Better Code Generation . In 1155
2025 IEEE/ACM 47th International Conference on 1156
Software Engineering (ICSE), pages 645–645, Los 1157
Alamitos, CA, USA. IEEE Computer Society. 1158

Lukas Twist, Jie M Zhang, Mark Harman, Don Syme, 1159
Joost Noppen, and Detlef Nauck. 2025. Llms 1160
love python: A study of llms’ bias for program- 1161
ming languages and libraries. arXiv preprint 1162
arXiv:2503.17181. 1163

Evan Wang, Federico Cassano, Catherine Wu, Yun- 1164
feng Bai, Will Song, Vaskar Nath, Ziwen Han, Sean 1165
Hendryx, Summer Yue, and Hugh Zhang. 2024a. 1166
Planning in natural language improves llm search for 1167
code generation. arXiv preprint arXiv:2409.03733. 1168

Junqiao Wang, Zeng Zhang, Yangfan He, Yuyang Song, 1169
Tianyu Shi, Yuchen Li, Hengyuan Xu, Kunyu Wu, 1170
Guangwu Qian, Qiuwu Chen, and 1 others. 2024b. 1171
Enhancing code llms with reinforcement learning in 1172
code generation. arXiv preprint arXiv:2412.20367. 1173

Wenhan Wang, Chenyuan Yang, Zhijie Wang, Yuheng 1174
Huang, Zhaoyang Chu, Da Song, Lingming Zhang, 1175
An Ran Chen, and Lei Ma. 2025. TESTEVAL: 1176
Benchmarking large language models for test case 1177
generation. In Findings of the Association for Com- 1178
putational Linguistics: NAACL 2025. Association for 1179
Computational Linguistics. 1180

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 1181
Yunzhu Li, Hao Peng, and Heng Ji. 2024c. Exe- 1182
cutable code actions elicit better llm agents. In Forty- 1183
first International Conference on Machine Learning. 1184

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, 1185
Yunzhu Li, Hao Peng, and Heng Ji. 2024d. Exe- 1186
cutable code actions elicit better llm agents. Preprint, 1187
arXiv:2402.01030. 1188

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xi- 1189
angru Tang, Mingchen Zhuge, Jiayi Pan, Yueqi Song, 1190
Bowen Li, Jaskirat Singh, and 1 others. 2024e. Open- 1191
hands: An open platform for ai software developers 1192
as generalist agents. In The Thirteenth International 1193
Conference on Learning Representations. 1194

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, 1195
Barret Zoph, Sebastian Borgeaud, Dani Yogatama, 1196
Maarten Bosma, Denny Zhou, Donald Metzler, and 1 1197
others. 2022a. Emergent abilities of large language 1198
models. arXiv preprint arXiv:2206.07682. 1199

13

https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/a5bfc9e07964f8dddeb95fc584cd965d-Paper-round2.pdf
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://www.anthropic.com/engineering/building-effective-agents
https://doi.org/10.1109/ICSE55347.2025.00034
https://doi.org/10.1109/ICSE55347.2025.00034
https://doi.org/10.1109/ICSE55347.2025.00034
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00108
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00108
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00108
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00108
https://doi.ieeecomputersociety.org/10.1109/ICSE55347.2025.00108
https://aclanthology.org/2025.findings-naacl.197/
https://aclanthology.org/2025.findings-naacl.197/
https://aclanthology.org/2025.findings-naacl.197/
https://aclanthology.org/2025.findings-naacl.197/
https://aclanthology.org/2025.findings-naacl.197/
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030


Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten1200
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,1201
and 1 others. 2022b. Chain-of-thought prompting1202
elicits reasoning in large language models. Advances1203
in neural information processing systems, 35:24824–1204
24837.1205

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin1206
Carbonneaux, Lingming Zhang, Daniel Fried,1207
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang.1208
2025. Swe-rl: Advancing llm reasoning via reinforce-1209
ment learning on open software evolution. arXiv1210
preprint arXiv:2502.18449.1211

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and1212
Lingming Zhang. 2024. Agentless: Demystify-1213
ing llm-based software engineering agents. arXiv1214
preprint arXiv:2407.01489.1215

Chengxing Xie, Bowen Li, Chang Gao, He Du, Wai1216
Lam, Difan Zou, and Kai Chen. 2025. Swe-1217
fixer: Training open-source llms for effective and1218
efficient github issue resolution. arXiv preprint1219
arXiv:2501.05040.1220

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,1221
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui1222
Gong, Tianjian Ouyang, Fanjin Meng, and 1 others.1223
2025. Towards large reasoning models: A survey1224
of reinforced reasoning with large language models.1225
arXiv preprint arXiv:2501.09686.1226

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,1227
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,1228
Fei Huang, Haoran Wei, and 1 others. 2024a. Qwen2.1229
5 technical report. arXiv preprint arXiv:2412.15115.1230

Dayu Yang, Tianyang Liu, Daoan Zhang, Antoine1231
Simoulin, Xiaoyi Liu, Yuwei Cao, Zhaopu Teng, Xin1232
Qian, Grey Yang, Jiebo Luo, and 1 others. 2025.1233
Code to think, think to code: A survey on code-1234
enhanced reasoning and reasoning-driven code in-1235
telligence in llms. arXiv preprint arXiv:2502.19411.1236

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang,1237
Terry Yue Zhuo, and Taolue Chen. 2024b. Chain-1238
of-thought in neural code generation: From and for1239
lightweight language models. IEEE Transactions on1240
Software Engineering.1241

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian1242
Lieret, Shunyu Yao, Karthik Narasimhan, and Ofir1243
Press. 2024c. Swe-agent: Agent-computer interfaces1244
enable automated software engineering. Preprint,1245
arXiv:2405.15793.1246

John Yang, Carlos E. Jimenez, Alex L. Zhang, Kil-1247
ian Lieret, Joyce Yang, Xindi Wu, Ori Press,1248
Niklas Muennighoff, Gabriel Synnaeve, Karthik R.1249
Narasimhan, Diyi Yang, Sida I. Wang, and Ofir1250
Press. 2024d. Swe-bench multimodal: Do ai systems1251
generalize to visual software domains? Preprint,1252
arXiv:2410.03859.1253

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,1254
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.1255

2023a. Tree of thoughts: Deliberate problem solving 1256
with large language models. Advances in neural 1257
information processing systems, 36:11809–11822. 1258

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 1259
Shafran, Karthik Narasimhan, and Yuan Cao. 2023b. 1260
React: Synergizing reasoning and acting in language 1261
models. In International Conference on Learning 1262
Representations (ICLR). 1263

Asaf Yehudai, Lilach Eden, Alan Li, Guy Uziel, Yilun 1264
Zhao, Roy Bar-Haim, Arman Cohan, and Michal 1265
Shmueli-Scheuer. 2025. Survey on evaluation of llm- 1266
based agents. arXiv preprint arXiv:2503.16416. 1267

Sangyeop Yeo, Seung-won Hwang, and Yu-Seung Ma. 1268
2025. Chain of grounded objectives: Bridging pro- 1269
cess and goal-oriented prompting for code generation. 1270
arXiv preprint arXiv:2501.13978. 1271

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 1272
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 1273
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir 1274
Radev. 2018. Spider: A large-scale human-labeled 1275
dataset for complex and cross-domain semantic pars- 1276
ing and text-to-SQL task. In Proceedings of the 2018 1277
Conference on Empirical Methods in Natural Lan- 1278
guage Processing. Association for Computational 1279
Linguistics. 1280

Zhuohao Yu, Weizheng Gu, Yidong Wang, Zhengran 1281
Zeng, Jindong Wang, Wei Ye, and Shikun Zhang. 1282
2024. Outcome-refining process supervision for code 1283
generation. arXiv preprint arXiv:2412.15118. 1284

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie 1285
Lu, Bingchao Wu, Bei Guan, Yongji Wang, and 1286
Jian-Guang Lou. 2022. Large language mod- 1287
els meet nl2code: A survey. arXiv preprint 1288
arXiv:2212.09420. 1289

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, 1290
Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu, Xiao- 1291
jian Zhong, Aoyan Li, Siyao Liu, Yongsheng Xiao, 1292
Liangqiang Chen, Yuyu Zhang, Jing Su, Tianyu Liu, 1293
Rui Long, Kai Shen, and Liang Xiang. 2025. Multi- 1294
swe-bench: A multilingual benchmark for issue re- 1295
solving. Preprint, arXiv:2504.02605. 1296

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, 1297
Xiaotong Chen, and Wenhu Chen. 2025. Acecoder: 1298
Acing coder rl via automated test-case synthesis. 1299
Preprint, arXiv:2502.01718. 1300

Huan Zhang, Wei Cheng, Yuhan Wu, and Wei Hu. 1301
2024a. A pair programming framework for code 1302
generation via multi-plan exploration and feedback- 1303
driven refinement. In Proceedings of the 39th 1304
IEEE/ACM International Conference on Automated 1305
Software Engineering, pages 1319–1331. 1306

Xiaoyu Zhang, Juan Zhai, Shiqing Ma, Qingshuang 1307
Bao, Weipeng Jiang, Chao Shen, and Yang Liu. 2025. 1308
Unveiling provider bias in large language models for 1309
code generation. arXiv preprint arXiv:2501.07849. 1310

14

https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://arxiv.org/abs/2410.03859
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2504.02605
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718
https://arxiv.org/abs/2502.01718


Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik1311
Roychoudhury. 2024b. Autocoderover: Autonomous1312
program improvement. In Proceedings of the 33rd1313
ACM SIGSOFT International Symposium on Soft-1314
ware Testing and Analysis, pages 1592–1604.1315

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan1316
Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi Wang,1317
Yang Li, and 1 others. 2023a. Codegeex: A pre-1318
trained model for code generation with multilingual1319
benchmarking on humaneval-x. In Proceedings of1320
the 29th ACM SIGKDD Conference on Knowledge1321
Discovery and Data Mining, pages 5673–5684.1322

Wenqing Zheng, S P Sharan, Ajay Kumar Jaiswal,1323
Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang1324
Wang. 2023b. Outline, then details: Syntactically1325
guided coarse-to-fine code generation. Preprint,1326
arXiv:2305.00909.1327

Terry Yue Zhuo. 2024. Ice-score: Instructing large1328
language models to evaluate code. In Findings of the1329
Association for Computational Linguistics: EACL1330
2024, pages 2232–2242.1331

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,1332
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani1333
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon1334
Brunner, Chen Gong, Thong Hoang, Armel Randy1335
Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kad-1336
dour, Ming Xu, Zhihan Zhang, and 14 others. 2025.1337
Bigcodebench: Benchmarking code generation with1338
diverse function calls and complex instructions.1339
Preprint, arXiv:2406.15877.1340

A Appendix1341

A.1 Survey Methodology1342

We used arXiv and Google Scholar to ensure com-1343

prehensive coverage of all relevant works. In partic-1344

ular, we utilized their advanced search functional-1345

ity, querying combinations of terms such as "code1346

reasoning", "reasoning" + "LLM", and "agents" +1347

"software engineering".1348

To rigorously account for recent work building1349

on existing foundations, we also examined citation1350

graphs in Google Scholar—manually inspecting1351

entries that cited foundational papers.1352

We focused our review on publications in1353

premier venues including ACL, EMNLP, ICLR,1354

NeurIPS, and others, while also incorporating1355

cutting-edge preprints that may not yet have re-1356

ceived broad recognition. This emphasis on both1357

established and emerging work allowed us to cap-1358

ture the state of the art as well as frontier directions1359

in the field.1360

B Related Surveys1361

Wei et al., 2022b introduce CoT as a form of in-1362

context learning which induces reasoning in LLMs.1363

In the same year, Dong et al., 2022 survey in- 1364

context learning techniques and reference CoT rea- 1365

soning but do not expand on it. Qiao et al., 2022 1366

and Huang and Chang, 2022 survey methods and 1367

tasks for reasoning and extensively study CoT and 1368

other prompting approaches, but do not include 1369

software engineering tasks. Chu et al., 2023 also 1370

cover CoT reasoning extensively in a recent work. 1371

They define a more general concept of XoT or X-of- 1372

Thought, which covers concepts like Program-of- 1373

Thought (Chen et al., 2022), Tree-of-Thought (Yao 1374

et al., 2023a) etc. apart from CoT. However, they 1375

focus on the impact of these techniques on reason- 1376

ing benchmarks while we are more interested in 1377

how reasoning impacts code specific or software 1378

engineering benchmarks. Other recent surveys also 1379

cover different types of reasoning techniques for 1380

LLMs. Xu et al., 2025 discuss reinforcement learn- 1381

ing based reasoning techniques, but they don’t dis- 1382

cuss code specific reasoning strategies. Plaat et al., 1383

2024 classify the in-context reasoning approaches 1384

into prompting, evaluating and control (inference 1385

scaling and search) based strategies, but they don’t 1386

focus on coding tasks. 1387

In their work titled "Code to Think, Think to 1388

Code", Yang et al., 2025 highlight the interplay 1389

between code properties and reasoning capabili- 1390

ties and how one enhances the other. This sur- 1391

vey makes the case that training with code related 1392

data improves performance on Math and reason- 1393

ing benchmarks, while incorporating reasoning im- 1394

proves performance on coding benchmarks because 1395

some code properties reinforce reasoning capabili- 1396

ties and vice versa. Compared to this work, we dive 1397

deeper into reasoning techniques used for coding 1398

tasks and provide a taxonomy covering different 1399

strategies. 1400

A lot of surveys do cover impact of LLMs and 1401

Agents on Software Engineering tasks but none so 1402

far have focused on reasoning based strategies. Zan 1403

et al., 2022 survey 27 LLMs for natural language to 1404

code generation task. Jiang et al., 2024a undertake 1405

an extensive survey covering not just LLMs but also 1406

LLM architectures, many different research topics, 1407

benchmarks and datasets, encompassing a total of 1408

235 papers. (Sun et al., 2024a) also do a wide 1409

ranging survey covering 50 different models and 1410

their variants along with 20 different code-related 1411

task categories. (Huynh and Lin, 2025) survey 1412

many topics in this space including challenges and 1413

applications. Apart from surveys covering multiple 1414

topics from the domain of AI for code/software 1415

15

https://arxiv.org/abs/2305.00909
https://arxiv.org/abs/2305.00909
https://arxiv.org/abs/2305.00909
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877
https://arxiv.org/abs/2406.15877


engineering, there are also surveys that are more1416

topic specific. Wang et al., 2024b focus exclusively1417

on reinforcement learning in code generation. Chen1418

et al., 2024b survey different evaluation techniques1419

for coding tasks. Yehudai et al., 2025 also focus1420

on evaluation, but of LLM-agents and including1421

Software Engineering (SWE) Agents.1422

We did not find any survey specific to code1423

based reasoning techniques for software engineer-1424

ing tasks.1425

B.1 Summaries1426

Chen et al. (2024d) show that larger models favor1427

textual reasoning over code execution. However,1428

textual reasoning has inherent limitations in solv-1429

ing challenges in math, logic, optimization, search-1430

ing which is unlikely to be solved by scaling up the1431

model and data size. Inverse Scaling issue: GPT-4o1432

might perform worse than GPT-3.5 on some tasks1433

like Game of 24 because it defaults to using textual1434

reasoning as opposed to code generation (GPT 3.5).1435

Introduce a method to steer the model towards code1436

generation over textual reasoning. Introduce a hy-1437

brid approach to mix both textual reasoning and1438

code reasoning. Introduce a mechanism to allow1439

the model to assess whether textual or code-based1440

reasoning are appropriate. Insights from the pa-1441

per are: textual reasoning alone lacks the precision1442

required for computational tasks. Code is more1443

precise and unambiguous. Text-based reasoning1444

may struggle on tasks that require exact calcula-1445

tions or procedural steps. Suggests there is an open1446

area for developing a method that can intelligently1447

decide when to use code reasoning and when to1448

use textual reasoning. They seem to show that it-1449

erative refinement helps for code-based reasoning.1450

Overall, combining code-based and text-based rea-1451

soning is an effective strategy. "The methods that1452

rely more on code tend to improve with multi-turn1453

refinement, likely because code execution provides1454

additional feedback for reflection (Gou et al., 2023).1455

In contrast, the degradation of text-based methods1456

suggests that LLMs can worsen answers through1457

self-reflection alone, supporting findings from pre-1458

vious studies (Huang et al., 2023)." They test on1459

several tasks involving arithmetic, logic, puzzles. A1460

recurring task is Game 24. Date-related questions,1461

boolean expressions, math.1462

Chae et al. (2024) has a think phase and an ex-1463

ecution phase. Generates firstly a plan in pseudo-1464

code then simulates execution of the pseudocode.1465

Having a model plan in pseudocode seems to signif-1466

icantly boost reasoning. Dominant strategy might 1467

be structure-aware? 1468

B.2 Execution-driven Reasoning 1469

B.2.1 Self-Evaluation of Execution Behavior 1470

Self-debugging (Chen et al., 2024c) approach, 1471

teaches the model to self-debug. The code explana- 1472

tion along with the execution results constitute the 1473

feedback message that is used for debugging the 1474

generated code. When unit tests are not available, 1475

the feedback is purely based on code explanation. 1476

AlphaCodium, proposed by (Ridnik et al., 2024), 1477

is a flow to improve code LLM performance that 1478

does not require training a model. Best practices in 1479

AlphaCodium’s flow are: using YAML structured 1480

output, bullet point analysis for semantic reasoning, 1481

modular code generation, soft decision with dou- 1482

ble validation, encourage exploration and postpone 1483

direct decisions, and use of test anchors. 1484

In revisited self-debugging (Chen et al., 1485

2025b) authors explored both post-execution 1486

and in-execution self-debugging, leveraging self- 1487

generated tests. They found that post-execution 1488

suffers from bias in self-generated tests, while in- 1489

execution self-debugging minimizes the bias by 1490

focusing on the intermediate states during the pro- 1491

gram execution, and consistently outperforms post- 1492

execution approach on both basic and competitive 1493

tasks. 1494

µFix (Misunderstanding Fixing) (Tian et al., 1495

2025) thought-eliciting prompting techniques are 1496

combined with feedback-based prompting to im- 1497

prove the code generation performance of LLMs. 1498

Feedback-based prompting focuses on trying to 1499

understand the root cause of failure of tests by ana- 1500

lyzing the actual understanding implicitly utilized 1501

by LLMs for code generation through code sum- 1502

marization. 1503

B.2.2 Training with Execution-based 1504

Feedback 1505

LEarning to VERify (Ni et al., 2023) (LEVER) is 1506

an approach where verifiers are trained to check 1507

whether the generated code is correct or not based 1508

on three sources of information: the natural lan- 1509

guage input, the program itself, and its execution 1510

results. The generated code is re-ranked based on 1511

the verification score and the LLM generation prob- 1512

ability, and marginalizing over programs with the 1513

same execution results. 1514

(Jiang et al., 2025) proposed LEDEX, a training 1515

framework to improve the self-debugging capabil- 1516

16



ity of LLMs using a chain of explanations on the1517

wrong code followed by code refinement. Their1518

automated pipeline collects a high-quality dataset1519

for code explanation and refinement by generating1520

a number of explanations and refinement trajecto-1521

ries from the LLM itself, or a larger teacher model,1522

and filtering via execution verification. Then a1523

combined Supervised Full Tuning (SFT) and Rein-1524

forcement Learning (RL) technique is used on both1525

success and failure trajectories to train the code1526

model.1527

B.2.3 Automated Test Generation1528

UTGEN (Prasad et al., 2025) is a data creation and1529

training recipe that bootstraps training data for UT1530

generation from existing code generation datasets1531

by perturbing code to simulate errors, generating1532

failing unit test and augmenting it with CoT ratio-1533

nales. UTGen yields a higher number of unit tests1534

that have both attacking inputs and correct outputs.1535

Along with UTGEN , authors presented UTDE-1536

BUG, an improved multi- turn debugging method1537

that improves the output accuracy of generated UTs1538

by scaling test-time compute via self-consistency,1539

and regularizes the debugging process by generat-1540

ing multiple UTs and accepting code edits only if1541

the revised code passes more generated UTs, back-1542

tracking edits otherwise.1543

AceCoder (Zeng et al., 2025) leverages auto-1544

mated large-scale test case synthesis to enhance1545

code model training, they proposed a pipeline1546

that generates extensive (question, test-cases) pairs1547

from existing code data. In the UT generation pro-1548

cess, a LLM is asked to imagine and generate 201549

test cases from a refined code problem description1550

(instruction), then another stronger LLM is used as1551

a proxy to validate the quality of the generated UTs.1552

With the aid of test cases they create preference1553

pairs based on pass rates over sampled programs to1554

train reward models with Bradley-Terry loss. Us-1555

ing the preference pairs data, they leverage RL on1556

both reward models and test-case pass rewards, re-1557

sulting in improvements of the models for several1558

benchmarks.1559

In a similar way, (Liu et al., 2024b) proposes Di-1560

rect Preference Learning with Only Self-Generated1561

Tests and Code (DSTC), a framework that uses only1562

self-generated code snippets and tests to construct1563

preference pairs with direct preference learning to1564

improve LM coding accuracy without external an-1565

notations. The UT generation process is joint with1566

the code generation process, where the LLM is1567

prompted to generate multiple code snippets and 1568

tests for each given instruction. ASTER (Pan et al., 1569

2025a) is a multilingual unit test generator built 1570

with LLMs guided by lightweight program analy- 1571

sis. ASTER is a generic pipeline that incorporates 1572

static analysis to guide LLMs in generating compi- 1573

lable and high-coverage test cases for Python and 1574

Java. They showed that LLM-based test generation, 1575

guided by static analysis, can be competitive some- 1576

times outperform, state-of-the-art test- generation 1577

techniques in coverage while also producing con- 1578

siderably more natural test cases that developers 1579

find easy to understand. 1580

More recently, SWT-Bench (Mündler et al., 1581

2025) is a benchmark based on GitHub reposi- 1582

tories, containing real-world issues, ground-truth 1583

bug-fixes, and golden tests for Python. This bench- 1584

marks has over 1, 900 samples that were created 1585

by transforming SWE-BENCH (Jimenez et al., 1586

2024a) from code repair to test generation. Au- 1587

thors of SWT-Bench performed a study and found 1588

out that LLMs perform well at generating relevant 1589

test cases, where Code Agents designed for code re- 1590

pair have better performance than systems designed 1591

specifically for test generation. 1592

B.3 Inference Scaling 1593

B.3.1 Sampling 1594

AlphaCode. (Li et al., 2022a) solve competitive 1595

programming problems using large-scale sampling 1596

followed by filtering and clustering. AlphaCode 1597

diversifies the generation process by generating 1598

half of its samples in Python and half in C++, ran- 1599

domizing problem tags and ratings in the prompt, 1600

and using a high sampling temperature. With these 1601

techniques, they are able to generate millions of 1602

sample solutions per programming problem. This 1603

generation phase is then followed by filtering and 1604

clustering. Test cases are integral to these phases 1605

and are either (1) provided along with the problem 1606

statement or (2) generated using another model. Af- 1607

ter filtering samples by (1), thousands of candidate 1608

solutions remain. Thus, in (2) a trained model is 1609

used to generate new test inputs, which are then 1610

used to assess the remaining generated samples. 1611

The samples are clustered according to their pro- 1612

gramming behavior after being run against the gen- 1613

erated tests. One solution is selected from each 1614

cluster to constitute the final pool of candidates. 1615

REx. The authors of REx (Tang et al., 2024) 1616

frame iterative code repair, or refinement, as a 1617

17



multi-armed bandit problem which is solved using1618

Thompson sampling. In their problem formulation,1619

each "arm" is a program, and "pulling the arm"1620

corresponds to refining a program. The heuristic1621

reward is the fraction of specifications (test cases)1622

satisfied by the program. Using this sampling tech-1623

nique, they are able to select the program according1624

to its probability of giving the best reward. This is1625

equivalent to solving the programming task using1626

the fewest LLM calls possible. They show promis-1627

ing results on competitive programming problems.1628

S*. Li et al. (2025a) takes a hybrid approach to1629

sampling, first generating N diverse programs in1630

parallel then refining the programs using iterative1631

debugging. Their iterative debugging is informed1632

by execution results on public test cases. The revi-1633

sion process is complete once the program passes1634

all public test cases or reaches the max number of1635

attempts. They evaluate on code generation bench-1636

marks, including LiveCodeBench and CodeCon-1637

tests.1638

B.3.2 Search1639

Tree of Thoughts and Guided Tree-of-Thought.1640

In (Yao et al., 2023a)’s work, Tree-of-thoughts,1641

or ToT, takes inspiration from the human nature1642

of problem-solving, where people solve a prob-1643

lem by searching through a combinatorial prob-1644

lem search space. The ToT paradigm allows LMs1645

to explore multiple reasoning paths over thoughts,1646

where thoughts are language sequences that serve1647

as intermediate steps towards problem solutions1648

and represent the states or nodes of the tree. The1649

language model’s reasoning is used as the heuristic,1650

which contrasts with traditional approaches that1651

use learned or programmed rules. To travers the1652

tree, ToT uses classic search strategies: breadth-1653

first search (BFS) or depth-first search (DFS).1654

Similarly, guided tree-of-thought (Long, 2023)1655

also uses a tree-search algorithm, where the LLM1656

is used as a heuristic for generating search steps.1657

GToT uses prompting to reach an intermediate solu-1658

tion to a problem, then introduces a checker, which1659

assesses the correctness or validity of the interme-1660

diate solution. A controller module oversees the1661

entire tree search and can control backtracking if a1662

partial solution is invalid or unpromising, allowing1663

the system to explore long-range reasoning.1664

Ouédraogo et al. (2024) explore the effective-1665

ness of various prompting techniques, including1666

ToT and GToT, on the task of test generation. They1667

show that GToT prompting is effective in generat-1668

ing syntactically-correct and compilable test suites, 1669

and can also lead to test suites with superior code 1670

coverage. 1671

Outcome-Refining Process. (Yu et al., 2024) 1672

propose ORPS, Outcome-Refining Process Super- 1673

vision for code generation. Their paradigm per- 1674

forms beam-search over a "reasoning tree." In this 1675

tree, each state captures the complex nature of code; 1676

a state contains information about the theoretical 1677

reasoning, code implementation, and execution out- 1678

come of a potential solution. The beam-search 1679

implementation works as follows: for each state, 1680

multiple reasoning chains are stored at once. For 1681

every chain, the algorithm (1) updates the state with 1682

LM-generated reasoning and code implementation 1683

(2) runs the code to obtain feedback (i.e. records its 1684

performance on tests, its memory usage, number 1685

of AST nodes, etc), then (3) uses the same LM as 1686

a critic to generate a critique and numerical "step" 1687

reward. Using these notions of self-refinement 1688

and self-critique, only the most promising solution 1689

paths are retained. 1690

C Agents 1691

CodeTree. CodeTree (Li et al., 2024) frames code 1692

generation as a tree-search problem using a com- 1693

bination of planning, execution-guided reasoning, 1694

and sampling. CodeTree employs heuristic strate- 1695

gies similar to other search-based approaches, us- 1696

ing testing pass rate (as in REx, S*) combined with 1697

LM critique as a heuristic (as in ORPS, ToT/GToT) 1698

to guide the traversal of the tree. Unlike other ap- 1699

proaches, it uses a collaborative, multi-agent frame- 1700

work; each sub-agent is specialized for a particular 1701

type of reasoning. The thinker agent generates a 1702

strategy plan and decides the number of samples to 1703

generate; the solver implements the plan and gener- 1704

ates code solutions; the critic agent, which scores 1705

the solution based on test pass rate and robustness, 1706

then decides whether to accept, dismiss, or refine 1707

a solution. The debugger then outputs a refined 1708

program using the critic agent’s feedback. Once 1709

the code has been generated and feedback obtained, 1710

the solution is added as a tree node along with the 1711

relevant attributes, like the strategy plan. 1712

ToC. ToC (Ni et al., 2024) also presents the rea- 1713

soning process as a tree. They represent nodes in a 1714

similar way to CodeTree, using the thought, gener- 1715

ated code, and execution results as attributes of the 1716

node. Contrary to CodeTree, which uses a combi- 1717

nation of test-pass rates and a soft score to judge 1718

18



robustness of a solution, ToC uses a binary heuris-1719

tic: execution pass or execution fail. If a node fails,1720

the children will be explored until a viable solution1721

is reached. ToC integrates execution-based reason-1722

ing with a search-based, multi-strategy sampling1723

approach. Following code execution, they incorpo-1724

rate a post-execution reflective phase, which allows1725

them to perform iterative improvements. Here, they1726

leverage multiple models and varying temperature1727

settings to expand the diversity of potential solu-1728

tions.1729

Arora et al., 2024 take inspiration from modular-1730

ization and develop MASAI, a modular SE agent1731

with 5 sub-agents for different tasks: Test Template1732

Generator, Issue Reproducer, Edit Localizer, Fixer,1733

and Ranker. CodeR (Chen et al., 2024a) is a multi-1734

agent framework with task graphs for resolving1735

issues. Similar to role-based teams of humans that1736

resolve issues, the framework also defines roles and1737

actions like Manager, Reproducer, Fault Localizer,1738

Editor and Verifier. PairCoder (Zhang et al., 2024a)1739

is inspired by the software development practice1740

of pair programming. It incorporates two collabo-1741

rative agents: NAVIGATOR agent for high-level1742

planning and DRIVER for specific implementation.1743

HyperAgent (Phan et al., 2024) is a multi-lingual1744

(Python/ Java), multi-agent system that emulates1745

the workflow of human developers. It consists of1746

four specialized agents called Planner, Navigator,1747

Code Editor and Executor, which are capable of1748

managing the full SE task life-cycle from planning1749

to verification. AgileCoder (Nguyen et al., 2024)1750

is a multi-agent system that uses sprints and agile1751

roles (e.g., Product Manager, Developer, Scrum1752

Master) to coordinate work based on user input.1753

D Benchmarks1754

HumanEval (HE) (Chen et al., 2021a) is a set of1755

164 hand-written programming problems. Each1756

problem includes a function signature, docstring,1757

body, and several unit tests, with an average of 7.71758

tests per problem. A multi-language version of HE1759

is also available in HumanEval-XL (Peng et al.,1760

2024a).1761

MBPP (Austin et al., 2021a) (The Most Basic1762

Programming Problems) benchmark has 1k crowd-1763

sourced Python programming problems and was1764

designed to be solvable by entry level program-1765

mers. Each problem consists of a task descrip-1766

tion, code solution and three automated test cases.1767

EvalPlus (Liu et al., 2023a) augments a given1768

evaluation dataset with large amounts of new test 1769

cases created by an automatic test input generator, 1770

powered by both LLM- and mutation-based strate- 1771

gies. EvalPlus includes MBPP+, HumanEval+, 1772

and EvalPerf. 1773

APPS (Hendrycks et al., 2021a) is another bench- 1774

mark for code generation with 10k samples that 1775

measures the ability of models to take an arbitrary 1776

natural language specification and generate satis- 1777

factory Python code. More recent extensions of 1778

some of the above benchmarks such as HumanEval- 1779

ET, MBPP-ET, and APPS-ET were introduced by 1780

(Dong et al., 2025a), where the amount of correct 1781

test cases were extended for each benchmark 100+ 1782

on average according to the reference code. 1783

CodeContests(Li et al., 2022b) is a code gener- 1784

ation dataset with problems curated from compet- 1785

itive programming platforms such as Codeforces, 1786

requiring solutions to challenging code generation 1787

problems. This dataset has solutions to the given 1788

problems in Python, Java, and C++, with an En- 1789

glish description of the code problems. 1790

E Code Evaluation 1791

To address the poor correlation with human evalu- 1792

ation of exact or fuzzy match metrics, ICE-Score 1793

was recently proposed as an evaluation metric that 1794

instructs LLMs for code assessments (Zhuo, 2024). 1795

The ICE-Score evaluation showed superior correla- 1796

tions with functional correctness and human pref- 1797

erences, without the need for test oracles or refer- 1798

ences. The efficacy of ICE-Score was measured 1799

w.r.t. human preference and execution success for 1800

four programming languages. 1801

Additionally, CodeScore (Dong et al., 2025a) is 1802

another code evaluation metric that was recently 1803

proposed to measure the functional correctness 1804

of generated codes on three input formats (Ref- 1805

only, NL-only, and Ref&NL). CodeScore can be 1806

obtained through the UniCE framework that assists 1807

models in learning code execution and predicting 1808

an estimate of execution PassRatio. 1809

E.1 Metrics 1810

Functional correctness of generated code by LLMs 1811

is mainly measured by passing tests. One of the 1812

basic metrics to measure the correctness of code 1813

is the percentage of tasks in a given benchmark 1814

where the generated code successfully passes all 1815

tests. (Chen et al., 2021a) shows that exact or fuzzy 1816

match metrics (e.g., BLEU) are not adequate or 1817

reliable indicators of functional correctness of code, 1818

19



by showing that functionally different programs1819

generated by a model often have higher BLEU1820

scores than functionally equivalent ones.1821

The metric pass@k is the probability of gener-1822

ating at least one solution passing all test cases1823

successfully in k trials. The AvgPassRatio mea-1824

sures the degree of correctness of generated code1825

on evaluation test cases, it considers whether the1826

generated code is completely correct on evaluation1827

test cases or not. Another metric is the percentage1828

of problems solved using n submissions from k1829

samples per problem, denoted as n@k.1830

F Results Tables1831

We manually inspected every work in our sur-1832

vey and collated self-reported and cross-reported1833

entries on common benchmarks. We report1834

on benchmarks that intersect across approaches1835

and use intersecting models/benchmarks to make1836

observations of their trends. In our surveyed1837

works, they were the following: APPS (Hendrycks1838

et al., 2021b), HumanEval (Chen et al., 2021b),1839

HumanEval+ (Liu et al., 2023b), HumanEval-1840

ET (Dong et al., 2025b), multi-language bench-1841

marks HumanEval-X (Zheng et al., 2023a) and1842

HumanEval-XL (Peng et al., 2024b). MBPP1843

(Austin et al., 2021b), MBPP+, MBPP-sanitized1844

(Austin et al., 2021c), MBPP-ET. See tables: 4, 5,1845

6, 8, 7.1846

G Observations Extended1847

G.1 Observation 1:1848

Chain of Grounded Objectives (CGO) outperforms1849

Self-Planning and ClarifyGPT with gpt-3.5 on1850

MBPP-S; it is also better than Self-Planning on1851

MBPP+. This also holds true for Llama-3-8B-Instr,1852

where CGO is better than Self-Planning. On MBPP1853

and MBPP+ with gpt-4o-mini, ScoT is better than1854

Self-Planning (Table 7).1855

G.2 Observation 2:1856

MoT outperforms SCoT and Self-Planning with1857

DS-R1 on MBPP and HE. This is also true for1858

MBPP and MBPP+ with gpt-4o-mini. CodeChain1859

(a modular approach) also outperforms SCoT on1860

APPs overall with gpt-3.5 (Table 4, 7, 8).1861

G.3 Observation 3:1862

MuFix and Self-Debugging surpass other CoT base-1863

lines (CGO, SCoT, Self-Plan, Clarify-GPT) on1864

HumanEval (gpt-3.5). Revisiting Self-Debugging1865

beats PlanSearch on HE+ (Claude-3.5-Sonnet).1866

MuFix and Self-Debugging outperform Clari- 1867

fyGPT on MBPP-ET (gpt-3.5), further reinforcing 1868

dominance of execution-based methods. On MBPP 1869

with gpt-3.5, Self-Debugging surpasses SCoT by a 1870

large margin. MuFix and Self-Debugging outper- 1871

form UniCoder on HE. The findings hold true on 1872

the APPS benchmark, where MuFix outperforms 1873

CodeChain, SCoT, and Self-Planning with gpt-3.5. 1874

This is true for DeepSeek-Coder as well, where Mu- 1875

Fix, Self-Debugging, and CYCLE models, which 1876

are smaller-sized parameter models but finetuned, 1877

outperform SCoT. (Tables 4, 7, 8) 1878

G.4 Observation 4: 1879

CodeTree outperforms Revisiting Self Debugging 1880

on MBPP+ with gpt-4o. ORPS outperforms 1881

MoT and other structure-based and plan-based ap- 1882

proaches (like SCoT and Self-Planning) on MBPP 1883

with gpt-4o-mini. This is also true for MBPP with 1884

DeepSeekCoder, ORPS outperforms UniCoder by 1885

a large margin. REx with gpt-4 also claims to 1886

achieve the state-of-the art on APPS, with roughly 1887

70%. S* also beats PlanSearch on LCB with o1- 1888

mini and 4o-min. (Tables 5, 7) 1889

G.5 Observation 5: 1890

PairCoder and AgileCoder significantly outperform 1891

ClarifyGPT with gpt-4 on HE. PairCoder is bet- 1892

ter than CGO and Self-Planning on MBPP+ with 1893

gpt-3.5. Both PairCoder and Agile coder are bet- 1894

ter than SCoT on MBPP with gpt-3.5; both dom- 1895

inate Self-Debugging as well. With DeepSeek- 1896

coder on HE, Paircoder outperforms MuFix, Self- 1897

Debugging, and UniCoder; also with DeepSeek- 1898

Coder, PairCoder outperforms UniCoder on MBPP. 1899

Also true for gpt-4 on MBPP-S, where PairCoder 1900

outperforms ClarifyGPT. (Tables 4, 7, 8) 1901

G.6 Observation 6: 1902

CodeTree outperforms MoT, SCoT, Self-Planning, 1903

and PlanSearch on HE+ and MBPP+ with gpt-4o- 1904

mini; CodeTree outperforms these strategies with 1905

gpt-4o as well. CodeTree also outperforms ORPS 1906

on MBPP with gpt-4o-mini. On M3ToolEval, ToC 1907

is better than CodeAct. Moreover, SWE-Search, 1908

which combines inference scaling in an agentic ap- 1909

proach, dominates the leaderboard on SWE-Bench 1910

Lite. (Tables 5, 6, 7, 8). 1911

20



Approach Model APPS
Introductory

APPS
Interview

APPS
Competition APPS-ET APPS

CodeChain (Le et al., 2023) gpt-4 71.1 55.0 23.3 – 61.5
gpt-3.5-turbo-16k 54.5 28.1 12.4 – 26.4
WizardCoder 26.3 7.5 3.8 – 10.5

ChainCoder ♢ (Zheng et al., 2023b) ChainCoder-1B 17.5 7.4 5.5 – –

AlphaCode ♢ (Li et al., 2022a) AlphaCode-1B 14.4 5.6 4.6 – –

Self-Planning (Jiang et al., 2024b) gpt-3.5-turbo – – – 8.3 21.3
DeepSeekCoder – – – 1.0 4.0

SCoT (Li et al., 2025b) gpt-3.5-turbo – – – 7.7 22.0
DeepSeek-Coder-6.7B-Instr – – – 1.3 4.3

Self-Debugging (Chen et al., 2024c) gpt-3.5-turbo – – – 6.2 18.7
DeepSeek-Coder-6.7B-Instr – – – 1.3 4.7

CYCLE (Ding et al., 2024a) CYCLE-350M – – – – 8.7
CYCLE-1B – – – – 10.9
CYCLE-2.7B – – – – 11.6
CYCLE-3B – – – – 11.3

µ-Fix (Tian et al., 2025) gpt-3.5-turbo – – – 10.3 35.7
DeepSeek-Coder-6.7B-Instr – – – 5.0 14.0

REx (Tang et al., 2024) gpt-4 – – – – ∼ 70

Table 4: Performance across the APPS benchmark (Hendrycks et al., 2021b), including the APPS Introductory,
Interview, Competition, APPS-ET, and APPS overall sets. Default performance is reported as pass@1 (%).
Approaches marked with ♢ use the n@k metric, where n = 5 and k = 1,000.

Approach Model LCB CodeContests M3ToolEval

S* (Li et al., 2025a) Qwen-2.5-Coder-Instruct 32B 70.1 21.8 -
gpt-4o-mini 61.3 23.0 -
R1-Distill-32B 85.7 - -
o1-mini 85.3 48.5 -

PlanSearch (Wang et al., 2024a) DeepSeek-Coder-V2 41.4 – -
gpt-4o-mini 39.0 – -
gpt-4o 41.3 – -
Claude-Sonnet-3.5 40.3 - -
o1-mini 69.5 – -

CodeChain † (Le et al., 2023) gpt-3.5 - 14.1 -

ChainCoder ‡ (Zheng et al., 2023b) ChainCoder-1B - ∼ 15 -

AlphaCode ‡ (Li et al., 2022a) AlphaCode-9B - 14.3 -
AlphaCode-41B - 15.6 -

PairCoder (Zhang et al., 2024a) gpt-3.5-turbo - 15.2 -
DeepSeek-Coder - 14.6 -

CodeTree (Zhang et al., 2024a) gpt-4o-mini - 26.4 -
gpt-4o - 43.0 -
Llama-3.1-8B - 12.1 -

AlphaCodium † (Ridnik et al., 2024) DeepSeek-33B - 24.0 -
gpt-3.5 - 17.0 -
gpt-4 - 29.0 -

CodeAct (Wang et al., 2024c) gpt-4 – – 74.4

Tree-of-Code (Ni et al., 2024) Mix-modal – – 81.6

Table 5: Performance across the LiveCodeBench (LCB), CodeContests (test set), and M3ToolEval. Default
results are reported as pass@1. Approaches marked with † indicate pass@5, while those marked with ‡ use the
n@k of 10@1k rate. S* results reflect performance on LCB v2.

21



Approach Model SWE-Bench Verified SWE-Bench Lite SWE-Bench

Agentless (Xia et al., 2024) gpt-4o 33.2 24.3 -
o1-preview 41.3 - -
DeepSeek-V3 42.0 - -
DeepSeek-R1 49.2 - -
Claude-3.5-Sonnet 53.0 - -

AutoCodeRover (Zhang et al., 2024b) Qwen2-72B-Instruct - 9.3 -
gpt-4o 28.8 22.7 -
gpt-4 - 19.0 -

MASAI (Arora et al., 2024) gpt-4o – 28.3 -

SWE-Agent (Yang et al., 2024c) Claude-3.5-Sonnet 33.6 23.0 -
gpt-4o 23.2 18.3 -

SWE-Gym (Pan et al., 2024) Qwen-2.5-Coder-Instruct 32B 20.6 15.3 -
SWE-Gym-32B 32.0 26.0 -

SWE-Search (Antoniades et al., 2024) gpt-4o - 31.0 -
gpt-4o-mini - 17.0 -
Qwen-2.5-72b-Instruct - 24.7 -
Deepseek-V2.5 - 21.0 -
Llama-3.1-70b-Instruct - 17.7 -

Lingma (Ma et al., 2024) Lingma SWE-GPT 72B 30.2 22.0 -
Lingma SWE-GPT 7B 18.2 12.0 -

SWE-Fixer (Xie et al., 2025) SWE-Fixer-72B 32.8 24.7 -

HyperAgent (Phan et al., 2024) - 33.0 26.0 -

SWE-RL (Wei et al., 2025) Llama3-SWE-RL-70B 41.0 - -

CodeR (Chen et al., 2024a) gpt-4 – 28.3 -

CodeTree (Li et al., 2024) gpt-4o-mini – – 27.6

OpenHands (Wang et al., 2024e) gpt-4o-mini – 7.0 -
gpt-4o – 22.0 -
Claude-3.5-Sonnet – 26.0 -

Table 6: Performance on SWE-Bench Verified, and SWE-Bench Lite, and SWE-Bench. Performance is measured
by resolved rate.

22



Approach Model MBPP+ MBPP MBPP-ET MBPP-S

PlanSearch (Wang et al., 2024a) gpt-4o-mini 73.5 – – –
gpt-4o 77.2 – – –
DeepSeekCoder-V2 76.3 – – –
Claude-3.5-sonnet 77.1 – – –

ClarifyGPT (Mu et al., 2023) gpt-3.5-turbo – – 55.6 74.1
gpt-4 – – 58.5 78.7

Self-Planning (Jiang et al., 2024b) Codex – – 41.9 55.7
gpt-4o-mini 42.4 52.1 48.2 –
DeepSeek-R1 55.4 68.4 65.5 –
gpt-3.5-turbo 68.1 – – 82.6
Llama-3 8B Instr. 56.9 – – 67.9

SCoT (Li et al., 2025b) gpt-3.5-turbo – 47.0 – –
Codex – 38.3 – –
gpt-4o-mini 51.4 63.9 55.6 –
DeepSeek-R1 46.9 57.9 61.3 –

MoT (Pan and Zhang, 2025) DeepSeek-R1 60.4 74.9 68.0 –
gpt-4o-mini 58.1 73.9 58.9 –

CGO (Yeo et al., 2025) gpt-3.5-turbo 73.7 – – 86.0
Llama-3 8B Instr. 57.9 – – 68.1

UniCoder (Sun et al., 2024b) Deepseek-Coder – 64.3 – –
CodeLlama-7B – 65.2 – –

Self-Debugging (Chen et al., 2024c) Codex – 70.8 – –
gpt-3.5-turbo – 74.2 60.4 –
gpt-4 – 80.6 – –
StarCoder – 53.2 – –
DeepSeek-Coder-6.7B-Instruct – – 56.9 –

LeDex (Jiang et al., 2025) StarCoder-15B 54.3 58.2 – –
CodeLlama-7B 52.9 58.1 – –
CodeLlama-13B 57.9 61.9 – –

Revisiting Self-Debugging (Chen et al., 2025b) gpt-4o 76.5 91.5 – –
Claude-3.5-sonnet 77.0 92.6 – –
Llama-3-70B-Instr. 71.2 84.4 – –
Qwen-2.5-Coder-7B-Instr 70.6 84.7 – –

ORPS (Yu et al., 2024) Llama-3.1-8B-Instruct - 90.4 – –
DeepSeek-Coder-7B-Instruct-v1.5 - 93.0 – –
Qwen-2.5-Coder-7B-Instruct - 94.9 – –
Qwen-2.5-Coder-14B-Instruct - 95.3 – –
gpt-4o-mini - 95.7 – –

CodeTree (Li et al., 2024) gpt-4o-mini 77.0 96.8 – –
gpt-4o 80.7 98.7 – –
Llama-3.1-8B-Instr. 73.3 90.5 – –

AgileCoder (Nguyen et al., 2024) gpt-3.5-turbo – 80.9 – –
claude-3-haiku – 84.3 – –

PairCoder (Zhang et al., 2024a) gpt-3.5-turbo 77.7 80.6 – –
DeepSeek-Coder 75.7 78.8 – –
gpt-4 – – – 91.2

CYCLE (Ding et al., 2024a) CYCLE-350M – – – 32.6
CYCLE-1B – – – 35.8
CYCLE-2.7B – – – 48.5
CYCLE-3B – – – 51.3

µ-Fix (Tian et al., 2025) gpt-3.5-turbo – – 69.1 –
DeepSeek-Coder-6.7B-Instruct – – 63.3 –

SemCoder (Ding et al., 2024b) SemCoder-S-6.7B 68.5 79.6 – –
SemCoder-6.7B 65.3 79.9 – –

Table 7: Performance on the MBPP +, MBPP, MBPP-ET, and MBPP-sanitized benchmarks. All results are
reported as pass@1.

23



Approach Model HE+ HE HE-XL HE-X HE-ET

PlanSearch (Wang et al., 2024a) gpt-4o-mini 83.7 – – – –
gpt-4o 86.4 – – – –
DeepSeekCoder-V2 82.8 – – – –
Claude-3.5-sonnet 81.6 – – – –

ClarifyGPT (Mu et al., 2023) gpt-3.5-turbo – 74.4 – – 64.8
gpt-4 – 87.8 – – 78.1

Self-Planning (Jiang et al., 2024b) Codex – 60.3 – 60.3 46.2
gpt-4o-mini 79.9 87.2 – – 87.1
DeepSeek-R1 79.3 85.4 – – 85.3
gpt-3.5-turbo 67.3 72.7 – – –
LLaMA-3 8B Instr. 52.8 60.1 – – –

SCoT (Li et al., 2025b) gpt-3.5-turbo – 60.6 – – –
Codex – 49.8 – – –
gpt-4o-mini 78.7 86.6 – – 86.0
DeepSeek-R1 79.3 84.8 – – –
DeepSeekCoder – – 69.3 – –
Qwen-2.5-Coder – – 74.4 – –

MoT (Pan and Zhang, 2025) DeepSeek-R1 88.4 95.1 – – 94.5
gpt-4o-mini 83.5 92.1 – – 91.5

MSCoT (Pan and Zhang, 2025) DeepSeek-Coder – – 66.0 – –
Qwen2.5-Coder – – 72.3 – –

CGO (Yeo et al., 2025) gpt-3.5-turbo 68.5 74.6 – – –
LLaMA-3 8B Instr. 56.2 62.4 – – –

UniCoder (Sun et al., 2024b) DeepSeek-Coder – 70.6 – – –
CodeLlama-7B – 65.4 – – –

COTTON (Yang et al., 2024b) gpt-3.5-turbo 76.2 74.4 – – –
DeepSeekCoder – – 61.8 – –
Qwen-2.5-Coder – – 68.7 – –

Agile Coder (Nguyen et al., 2024) gpt-3.5-turbo – 70.5 – – –
claude-3-haiku – 79.3 – – –
gpt-4 – 90.9 – – –

CodeAct (Wang et al., 2024c) CodeActAgent(LLaMA-2-7B) – 18.1 – – –
CodeActAgent(Mistral-7B) – 34.7 – – –

PairCoder (Zhang et al., 2024a) gpt-3.5-turbo 77.4 87.8 – – –
DeepSeek-Coder 76.2 85.4 – – –
gpt-4 – 93.9 – – –

CodeTree (Li et al., 2024) gpt-4o-mini 84.8 94.5 – – –
gpt-4o 86.0 94.5 – – –
Llama-3.1-8B 72.0 82.3 – – –

µ-Fix (Tian et al., 2025) gpt-3.5-turbo 80.5 90.2 – – 79.9
DeepSeek-Coder-6.7B-Instr 78.7 83.5 – – 75.0

Self-Debugging (Chen et al., 2024c) gpt-3.5-turbo 71.3 77.4 – – –
DeepSeek-Coder-6.7B-Instr 73.2 77.4 – – –

LeDex (Jiang et al., 2025) StarCoder-15B 46.3 52.3 – – –
CodeLlama-7B 50.0 55.8 – – –
CodeLlama-13B 56.7 61.7 – – –

CYCLE (Ding et al., 2024a) CYCLE-350M – 20.7 – – –
CYCLE-1B – 22.0 – – –
CYCLE-2.7B – 29.3 – – –
CYCLE-3B – 29.9 – – –

Revisiting Self-Debugging (Chen et al., 2025b) gpt-4o 87.8 92.1 – – –
Claude-3.5-Sonnet 89.0 94.5 – – –
Llama-3-70B Instr. 73.8 79.9 – – –
Qwen-2.5-Coder 81.7 86.0 – – –

SemCoder (Ding et al., 2024b) SemCoder-S-6.7B 74.4 79.3 – – –
SemCoder-6.7B 68.9 73.2 – – –

Table 8: Performance on the HumanEval +, HumanEval, HumanEval-XL, HumanEval-X, and HumanEval-ET
benchmarks. All results are reported as pass@1.

24



Approach CoT Execution-based Inference Scaling Other

Plan Struct FT
Gen-AI

Tests
Benchmark

Tests
Sampling

LM
Heuristic

Exec.
Heuristic

MV RR RL

PlanSearch ¥ ¥ ¥

Self-Planning,
ClarifyGPT

¥

SCoT,CGO,MoT,CodeChain ¥

UniCoder,ChainCoder,MSCoT ¥ ¥

COTTON ¥ ¥

SemCoder ¥ ¥ ¥

MSCoT ¥ ¥

Self-Debug ¥ ¥

CodeCOT,AlphaCodium ¥ ¥ ¥

Revisit Self-Debug ¥ ¥ ¥

µFix ¥ ¥

LEVER ¥ ¥ ¥

CYCLE ¥ ¥

LEDEX ¥ ¥ ¥ ¥

ORPS ¥ ¥

GToT ¥

S* ¥ ¥ ¥ ¥?
REx

Table 9: LLM Reasoning based approaches for code tasks and key components. CoT (Chain-of-Thought); Exe-based
(Execution-based feedback); GenAI Tests (Generated Tests with LLMs); MV (Majority Vote); RR (Re-Ranking);
RL (Reinforcement-Learning). Each approach has a dominant strategy by which we categorize our taxonomy:
CoT and Planning , Execution-driven , and sampling or search . For agentic see Tab. 10.

Approach Workflow Reason. Model Agent Optim. Inf. Scaling
SFT RL Verifier Multi-Agent Tools

Agentless ¥

AutoCodeRover ¥ ¥

SWE-Agent ¥

CodeAct ¥ ¥

OpenHands, MASAI, CodeR, AgileCoder ¥ ¥

PairCoder ¥ ¥

HyperAgent ¥

Lingma, SWE-Fixer ¥ ¥

SWE-Gym ¥ ¥ ¥ ¥

SWE-RL ¥

CodeTree ¥ ¥

ToC ¥

SWE-Search ¥ ¥ ¥

Table 10: In our taxonomy Agents are classified as employing one of the following techniques 1. Workflow 2.
Reasoning Model improvement 3. Agent optimization 4. Inference scaling. However many agents employ multiple
techniques. For example, SWE-Gym is classified in Reasoning model improvement category, but they also train a
verifier model for inference scaling. This table highlights such nuances.

25


	Introduction
	Taxonomy of Techniques
	Code Chain-of-Thought Reasoning
	Execution-based Reasoning
	Search and Sampling for SE Tasks

	Taxonomy of Tasks: Agentic
	Taxonomy of Tasks: Non-Agentic
	Code Tasks
	Code Reasoning Tasks

	Comparison and Discussion
	Conclusion and Future Work
	Appendix
	Survey Methodology

	Related Surveys
	Summaries
	Execution-driven Reasoning
	Self-Evaluation of Execution Behavior
	Training with Execution-based Feedback
	Automated Test Generation

	Inference Scaling
	Sampling
	Search


	Agents
	Benchmarks
	Code Evaluation
	Metrics

	Results Tables
	Observations Extended
	Observation 1:
	Observation 2:
	Observation 3:
	Observation 4:
	Observation 5:
	Observation 6:


