
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SCALING MULTI-TASK BAYESIAN OPTIMIZATION
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-task Bayesian optimization, the goal is to leverage experience from op-
timizing existing tasks to improve the efficiency of optimizing new ones. While
approaches using multi-task Gaussian processes or deep kernel transfer exist, the
performance improvement is marginal when scaling beyond a moderate number
of tasks. We introduce BOLT, an initialization-only transfer strategy that distills
prior BO runs into an LLM which proposes candidates for new tasks, while the
surrogate at test time remains single-task. The LLM is periodically fine-tuned on
top solutions from completed runs, creating a closed loop where better BO out-
puts yield better initializations over time. This decoupled design scales to roughly
1500 tasks without the saturation observed for shared-surrogate MTBO and adds
only a small, amortized overhead relative to the BO inner loops. We evaluate on
two domains: database query optimization and antimicrobial peptide design. We
demonstrate that LLM-generated initializations steadily improve and accelerate
BO, and with sufficient fine-tuning, a few LLM samples often match or surpass
full “from-scratch” BO with far fewer oracle calls.

1 INTRODUCTION

Multi-task optimization seeks to use related, previously observed tasks to accelerate the optimization
of new ones. Multi-task optimization appears naturally in a variety of domains where similar prob-
lems are encountered repeatedly, such as hyperparameter optimization, material science, database
query optimization, and drug design. Formally, suppose we have tasks {1, 2, . . . , T}, each associ-
ated with its own objective function ft(x). For each task t ∈ {1, 2, . . . , T}, we seek to find some
x∗
t such that

x∗
t = argmin

x∈X
ft(x). (1)

We focus on the setting where, for each task, we have collected a dataset Dt of observations, and
we wish to leverage this data when optimizing unseen test tasks.

Multi-task Bayesian optimization (BO) has traditionally learned across tasks by building a shared
surrogate, typically via multi-output GPs and/or shared-weight neural feature extractors (Swersky
et al., 2013; Perrone et al., 2018; Feurer, 2018; Patacchiola et al., 2020; Hakhamaneshi et al., 2022).
A standard approach involves placing a multi-output GP over the input-task space, decomposing the
kernel as an input kernel k(x,x′) and a task kernel k(t, t′). Despite their effectiveness, many of
these methods — with the notable exception of recent work such as Wang et al. (2024c) — tend
to saturate in performance after tens of training tasks and do not extract additional performance
improvement on new tasks when given hundreds or thousands of related tasks.

We propose Bayesian Optimization with LLM Transfer (BOLT), a straightforward approach to multi-
task BO that departs from the framework of building related task information into the BO surrogate
model. Instead, as BO completes optimization for training tasks, we fine-tune a large language
model (LLM) to, given a task description or context C[ft], generate solutions for that optimization
problem that we can use as strong initialization for BO.

This approach creates a self-reinforcing feedback loop: BO generates high-quality solutions that we
can leverage to fine-tune the LLM; the fine-tuned LLM, in turn, produces better initializations that
improve BO performance. Over time, the LLM learns to directly generate solutions that are highly
competitive, enabling top-k-samples from the LLM (requiring just a few oracle calls) to outperform
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full “from scratch” BO runs (requiring a large number of oracle calls). This iterative improvement
enables BOLT to scale and still extract value from thousands of tasks. We validate BOLT on two
diverse and challenging domains where many related tasks are available.

We transfer knowledge across tasks by decoupling it from the test-time surrogate and using it only
for initialization. Rather than maintain a multi-task surrogate, BOLT distills prior experience into
an LLM that proposes candidate solutions from a task description C[ft], after which a standard
single-task BO run refines them. This removes shared-surrogate design choices, allows usage of any
BO method unchanged, and improves with scale: as more tasks are solved, initialization quality rises
rather than saturates. After sufficient fine-tuning on BO-discovered solutions, the LLM becomes a
strong few-shot optimizer, and running BO on top of its samples yields further gains (see §4).

This design contrasts with recent LLM-based multi-task BO (MTBO) systems. Optformer seeks to
predict entire optimization trajectories (Chen et al., 2022), and LLAMBO uses in-context surrogates
with acquisition (Liu et al., 2024). BOLT instead uses the LLM strictly for initialization within
a closed loop: BO finds high-quality solutions; we fine-tune on them; the LLM returns stronger
starts. Ablations show that simple alternatives (e.g., sampling in trust regions around previous so-
lutions) and an untuned LLM (BOLT-0) underperform, highlighting the benefit of the closed-loop,
initialization-only approach (§4).

Contributions
1. We propose BOLT, a scalable and simple alternative to traditional multi-task BO, leveraging

LLMs to generate strong initial solutions for new tasks. BOLT leverages a combination of high
quality optimized solutions produced by BO and self augmentation for fine-tuning.

2. We validate BOLT on two challenging, high-throughput domains—database query optimization
and antimicrobial peptide design—and show that initialization quality improves with scale, avoid-
ing the saturation of common shared-GP methods and outperforming recent LLM-based MTBO.

3. We show that, after sufficient fine-tuning, the LLM becomes a strong few-shot optimizer, often
matching or surpassing full “from scratch” BO runs with far fewer oracle calls; running BO on
top of those samples improves further.

4. We provide a detailed compute analysis and ablations demonstrating that BOLT’s fine-
tuning/self-augmentation adds only ∼ 2% overhead relative to single-task BO runs, adding min-
imal computational costs for extra performance.

2 BACKGROUND

Bayesian optimization (BO). Bayesian Optimization (BO) Kushner (1962; 1964); Močkus
(1975); Snoek et al. (2012) is an iterative approach to optimize black-box functions in a sample-
efficient manner. On each step of the optimization, a supervised probabilistic surrogate model
(usually a Gaussian Process (GP) Rasmussen (2003)) is conditioned on all data collected so far.
Then, the surrogate model’s predictive posterior distribution p(y | x, D) is used to decide what data
point(s) should be evaluated next, typically by maximizing some acquisition function, defined with
respect to p(y | x, D), which guides the exploration-exploitation trade off. Finally, selected points
are evaluated on the black-box function and added to the dataset. This iterative process continues
until the evaluation budget is reached.

Structured optimization via latent space BO. BO has recently been applied to optimizing struc-
tured search spaces, such as molecular and amino acid sequences, by leveraging latent space
Bayesian optimization. This approach incorporates a variational autoencoder (VAE) to map struc-
tured inputs into a continuous latent space, where BO is performed (Kingma and Welling, 2014;
Eissman et al., 2018; Tripp et al., 2020; Grosnit et al., 2021; Siivola et al., 2021; Stanton et al., 2022;
Maus et al., 2022). Structured inputs x (e.g., amino acid sequences) are mapped to continuous la-
tent representations z by the VAE encoder Φ(x). This creates a transformed continuous (latent)
representation of the structured search space where BO can be directly applied (Gómez-Bombarelli
et al., 2018; Griffiths and Hernández-Lobato, 2020; Kusner et al., 2017). The corresponding latent
candidate points are then decoded by the VAE decoder, Γ(z), to reconstruct structured outputs for
evaluation. For large combinatorial structured search spaces, such as the space of organic molecules
or the space of all peptide amino acid sequences, the latent space of the VAE is typically high-
dimensional (on the order of several hundred dimensions) in order to represent the large structured
space effectively (Chu et al., 2024; Lee et al., 2025).
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Optimizing antimicrobial peptides. In antimicrobial peptide design, we seek peptides (se-
quences of amino acids) that minimize the MIC (minimum inhibitory concentration, measured in
µ mol L−1) for some target bacterial pathogen. MIC is a measure of the concentration of the peptide
required to inhibit growth of the target bacterial pathogen (Kowalska-Krochmal and Dudek-Wicher,
2021). A key challenge in antimicrobial peptide design is that many modern bacterial pathogens
have developed resistance to modern antibiotics. To solve this challenge, Wan et al. (2024) propose
designing new peptides with high sequence similarity to template peptides mined from extinct or-
ganisms. The template peptides themselves do not typically achieve sufficiently low MIC for target
bacteria pathogens. However, since these template peptides have not been encountered in nature
for thousands of years, modern antimicrobial resistant bacteria have not evolved resistance to them.
It follows that new peptides are more likely to evade antibiotic resistance if they are designed to
be similar to the extinct template sequences. We employ this strategy, optimizing antimicrobial
peptides with a minimum threshold sequence similarity to the extinct template peptides from Wan
et al. (2024). We also employ latent space BO to optimize over the structured space of amino acid
sequences.

Optimizing database query plans. Query optimization in data management systems involves
translating a declarative SQL query into an execution plan that efficiently retrieves the correct re-
sults (Graefe and McKenna, 1993). This problem has been extensively investigated in the field of
data management (Leis et al., 2017), as the difference in execution time between an optimal and a
poorly chosen query plan can be several orders of magnitude (Leis et al., 2015). Since individual
query plans are composed of discrete characteristics (e.g. join order trees), the search space of pos-
sible query plans is structured and combinatorial. We therefore employ latent space BO. We use the
string representation for query plans proposed by Tao et al. (2025) to pre-train a VAE model that
maps the structured space of query plans to a continuous latent space where BO can be applied.

Database query plan optimization with right-censored observations. In database query opti-
mization, our black-box objective function measures the execution latency of the query plan. “Good”
and “bad” query plans can have latencies differing by multiple orders of magnitude (Leis et al.,
2015). This can lead to the majority of optimization runtime being taken up by evaluating a small
number of poorly performing plans. A natural solution to this problem is to time out objective
function evaluations after they have reached some threshold latency τ , resulting in right-censored
observations. A right-censored observation is an observation at data point x where we observe
only that y ≥ τ for some chosen timeout threshold τ , rather than observing the typical noisy ob-
jective value y. Prior work has been done to extend Bayesian optimization methods to the setting
of right-censored observations. Hutter et al. (2013); Eggensperger et al. (2020) extended Bayesian
optimization methods to the setting of right-censored observations by introducing an EM-like algo-
rithm to impute the values of censored observations. Eggensperger et al. (2020) expanded on this,
defining a single surrogate model capable of being conditioned on the combination of censored and
uncensored data gathered. Tao et al. (2025) extend this to the setting of approximate GP surrogate
models. Since we focus on tasks that involve large function evaluation budgets, we employ Tao et al.
(2025)’s proposed method of modeling censored data with approximate GPs.

3 BAYESIAN OPTIMIZATION WITH LLM TRANSFER (BOLT)

We propose Bayesian Optimization with LLM Transfer (BOLT), an iterative framework for using
LLMs to improve Bayesian optimization (BO) performance across a family of related tasks. We
are given a set of T training tasks defined by objective functions f1(x), ..., fT (x). We additionally
assume that, for each objective function we have a context or task description C[ft] that can be a
natural language or other input description that differentiates ft from any other task in the application
domain. For example, this might be the text of a SQL query we are trying to optimize.

For each training task, we assume we have optimized the objective with some BO procedure, result-
ing in the optimization trajectories {D⋆

t }Tt=1, with each D⋆
t containing the top-K observations from

the trajectory for the tth task. Our goal is to leverage this training data to learn an LLM-based “ini-
tialization policy” π that, when presented with new related tasks {fT+1(x), C[fT+1(x)]}, proposes
a high-quality set of candidate solutions for BO to further refine.

These two procedures — (1) using BO to collect high-quality data for training tasks, and (2) using
the LLM to initialize BO for new tasks — can be used as an “outer-loop”/“inner-loop” approach to

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

solving a large number of related tasks sequentially, where the LLM is periodically updated as more
optimization runs complete.

Because the LLM and BO only interact through generating initialization and generating fine-tuning
data respectively, our approach here is relatively agnostic to the specific underlying implementation
of BO used to optimize each task. This enables the straightforward use of the full range of recent
BO advances on high-dimensional, constrained, and other optimization settings.

Algorithm 1: Inner Loop: LLM-Initialized
Bayesian Optimization
Require : Task t, context C[ft], LLM πn,

budget B, batch b
Ensure : Optimized solutions X∗

t

Xinit ← πn(C[ft]) // LLM proposes
candidates

Evaluate yinit ← ft(Xinit)
D ← (Xinit, yinit)
Initialize GP(Xinit, yinit)
for step i = 1 to ⌊B/b⌋ do

Xnext ← argmaxx α(x;GP)
// Acquisition

ynext ← ft(Xnext)
D ← (X ∪Xnext, y ∪ ynext)
Update GP with new observations

Return X∗
t ← top-K(X) // Best

solutions

Algorithm 2: Outer Loop: LLM Fine-
Tuning via BO Trajectories
Require : Dataset D0 = {(C[ft],xi, yi)},

LLM π0, iterations T
Ensure : Fine-tuned LLM πT

Initialize D ← D0, π ← π0

for iteration k = 1 to T do
foreach task t in batch do

X∗
t ← INNERLOOP(t, πk, B, b)
// Run BO
D ← D ∪ {(C[ft],x, y) |x ∈ X∗

t }
// Augment with top

solutions

Fine-tune πk on augmented dataset D
Update model parameters via instruction

prompting

Return πT // Final fine-tuned LLM

Initializing BOLT. At initialization for a workload of tasks, we have only an un-tuned LLM BOLT-
0 that is generally useless for the task setting because it is unaware of even the specific format for
candidate suggestions. For the first iteration, we solve T optimization tasks with a single-task BO
routine where we initialize BO using some standard initialization procedure. We run optimization
on each of the T initial tasks, and extract the optimization trajectories {D∗

i }Ti=1 from each run.

LLM fine-tuning. The LLM fine-tuning process employs supervised learning using OpenAI’s
GPT-4O-MINI-0718 model through their API. From the optimization trajectories {D∗

i }Ti=1, we ex-
tract the top-K observations from each of the T runs completed so far. We use these observations
along with the task contexts {C[ft]}Tt=1 to construct a fine-tuning dataset Dft. Each training instance
contains:

1. A system prompt shared across all tasks in the workload/problem domain, which specifies the
objective (e.g., generating efficient join orderings).

2. A user prompt with the task-specific context C[ft] (e.g., the SQL query requiring optimization).

3. A response prompt containing the high-performing solution x discovered through BO.

We fine-tune using OpenAI’s standard fine-tuning API OpenAI et al. (2024). Specifically, we format
our data into the required JSONL format (i.e., prompt-solution pairs) and then upload it via the fine-
tuning API to initiate training. The model is trained to minimize the negative log-likelihood of the
solution tokens x given the task context C:

L = −
|x|∑
i=1

log π(xi|C, x<i) (2)

We note that our approach leverages full model fine-tuning rather than extensive and/or manual
prompt engineering (Lester et al., 2021; Li and Liang, 2021). This allows the model to learn the task
requirements through the context-solution pairs in Dft, rather than explicit instructions. However, for
scenarios requiring few-shot learning on untrained models, more careful prompt engineering may
be beneficial. This fine-tuning process produces an updated model that encodes the knowledge from
Dft. In our experiments, we will refer to an LLM trained on T tasks in this way as BOLT-T .
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LLM fine-tuning frequency. The number of tasks T that we collect at initialization time and
during each round of the BOLT “outer-loop” represents a non-trivial trade-off due to the compu-
tational cost of both running BO and the cost of fine-tuning the LLM. Fine-tuning the LLM more
frequently results in both additional computational and monetary costs, but allows subsequent BO
runs to complete more efficiently (with fewer black-box function evaluations). In this paper, we
erred on the side of lower monetary cost in exchange for additional cost in black-box function eval-
uations. Specifically, we fine-tuned an LLM 4 times for the query plan optimization task and 7 times
for the antimicrobial peptide design task as shown in Figure 2

Using the LLM for multi-task BO. Once we have a fine-tuned model, BOLT-T , we can leverage
the fine-tuned LLM’s capabilities to generate higher-quality initialization points for subsequent op-
timization tasks. For a set of n new tasks {ti}T+n

i=T+1, we sample from BOLT-T to generate the same
number of initialization points used by the baseline “from scratch” approach. The sampling prompt
maintains the same structure as the training prompt without the assistant response. The BOLT-T
generated solutions are refined with a standard BO routine, and the top-K performing solutions
for each task t—along with their contexts C[ft]—are incorporated into the training set for the next
round of fine-tuning.

Algorithm 3: Self-augmentation for LLM
Finetuning
Require : Tasks T , LLM πθ , iterations T ,

criteria C
Ensure : Fine-tuned LLM πθ+T

Sample D ← D0, π ← π0

for iteration k = 1 to T do
foreach task t ∈ T do

Xinit ∼ πθ+k(t) // Generate
samples

X⋆
init ← SelectBest(Xinit, C)

// Select best samples

D ← D ∪ {(C[ft], x, y) |x ∈ X∗
init}

// Augment dataset
Fine-tune πθ+k on D

Return πT // Final fine-tuned LLM

Self-Augmentation. As the fine-tuned LLM en-
hances few-shot generation with more optimiza-
tion data, it is worth exploring whether the costly
sequential BO processes can be minimized. Thus,
we explore “self-improvement” methods to re-
fine the LLM policy without the expense of ad-
ditional optimization runs (Algorithm 3). Specif-
ically, once an LLM has been fine-tuned using
some of the tasks we set aside for training, we
prompt it to generate additional solutions for all
available tasks in that problem setting. We then
score these solutions using the problem’s oracle
and fine-tune the LLM again directly with this la-
beled self-generated data, in a manner similar to
self-instruction in LLM training (Shypula et al.,
2024). By filtering and fine-tuning on its own best
outputs, the LLM can iteratively teach itself how
to propose better solutions.

4 EXPERIMENTS

We evaluate BOLT on two distinct problem domains, each with a large number of related tasks. For
both domains, problem definitions and solutions can be represented as strings. This allows BOLT to
operate both in sequence space, where the LLM learns from optimization trajectories, and in latent
space, where BO makes additional progress using LLM-sampled initializations.

Implementation details. For the inner optimization loop, we implement a constrained version of
the LOL-BO algorithm (Maus et al., 2022) using BoTorch and GPyTorch (Balandat et al., 2020;
Gardner et al., 2018). For query optimization, we use an acquisition batch size of 1 with a budget of
4,000 oracle calls, while for peptide design, we employ a larger acquisition batch size of 50 with a
budget of 20,000 oracle calls.

The outer loop BOLT-T models use instruction prompting (Mishra et al., 2021; Longpre et al., 2023)
to guide the LLM in producing optimized sequences. Figure 4 shows the template used to prompt
GPT-4O-MINI for efficient query plans. After each optimization iteration, we augment the training
set with the highest-scoring sequences from the optimization trajectory and fine-tune GPT-4O-MINI
on this expanded dataset. When fine-tuning the LLM for the query plan optimization task, we use
OpenAI’s automatic batch size selection option. For the peptide design task, we found that using the
automatic batch size option did not provide a similar boost in performance, and we use a constant
batch size of 10. For both tasks, we fine-tuned the LLM for 2 epochs and used the default OpenAI LR
multiplier hyperparameter of 1.8. To ensure the solutions always have the correct syntax, we filter
out characters that do not correspond to strings of integers or valid amino acids for the respective
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tasks. Figure 5 provides additional details on the fine-tuning process and prompts used for the
peptide task.

Database query plan optimization. Database query plan optimization focuses on finding query
plans (including join orderings and their operators) with low execution time for a given query.
We take a subset of 2933 queries from the Cardinality Estimation Benchmark introduced by Negi
et al. (2021), keeping 99 queries for validation. Following Tao et al. (2025), we perform BO over
query plans by encoding join orders and operators as integer lists, which are then mapped to a 64-
dimensional continuous latent space using the pre-trained query plan VAE from Tao et al. (2025).
For the pretraining dataset, we randomly generate 1, 169, 890 query plans generated based on the
database schema, separated into 80/10/10 splits. For the initial “from scratch” runs with no LLM, we
initialize with the set of 50 query plans used by BAO (Marcus et al., 2021), an ML-powered query
optimizer we use as a baseline, that produces reasonable but non-optimal plans. Subsequent runs
use 50 LLM-sampled query plans per query as initialization points. All points are sampled using a
temperature parameter of 0.7 unless otherwise specified. The “task description context” C used to
fine-tune the LLM for this task is the full SQL query string; Appendix D shows that initialization
performance is robust across nearby temperatures and that invalid generations remain rare in this
regime.

Antimicrobial peptide design. For the peptide design application, we are given a library of 1000
extinct, weakly antimicrobial seed peptides S = {s1, ..., sL}. A task in this setting is to take a partic-
ular seed peptide si and make modifications to it to minimize the minimum inhibitory concentration
(MIC) against A. Baumannii ATCC 19606, measured in µmol/L. We created a library of L = 1000
extinct peptides and held out the last 100 as validation. We ensure edited peptides maintain a mini-
mum 75% similarity to the seed peptide, defined by 1− d(S,S′)

len(S) , where d is the Levenshtein distance
between them. All of the validation peptides are at least 25% different from any other peptide in
the library. Although the seed peptides don’t achieve low MICs, the hope is that bacteria are less
likely to have developed resistance to their variations as they come from extinct species (Wan et al.,
2024). We assess MICs with the APEX model Wan et al. (2024) and utilize a VAE trained on 4.5
million amino acid sequences Torres et al. (2024) to map peptides into a 256-dimensional latent
space. Initial optimization uses 1000 randomly mutated sequences with a similarity constraint of
75% to the seed. Subsequent runs utilize 1000 LLM sampled peptides. All points are sampled using
a temperature parameter of 1.0 unless otherwise specified. We use the seed amino acid sequence as
the “task description context” C for LLM fine-tuning.

Baselines. We compare BOLT against a range of baseline approaches. First, we compare to “from
scratch,” single task LOL-BO which we will refer to as STBO, which operates without prior task
knowledge. Second, we compare to a common strategy for multi task BO, e.g., Patacchiola et al.
(2020); Hakhamaneshi et al. (2022); Perrone et al. (2018), where a shared GP is trained on all tasks
through a neural network feature extractor using the optimization trajectories from training tasks.
This shared GP is then check-pointed and used on test tasks. Several papers have found success
with variations of this approach. ABLR Perrone et al. (2018) uses independent Bayesian linear
regression heads per task on the shared feature extractor, while FSBO (Wistuba and Grabocka,
2021) uses an adaptation of DKT (Patacchiola et al., 2020). In this paper, for the final supervised
model, we use the same PPGPR model (Jankowiak et al., 2020) as the BO inner-loop in our method
as we require scalability but find this results in better performance than Bayesian linear regression
or random Fourier feature models (Rahimi and Recht, 2007).

We also compare against methods that utilize an ensemble of Gaussian process experts, POGPE
and SGPE (Schilling et al., 2016). POGPE utilizes an ensemble approach with one expert from each
previous task, while SGPE extends this by adding an additional expert trained on data for the current
task only with higher weighting. We evaluate several configurations of these methods (with 5, 10,
and 20 experts) to identify optimal performance. Additionally, we evaluate two transformer-based
methods: Optformer (Chen et al., 2022) and LLAMBO (Liu et al., 2024). Optformer employs a fine-
tuned transformer model (in our implementation, GPT-4O-MINI) for hyperparameter optimization,
while LLAMBO uses out-of-the-box LLMs (also GPT-4O-MINI in our case, compared to GPT-3.5
in the original paper) for both surrogate modeling and acquisition function optimization. Due to
context length limitations with these transformer-based methods, we maintain a sliding window of
the last 100 oracle calls for both approaches. For LLAMBO, we impose a budget limit of 10 million
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Figure 1: Bayesian optimization performance on (Left) query plan optimization and (Right) antimi-
crobial peptide design. In both settings, BOLT outperforms or matches baselines with just initializa-
tion data before optimization begins. Markers are plotted every 50 oracle calls. Fine-tuning rounds
for the LLM are not depicted on the x-axis: the LLM is updated only between batches of training
tasks and remains fixed during evaluation on held-out tasks. At test time, each run starts from iden-
tically sized initialization sets (DB: 50 plans; peptides: 1,000 sequences), with BOLT replacing the
baseline initializations with samples from the fine-tuned model. Consequently, the advantage ob-
served at the “optimization start” reflects improved initial candidates, after which a standard STBO
loop proceeds unchanged.

input tokens per experiment to manage computational costs. Additional details on all baselines can
be found in Section A.

4.1 OPTIMIZATION RESULTS

In Figure 1, we demonstrate that initializing BO with BOLT significantly improves optimization
efficiency across both domains. On the query optimization task (left), while DKT/FSBO makes
improvements over STBO, the gains appear to plateau after only 20 tasks. In contrast, BOLT suc-
cessfully scales to over 1400 tasks and converges to higher quality solutions faster. On the peptide
design task (right), BOLT shows similarly strong performance, while DKT/FSBO struggles to take
advantage of the data collected for separate templates. Notably, BOLT-generated initializations al-
ready outperform the respective baselines at the optimization start (i.e., before the first BO step on
each test task), and this gap increases over the evaluation budget. We emphasize that the x-axis
in Figure 1 records oracle calls made on the test task only; the LLM is not updated during these
evaluations. All LLM fine-tuning occurs offline on previously solved training tasks, and in our runs,
a small number of times per domain (four rounds for DB; seven rounds for peptides).

The GP expert methods show mixed results. For the database task, POGPE-5 and SGPE-5 demon-
strate better performance than their variations with more experts, while for the peptide task, POGPE-
10 and SGPE-10 yield the best results compared to 5/20 experts. Consistent with findings from
Schilling et al. (2016), POGPE generally outperforms SGPE across both domains. However, both
ensemble approaches are consistently outperformed by BOLT, and even fall behind STBO and DK-
T/FSBO in several cases. We did not run POGPE or SGPE with a larger numbers of experts as both
methods scale poorly, requiring updating of a number of GPs proportional to the number of tasks.

The transformer-based methods demonstrate notable limitations in Figures 1 and 2. Optformer
achieves performance slightly worse than STBO on the database task while showing significantly
poorer results on the peptide task. LLAMBO performs substantially worse across both domains,
showing minimal progress during optimization. Due to its computational demands—requiring LLM
inference for both surrogate modeling and acquisition—LLAMBO completed fewer than 100 opti-
mization steps within our token budget constraints.

We find that on both tasks once BOLT reaches a sufficient scale, it begins to few-shot generate
initialization data for BO that is significantly better performing than the final results found by all
baseline methods, including STBO, DKT/FSBO, the GP expert methods, and transformer-based
approaches.

BOLT as a one- and few-shot optimizer. In Figure 2, BOLT demonstrates strong few-shot general-
ization capabilities, even achieving single-shot performance competitive with traditional approaches.
In query optimization, all BOLT variants outperform the top BAO solution within 5 samples. No-
tably, BOLT-1138 and BOLT-1426 surpass PostgreSQL in a single sample, indicating their potential
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Figure 2: Evaluating BOLT in the few shot setting and comparing to full optimization runs in both
problem settings (Left: query plan optimization; Right: peptide design). In each plot, we show
objective values accumulated across all validation tasks for various methods. Scatter points illustrate
the few-shot performance of BOLT using different number of tasks, and relevant domain baselines
(e.g., PostgreSQL, BAO for query optimization). Horizontal dashed lines indicate the performance
of various full BO runs and other optimizers, shown for comparison. These results demonstrate that
BOLT’s few-shot performance is often comparable to or surpasses that of full BO runs.

for rapid deployment in low latency scenarios. The performance of BOLT consistently improves
with more iterations across both tasks, except at 50 samples on the query optimization task, where
BOLT-1138 slightly outperforms BOLT-1426. This may be due to variances in LLM sample genera-
tion or training. Overall, results confirm BOLT’s robustness when scaling to thousands of tasks. We
further compare our few-shot performance (Figure 2, before x-axis break) to full BO runs (Figure 2
after x-axis break). In both tasks, BOLT achieves few shot results comparable to the full BO runs.

Compute overhead and wall-clock. Across both domains, the dominant cost is the inner-loop
BO, not the LLM components. On the database tasks, an STBO run requires roughly 15–20 GPU-
hours per task (avg. ≈18), amounting to ∼ 25k GPU-hours over the full workload. By comparison,
BOLT’s outer-loop fine-tuning and sampling add only a small, amortized overhead. At the 50-task
scale, the total compute with BOLT is ∼7% above STBO, and by the full workload of 1,426 tasks, it
is ∼1% above STBO (Table 3). Fine-tuning consumed ∼60M tokens in total (OpenAI API; ∼$180),
which we also report as a conservative local-equivalent of ∼400 GPU-hours; generating 50 BOLT
initializations per task took ∼1 GPU-minute per task (∼24 GPU-hours across all DB tasks). Detailed
per-method runtimes and token/cost accounting are summarized in Section B.

For completeness, we also quantify the cost of the self-augmentation step used in the outer loop:
end-to-end, this adds on the order of tens of GPU-hours for the full workload (negligible relative to
the BO inner loops); see Appendix for the precise accounting and setup.

4.2 ABLATION STUDIES

LLM self-augmentation. We investigate whether self-augmentation as outlined in Algorithm 3
can improve LLM performance while avoiding the computational expense of the inner-loop BO on
the query plan optimization task. We apply the self-augmentation process to the four fine-tuned
LLMs in Table 1, generating 10 samples from each across all 2, 933 training tasks, keeping only
queries that outperform the best query plan from BAO’s solutions. We then use these datasets as
additional fine-tuning to create self-augmented versions of the LLMs.

Table 1 shows that this self-augmentation yields substantial improvements even without additional
tasks optimized by BO. Both self-augmented models converge to a similar performance level,
achieving a summed runtime of about 62 seconds across the 100 validation queries. This con-
vergence suggests a natural performance plateau after training on either 1,500 tasks (BOLT-1426)
or 1,100 tasks plus self-generated samples (BOLT-1138+SA). The consistency of this plateau across
different training approaches further demonstrates BOLT’s robustness when scaling to large task
sets. This self-augmentation experiment indicates that once the LLM has been fine-tuned to suf-
ficient performance, it can generate additional fine-tuning data, reducing the number of BO runs
required. Additionally, our framework scales to more training tasks without performance loss.
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Figure 3: One-shot comparison of BOLT-1426
to BAO (best-of-50). For each query, we sample
one plan from the fine-tuned LLM and compare
it with BAO’s best-of-50 initialization (blue =
BOLT better; orange = BAO better). Top: sam-
pling with T = 0.7. Bottom: greedy with
T = 0.0. In the one-shot setting, purely greedy
sampling is better.

Method Best@50
LLM (BOLT-50) no SA 87.84

LLM (BOLT-893) no SA 82.31
LLM (BOLT-1138) no SA 78.16
LLM (BOLT-1426) no SA 63.68

LLM (BOLT-50) 82.25
LLM (BOLT-893) 63.05
LLM (BOLT-1138) 61.46
LLM (BOLT-1426) 61.54

Table 1: Ablation study for self augmentation
(SA) conducted on the query optimization task.
For each of two LLMs with different train-
ing task sizes, we perform SA and generate 50
query plans from the LLM. We measure the best
summed query execution time across the valida-
tion tasks from among these 50 samples.

One-shot capability. Figure 3 isolates the one-shot behavior of the final, fine-tuned model: for
each held-out SQL query, we draw a single plan from BOLT-1426 and compare it to BAO’s
best-of-50 initial plans. No BO steps are run in this analysis. In particular, improvements to BO
appear already with tens of training tasks Figure 1, while the strong one-shot behavior in Figure 3
reflects the capability that emerges after scaling to many tasks.

Impact of data quality on training. We perform an ablation to assess the importance of using
“better” versus “more” training data for fine-tuning LLMs through iterations of BOLT. Starting with
the BOLT-1138 model, we collect top solutions from a new BO round and train two variants: 1)
BOLT-1426, which adds all new solutions to the original BOLT-1138 set. 2) BOLT-1138⋆, which
instead replaces an equal number of old solutions to maintain the same training set size. As shown
in Table 2, both benefit from higher-quality data, suggesting “better” data boosts performance. How-
ever, BOLT-1138⋆ underperforms BOLT-1426, which incorporates more and better data, confirming
that both factors enhance model performance.

Best@ BOLT-1138 BOLT-1138⋆ BOLT-1426
Best@50 78.16 64.03 63.68
Best@20 82.59 70.52 66.23
Best@10 90.19 74.40 70.21
Best@5 102.99 85.21 76.28
Best@2 127.97 129.26 102.29
Best@1 202.04 193.64 160.22

Table 2: Comparing LLMs fine-tuned with (Left) data from 1138 tasks, (Right) data from 1426
tasks, and (Middle) data from 1138 tasks, but including the extra data from BOLT-1426, and remov-
ing data from older tasks. This is done on the DB task.

5 RELATED WORK

Language models as optimizers. Large language models (LLMs) have recently gained attention
as sequence optimizers capable of tackling diverse black-box tasks where direct gradient information
is unavailable or difficult to compute. LLM-based optimizers leverage the flexibility of natural
language prompts to encode candidate solutions, constraints, and relevant task information. Methods
like OPRO illustrates how iterative prompting can refine solutions (Yang et al., 2024; Zelikman et al.,
2024), while other approaches integrate self-improving strategies that reuse high-performing LLM
outputs for further fine-tuning (Shypula et al., 2024). This set of techniques has been applied to
biophysical domains such as molecular design and protein engineering, where the LLM proposes
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mutations to enhance certain properties, as well as to program optimization tasks where the LLM
speeds up code execution time (Shypula et al., 2024; Wang et al., 2024a; Madani et al., 2023).

Database optimization. Recent work has applied Bayesian optimization (BO) to improve overall
database performance Zhang et al. (2022); Nardi et al. (2019); Cereda et al. (2021) by tuning the
parameters of the database configuration. As far as we are aware, Tao et al. (2025) were the first to
apply BO to the specific setting of database query plan optimization considered in this paper. Other
work has applied reinforcement learning (RL) to query plan optimization (Marcus et al., 2019; Yang
et al., 2022; Zhu et al., 2023). RL query optimizers learn from mistakes and improve performance
over time. Unlike BO, however, RL requires large supervised datasets for pre-training and typically
aims to minimize cumulative query latency rather than achieving the lowest possible latency.

6 DISCUSSION AND LIMITATIONS

We first highlight a few limitations. First, our approach not only requires that all tasks in a problem
setting have the same input domain (a problem that has been explored e.g. by Fan et al. (2022)). We
further require the existence of a task description context C[ft] that can be used in an LLM prompt
to define the task. This excludes common MTBO settings where tasks are primarily distinguished by
data (e.g., hyperparameter optimization across datasets) rather than by concise textual descriptions;
for such settings, approaches such as Wang et al. (2024b) are likely more appropriate. Finally, we
note that the cost of LLM fine-tuning is significantly higher than simple gradient updates of a shared
feature extractor, even though our experiments indicate that this overhead is small when amortized
over thousands of tasks (§4, Appendix B).

Despite these limitations, in two real-world applications where BOLT was applicable it yielded
strong results. Few-shot generation matched “from scratch” BO runs, and initializing BO from the
LLM samples often improved performance further. Moreover, the interplay between the LLM and
Bayesian optimization is noteworthy. Despite interest in using LLMs for optimization (Yang et al.,
2024; Zelikman et al., 2024; Shypula et al., 2024; Wang et al., 2024a; Madani et al., 2023), finding
initial strong solutions to fine-tune them is challenging in some domains. Bayesian optimization, by
offering in-depth search, is an excellent candidate for this.

REPRODUCIBILITY STATEMENT

During the review period, we release our code on anonymous GitHub for review (https:
//anonymous.4open.science/r/BOLT-anonymous-release-20B6 ). Upon accep-
tance, we will release a complete repository containing the inner-loop BO (constrained LOL-BO via
BoTorch/GPyTorch), the BOLT outer loop, configs/splits/seeds, evaluation harnesses, and scripts
to regenerate all figures and tables from logs on GitHub. We document task definitions, budgets
(DB 4k calls; peptides batched at 50), and compute usage and hardware details. We report LLM
fine-tuning hyperparameters and provide an open-source LLM recipe mirroring GPT-4O-MINI runs
(see §4, Appendix A-D).

ETHICS STATEMENT

This research introduces BOLT, a method leveraging large language models to enhance multi-task
Bayesian optimization, with demonstrated applications in antimicrobial peptide design and database
query optimization. The potential to accelerate the discovery of novel peptides could significantly
benefit public health, particularly in combating antimicrobial resistance. Similarly, improving
database query efficiency can lead to substantial computational and energy savings across many
industries.

However, we acknowledge the potential for AI misuse in biological design. In applying these power-
ful methods, expert oversight, rigorous validation, and adherence to established safety and regulatory
frameworks must be highlighted. Additionally, the use of large-scale LLMs raises considerations re-
garding computational accessibility and responsible AI development.
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A PROMPT DETAILS.

Figures 4 and 5 illustrate the prompt templates used for generating optimized query plans and peptide
sequences, with GPT-4O-MINI-0718. Figure 4 shows the template for database query optimization,
where the system acts as an assistant providing efficient join orderings for a given SQL query. Figure
5 displays the template for antimicrobial peptide design, where the system’s role is to modify peptide
sequences to enhance antimicrobial activity.

System: You are a helpful assistant that provides efficient join
orderings for given queries.

User: {SQL query to be optimized}
Assistant: {Optimized query plan}

Figure 4: The prompt template used for prompting GPT-4O-MINI for generating optimized query
plans.

System: You are a specialized assistant that modifies peptide
sequences to enhance antimicrobial activity. Make up to 25%
sequence modifications based on known antimicrobial peptide
properties such as: positive charge, hydrophobicity, and
amphipathicity.

User: {Seed peptide to be modified}
Assistant: {Modified peptide}

Figure 5: The prompt template used for prompting GPT-4O-MINI for generating optimized peptide
sequences.

B COMPUTE DETAILS.

Hardware. Experiments ran on an internal cluster (18 GPUs across two servers): one server with
8× NVIDIA RTX A6000 (48 GB each; dual-socket CPU with 48 logical threads per socket) and one
server with 10× NVIDIA RTX A5000 (24 GB each; dual-socket CPU with 24 logical threads per
socket).

Scope. We report (i) per-task GPU-hours, (ii) aggregates at 50 tasks and 1,426 tasks, and (iii)
LLM fine-tuning and inference usage (tokens, USD, and local GPU-hour equivalents). Database
(DB) query-plan runs used one GPU per task unless specified.

RUNTIME AND COST OVERVIEW

Single-task Bayesian Optimization (STBO). Each DB run required 15–20 GPU-hours (avg. ≈ 18).
Across 1,426 tasks this is ∼25,000 GPU-hours, which is the dominant component of total compute.

Baseline MTBO methods.

• SGPE/POGPE: >100 GPU-hours per task; we capped runs at 110 GPU-hours. These ap-
proaches did not reach 1,000 oracle calls within reasonable time, and their cost increases quickly
with the number of tasks.

• DKT/FSBO (10/20/50): 15–20 GPU-hours per task (similar to STBO). The extra feature-
extractor cost is minor relative to GP training on the same data.
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Method GPU-hours / task GPU-hours / 50 tasks GPU-hours / 1,426 tasks

STBO 15–20 ∼900 ∼22,500–28,720
SGPE/POGPE >100 (capped at 110) >5,000 (incomplete) Infeasible (quadratic scaling)
DKT/FSBO 15–20 ∼900 ∼22,500–28,720 (est.)
BOLT + STBO — ∼964 ( +7% vs. STBO) ∼22,750–28,970 ( +1% vs. STBO)

Table 3: Runtime comparison on DB query-plan tasks. BOLT’s fine-tuning and inference add a
small, amortized overhead relative to the BO inner loop: ∼7% at 50 tasks and ∼1% at 1,426 tasks.

BOLT overhead (fine-tuning + inference).

• LLM fine-tuning (GPT-4O-MINI -0718 via API): The largest run used 26M tokens (∼$78).
Summed over BOLT-893/1138/1426, fine-tuning consumed 60M tokens (∼$180), roughly ∼400
GPU-hours if performed locally on RTX A6000s (conservative equivalence).

• Alternative local FT (Qwen 2.5–7B): 32 GPU-hours total (4×A6000 for 8 hours).
• Inference to generate initializations: Sampling 50 candidates per task from a locally fine-tuned

model took ∼1 GPU-minute per task (about 24 GPU-hours across 1,426 tasks), negligible com-
pared to BO.

Takeaways. (i) The vast majority of compute is spent in the BO inner loop (STBO or comparable
inner loops in MTBO baselines). (ii) BOLT’s overhead—fine-tuning plus sampling a small batch of
initial candidates—is small and amortizes quickly: ∼7% at 50 tasks and only ∼1% by 1,426 tasks
(Table 3). (iii) SGPE/POGPE were substantially slower per task and did not scale to our full regime.
(iv) Even when counting fine-tuning using a conservative local GPU-hour equivalent (∼400 GPU-
hours) rather than low-cost API usage ($ ∼180 total), BOLT’s added compute remains marginal
relative to the ∼25k GPU-hours of BO.

Token/API usage. Across BOLT-893/1138/1426, fine-tuning used 60M tokens (∼$180). Initial-
ization inference across all DB tasks required ∼24 GPU-hours in total.

C IMPLEMENTATION DETAILS.

C.1 DKT/FSBO IMPLEMENTATION DETAILS.

For the antimicrobial peptide design task, a PPGPRmodel was trained using the GPyTorchmodule.
This model employed a fully connected network with two hidden layers, each having a dimension
of 256. Training parameters included a batch size of 128, a learning rate of 0.01, and 1024 inducing
points for all peptide design experiments.

For the database query plan optimization task, the PPGPR model utilized a fully connected network
with two hidden layers, each with a dimension of 64. A batch size of 16, a learning rate of 0.01, and
1024 inducing points were used for these experiments.

For both tasks, 50 STBO optimization trajectories were randomly selected. The DKT/FSBO-
10/20/50 models were trained using the first 10, 20, or 50 of these trajectories, respectively. All
models were trained for 20 epochs.

C.2 POGPE/SGPE IMPLEMENTATION DETAILS.

Similarly to Section C.1, for the antimicrobial peptide design task, each expert model was a PPGPR
model implemented with GPyTorch, with a fully connected network with two hidden layers, each
with a dimension of 256. A batch size of 128, a learning rate of 0.01, and 1024 inducing points were
used.

For the database query plan optimization task, each expert model uses a fully connected network
with two hidden layers, each with a dimension of 64. The training used a batch size of 16, a learning
rate of 0.01, and 1024 inducing points.
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The same 50 STBO optimization trajectories from Section C.1 were used, and the first 5/10/20 tra-
jectories were used to train the POGPE/SGPE expert models. In POGPE, all experts were weighted
equally. For SGPE experiments, the weighting scheme from Schilling et al. (2016) was adopted,
where the independent GP for the target dataset carries the same weight as the entire set of experts.

C.3 OPTFORMER IMPLEMENTATION DETAILS.

For both the query plan optimization and antimicrobial peptide design tasks, GPT-4O-MINI-0718
was fine-tuned on past optimization trajectories. To stay within context window limits, a maximum
input context length of 100 trials and an output of 20 trials were used. The objective value ranges
for both tasks were discretized into 1000 equidistant points. The training sets were constructed by
randomly subsampling two trajectories of length 120 from the optimization trajectories. The query
plan optimization task is trained on 27.4 million tokens and the antimicrobial peptide design task is
trained on 4.8 million tokens. Both models were trained for 1 epoch with a batch size of 20 and an
OpenAI learning rate multiplier of 1.8.

Optimization was initialized using the same points as single-task BO. During inference, a constant
temperature of 0.7 was used. To manage inference token usage, a batch size of 20 was employed,
where the model predicted the next 20 trials based on the previous 100 trials. This was important as
experiments ran for 4,000 (query plan) or 20,000 (peptide design) trials.

C.4 LLAMBO IMPLEMENTATION DETAILS.

The end-to-end LLAMBO method was utilized, leveraging GPT-4O-MINI-0718 for several com-
ponents: generating candidate solutions, serving as a surrogate model for the objective function
(via in-context learning), and acting as a conditional sampler to generate candidates for specific tar-
get values. Similar to Optformer, a maximum input context window of 100 trials was enforced to
prevent exceeding context limits.

The hyperparameters from the original LLAMBO paper were adopted, including an exploration
hyperparameter α = 0.1, and M = 20. For the surrogate model, we sample K = 10 MC predictions
to compute the empirical estimates. Consistent with the LLAMBO paper, we use the same sampling
parameters with a temperature of 0.7 and top p of 0.95. A limit of 10 million maximum input tokens
per experiment was used to manage computational costs.

C.5 LLM SELF-AUGMENTATION DETAILS.

For the antimicrobial peptide design task, 200 samples were generated for each of the initial 800
training peptides during each self-augmentation round. Any peptides with a predicted MIC below 8
(indicating significant antimicrobial activity) were added to the training set for the subsequent round
of BOLT.

For the database query plan optimization task, 10 samples were generated for each of the 2,933 train-
ing queries. Query plans with a runtime lower than the best plan generated by the BAO optimizer
were added to the training set for the next round of BOLT.

D ADDITIONAL ABLATIONS.

D.1 OPEN SOURCE LLMS.

To explore the viability of open-source models for BOLT, QWEN-2.5-7B and LLAMA-3.1-8B
were fine-tuned using the identical dataset that created BOLT-1426 from GPT-4O-MINI-0718 for
the database query optimization task. For evaluation, 50 query plans were generated from each LLM
using a sampling temperature of 0.7. The best summed query execution time across the validation
tasks from these 50 samples was compared.

Both models were fine-tuned on 4 NVIDIA RTX A6000 GPUs using a per-device batch size of 4,
a learning rate of 1e-5 with the AdamW optimizer (Loshchilov and Hutter, 2019), and 5 training
epochs. The results, shown in Table 4, indicate that QWEN-2.5-7B performed slightly worse than
fine-tuned GPT-4O-MINI-0718, while LLAMA-3.1-8B showed significantly lower performance.
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Due to the extensive number of inference calls and multiple fine-tuning rounds required by BOLT,
the primary experiments were conducted using the OpenAI API due to hardware resource limita-
tions.

Model Summed runtime
GPT-4O-MINI-0718 61.46
QWEN-2.5-7B 62.04
LLAMA-3.1-8B 155.55

Table 4: Comparing open source LLMs fine-tuned with data used to fine-tune BOLT-1426 against
OpenAI models fine-tuned on the same data.

D.2 RANDOM PERTURBATIONS AROUND PRIOR SOLUTIONS.

We test whether small random perturbations around prior best solutions provide stronger initial-
ization. In the latent space, we sample 50 candidates per validation task within axis-aligned trust
regions (TR) centered at each prior best solution, with side-lengths ℓ ∈ {0.57, 0.56, . . . , 0.50}. We
then decode and evaluate these candidates.

Table 5: DB (first 10 validation queries). Summed runtime (seconds; lower is better) when initial-
izing from random perturbations of prior best solutions within latent-space trust regions. “Previous
solutions” repeats Table 6 for reference. A large trust region can degrade the validity or quality of
decoded candidates (marked with †).

Method Prev. sol. TR (0.57) (0.56) (0.55) (0.54) (0.53) (0.52) (0.51)† (0.50)

Summed runtime (s) 9.18 9.18 8.94 8.94 8.92 8.97 9.07 38.48 8.62

BOLT-1426 (init only) 7.21

Observation. Local perturbations around prior best solutions offer modest gains over using the
unperturbed pool (Table 5), but remain weaker than BOLT initializations. This indicates that task-
conditioned sampling provides benefits beyond local neighborhood search around previous best so-
lutions.
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D.3 INITIALIZING WITH PRIOR BEST SOLUTIONS.

We test whether reusing the best solution from each previously optimized training task is a compet-
itive generic initializer for new tasks. We collect the best-performing solution from every training
task completed by BOLT-1426 and form a pool of “previous solutions.” For evaluation, we consider
the first 10 validation queries (DB domain), treat this pool as the initialization set (same size as
other initializers), and measure the summed query runtime (lower is better). We compare against:
(i) single-task BO (STBO) initialized with the standard baseline set; (ii) BOLT initializations from
fine-tuned models with different training sizes; and (iii) a full BO run initialized by BOLT-1426. No
further LLM fine-tuning occurs during this evaluation.

Method Summed runtime (s)
BOLT-1426 + BO 6.43
BOLT-1426 7.21
BOLT-1138 8.65
BOLT-893 9.08
STBO 8.23
Previous solutions 9.18

Table 6: DB (first 10 validation queries). Summed runtime (seconds; lower is better) under dif-
ferent initialization strategies. “BOLT-1426+BO” runs full BO after initializing with BOLT-1426
samples; other rows report initialization-only performance at the optimization start.

Simply reusing prior best solutions is less effective than model-generated initializations, and falls
behind both STBO and all BOLT variants considered (Table 6). This suggests cross-task misalign-
ment: best solutions for earlier tasks do not align well with new tasks, while BOLT samples are
tailored to the provided task description.

D.4 SENSITIVITY TO SAMPLING TEMPERATURE

We study the effect of the sampling temperature on initialization quality for the DB domain. For
each temperature T ∈ {0.1, 0.3, 0.5, 0.7, 1.0, 1.2, 1.5}, we draw 50 samples per validation query
and report the best-of-50 summed runtime across the standard validation set. We consider both
GPT-4O-MINI-0718 and QWEN-2.5-7B, each fine-tuned on the same training data.

Table 7: DB (validation set). Best-of-50 summed runtime (seconds; lower is better) vs. sampling
temperature T .

Temperature GPT-4O-MINI-0718 QWEN-2.5-7B

0.1 84.97 84.42
0.3 65.88 69.14
0.5 62.19 63.97
0.7 61.54 62.04
1.0 60.09 61.25
1.2 59.78 62.61
1.5 60.50 64.45

Higher temperatures can improve best-of-50 performance slightly by increasing diversity among
proposals (Table 7). In our main experiments, we used T = 0.7, which is close to optimal.
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D.5 INITIALIZATION-STAGE COMPARISONS AND A NO-FINETUNING BASELINE

We report initialization only quality as a function of the first k oracle calls on held-out tasks for both
domains. We also include a no-finetuning LLM baseline (BOLT-0) in the DB setting.

Peptides. We show summed (unnormalized) predicted MIC across 20 validation peptides at k ∈
{1, 100, 200, 500, 1000} oracle calls (lower is better).

Table 8: Peptides (20 validation tasks). Summed unnormalized MIC vs. oracle calls k at the
initialization stage.

k BOLT-10 BOLT–20 BOLT-50 BOLT-600 STBO/MTBO

1 1204.0525 1120.9886 1057.1308 564.4510 5727.7421
100 135.4973 147.2456 112.9047 100.5810 1551.4898
200 120.4763 134.8256 107.1327 96.7752 1111.7161
500 109.1782 122.1278 101.3638 94.2405 792.5464
1000 107.5492 119.7096 97.1403 92.1007 625.9521

Database queries. We show summed runtime across 10 validation queries at k ∈ {1, 10, 20, 50}
oracle calls. We include BOLT-0 (no fine-tuning), BOLT-50, BOLT-1426, and STBO/MTBO.

Table 9: DB (first 10 validation queries). Summed runtime (seconds) vs. oracle calls k at initial-
ization. BOLT-0 uses an untuned LLM.

k BOLT-0 BOLT-50 BOLT-1426 STBO/MTBO

1 — 53.2584 13.9788 15.1161
10 — 13.8501 7.6380 13.7863
20 — 11.5664 7.6343 13.3761
50 182.9500 10.3764 7.4340 12.0967

The fine-tuned BOLT initializations improve markedly with scale and outperform both STBO ini-
tializations and the untuned BOLT-0 baseline early in the budget (Tables 8–9).

D.6 ADDITIONAL OUTER-LOOP AND ROBUSTNESS ABLATIONS

Outer-loop sensitivity on DB. Table 10 reports Best@50 for three disjoint BOLT-200 runs, which
lie between BOLT-50 and BOLT-893, indicating that the particular traces used at fixed T matter less
than the overall scale. Table 11 varies K ∈ {1, 2, 5, 10, 20} at fixed T = 893 and shows better
performance as K increases.

Table 10: DB outer-loop sensitivity to which BO traces are used. Best@50 summed runtime (sec-
onds; lower is better) across the 100 validation queries for three disjoint BOLT-200 runs and base-
lines (no self-augmentation).

Model Best@50 runtime (s) ↓
BOLT-50 87.84
BOLT-200 (run 1) 79.67
BOLT-200 (run 2) 84.09
BOLT-200 (run 3) 84.21
BOLT-893 82.31
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Table 11: DB outer-loop sensitivity to the number of top solutions per task. Best@50 summed
runtime (seconds; lower is better) for BOLT trained on the same 893 tasks with varying K.

Top-K Best@50 runtime (s) ↓
1 78.80
2 77.40
5 76.27

10 82.31
20 69.56

Context shuffling on DB. Table 12 shows that randomly shuffling the mapping between SQL
contexts and BOLT-1426 plans degrades Best@50 from the original BOLT score to far worse than
BAO, confirming that BOLT relies on aligned task descriptions rather than memorizing a global pool
of good plans.

Table 12: DB context shuffling ablation. Best-of-50 summed runtime (seconds; lower is better)
across validation queries when breaking the alignment between SQL contexts and BOLT-1426 plans.

Method Best-of-50 runtime (s) ↓
BAO initialization 106.72
BOLT-1426 (aligned contexts) 61.54
BOLT-1426 (shuffled contexts) 402.61

Random and local-search baselines. Table 13 summarizes random VAE-latent search, random
query-space search, trust-region perturbations around prior best solutions, and local search around
BOLT-1426 samples. Both random strategies and purely local perturbations underperform BOLT
initialization, and even local search around BOLT-1426 remains weaker than running the full BO
loop initialized from BOLT-1426, suggesting that task-conditioned proposals plus BO are essential.

Table 13: DB random and local-search-style baselines on the first 10 validation queries. Entries
report summed runtime (seconds; lower is better) under comparable or larger oracle budgets.

Method Summed runtime (s) ↓
BOLT-1426 + BO 6.43
BOLT-1426 + local search (latent perturbations) 6.89
BOLT-1426 init only (50 LLM samples) 7.43
TR perturbations around prior best solutions (50 samples) 8.62
Query-space random (4,000 samples, capped) 9.42
VAE-latent random (4,000 samples, capped) 11.97

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Peptide temperature ablation. For peptides, Table 14 reports the uniqueness fraction, constraint-
satisfaction fraction, and summed MIC as a function of sampling temperature. Temperature T = 1.0
gives the best trade-off between diversity, staying within the similarity constraint, and objective
value, supporting the choice used in the main experiments and mirroring the mild temperature sen-
sitivity observed on DB in Table 7.

Table 14: Peptide temperature ablation. For each sampling temperature T we report the fraction
of unique samples, the fraction satisfying the similarity constraint, the effective fraction (unique &
in-constraint), and the summed best MIC across validation seeds (lower is better).

T Unique frac. In-constraint frac. Effective frac. Summed best MIC ↓
0.1 0.01620 0.87340 0.01285 155.91
0.3 0.12315 0.85800 0.09085 111.85
0.5 0.33190 0.83030 0.24170 103.94
0.7 0.56620 0.78585 0.40035 95.10
1.0 0.83990 0.69090 0.54350 93.30
1.2 0.93765 0.59700 0.53785 100.67
1.5 0.98655 0.39660 0.38425 103.56

E LLM USAGE.

LLMs were fine-tuned for generating improved initialization points for BO runs as part of BOLT.
LLMs were used to improve this paper’s writing and presentation and assist in code implementation
(e.g., co-pilot auto-completion). LLMs were not involved in generating or refining research ideas,
experimental design, or theoretical developments.
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