SCALING MULTI-TASK BAYESIAN OPTIMIZATION
WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

In multi-task Bayesian optimization, the goal is to leverage experience from op-
timizing existing tasks to improve the efficiency of optimizing new ones. While
approaches using multi-task Gaussian processes or deep kernel transfer exist, the
performance improvement is marginal when scaling beyond a moderate number
of tasks. We introduce BOLT, an initialization-only transfer strategy that distills
prior BO runs into an LLM which proposes candidates for new tasks, while the
surrogate at test time remains single-task. The LLM is periodically fine-tuned on
top solutions from completed runs, creating a closed loop where better BO out-
puts yield better initializations over time. This decoupled design scales to roughly
1500 tasks without the saturation observed for shared-surrogate MTBO and adds
only a small, amortized overhead relative to the BO inner loops. We evaluate on
two domains: database query optimization and antimicrobial peptide design. We
demonstrate that LLM-generated initializations steadily improve and accelerate
BO, and with sufficient fine-tuning, a few LLM samples often match or surpass
full “from-scratch” BO with far fewer oracle calls.

1 INTRODUCTION

Multi-task optimization seeks to use related, previously solved tasks to accelerate the optimization of
new ones. Multi-task optimization appears naturally in a variety of domains where similar problems
are encountered repeatedly, such as hyperparameter optimization, material science, database query

optimization, and drug design. Formally, suppose we have tasks {1,2, ..., T}, each associated with
its own objective function f;(x). For each task t € {1,2,...,T}, we seek to find some x; such that
x; = argmin f;(x). (1

xeX

We focus on the setting where, for each task, we have collected a dataset D, of observations, and
we wish to leverage this data when optimizing unseen test tasks.

Multi-task Bayesian optimization (BO) has traditionally learned across tasks by building a shared
surrogate, typically via multi-output GPs and/or shared-weight neural feature extractors (Swersky
et al.,|2013; |[Perrone et al., 2018 |[Feurer, 2018; Patacchiola et al., [2020; Hakhamaneshi et al.| [2022).
A standard approach involves placing a multi-output GP over the input-task space, decomposing the
kernel as an input kernel k(x,x’) and a task kernel k(¢,¢"). Despite their effectiveness, many of
these methods — with the notable exception of recent work such as Wang et al.| (2024c) — tend
to saturate in performance after tens of training tasks and do not extract additional performance
improvement on new tasks when given hundreds or thousands of related tasks.

We propose Bayesian Optimization with LLM Transfer (BOLT), a straightforward approach to multi-
task BO that departs from the framework of building related task information into the BO surrogate
model. Instead, as BO completes optimization for training tasks, we fine-tune a large language
model (LLM) to, given a task description or context C|[f;]|, generate solutions for that optimization
problem that we can use as strong initialization for BO.

This approach creates a self-reinforcing feedback loop: BO generates high-quality solutions that we
can leverage to fine-tune the LLM; the fine-tuned LLM, in turn, produces better initializations that
improve BO performance. Over time, the LLM learns to directly generate solutions that are highly
competitive, enabling top-k-samples from the LLM (requiring just a few oracle calls) to outperform

full “from scratch” BO runs (requiring a large number of oracle calls). This iterative improvement
enables BOLT to scale and still extract value from thousands of tasks. We validate BOLT on two
diverse and challenging domains where many related tasks are available.

We transfer knowledge across tasks by decoupling it from the test-time surrogate and using it only
for initialization. Rather than maintain a multi-task surrogate, BOLT distills prior experience into
an LLM that proposes candidate solutions from a task description C|f;], after which a standard
single-task BO run refines them. This removes shared-surrogate design choices, allows usage of any
BO method unchanged, and improves with scale: as more tasks are solved, initialization quality rises
rather than saturates. After sufficient fine-tuning on BO-discovered solutions, the LLM becomes a
strong few-shot optimizer, and running BO on top of its samples yields further gains (see §4).

This design contrasts with recent LLM-based MTBO systems. Optformer seeks to predict entire
optimization trajectories, and LLAMBO uses in-context surrogates with acquisition. BOLT instead
uses the LLLM strictly for initialization within a closed loop: BO finds high-quality solutions; we
fine-tune on them; the LLM returns stronger starts. Ablations show that simple alternatives (e.g.,
sampling in trust regions around previous solutions) and an untuned LLM (BOLT-0) underperform,
highlighting the benefit of the closed-loop, initialization-only approach (§4).

Contributions

1. We propose BOLT, a scalable and simple alternative to traditional multi-task BO, leveraging
LLMs to generate strong initial solutions for new tasks. BOLT leverages a combination of high
quality optimized solutions produced by BO and self augmentation for fine-tuning.

2. We validate BOLT on two challenging, high-throughput domains—database query optimization
and antimicrobial peptide design—and show that initialization quality improves with scale, avoid-
ing the saturation of common shared-GP methods and outperforming recent LLM-based MTBO.

3. We show that, after sufficient fine-tuning, the LLM becomes a strong few-shot optimizer, often
matching or surpassing full “from scratch” BO runs with far fewer oracle calls; running BO on
top of those samples improves further.

4. We provide a detailed compute analysis and ablations demonstrating that BOLT’s fine-
tuning/self-augmentation adds only ~ 2% overhead relative to single-task BO runs, adding min-
imal computational costs for extra performance.

2 BACKGROUND

Bayesian optimization (BO). Bayesian Optimization (BO) [Mockus| (1975); [Snoek et al.| (2012)
is an iterative approach to optimize black-box functions in a sample-efficient manner. On each
step of the optimization, a supervised probabilistic surrogate model (usually a Gaussian Process
(GP) Rasmussen| (2003))) is conditioned on all data collected so far. Then, the surrogate model’s
predictive posterior distribution p(y | x, D) is used to decide what data point(s) should be evaluated
next, typically by maximizing some acquisition function, defined with respect to p(y | x, D), which
guides the exploration-exploitation trade off. Finally, selected points are evaluated on the black-box
function and added to the dataset. This iterative process continues until the evaluation budget is
reached.

Structured optimization via latent space BO. BO has recently been applied to optimizing struc-
tured search spaces, such as molecular and amino acid sequences, by leveraging latent space
Bayesian optimization. This approach incorporates a variational autoencoder (VAE) to map struc-
tured inputs into a continuous latent space, where BO is performed [Eissman et al| (2018)); Tripp
et al.| (2020); |Grosnit et al.| (2021); [Siivola et al.| (2021)); |Stanton et al.| (2022)); Maus et al.| (2022).
Structured inputs x (e.g., amino acid sequences) are mapped to continuous latent representations
z by the VAE encoder ®(x). This creates a transformed continuous (latent) representation of the
structured search space where BO can be directly applied. The corresponding latent candidate points
are then decoded by the VAE decoder, I'(z), to reconstruct structured outputs for evaluation. For
large combinatorial structured search spaces, such as the space of organic molecules or the space
of all peptide amino acid sequences, the latent space of the VAE is typically high-dimensional (on
the order of several hundred dimensions) in order to represent the large structured space effectively
(Chu et al., [2024; |[Lee et al., [2025).

Optimizing antimicrobial peptides. In antimicrobial peptide design, we seek peptides (se-
quences of amino acids) that minimize the MIC (minimum inhibitory concentration, measured in

o mol L™1) for some target bacterial pathogen. MIC is a measure of the concentration of the peptide
required to inhibit growth of the target bacterial pathogen (Kowalska-Krochmal and Dudek-Wicher,
2021). A key challenge in antimicrobial peptide design is that many modern bacterial pathogens
have developed resistance to modern antibiotics. To solve this challenge, [Wan et al.| (2024) propose
designing new peptides with high sequence similarity to template peptides mined from extinct or-
ganisms. The template peptides themselves do not typically achieve sufficiently low MIC for target
bacteria pathogens. However, since these template peptides have not been encountered in nature
for thousands of years, modern antimicrobial resistant bacteria have not evolved resistance to them.
It follows that new peptides are more likely to evade antibiotic resistance if they are designed to
be similar to the extinct template sequences. We employ this strategy, optimizing antimicrobial
peptides with a minimum threshold sequence similarity to the extinct template peptides from |Wan
et al.| (2024). We also employ latent space BO to optimize over the structured space of amino acid
sequences.

Optimizing database query plans. Query optimization in data management systems involves
translating a declarative SQL query into an execution plan that efficiently retrieves the correct re-
sults (Graefe and McKenna| (1993). This problem has been extensively investigated in the field of
data management |Leis et al.| (2017), as the difference in execution time between an optimal and a
poorly chosen query plan can be several orders of magnitude |Leis et al.| (2015). Since individual
query plans are composed of discrete characteristics (e.g. join order trees), the search space of pos-
sible query plans is structured and combinatorial. We therefore employ latent space BO. We use the
string representation for query plans proposed by Tao et al.[(2025) to pre-train a VAE model that
maps the structured space of query plans to a continuous latent space where BO can be applied.

Database query plan optimization with right-censored observations. In database query opti-
mization, our black-box objective function measures the execution latency of the query plan. “Good”
and “bad” query plans can have latencies differing by multiple orders of magnitude|Leis et al.|(2015).
This can lead to the majority of optimization runtime being taken up by evaluating a small number
of poorly performing plans. A natural solution to this problem is to time out objective function eval-
uations after they have reached some threshold latency 7, resulting in right-censored observations.
A right-censored observation is an observation at data point x where we observe only that y > 7 for
some chosen timeout threshold 7, rather than observing the typical noisy objective value y. Prior
work has been done to extend Bayesian optimization methods to the setting of right-censored obser-
vations. Hutter et al.|(2013); [Eggensperger et al.|(2020) extended Bayesian optimization methods to
the setting of right-censored observations by introducing an EM-like algorithm to impute the values
of censored observations. [Eggensperger et al.| (2020) expanded on this, defining a single surrogate
model capable of being conditioned on the combination of censored and uncensored data gathered.
Tao et al.| (2025) extend this to the setting of approximate GP surrogate models. Since we focus on
tasks that involve large function evaluation budgets, we employ [Tao et al.|(2025)’s proposed method
of modeling censored data with approximate GPs.

3 BAYESIAN OPTIMIZATION WITH LLM TRANSFER (BOLT)

We propose Bayesian Optimization with LLM Transfer (BOLT), an iterative framework for us-
ing large language models (LLMs) to improve Bayesian optimization (BO) performance across
a family of related tasks. We are given a set of T training tasks defined by objective functions
f1(x), ..., fr(x). We additionally assume that, for each objective function we have a context or task
description C[f;] that can be a natural language or other input description that differentiates f; from
any other task in the application domain. For example, this might be the text of a SQL query we are
trying to optimize.

For each training task, we assume we have optimized the objective with some BO procedure, result-
. * T . * . . .

ing in the optimization trajectories {D;} };_;, with each D} containing the top-K observations from
the trajectory for the ¢ task. Our goal is to leverage this training data to learn an LLM-based “ini-
tialization policy” 7 that, when presented with new related tasks { fry1(x), C[fr+1(x)]}, proposes
a high-quality set of candidate solutions for BO to further refine.

These two procedures — (1) using BO to collect high-quality data for training tasks, and (2) using
the LLM to initialize BO for new tasks — can be used as an “outer-loop”/“inner-loop” approach to
solving a large number of related tasks sequentially, where the LLM is periodically updated as more
optimization runs complete.

Because the LLM and BO only interact through generating initialization and generating fine-tuning
data respectively, our approach here is relatively agnostic to the specific underlying implementation
of BO used to optimize each task. This enables the straightforward use of the full range of recent

BO advances on high-dimensional, constrained, and other optimization settings.

Algorithm 1: Inner Loop: LLM-Initialized
Bayesian Optimization

Require : Task ¢, context C[f], LLM 7,
budget B, batch b
Ensure : Optimized solutions X}
Xinic < ™ (C[f]) // LLM proposes
candidates
Evaluate yinic < f(Xinit)
D (Xinit, Yinit)
Initialize GP (Xinit, Yinit)
for stepi = 1to | B/b] do
Xpext < argmax, (z;GP) // Acquire
Ynext < ft(Xnexl)
D — (X U Xnexh y U ynext)
Update GP with new observations

Algorithm 2: Outer Loop: LLM Fine-
Tuning via BO Trajectories

Require : Dataset Dy = {(C[f], =i, yi) }.
LLM m, iterations T°
Ensure : Fine-tuned LLM 7
Initialize D < Dq, m + 7o
for iteration k = 1to T do
foreach task t in batch do
X < INNERLOOP(¢, 7k, B, b)
// Run BO
D+ DU{(Clfi),z.y) |z € X7}
// RAugment with top
solutions

Fine-tune 75, on augmented dataset D
Update model parameters via instruction

Return X; <+ top-K(X) // Best
solutions

prompting

Return 71 // Final fine-—-tuned LLM

Initializing BOLT. At initialization for a workload of tasks, we have only an un-tuned LLM BOLT-
0 that is generally useless for the task setting because it is unaware of even the specific format for
candidate suggestions. For the first iteration, we solve 7" optimization tasks with a single-task BO
routine where we initialize BO using some standard initialization procedure. We run optimization
on each of the 7T initial tasks, and extract the optimization trajectories {D; }7_, from each run.

LLM fine-tuning. The LLM fine-tuning process employs supervised learning using OpenAl’s
GPT-40-MINI-0718 model through their API. From the optimization trajectories {D;}7_,, we ex-
tract the top-K observations from each of the 7" runs completed so far. We use these observations
along with the task contexts {C'[f¢] }ltT:1 to construct a fine-tuning dataset Dy. Each training instance
contains:

1. A system prompt shared across all tasks in the workload/problem domain, which specifies the
objective (e.g., generating efficient join orderings).

2. A user prompt with the task-specific context C|[f;] (e.g., the SQL query requiring optimization).

3. A response prompt containing the high-performing solution x discovered through BO.

We fine-tune using OpenAl’s standard fine-tuning API|OpenAl et al.{(2024). Specifically, we format
our data into the required JSONL format (i.e., prompt-solution pairs) and then upload it via the fine-
tuning API to initiate training. The model is trained to minimize the negative log-likelihood of the
solution tokens x given the task context C":

x|
L=-> logm(x;|C,x<:))

i=1

We note that our approach leverages full model fine-tuning rather than extensive and/or manual
prompt engineering (Lester et al.; 2021} Li and Liang, [2021). This allows the model to learn the task
requirements through the context-solution pairs in Dy, rather than explicit instructions. However, for
scenarios requiring few-shot learning on untrained models, more careful prompt engineering may
be beneficial. This fine-tuning process produces an updated model that encodes the knowledge from
Dt In our experiments, we will refer to an LLM trained on 7 tasks in this way as BOLT-T.

LLM fine-tuning frequency. The number of tasks 7" that we collect at initialization time and
during each round of the BOLT “outer-loop” represents a non-trivial trade-off due to the compu-
tational cost of both running BO and the cost of fine-tuning the LLM. Fine-tuning the LLM more

frequently results in both additional computational and monetary costs, but allows subsequent BO
runs to complete more efficiently (with fewer black-box function evaluations). In this paper, we
erred on the side of lower monetary cost in exchange for additional cost in black-box function eval-
uations. Specifically, we fine-tuned an LLM 4 times for the query plan optimization task and 7 times
for the antimicrobial peptide design task as shown in Figure

Using the LLM for multi-task BO. Once we have a fine-tuned model, BOLT-T', we can leverage
the fine-tuned LLM’s capabilities to generate higher-quality initialization points for subsequent op-
timization tasks. For a set of n new tasks {ti}iT:T”H, we sample from BOLT-T to generate the same
number of initialization points used by the baseline “from scratch” approach. The sampling prompt
maintains the same structure as the training prompt without the assistant response. The BOLT-T
generated solutions are refined with a standard BO routine, and the top-K performing solutions
for each task t—along with their contexts C[f;]—are incorporated into the training set for the next
round of fine-tuning.

Self-Augmentation. As the fine-tuned LLM en-
hances few-shot generation with more optimiza-
tion data, it is worth exploring whether the costly
sequential BO processes can be minimized. Thus,
we explore “self-improvement” methods to refine Require : Tasks 7', LLM o, iterations 7',
the LLM policy without the expense of additional criteria C
optimization runs (Algorithm [3). Specifically, Ensure :Fine-tuned LLM 7o
once an LLM has been fine-tuned using some of Sample D «= Do, m < 7o

. .. . for iteration k = 1to T do
the tasks we set aside for training, we prompt it to

Algorithm 3: Self-augmentation for LLM
Finetuning

generate additional solutions for all available tasks foreggh tzsz iree ;r(;i)o // Generate
in that problem setting. We then score these so- SZ;np le S+

lutions using the problem’s oracle and fine-tune Xt + Select Best(Xinit, C)

the LLM again directly with this labeled self- // Select best samples
generated data, in a manner similar to self-play in D« DU{(C[f],2,y) |z € Xiit}
reinforcement learning or self-instruction in LLM // Augment dataset
training (Haluptzok et al. 2022; |Shypula et al., Fine-tune 7y on D

2024). By filtering and fine-tuning on its own best
outputs, the LLM can iteratively teach itself how
to propose better solutions.

Return 7 // Final fine-tuned LLM

4 EXPERIMENTS

We evaluate BOLT on two distinct problem domains, each with a large number of related tasks. For
both domains, problem definitions and solutions can be represented as strings. This allows BOLT to
operate both in sequence space, where the LLM learns from optimization trajectories, and in latent
space, where BO makes additional progress using LLM-sampled initializations.

Implementation details. For the inner optimization loop, we implement a constrained version of
the LOL-BO algorithm (Maus et al., 2022) using BoTorch and GPyTorch (Balandat et al.l 2020;
Gardner et al.|[2018). For query optimization, we use an acquisition batch size of 1 with a budget of
4,000 oracle calls, while for peptide design, we employ a larger acquisition batch size of 50 with a
budget of 200,000 oracle calls.

The outer loop BOLT-T" models uses instruction prompting (Mishra et al|, 2021} [Longpre et al.,
2023) to guide the LLM in producing optimized sequences. Figure 4] shows the template used to
prompt GPT-40-MINI for efficient query plans. After each optimization iteration, we augment the
training set with the highest-scoring sequences from the optimization trajectory and fine-tune GPT-
40-MINI on this expanded dataset. When fine-tuning the LLM for the query plan optimization
task, we use OpenAl’s automatic batch size selection option. For the peptide design task, we found
that using the automatic batch size option did not provide a similar boost in performance, and we
use a constant batch size of 10. For both tasks, we fine-tuned the LLM for 2 epochs and used
the default OpenAl LR multiplier hyperparameter of 1.8. To ensure the solutions always have the
correct syntax, we filter out characters that do not correspond to strings of integers or valid amino
acids for the respective tasks. Figure [5] provides additional details on the fine-tuning process and
prompts used for the peptide task.

Database query plan optimization. Database query plan optimization focuses on finding query
plans (including join orderings and their operators) with low execution time for a given query.
We take a subset of 2933 queries from the Cardinality Estimation Benchmark introduced by Negi
et al.| (2021)), keeping 99 queries for validation. Following Tao et al.| (2025)), we perform BO over
query plans by encoding join orders and operators as integer lists, which are then mapped to a 64-
dimensional continuous latent space using the pre-trained query plan VAE from [Tao et al.| (2025).
For the pretraining dataset, we randomly generate 1,169, 890 query plans generated based on the
database schema, separated into 80/10/10 splits. For the initial “from scratch” runs with no LLM,
we initialize with the set of 50 query plans used by BAO (Marcus et al 2021}, an ML-powered
query optimizer we use as a baseline, that produces reasonable but non-optimal plans. Subsequent
runs use 50 LLM-sampled query plans per query as initialization points. All points are sampled
using a temperature parameter of 0.7 unless otherwise specified. The “task description context” C
used to fine-tune the LLM for this task is the full SQL query string.

Antimicrobial peptide design. For the peptide design application, we are given a library of 1000
extinct, weakly antimicrobial seed peptides S = {si, ..., s1.}. A task in this setting is to take a partic-
ular seed peptide s; and make modifications to it to minimize the minimum inhibitory concentration
(MIC) against A. Baumannii ATCC 19606, measured in ymol/L. We created a library of L = 1000
extinct peptides and held out the last 100 as validation. We ensure edited peptides maintain a mini-
Tty
between them. All of the validation peptides are at least 25% different from any other peptide in
the library. Although the seed peptides don’t achieve low MICs, the hope is that bacteria are less
likely to have developed resistance to their variations as they come from extinct species (Wan et al.,
2024). We assess MICs with the APEX model |Wan et al.| (2024) and utilize a VAE trained on 4.5
million amino acid sequences [Torres et al.| (2024) to map peptides into a 256-dimensional latent
space. Initial optimization uses 1000 randomly mutated sequences with a similarity constraint of
75% to the seed. Subsequent runs utilize 1000 LLM sampled peptides. All points are sampled using
a temperature parameter of 1.0 unless otherwise specified. We use the seed amino acid sequence as
the “task description context” C' for LLM fine-tuning.

mum 75% similarity to the seed peptide, defined by 1 — where d is the Levenshtein distance

Baselines. We compare BOLT against a range of baseline approaches. First, we compare to “from
scratch,” single task LOL-BO which we will refer to as STBO, which operates without prior task
knowledge. Second, we compare to a common strategy for multi task BO, e.g., |[Patacchiola et al.
(2020); Hakhamaneshi et al.| (2022); |Perrone et al. (2018)), where a shared GP is trained on all tasks
through a neural network feature extractor using the optimization trajectories from training tasks.
This shared GP is then check-pointed and used on test tasks. Several papers have found success
with variations of this approach. ABLR |Perrone et al.| (2018) uses independent Bayesian linear
regression heads per task on the shared feature extractor, while FSBO (Wistuba and Grabockal
2021) uses an adaptation of DKT (Patacchiola et al., 2020). In this paper, for the final supervised
model, we use the same PPGPR model (Jankowiak et al., 2020) as the BO inner-loop in our method
as we require scalability but find this results in better performance than Bayesian linear regression
or random Fourier feature models (Rahimi and Recht, 2007)).

We also compare against methods that utilize an ensemble of Gaussian process experts, POGPE
and SGPE (Schilling et al.,|2016). POGPE utilizes an ensemble approach with one expert from each
previous task, while SGPE extends this by adding an additional expert trained on data for the current
task only with higher weighting. We evaluate several configurations of these methods (with 5, 10,
and 20 experts) to identify optimal performance. Additionally, we evaluate two transformer-based
methods: Optformer (Chen et al.,[2022) and LLAMBO (Liu et al., 2024). Optformer employs a fine-
tuned transformer model (in our implementation, GPT-40-MINI) for hyperparameter optimization,
while LLAMBO uses out-of-the-box LLMs (also GPT-40-MINI in our case, compared to GPT-3.5
in the original paper) for both surrogate modeling and acquisition function optimization. Due to
context length limitations with these transformer-based methods, we maintain a sliding window of
the last 100 oracle calls for both approaches. For LLAMBO, we impose a budget limit of 10 million
input tokens per experiment to manage computational costs. Additional details on all baselines can
be found in Section [Al

4.1 OPTIMIZATION RESULTS

In Figure [I] we demonstrate that initializing BO with BOLT significantly improves optimization
efficiency across both domains. On the query optimization task (left), while DKT/FSBO makes

Optimization Start Optimization Start

= —8— DKT/FSBO-10 —~ 10" —8— DKT/FSBO-10
g 3 —e— DKTFSBO20
X —e— DKTFSBO20 N B
= 1,:“ — DKT/FSBO-50
E o —e— DKIFSBOS0 & —=— BOLTI0

g N
e —a— BOLTS0 g —=a— BOLT20
= o0s £ —=— BOLTS0
2 <.
e —— sares = —a— SGPES
2 . B —— SGPEI0

o —a— sePE0
g 2 —a— sarE20
EI —4— POGPES S —4— POGPE-S
2 = :
B —4— POGPEI0 g 10° —4— POGPI
£ ol g
----- STBO

g x] === STBO
@ 0 0 oW 130 200 2500 3000 300 40 —e— Optformer 3 .= Optformer

Number of oracle calls

Figure 1: Bayesian optimization performance on (Left) query plan optimization and (Right) antimi-
crobial peptide design. In both settings, BOLT outperforms or matches baselines with just initializa-
tion data before optimization begins. Markers are plotted every 50 oracle calls. Fine-tuning rounds
for the LLM are not depicted on the z-axis: the LLM is updated only between batches of training
tasks and remains fixed during evaluation on held-out tasks. At test time, each run starts from iden-
tically sized initialization sets (DB: 50 plans; peptides: 1,000 sequences), with BOLT replacing the
baseline initializations with samples from the fine-tuned model. Consequently, the advantage ob-
served at the “optimization start” reflects improved initial candidates, after which a standard STBO
loop proceeds unchanged.

improvements over STBO, the gains appear to plateau after only 20 tasks. In contrast, BOLT suc-
cessfully scales to over 1400 tasks and converges to higher quality solutions faster. On the peptide
design task (right), BOLT shows similarly strong performance, while DKT/FSBO struggles to take
advantage of the data collected for separate templates. Notably, BOLT-generated initializations al-
ready outperform the respective baselines at the optimization start (i.e., before the first BO step on
each test task), and this gap increases over the evaluation budget. We emphasize that the z-axis
in Figure [I] records oracle calls made on the test task only; the LLM is not updated during these
evaluations. All LLM fine-tuning occurs offline on previously solved training tasks, and in our runs,
a small number of times per domain (four rounds for DB; seven rounds for peptides).

The GP expert methods show mixed results. For the database task, POGPE-5 and SGPE-5 demon-
strate better performance than their variations with more experts, while for the peptide task, POGPE-
10 and SGPE-10 yield the best results compared to 5/20 experts. Consistent with findings from
Schilling et al.| (2016)), POGPE generally outperforms SGPE across both domains. However, both
ensemble approaches are consistently outperformed by BOLT, and even fall behind STBO and DK-
T/FSBO in several cases. We did not run POGPE or SGPE with a larger numbers of experts as both
methods scale poorly, requiring updating of a number of GPs proportional to the number of tasks.

The transformer-based methods demonstrate notable limitations in Figures [T and 2} Optformer
achieves performance slightly worse than STBO on the database task while showing significantly
poorer results on the peptide task. LLAMBO performs substantially worse across both domains,
showing minimal progress during optimization. Due to its computational demands—requiring LLM
inference for both surrogate modeling and acquisition—LLAMBO completed fewer than 100 opti-
mization steps within our token budget constraints.

We find that on both tasks once BOLT reaches a sufficient scale, it begins to few-shot generate
initialization data for BO that is significantly better performing than the final results found by all
baseline methods, including STBO, DKT/FSBO, the GP expert methods, and transformer-based
approaches.

BOLT as a one- and few-shot optimizer. In Figure[2] BOLT demonstrates strong few-shot general-
ization capabilities, even achieving single-shot performance competitive with traditional approaches.
In query optimization, all BOLT variants outperform the top BAO solution within 5 samples. No-
tably, BOLT-1138 and BOLT-1426 surpass PostgreSQL in a single sample, indicating their potential
for rapid deployment in low latency scenarios. The performance of BOLT consistently improves
with more iterations across both tasks, except at 50 samples on the query optimization task, where
BOLT-1138 slightly outperforms BOLT-1426. This may be due to variances in LLM sample genera-
tion or training. Overall, results confirm BOLT’s robustness when scaling to thousands of tasks. We
further compare our few-shot performance (Figure 2] before x-axis break) to full BO runs (Figure[2]
after x-axis break). In both tasks, BOLT achieves few shot results comparable to the full BO runs.

v
25 m PostgreSQL v BOLT-893 200 v BOLT-10 v BOLT-400
g - @ BAO Best v BOLT-1138 €} 175 v BOLT-20 v BOLT-500
2 v BOLT-50 v BOLI-1426 = v BOLT-50 v BOLT-600
El N T 150 v BOLT-250
- Q
3 =
E,. g 12.5 i
o 15 o
g " v v v 2100y .
g |t ! 5 o g
a v 1 \ 1 z 75 ¥ Y v g
10 e v ¥ \4 M v v
2 ¥ v
¥ ¥ v 5.0 v v ¥
M
1 2 5 10 20 50 20 50 100 200 500 1000

Number of few shot samples

Figure 2: Evaluating BOLT in the few shot setting and comparing to full optimization runs in both
problem settings (Left: query plan optimization; Right: peptide design). In each plot, we show
objective values accumulated across all validation tasks for various methods. Scatter points illustrate
the few-shot performance of BOLT using different number of tasks, and relevant domain baselines
(e.g., PostgreSQL, BAO for query optimization). Horizontal dashed lines indicate the performance
of various full BO runs and other optimizers, shown for comparison. These results demonstrate that
BOLT’s few-shot performance is often comparable to or surpasses that of full BO runs.

Compute overhead and wall-clock. Across both domains, the dominant cost is the inner-loop
BO, not the LLM components. On the database tasks, an STBO run requires roughly 15-20 GPU-
hours per task (avg. ~18), amounting to ~ 25k GPU-hours over the full workload. By comparison,
BOLT’s outer-loop fine-tuning and sampling add only a small, amortized overhead. At the 50-task
scale, the total compute with BOLT is ~7% above STBO, and by the full workload of 1,426 tasks, it
is ~1% above STBO (Table . Fine-tuning consumed ~60M tokens in total (OpenAl API; ~$180),
which we also report as a conservative local-equivalent of ~400 GPU-hours; generating 50 BOLT
initializations per task took ~1 GPU-minute per task (~24 GPU-hours across all DB tasks). Detailed
per-method runtimes and token/cost accounting are summarized in Section[B]

For completeness, we also quantify the cost of the self-augmentation step used in the outer loop:
end-to-end, this adds on the order of tens of GPU-hours for the full workload (negligible relative to
the BO inner loops); see Appendix for the precise accounting and setup.

4.2 ABLATION STUDIES

LLM self-augmentation. We investigate whether self-augmentation as outlined in Algorithm
can improve LLM performance while avoiding the computational expense of the inner-loop BO on
the query plan optimization task. We apply the self-augmentation process to the four fine-tuned
LLMs in Table |1} generating 10 samples from each across all 2,933 training tasks, keeping only
queries that outperform the best query plan from BAO’s solutions. We then use these datasets as
additional fine-tuning to create self-augmented versions of the LLMs.

Table |1| shows that this self-augmentation yields substantial improvements even without additional
tasks optimized by BO. Both self-augmented models converge to a similar performance level,
achieving a summed runtime of about 62 seconds across the 100 validation queries. This con-
vergence suggests a natural performance plateau after training on either 1,500 tasks (BOLT-1426)
or 1,100 tasks plus self-generated samples (BOLT-1138+SA). The consistency of this plateau across
different training approaches further demonstrates BOLT’s robustness when scaling to large task
sets. This self-augmentation experiment indicates that once the LLM has been fine-tuned to suf-
ficient performance, it can generate additional fine-tuning data, reducing the number of BO runs
required. Additionally, our framework scales to more training tasks without performance loss.

One-shot capability. Figure [3|isolates the one-shot behavior of the final, fine-tuned model: for
each held-out SQL query, we draw a single plan from BOLT-1426 and compare it to BAO’s
best-of-50 initial plans. No BO steps are run in this analysis. In particular, improvements to BO
appear already with tens of training tasks Figure [I] while the strong one-shot behavior in Figure [3]
reflects the capability that emerges after scaling to many tasks.

ence (%)

-entage Differe
°
J1eneg ova

Percentage Diff
|
o
& o

ference (%)

laneg 1109

Figure 3: One-shot comparison of BOLT-1426
to BAO (best-of-50). For each query, we sample
one plan from the fine-tuned LLM and compare
it with BAO’s best-of-50 initialization (blue =
BOLT better; orange = BAO better). Top: sam-
pling with ' = 0.7. Bottom: greedy with
T = 0.0. In the one-shot setting, purely greedy
sampling is better.

Method Best@50
LLM (BOLT-50) no SA 87.84
LLM (BOLT-893) no SA 82.31
LLM (BOLT-1138) no SA 78.16
LLM (BOLT-1426) no SA 63.68
LLM (BOLT-50) 82.25
LLM (BOLT-893) 63.05
LLM (BOLT-1138) 61.46
LLM (BOLT-1426) 61.54

Table 1: Ablation study for self augmentation
(SA) conducted on the query optimization task.
For each of two LLMs with different train-
ing task sizes, we perform SA and generate 50
query plans from the LLM. We measure the best
summed query execution time across the valida-
tion tasks from among these 50 samples.

5 RELATED WORK

Language models as optimizers. Large language models (LLMs) have recently gained attention
as sequence optimizers capable of tackling diverse black-box tasks where direct gradient information
is unavailable or difficult to compute. LLM-based optimizers leverage the flexibility of natural
language prompts to encode candidate solutions, constraints, and relevant task information. Methods
like OPRO illustrates how iterative prompting can refine solutions (Yang et al.| 2024} |Zelikman et al.,
2024), while other approaches integrate self-improving strategies that reuse high-performing LLM
outputs for further fine-tuning (Shypula et al., 2024). This set of techniques has been applied to
biophysical domains such as molecular design and protein engineering, where the LLM proposes
mutations to enhance certain properties, as well as to program optimization tasks where the LLM
speeds up code execution time (Shypula et al., [2024; \Wang et al., 2024a;|Madani et al., 2023).

Database optimization. Recent work has applied Bayesian optimization (BO) to improve overall
database performance [Zhang et al.| (2022); |[Nardi et al.[(2019); [Cereda et al.| (2021) by tuning the
parameters of the database configuration. As far as we are aware, [Tao et al.| (2025) were the first to
apply BO to the specific setting of database query plan optimization considered in this paper. Other
work has applied reinforcement learning (RL) to query plan optimization (Marcus et al.,|2019;|[Yang
et al., 2022; [Zhu et al.| 2023). RL query optimizers learn from mistakes and improve performance
over time. Unlike BO, however, RL requires large supervised datasets for pre-training and typically
aims to minimize cumulative query latency rather than achieving the lowest possible latency.

6 DISCUSSION AND LIMITATIONS

We first highlight a few limitations. First, our approach not only requires that all tasks in a problem
setting have the same input domain (a problem that has been explored e.g. by|Fan et al.|(2022)). We
further require the existence of a task description context C|[f;] that can be used in an LLM prompt
to define the task. This is likely more difficult, e.g., for hyperparameter optimization, where the
primary thing distinguishing tasks is the data that the models are to be trained on; for this setting,
approaches such asWang et al.|(2024b)) are likely more appropriate. Finally, we note that the cost of
LLM fine-tuning is significantly higher than simple gradient updates of a shared feature extractor.

Despite these limitations, in two real-world applications where BOLT was applicable it yielded
strong results. Few-shot generation matched “from scratch” BO runs, and initializing BO from the
LLM samples often improved performance further. Moreover, the interplay between the LLM and
Bayesian optimization is noteworthy. Despite interest in using LLMs for optimization (Yang et al.,
2024; Zelikman et al., 2024; Shypula et al., | 2024; Wang et al., 2024a; Madani et al., 2023), finding
initial strong solutions to fine-tune them is challenging in some domains. Bayesian optimization, by
offering in-depth search, is an excellent candidate for this.

REPRODUCIBILITY STATEMENT

Upon acceptance, we will release a complete repository containing the inner-loop BO (constrained
LOL-BO via BoTorch/GPyTorch), the BOLT outer loop, configs/splits/seeds, evaluation harnesses,
and scripts to regenerate all figures and tables from logs. We document task definitions, budgets
(DB 4k calls; peptides batched at 50), and compute usage and hardware details. We report LLM
fine-tuning hyperparameters and provide an open-source LLM recipe mirroring GPT-40-MINI runs

(see §4] Appendix [AD).

ETHICS STATEMENT

This research introduces BOLT, a method leveraging large language models to enhance multi-task
Bayesian optimization, with demonstrated applications in antimicrobial peptide design and database
query optimization. The potential to accelerate the discovery of novel peptides could significantly
benefit public health, particularly in combating antimicrobial resistance. Similarly, improving
database query efficiency can lead to substantial computational and energy savings across many
industries.

However, we acknowledge the potential for Al misuse in biological design. In applying these power-
ful methods, expert oversight, rigorous validation, and adherence to established safety and regulatory
frameworks must be highlighted. Additionally, the use of large-scale LLMs raises considerations re-
garding computational accessibility and responsible Al development.

REFERENCES

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A framework for efficient Monte-Carlo
Bayesian optimization. In Advances in Neural Information Processing Systems, volume 33, pages
21524-21538. Curran Associates, Inc., 2020.

Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. CGPTuner: a contex-
tual gaussian process bandit approach for the automatic tuning of IT configurations under vary-
ing workload conditions. Proceedings of the VLDB Endowment, 14(8):1401-1413, April 2021.
ISSN 2150-8097. doi: 10.14778/3457390.3457404. URL https://dl.acm.org/doi/10.
14778/3457390.3457404.

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Qiuyi Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, Sagi Perel, and Nando
de Freitas. Towards learning universal hyperparameter optimizers with transformers. In Proceed-
ings of the 36th International Conference on Neural Information Processing Systems, NeurIPS
’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Jaewon Chu, Jinyoung Park, Seunghun Lee, and Hyunwoo J. Kim. Inversion-based la-
tent bayesian optimization. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang, editors, Advances in Neural Information Process-
ing Systems, volume 37, pages 68258-68286. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper_files/paper/2024/file/
7e3491e922bfd199%ea34decafeb/380f0-Paper—-Conference.pdf.

Katharina Eggensperger, Kai Haase, Philipp Miiller, Marius Lindauer, and Frank Hutter. Neural
model-based optimization with right-censored observations, 2020.

Stephan Eissman, Daniel Levy, Rui Shu, Stefan Bartzsch, and Stefano Ermon. Bayesian optimiza-
tion and attribute adjustment. In Proc. 34th Conference on Uncertainty in Artificial Intelligence,
2018.

Zhou Fan, Xinran Han, and Zi Wang. Hyperbo+: Pre-training a universal prior for bayesian opti-
mization with hierarchical gaussian processes. arXiv preprint arXiv:2212.10538, 2022.

10

https://dl.acm.org/doi/10.14778/3457390.3457404
https://dl.acm.org/doi/10.14778/3457390.3457404
https://proceedings.neurips.cc/paper_files/paper/2024/file/7e3491e922bfd199ea34ecafeb7380f0-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/7e3491e922bfd199ea34ecafeb7380f0-Paper-Conference.pdf

Matthias Feurer. Scalable meta-learning for bayesian optimization using ranking-weighted gaus-
sian process ensembles. In ICML 2018 AutoML Workshop, 2018. URL https://api.
semanticscholar.org/CorpusID:51795721.

Jacob Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, and Andrew G. Wilson. GPy-
Torch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In Advances
in Neural Information Processing Systems, volume 31, pages 7576-7586. Curran Associates, Inc.,
2018.

Goetz Graefe and William J. McKenna. The volcano optimizer generator: Extensibility and effi-
cient search. In Proceedings of the Ninth International Conference on Data Engineering, page
209-218, USA, 1993. IEEE Computer Society. ISBN 0818635703.

Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexander Imani
Cowen-Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, Jan Peters, and
Haitham Bou-Ammar. High-dimensional Bayesian optimisation with variational autoencoders
and deep metric learning. CoRR, abs/2106.03609, 2021.

Kourosh Hakhamaneshi, Pieter Abbeel, Vladimir Stojanovic, and Aditya Grover. JUMBO: Scalable
Multi-task Bayesian Optimization using Offline Data, March 2022. URL http://arxiv.
org/abs/2106.00942. arXiv:2106.00942 [cs].

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach them-
selves to program better. arXiv preprint arXiv:2207.14502, 2022.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. Bayesian optimization with censored re-
sponse data. CoRR, abs/1310.1947, 2013.

Martin Jankowiak, Geoff Pleiss, and Jacob Gardner. Parametric Gaussian process regressors.
In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
4702-4712. PMLR, 13-18 Jul 2020. URL https://proceedings.mlr.press/v119/
Jankowiak20a.htmll.

Beata Kowalska-Krochmal and Ruth Dudek-Wicher. The minimum inhibitory concentration of an-
tibiotics: Methods, interpretation, clinical relevance. Pathogens, 10(2):165, 2021.

Seunghun Lee, Jinyoung Park, Jaewon Chu, Minseo Yoon, and Hyunwoo J. Kim. Latent bayesian
optimization via autoregressive normalizing flows. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
ZCOwWwRAQEL.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. How good are query optimizers, really? Proceedings of the VLDB Endowment, 9
(3):204-215, November 2015. ISSN 2150-8097. doi: 10.14778/2850583.2850594. URL
http://dx.doi.org/10.14778/2850583.2850594]

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. Query optimization through the looking glass, and what we found running
the Join Order Benchmark. The VLDB Journal, pages 1-26, 2017. ISSN 1066-8888, 0949-877X.
doi: 10.1007/s00778-017-0480-7. URL https://link.springer.com/article/10.
1007/s00778-017-0480-"7.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Conference on Empirical Methods in Natural Language Processing, 2021. URL
https://api.semanticscholar.org/CorpusID:233296808.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 4582-4597, 2021. URL https://api.semanticscholar.org/CorpusID:
230433941.

11

https://api.semanticscholar.org/CorpusID:51795721
https://api.semanticscholar.org/CorpusID:51795721
http://arxiv.org/abs/2106.00942
http://arxiv.org/abs/2106.00942
https://proceedings.mlr.press/v119/jankowiak20a.html
https://proceedings.mlr.press/v119/jankowiak20a.html
https://openreview.net/forum?id=ZCOwwRAaEl
https://openreview.net/forum?id=ZCOwwRAaEl
http://dx.doi.org/10.14778/2850583.2850594
https://link.springer.com/article/10.1007/s00778-017-0480-7
https://link.springer.com/article/10.1007/s00778-017-0480-7
https://api.semanticscholar.org/CorpusID:233296808
https://api.semanticscholar.org/CorpusID:230433941
https://api.semanticscholar.org/CorpusID:230433941

Tennison Liu, Nicolds Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. In The Twelfth International Conference on Learning Repre-
sentations, 2024. URL https://openreview.net/forum?id=00xotBmGoll

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688, 2023.

Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P Mohr, James M Holton,
Jose Luis Olmos, Jr, Caiming Xiong, Zachary Z Sun, Richard Socher, James S Fraser, and Nikhil
Naik. Large language models generate functional protein sequences across diverse families. Nat.
Biotechnol., 41(8):1099—-1106, August 2023.

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga
Papaemmanouil, and Nesime Tatbul. Neo: a learned query optimizer. Proceedings of the VLDB
Endowment, 12(11):1705-1718, July 2019. ISSN 2150-8097. doi: 10.14778/3342263.3342644.
URLhttp://dx.doi.orqg/10.14778/3342263.3342644|

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and Tim
Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021 In-
ternational Conference on Management of Data, SIGMOD 21, page 1275-1288, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383431. doi: 10.1145/
3448016.3452838. URL https://doi.org/10.1145/3448016.3452838.

Natalie Maus, Haydn Jones, Juston Moore, Matt J Kusner, John Bradshaw, and Jacob Gardner. Local
latent space bayesian optimization over structured inputs. In Advances in Neural Information
Processing Systems, volume 35, pages 34505-34518. Curran Associates, Inc., 2022. doi: 10.
48550/arXiv.2201.11872.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. Reframing
Instructional Prompts to GPTk’s Language. arXiv preprint arXiv:2109.07830, 2021.

Jonas Mockus. On bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference: Novosibirsk, July 1-7, 1974, pages 400—404. Springer, 1975.

Luigi Nardi, David Koeplinger, and Kunle Olukotun. Practical design space exploration. In
2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 347-358. 1IEEE, 2019. URL https:
//ieeexplore.ieee.org/abstract/document /8843094 /.

Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Mo-
hammad Alizadeh. Flow-loss: Learning cardinality estimates that matter. Proc. VLDB En-
dow., 14(11):2019-2032, jul 2021. ISSN 2150-8097. doi: 10.14778/3476249.3476259. URL
https://doi.orqg/10.14778/3476249.34762509.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun

12

https://openreview.net/forum?id=OOxotBmGol
http://dx.doi.org/10.14778/3342263.3342644
https://doi.org/10.1145/3448016.3452838
http://arxiv.org/abs/2109.07830
http://arxiv.org/abs/2109.07830
https://ieeexplore.ieee.org/abstract/document/8843094/
https://ieeexplore.ieee.org/abstract/document/8843094/
https://doi.org/10.14778/3476249.3476259

Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6n Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Massimiliano Patacchiola, Jack Turner, Elliot J. Crowley, Michael O' Boyle, and Amos J
Storkey. Bayesian meta-learning for the few-shot setting via deep kernels. In Ad-
vances in Neural Information Processing Systems. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/file/
b9cfeB8b6042cf759dcd4cOcccb2/7a6/737-Paper.pdf.

Valerio Perrone, Rodolphe Jenatton, Matthias W Seeger, and Cedric Archambeau. Scalable Hy-
perparameter Transfer Learning. In Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/
paper/2018/hash/14c879f3f5d8ed93a09f6090d77c2cc3-Abstract.htmll

Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines.
In Advances in Neural Information Processing Systems, volume 20. Curran Associates,
Inc., 2007. URL https://papers.nips.cc/paper_files/paper/2007/hash/
013a006£03dbcb392effeb8f18fda’755-Abstract.html.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pages 63—71. Springer, 2003.

Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. Scalable hyperparameter optimiza-
tion with products of gaussian process experts. In Paolo Frasconi, Niels Landwehr, Giuseppe
Manco, and Jilles Vreeken, editors, Machine Learning and Knowledge Discovery in Databases,
pages 33-48, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46128-1.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Gra-
ham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
performance-improving code edits. In International Conference on Learning Representations,
2024. doi: 2302.07867.

13

https://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2020/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf
https://proceedings.neurips.cc/paper/2018/hash/14c879f3f5d8ed93a09f6090d77c2cc3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14c879f3f5d8ed93a09f6090d77c2cc3-Abstract.html
https://papers.nips.cc/paper_files/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://papers.nips.cc/paper_files/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html

Eero Siivola, Andrei Paleyes, Javier Gonzélez, and Aki Vehtari. Good practices for Bayesian opti-
mization of high dimensional structured spaces. Applied Al Letters, 2(2):e24, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms, 2012. URL https://arxiv.org/abs/1206.2944,

Samuel Stanton, Wesley Maddox, Nate Gruver, Phillip Maffettone, Emily Delaney, Peyton Green-
side, and Andrew Gordon Wilson. Accelerating bayesian optimization for biological sequence
design with denoising autoencoders, 2022. URL https://arxiv.org/abs/2203.12742,

Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-Task Bayesian Optimization.
In Advances in Neural Information Processing Systems, volume 26. Curran Associates,
Inc., 2013. URL https://papers.nips.cc/paper_files/paper/2013/hash/
f33balbeffabcl0e873bf3842afb4b6ab—Abstract.htmll

Jeffrey Tao, Natalie Maus, Haydn Jones, Yimeng Zeng, Jacob R. Gardner, and Ryan Marcus.
Learned offline query planning via bayesian optimization, 2025. URL https://arxiv.org/
abs/2502.05256l

Marcelo D. T. Torres, Yimeng Zeng, Fangping Wan, Natalie Maus, Jacob Gardner, and Cesar de la
Fuente-Nunez. A generative artificial intelligence approach for antibiotic optimization. bioRxiv,
2024. doi: 10.1101/2024.11.27.625757. URL https://www.biorxiv.org/content/
early/2024/11/27/2024.11.27.625757.

Austin Tripp, Erik A. Daxberger, and José Miguel Herndndez-Lobato. Sample-efficient optimization
in the latent space of deep generative models via weighted retraining. In Advances in Neural
Information Processing Systems 33, 2020.

Fangping Wan, Marcelo D. T. Torres, Jacqueline Peng, and Cesar de la Fuente-Nunez. Deep-
learning-enabled antibiotic discovery through molecular de-extinction. Nature Biomedical En-
gineering, 8(7):854-871, Jul 2024. ISSN 2157-846X. doi: 10.1038/s41551-024-01201-x. URL
https://doi.org/10.1038/s41551-024-01201~-x.

Haorui Wang, Marta Skreta, Cher-Tian Ser, Wenhao Gao, Lingkai Kong, Felix Streith-Kalthoff,
Chenru Duan, Yuchen Zhuang, Yue Yu, Yangiao Zhu, Yuanqi Du, Aldn Aspuru-Guzik, Kirill
Neklyudov, and Chao Zhang. Efficient evolutionary search over chemical space with large lan-
guage models, 2024a. URL https://arxiv.org/abs/2406.16976.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of
Machine Learning Research, 25(212):1-83, 2024b.

Zi Wang, George E. Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained Gaussian Processes for Bayesian Optimization. Journal of
Machine Learning Research, 25(212):1-83, 2024c. ISSN 1533-7928. URL http://jmlr.
org/papers/v25/23-0269.html.

Martin Wistuba and Josif Grabocka. Few-shot bayesian optimization with deep kernel surrogates.
arXiv preprint arXiv:2101.07667, 2021.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
034009.

Zongheng Yang, Wei-Lin Chiang, Sifei Luan, Gautam Mittal, Michael Luo, and Ion Stoica. Balsa:
Learning a query optimizer without expert demonstrations. In Proceedings of the 2022 Inter-
national Conference on Management of Data, SIGMOD/PODS ’22. ACM, June 2022. doi:
10.1145/3514221.3517885. URL http://dx.doi.org/10.1145/3514221.3517885!

Eric Zelikman, Eliana Lorch, Lester Mackey, and Adam Tauman Kalai. Self-taught optimizer (stop):

Recursively self-improving code generation, 2024. URL https://arxiv.org/abs/2310.
02304.

14

https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/2203.12742
https://papers.nips.cc/paper_files/paper/2013/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://papers.nips.cc/paper_files/paper/2013/hash/f33ba15effa5c10e873bf3842afb46a6-Abstract.html
https://arxiv.org/abs/2502.05256
https://arxiv.org/abs/2502.05256
https://www.biorxiv.org/content/early/2024/11/27/2024.11.27.625757
https://www.biorxiv.org/content/early/2024/11/27/2024.11.27.625757
https://doi.org/10.1038/s41551-024-01201-x
https://arxiv.org/abs/2406.16976
http://jmlr.org/papers/v25/23-0269.html
http://jmlr.org/papers/v25/23-0269.html
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409
http://dx.doi.org/10.1145/3514221.3517885
https://arxiv.org/abs/2310.02304
https://arxiv.org/abs/2310.02304

Xinyi Zhang, Zhuo Chang, Yang Li, Hong Wu, Jian Tan, Feifei Li, and Bin Cui. Facilitating database
tuning with hyper-parameter optimization: a comprehensive experimental evaluation. Proceed-
ings of the VLDB Endowment, 15(9):1808-1821, May 2022. ISSN 2150-8097. doi: 10.14778/
3538598.3538604. URL https://dl.acm.org/doi/10.14778/3538598.3538604

Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu, and Jingren
Zhou. Lero: A learning-to-rank query optimizer. Proceedings of the VLDB Endowment, 16
(6):1466-1479, February 2023. ISSN 2150-8097. doi: 10.14778/3583140.3583160. URL
http://dx.dol.0rg/10.14778/3583140.3583160.

15

https://dl.acm.org/doi/10.14778/3538598.3538604
http://dx.doi.org/10.14778/3583140.3583160

A PROMPT DETAILS.

Figures[d]and[3]illustrate the prompt templates used for generating optimized query plans and peptide
sequences, with GPT-40-MINI-0718. Figure 4 shows the template for database query optimization,
where the system acts as an assistant providing efficient join orderings for a given SQL query. Figure
5 displays the template for antimicrobial peptide design, where the system’s role is to modify peptide
sequences to enhance antimicrobial activity.

System: You are a helpful assistant that provides efficient join
orderings for given queries.

User: {SQL query to be optimized}

Assistant: {Optimized query plan}

Figure 4: The prompt template used for prompting GPT-40-MINI for generating optimized query
plans.

System: You are a specialized assistant that modifies peptide
sequences to enhance antimicrobial activity. Make up to 25%
sequence modifications based on known antimicrobial peptide
properties such as: positive charge, hydrophobicity, and
amphipathicity.

User: {Seed peptide to be modified}

Assistant: {Modified peptide}

Figure 5: The prompt template used for prompting GPT-40-MINI for generating optimized peptide
sequences.

B COMPUTE DETAILS.

Hardware. Experiments ran on an internal cluster (18 GPUs across two servers): one server with
8x NVIDIA RTX A6000 (48 GB each; dual-socket CPU with 48 logical threads per socket) and one
server with 10x NVIDIA RTX A5000 (24 GB each; dual-socket CPU with 24 logical threads per
socket).

Scope. We report (i) per-task GPU-hours, (ii) aggregates at 50 tasks and 1,426 tasks, and (iii)
LLM fine-tuning and inference usage (tokens, USD, and local GPU-hour equivalents). Database
(DB) query-plan runs used one GPU per task unless specified.

RUNTIME AND COST OVERVIEW

Single-task Bayesian Optimization (STBO). Each DB run required 15-20 GPU-hours (avg. ~ 18).
Across 1,426 tasks this is ~25,000 GPU-hours, which is the dominant component of total compute.

Baseline MTBO methods.

e SGPE/POGPE: >100 GPU-hours per task; we capped runs at 110 GPU-hours. These ap-
proaches did not reach 1,000 oracle calls within reasonable time, and their cost increases quickly
with the number of tasks.

e DKT/FSBO (10/20/50): 15-20 GPU-hours per task (similar to STBO). The extra feature-
extractor cost is minor relative to GP training on the same data.

16

Method GPU-hours / task GPU-hours / 50 tasks GPU-hours / 1,426 tasks

STBO 15-20 ~900 ~22,500-28,720
SGPE/POGPE >100 (capped at 110) >5,000 (incomplete) Infeasible (quadratic scaling)
DKT/FSBO 15-20 ~900 ~22,500-28,720 (est.)
BOLT + STBO — ~964 (+7% vs. STBO) ~22,750-28,970 (+1% vs. STBO)

Table 2: Runtime comparison on DB query-plan tasks. BOLT’s fine-tuning and inference add a
small, amortized overhead relative to the BO inner loop: ~7% at 50 tasks and ~1% at 1,426 tasks.

BOLT (BOLT) overhead (fine-tuning + inference).

e LLM fine-tuning (GPT-40-MINI —0718 via API): The largest run used 26M tokens (~$78).
Summed over BOLT-893/1138/1426, fine-tuning consumed 60M tokens (~$180), roughly ~400
GPU-hours if performed locally on RTX A6000s (conservative equivalence).

e Alternative local FT (Qwen 2.5-7B): 32 GPU-hours total (4 x A6000 for 8 hours).

¢ Inference to generate initializations: Sampling 50 candidates per task from a locally fine-tuned
model took ~1 GPU-minute per task (about 24 GPU-hours across 1,426 tasks), negligible com-
pared to BO.

Takeaways. (i) The vast majority of compute is spent in the BO inner loop (STBO or comparable
inner loops in MTBO baselines). (i) BOLT’s overhead—fine-tuning plus sampling a small batch of
initial candidates—is small and amortizes quickly: ~7% at 50 tasks and only ~1% by 1,426 tasks
(Table2). (iii) SGPE/POGPE were substantially slower per task and did not scale to our full regime.
(iv) Even when counting fine-tuning using a conservative local GPU-hour equivalent (~400 GPU-
hours) rather than low-cost API usage ($ ~180 total), BOLT’s added compute remains marginal
relative to the ~25k GPU-hours of BO.

Token/API usage. Across BOLT-893/1138/1426, fine-tuning used 60M tokens (~$180). Initial-
ization inference across all DB tasks required ~24 GPU-hours in total.

C IMPLEMENTATION DETAILS.

C.1 DKT/FSBO IMPLEMENTATION DETAILS.

For the antimicrobial peptide design task, a PPGPR model was trained using the GPy Torch module.
This model employed a fully connected network with two hidden layers, each having a dimension
of 256. Training parameters included a batch size of 128, a learning rate of 0.01, and 1024 inducing
points for all peptide design experiments.

For the database query plan optimization task, the PPGPR model utilized a fully connected network
with two hidden layers, each with a dimension of 64. A batch size of 16, a learning rate of 0.01, and
1024 inducing points were used for these experiments.

For both tasks, 50 STBO optimization trajectories were randomly selected. The DKT/FSBO-
10/20/50 models were trained using the first 10, 20, or 50 of these trajectories, respectively. All
models were trained for 20 epochs.

C.2 POGPE/SGPE IMPLEMENTATION DETAILS.

Similarly to Section for the antimicrobial peptide design task, each expert model was a PPGPR
model implemented with GPyTorch, with a fully connected network with two hidden layers, each
with a dimension of 256. A batch size of 128, a learning rate of 0.01, and 1024 inducing points were
used.

For the database query plan optimization task, each expert model uses a fully connected network
with two hidden layers, each with a dimension of 64. The training used a batch size of 16, a learning
rate of 0.01, and 1024 inducing points.

17

The same 50 STBO optimization trajectories from Sectionwere used, and the first 5/10/20 tra-
jectories were used to train the POGPE/SGPE expert models. In POGPE, all experts were weighted
equally. For SGPE experiments, the weighting scheme from [Schilling et al.| (2016) was adopted,
where the independent GP for the target dataset carries the same weight as the entire set of experts.

C.3 OPTFORMER IMPLEMENTATION DETAILS.

For both the query plan optimization and antimicrobial peptide design tasks, GPT-40-MINI-0718
was fine-tuned on past optimization trajectories. To stay within context window limits, a maximum
input context length of 100 trials and an output of 20 trials were used. The objective value ranges
for both tasks were discretized into 1000 equidistant points. The training sets were constructed by
randomly subsampling two trajectories of length 120 from the optimization trajectories. The query
plan optimization task is trained on 27.4 million tokens and the antimicrobial peptide design task is
trained on 4.8 million tokens. Both models were trained for 1 epoch with a batch size of 20 and an
OpenAl learning rate multiplier of 1.8.

Optimization was initialized using the same points as single-task BO. During inference, a constant
temperature of 0.7 was used. To manage inference token usage, a batch size of 20 was employed,
where the model predicted the next 20 trials based on the previous 100 trials. This was important as
experiments ran for 4,000 (query plan) or 20,000 (peptide design) trials.

C.4 LLAMBO IMPLEMENTATION DETAILS.

The end-to-end LLAMBO method was utilized, leveraging GPT-40-MINI-0718 for several com-
ponents: generating candidate solutions, serving as a surrogate model for the objective function
(via in-context learning), and acting as a conditional sampler to generate candidates for specific tar-
get values. Similar to Optformer, a maximum input context window of 100 trials was enforced to
prevent exceeding context limits.

The hyperparameters from the original LLAMBO paper were adopted, including an exploration
hyperparameter o = 0.1, and M = 20. For the surrogate model, we sample &' = 10 MC predictions
to compute the empirical estimates. Consistent with the LLAMBO paper, we use the same sampling
parameters with a temperature of 0.7 and top_p of 0.95. A limit of 10 million maximum input tokens
per experiment was used to manage computational costs.

C.5 LLM SELF-AUGMENTATION DETAILS.

For the antimicrobial peptide design task, 200 samples were generated for each of the initial 800
training peptides during each self-augmentation round. Any peptides with a predicted MIC below 8
(indicating significant antimicrobial activity) were added to the training set for the subsequent round
of BOLT.

For the database query plan optimization task, 10 samples were generated for each of the 2,933 train-
ing queries. Query plans with a runtime lower than the best plan generated by the BAO optimizer
were added to the training set for the next round of BOLT.

D ADDITIONAL ABLATIONS.

D.1 OPEN SOURCE LLMS.

To explore the viability of open-source models for BOLT, QWEN-2.5-7B and LLAMA-3.1-8B
were fine-tuned using the identical dataset that created BOLT-1426 from GPT-40-MINI-0718 for
the database query optimization task. For evaluation, 50 query plans were generated from each LLM
using a sampling temperature of 0.7. The best summed query execution time across the validation
tasks from these 50 samples was compared.

Both models were fine-tuned on 4 NVIDIA RTX A6000 GPUs using a per-device batch size of 4, a
learning rate of le-5 with the AdamW optimizer, and 5 training epochs. The results, shown in Ta-
ble[3] indicate that QWEN-2.5-7B performed slightly worse than fine-tuned GPT-40-MINI-0718,
while LLAMA-3.1-8B showed significantly lower performance. Due to the extensive number of

18

inference calls and multiple fine-tuning rounds required by BOLT, the primary experiments were
conducted using the OpenAl API due to hardware resource limitations.

Model Summed runtime
GPT-40-MINI-0718 61.46
QWEN-2.5-7B 62.04
LLAMA-3.1-8B 155.55

Table 3: Comparing open source LLMs fine-tuned with data used to fine-tune BOLT-1426 against
OpenAl models fine-tuned on the same data.

D.2 IMPACT OF DATA QUALITY ON TRAINING.

We perform an ablation to assess the importance of using “better” versus “more” training data for
fine-tuning LLMs through iterations of BOLT. Starting with the BOLT-1138 model, we collect top
solutions from a new BO round and train two variants: 1) BOLT-1426, which adds all new solutions
to the original BOLT-1138 set. 2) BOLT-1138*, which instead replaces an equal number of old
solutions to maintain the same training set size. As shown in Table 4] both benefit from higher-
quality data, suggesting “better” data boosts performance. However, BOLT-1138* underperforms
BOLT-1426, which incorporates more and better data, confirming that both factors enhance model
performance.

Best@ BOLT-1138 BOLT-1138* BOLT-1426

Best@50 78.16 64.03 63.68
Best@20 82.59 70.52 66.23
Best@10 90.19 74.40 70.21
Best@5 102.99 85.21 76.28
Best@2 127.97 129.26 102.29
Best@1 202.04 193.64 160.22

Table 4: Comparing LLMs fine-tuned with (Left) data from 1138 tasks, (Right) data from 1426
tasks, and (Middle) data from 1138 tasks, but including the extra data from BOLT-1426, and remov-
ing data from older tasks.

D.3 RANDOM PERTURBATIONS AROUND PRIOR SOLUTIONS.

We test whether small random perturbations around prior best solutions provide stronger initial-
ization. In the latent space, we sample 50 candidates per validation task within axis-aligned trust
regions (TR) centered at each prior best solution, with side-lengths ¢ € {0.57,0.5%,...,0.5°}. We
then decode and evaluate these candidates.

Table 5: DB (first 10 validation queries). Summed runtime (seconds; lower is better) when initial-
izing from random perturbations of prior best solutions within latent-space trust regions. “Previous
solutions” repeats Table [6] for reference. A large trust region can degrade the validity or quality of
decoded candidates (marked with T).

Method Prev.sol. TR (0.57) (0.5%) (0.5°) (0.5%) (0.5%) (0.5%) (0.5Y) (0.59)
Summed runtime (s) 9.18 9.18 8.94 8.94 8.92 8.97 9.07 38.48 8.62
BOLT-1426 (init only) 7.21

Observation. Local perturbations around prior best solutions offer modest gains over using the
unperturbed pool (Table [5), but remain weaker than BOLT initializations. This indicates that task-
conditioned sampling provides benefits beyond local neighborhood search around previous best so-
lutions.

19

D.4 INITIALIZING WITH PRIOR BEST SOLUTIONS.

We test whether reusing the best solution from each previously optimized training task is a compet-
itive generic initializer for new tasks. We collect the best-performing solution from every training
task completed by BOLT-1426 and form a pool of “previous solutions.” For evaluation, we consider
the first 10 validation queries (DB domain), treat this pool as the initialization set (same size as
other initializers), and measure the summed query runtime (lower is better). We compare against:
(i) single-task BO (STBO) initialized with the standard baseline set; (ii) BOLT initializations from
fine-tuned models with different training sizes; and (iii) a full BO run initialized by BOLT-1426. No
further LLM fine-tuning occurs during this evaluation.

Method Summed runtime (s)
BOLT-1426 + BO 6.43
BOLT-1426 7.21
BOLT-1138 8.65
BOLT-893 9.08
STBRO 8.23
Previous solutions 9.18

Table 6: DB (first 10 validation queries). Summed runtime (seconds; lower is better) under dif-
ferent initialization strategies. “BOLT-1426+BO” runs full BO after initializing with BOLT-1426
samples; other rows report initialization-only performance at the optimization start.

Simply reusing prior best solutions is less effective than model-generated initializations, and falls
behind both STBO and all BOLT variants considered (Table [6). This suggests cross-task misalign-
ment: best solutions for earlier tasks do not align well with new tasks, while BOLT samples are
tailored to the provided task description.

D.5 SENSITIVITY TO SAMPLING TEMPERATURE

We study the effect of the sampling temperature on initialization quality for the DB domain. For
each temperature T € {0.1,0.3,0.5,0.7,1.0,1.2,1.5}, we draw 50 samples per validation query
and report the best-of-50 summed runtime across the standard validation set. We consider both
GPT-40-MINI-0718 and QWEN-2.5-7B, each fine-tuned on the same training data.

Table 7: DB (validation set). Best-of-50 summed runtime (seconds; lower is better) vs. sampling
temperature 7.

Temperature GPT-40-MINI-0718 QWEN-2.5-7B

0.1 84.97 84.42
0.3 65.88 69.14
0.5 62.19 63.97
0.7 61.54 62.04
1.0 60.09 61.25
1.2 59.78 62.61
1.5 60.50 64.45

Higher temperatures can improve best-of-50 performance slightly by increasing diversity among
proposals (Table[7). In our main experiments, we used 7' = 0.7, which is close to optimal.

D.6 INITIALIZATION-STAGE COMPARISONS AND A NO-FINETUNING BASELINE

We report initialization only quality as a function of the first k£ oracle calls on held-out tasks for both
domains. We also include a no-finetuning LLM baseline (BOLT-0) in the DB setting.

Peptides. We show summed (unnormalized) predicted MIC across 20 validation peptides at k €
{1, 100, 200, 500, 1000} oracle calls (lower is better).

20

Table 8: Peptides (20 validation tasks). Summed unnormalized MIC vs. oracle calls & at the

initialization stage.

k BOLT-10 BOLT-20 BOLT-50 BOLT-600 STBO/MTBO
1 1204.0525 1120.9886 1057.1308 564.4510 5727.7421
100 135.4973 147.2456 112.9047 100.5810 1551.4898
200 120.4763 134.8256 107.1327 96.7752 1111.7161
500 109.1782 122.1278 101.3638 94.2405 792.5464
1000 107.5492 119.7096 97.1403 92.1007 625.9521

Database queries. We show summed runtime across 10 validation queries at k € {1, 10, 20,50}
oracle calls. We include BOLT-0 (no fine-tuning), BOLT-50, BOLT-1426, and STBO/MTBO.

Table 9: DB (first 10 validation queries). Summed runtime (seconds) vs. oracle calls k at initial-
ization. BOLT-0 uses an untuned LLM.

k BOLT-0 BOLT-50 BOLT-1426 STBO/MTBO

1
10
20

— 53.2584
— 13.8501
— 11.5664

50 1829500 10.3764

13.9788
7.6380
7.6343
7.4340

15.1161
13.7863
13.3761
12.0967

The fine-tuned BOLT initializations improve markedly with scale and outperform both STBO ini-
tializations and the untuned BOLT-0 baseline early in the budget (Tables [SHI).

E LLM USAGE.

LLMs were fine-tuned for generating improved initialization points for BO runs as part of BOLT.
LLMs were used to improve this paper’s writing and presentation and assist in code implementation
(e.g., co-pilot auto-completion). LLMs were not involved in generating or refining research ideas,
experimental design, or theoretical developments.

21

	Introduction
	Background
	Bayesian Optimization with LLM Transfer (BOLT)
	Experiments
	Optimization results
	Ablation Studies

	Related Work
	Discussion and limitations
	Prompt details.
	Compute details.
	Implementation details.
	DKT/FSBO implementation details.
	POGPE/SGPE implementation details.
	Optformer implementation details.
	LLAMBO implementation details.
	LLM self-augmentation details.

	Additional ablations.
	Open source LLMs.
	Impact of data quality on training.
	Random perturbations around prior solutions.
	Initializing with prior best solutions.
	Sensitivity to sampling temperature
	Initialization-stage comparisons and a no-finetuning baseline

	LLM Usage.

