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ABSTRACT
In text-based person search endeavors, data generation has emerged
as a prevailing practice, addressing concerns over privacy preser-
vation and the arduous task of manual annotation. Although the
number of synthesized data can be infinite in theory, the scientific
conundrum persists that how much generated data optimally fuels
subsequentmodel training.We observe that only a subset of the data
in these constructed datasets plays a decisive role. Therefore, we in-
troduce a new Filtering-WoRA paradigm, which contains a filtering
algorithm to identify this crucial data subset and WoRA (Weighted
Low-Rank Adaptation) learning strategy for light fine-tuning. The
filtering algorithm is based on the cross-modality relevance to re-
move the lots of coarse matching synthesis pairs. As the number
of data decreases, we do not need to fine-tune the entire model.
Therefore, we propose a WoRA learning strategy to efficiently up-
date a minimal portion of model parameters. WoRA streamlines
the learning process, enabling heightened efficiency in extracting
knowledge from fewer, yet potent, data instances. Extensive exper-
imentation validates the efficacy of pretraining, where our model
achieves advanced and efficient retrieval performance on challeng-
ing real-world benchmarks. Notably, on the CUHK-PEDES dataset,
we have achieved a competitive mAP of 67.02% while reducing
model training time by 19.82%.

CCS CONCEPTS
• Information systems → Retrieval efficiency; Retrieval ef-
fectiveness; Multimedia and multimodal retrieval.

KEYWORDS
Text-based Person Search, Data-centric Learning, Low-Rank Adap-
tation, Visual-language Pre-training

1 INTRODUCTION
Compared to traditional image-based person search [57, 64, 65, 82,
86], which seeks to retrieve target individuals from a vast array of
footage or images across different locations and times, text-based
person search locates interested individuals from a pool of candi-
dates based on pedestrian descriptions [36]. Given that pedestrian
image queries may not be available, text-guided person search
emerges as an alternative method. The key lies in mining the fine-
grained information from images and texts, blending the complexity
of natural language processing with the subtle nuances of visual
recognition, and establishing their correspondence. By leveraging
the ability to understand complex human descriptions and accu-
rately identify and retrieve images of individuals from a camera
system, it can be applied to broad applications in public safety
domains such as missing person searches [2, 59], and rescue opera-
tions [56]. As the sub-task of vision-language retrieval, text-based
person search models usually require extensive data for training,

Figure 1: Comparison between the proposed method and ex-
isting approaches in terms of Recall@1 and the parameter
numbers.We observe that ourmethod deploys fewer parame-
ters while achieving a competitive Recall@1, i.e., APTM [73],
RaSa [4], IRRA [25] and TBPS-CLIP [5].

where, however, the number of pedestrian data is limited. Most
datasets [13, 37, 73, 86] are constructed from three sources. (1) The
first source is through sampling from camera footage, accompa-
nied by manual annotations. However, constructing large-scale
datasets is often infeasible due to privacy concerns and high costs.
(2) The second source involves collecting images and short videos
from the internet. Despite expanding dataset sizes, the noisy web
text and the inconsistent quality of task images are generally sub-
optimal for fine-grained vision-language learning. (3) Therefore,
most researchers [73] resort to leverage the generative models, e.g.,
GAN [84] and Diffusion [50, 55]. For instance, APTM [73] has in-
troduced 1.51M image-text pairs generated by Stable Diffusion [50],
showcasing the potential of training on a large synthesized dataset.

Despite significant progress in learning from large synthesized
datasets, a fundamental challenge persists: how can we efficiently
extract knowledge when faced with an effectively infinite
amount of data, considering the substantial computational
costs incurred during training? We observe two key points: (1)
Previous works [73, 81, 84] indicate that performance gains dimin-
ish even with abundant generated data. This suggests that not all
information in massive synthetic datasets is equally useful; instead,
a well-chosen subset, or coreset, may be sufficient to capture the
essential training information. (2) When learning from a coreset,
updating the entire parameter space is unnecessary to achieve train-
ing precision. This insight opens the door to significantly reducing
both training time and model complexity. Thus, our focus shifts to
developing strategies that achieve high accuracy with reduced data
and a compact parameter footprint.

To this end, we propose a new Filtering-WoRA paradigm, which
contains a novel two-stage data filtration method aimed at iden-
tifying the coreset to enhance model performance and a WoRA
(Weighted Low-Rank Adaptation) algorithm to optimize the pre-
training and fine-tuning models, enabling training with fewer pa-
rameters while maintaining model performance and increasing
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computational speed. Specifically, our process begins with dataset
purification, including the synthesized dataset for pre-training and
the real-world dataset for fine-tuning. To filter out low-quality
image-text pairs, e.g., incomplete descriptive details or blurred im-
age details, we leverage the off-the-shelf large cross-modality model
to extract features from both images and texts within the dataset
and then calculate the cosine similarity between projected image
embeddings and projected text embeddings. This process yields a
similarity score for each image-text pair, facilitating the selection of
high-quality datasets based on our predetermined threshold. Sub-
sequently, to reduce model parameters and enhance computational
speed, we opt to freeze the weights from pre-training, indirectly
training some dense layers in the neural network by optimizing rank
decomposition matrices that change during the adaptation process.
By decomposing pre-training and fine-tuning weights into magni-
tude and direction, our WoRA method introduces three new dimen-
sions to facilitate the modification of the weight matrix and rank
decomposition matrix. This approach allows for learning a mini-
mal amount of parameters while simultaneously boosting model
performance (see Figure 1). In summary, our contributions are:

• We introduce a new Filtering-WoRA paradigm for efficient
text-based person search, which streamlines learning and
improves efficiency through focused data curation and
targeted parameter updates. The filtering algorithm tar-
gets relevant, high-quality synthesized data by assessing
cross-modality relevance, while WoRA (Weighted Low-
Rank Adaptation) enables lightweight fine-tuning of a min-
imal set of model parameters.

• Extensive experiments on three widely-used benchmarks
verify that our method could save 19.82% training time
compared with the vanilla baseline, while also achieving
competitive 76.37%, 66.65%, 67.90% Recall@1 accuracy on
CUHK-PEDES, RSTPReid and ICFG-PEDES, respectively.

2 RELATEDWORK
Vision-Language Pre-training. Current VLP research predomi-
nantly bifurcates into coarse-grained and fine-grained methodolo-
gies. Coarse-grained approaches employ convolutional networks [23,
24, 26, 77] or visual Transformers [27, 28, 34, 45, 49] to extract
and encode holistic image features, thereby constructing vision-
language models (VLMs). Techniques such as SOHO [23] propose
leveraging a Visual Dictionary (VD) for the extraction of compre-
hensive yet compact image features, facilitating enhanced cross-
modal comprehension. ALBEF [34] introduces a contrastive loss for
aligning image and text representations before their fusion through
cross-modal attention, fostering more grounded vision-language
representation learning. Additionally, it utilizes momentum distil-
lation to augment learning capabilities from noisy network data.
Although these holistic image-focused methods are efficient, their
performance is generally outpaced by fine-grained approaches.
Inspired by advancements in the NLP domain, fine-grained meth-
ods [10, 15, 31, 35, 40, 47, 60] employ pre-trained object detec-
tors [3, 54] trained on annotated datasets of common objects, such
as COCO [41] and Visual Genome [29]. This enables models to
recognize and classify all potential object regions within images,
representing them as a collection of object-centered features. For

instance, VinVL [76] enhances visual representations for V+L tasks
and develops an improved object detection model to provide object-
centered image representations. However, this object-centered fea-
ture representation struggles to capture relationships between mul-
tiple objects across different regions, limiting its effectiveness in
encoding multi-granularity visual concepts. Another limitation is
the inability of the object detector to recognize uncommon ob-
jects not present in the training data. Recently, novel approaches
have emerged to bridge the learning of object-level and image-level
alignments. E2E-VLP [71] employs DETR [6] as the object detection
module to enhance detection capabilities. KD-VLP [44] relies on
external object detectors for object knowledge distillation, facili-
tating cross-modal alignment learning across different semantic
layers. OFA [62] formulates visual-linguistic tasks as a sequence-to-
sequence (seq2seq) problem, adhering to instruction-based learning
during both pre-training and fine-tuning phases, eliminating the
need for extra task-specific layers. Uni-Perceiver [87] constructs
a unified perception architecture, using a single Transformer and
shared parameters for diverse modes and tasks, employing a non-
mixed sampling strategy for stable multi-task learning. X-VLM [74]
and X2-VLM [75] propose an integrated model with a flexible mod-
ular architecture to simultaneously learn multi-granularity align-
ment and localization, achieving the capability to learn infinite
visual concepts related to various text descriptions. In this work,
we leverage the proficient vision-language pre-trained model to
filter noisy data.
Text-Image Person Search. Based on the challenging task of
language-based person search, which is a fine-grained, cross-modal
retrieval challenge, a significant number of methodologies have
been developed in recent years to tackle this issue. Existing ap-
proaches can broadly be classified into two categories: those based
on cross-modal attention interaction [37, 57, 58, 65] and those with-
out cross-modal attention interaction [9, 13, 64, 73, 83]. Methods
leveraging cross-modal attention interactions facilitate correspon-
dences between image regions and textual phrases by pairing inputs
and predicting image-text matching scores through attention mech-
anisms. This enhances interaction between modalities, effectively
bridging the modality gap, albeit at the cost of increased computa-
tional complexity. For instance, Li et al. [37] propose a recurrent
neural network with gated neural attention to enhance cross-modal
learning. Shao et al. [57] introduce a multimodal shared dictionary
(MSD) to reconstruct visual and textual features, employing shared,
learnable archetypes as queries. To improve person search perfor-
mance, features for both modalities are extracted in the feature
space with uniform granularity, ensuring semantic consistency.
Conversely, methods without cross-modal attention interaction,
through the construction of diverse model structures and objec-
tive functions, align representations of the two modalities within a
shared feature space. These lightweight models, not reliant on com-
plex cross-modal interactions, are computationally more efficient
and have even achieved better results than their attention-based
counterparts. Zheng et al. [83] build an end-to-end dual-path con-
volutional network to learn image and text representations to take
full advantage of supervision capabilities. However, all the per-
son search methods mentioned above fine-tune the entire network
for high accuracy, which inherently slows down the process. In
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contrast, we propose a method based on cross-modal feature ex-
traction for rapid candidate selection and data ranking scores. This
approach aims to mitigate the impact of low-quality text-image
pairs while reducing model computational parameters to maintain
high efficiency in processing.
Data-Centric Learning. With the surge in popularity of large
language models, an increasing demand for vast datasets for model
training has emerged [52, 73–75]. However, open-source datasets
constructed for training models in real-world scenarios, such as
the MALS dataset [73], may encounter issues like incorrect text
descriptions, poor image or text quality, and insufficient feature
matching between image-text pairs, all of which can adversely af-
fect model training performance. As the size of datasets expands,
it is observed that their quality does not invariably scale in tan-
dem [84]. Frequently, a subset of high-caliber data can attain or
even exceed the utility of a voluminous but qualitatively inferior
dataset. This phenomenon underscores the paramount importance
of meticulously curating high-quality datasets, thereby highlighting
the necessity for efficiency and precision in dataset construction.
For instance, data selection methods [22, 51, 69] aim to identify
and train only with the most relevant and informative examples,
discarding irrelevant or redundant data. This leads to more efficient
learning and improved model performance, especially when dealing
with large datasets. Active learning seeks to reduce labeling costs
by selecting the most informative instances for annotation. Data
cleaning and preprocessing techniques aim to remove noise, er-
rors, and inconsistencies from the data, making it more suitable for
learning. Coreset selection [32, 33] focuses on identifying a small
subset of data points (a core set) sufficient for training a model that
performs well across the entire dataset. By selecting a representa-
tive subset, coreset selection can reduce the computational costs
of training and improve model generalization. Our approach advo-
cates for a coreset method aimed at enhancing model performance,
proposing the deploy of the off-the-shelf visual-language models
to segment and filter the dataset for text and image pair matching
scores, thereby obtaining a coreset dataset for effective training.

3 METHODOLOGY
3.1 Baseline Revisit
We do not pursue the network contribution in this work, but focus
on the training efficiency. Our method can be adopted to most ex-
isting works. Without loss of generality, we apply the widely-used
baseline, APTM [73], to simplify the illustration as well as a fair com-
parison with other methods. In particular, the framework comprises
three encoders, i.e., image encoder, text encoder, and cross encoder,
along with two MLPs-based headers. The entire training process
contains two phases, i.e., pre-training on the synthesized dataset
and fine-tuning on the downstream datasets. As shown in Figure 2,
the [CLS] embedding represents the aggregated feature of the im-
age / text from the image encoder and the text encoder respectively.
The cross encoder integrates image and text representations for
prediction tasks, leveraging the latter 6 layers of Bert to process the
previously obtained text and image embeddings, thereby discerning
their semantic relationship. We adopt two types of loss functions
to bolster alignment constraints, tailored for both image-text and
image-attribute associations. The image-text functions encompass

Image-Text Contrastive Learning (ITC), Image-TextMatching Learn-
ing (ITM), and Masked Language Modeling (MLM), while Attribute
Prompt Learning contains Image-Attribute Contrastive Learning
(IAC) loss, Image-Attribute Matching Learning (IAM) Loss, and
Masked Attribute Modeling (MAM) Loss. The overall APL loss is
L𝐴𝑃𝐿 = 1

3 (L𝑖𝑎𝑐 + L𝑖𝑎𝑚 + L𝑚𝑎𝑚), and the full pre-training loss is
formulated as: L𝑡𝑜𝑡𝑎𝑙 = L𝑖𝑡𝑐 + L𝑖𝑡𝑚 + L𝑚𝑙𝑚 + 𝜂L𝐴𝑃𝐿 , where 𝜂 is
empirically set as 0.8 following [73].

3.2 Data Filtering
As highlighted in our introduction, the acquisition of images is
challenged by high annotation costs and concerns over individual
privacy and security, necessitating the generation of a large volume
of image-text pairs (𝐼 ,𝑇 ) through diffusion models, complemented
by text descriptions generated by large language models [73]. De-
spite the potential for achieving high accuracy through extensive
pretraining on such data, it becomes apparent that not all gener-
ated data are equally effective, with a significant portion being
redundant. Additionally, these synthesized datasets often include
noise in the form of image-text pairs with poor matching quality,
which can inadequately represent the visual content of images.
Such pairs serve as suboptimal signals for learning fine-grained
visual-language alignment, potentially disrupting model training.
This observation led us to ponder whether reducing the volume of
data, focusing solely on a core set, could suffice for model training.
Consequently, we devised a data filtering solution a data filtering
approach based on the off-the-shelf large cross-modality model,
e.g., BLIP-2 [32], leveraging its efficient multimodal feature extrac-
tion capabilities to isolate features from both text and images (see
Figure 3). We intend to find the appropriate filtering methodology
and thresholds to isolate a high-quality core set.

Our method is executed in two phases, starting with the filter-
ing of the synthesized dataset, i.e., MALS, used for pretraining the
model. Initially, all image-text pairs (𝐼𝑀 ,𝑇𝑀 ) within the dataset
are processed. Given an image-text pair, the large cross-modality
model, i.e., BLIP-2, is employed to extract the corresponding image
feature 𝑓𝐼𝑀 and text feature 𝑓𝑇𝑀 . Subsequently, the training set cap-
tions from the real-world downstream dataset, i.e., CUHK-PEDES,
acting as distractor texts𝑇𝐶 , are utilized. For each pair, we calculate
the cosine similarity between projected image embeddings and
projected text embeddings to ascertain their self-similarity 𝑆𝑖𝑚𝑠𝑒𝑙 𝑓 .
Simultaneously, the distractor similarity 𝑆𝑖𝑚𝑜𝑡ℎ𝑒𝑟 is determined by
calculating the similarity between the image feature 𝑓𝐼𝑀 and a ran-
domly selected subset of 10,000 distractor texts 𝑇𝐶 . The following
is the formula for calculating the similarity:

𝑆𝑖𝑚𝑠𝑒𝑙 𝑓 = 𝑐𝑜𝑠
(
𝑓𝐼𝑀 , 𝑓𝑇𝑀

)
, 𝑆𝑖𝑚𝑜𝑡ℎ𝑒𝑟 = 𝑐𝑜𝑠

(
𝑓𝐼𝑀 , 𝑓𝑇𝐶

)
, (1)

where 𝑐𝑜𝑠 (, ) denotes the cosine similarity. After computing these
two types of similarities for all image-text pairs within the training
dataset, and then we sort texts according to the similarity from
highest to lowest, we set a ranking threshold as 50. It means that
an image-text pair is retained only if its self-similarity ranks within
the top 50 of all calculated similarities. Through this threshold-
based filtering, we discarded 21% of low-quality image-text pairs,
retaining 79% to form a new pretraining dataset, Filtered-MALS.

Similarly, we also could filter the CUHK-PEDES training set in
the fine-tuning phase to remove the noisy pair in the real-world
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Figure 2: An overview of our framework. (a) shows the flow chart of the entire training pipeline. We first obtain the filtered
training image-text pairs. Then we augment the text as attribute texts according to keywords. We extract the corresponding
features through image encoder, text encoder and cross encoder. There are six loss objectives of both text-image and attribute-
image matching tasks. (b) is an in-depth illustration of WoRA methodology, meticulously applied within the context of an
image encoder. The model is updated by fine-tuning the decomposition of the pre-trained weights into amplitude and direction
components and updating both components using LoRA [21] while adding the 𝛼 and 𝛽 learnable parameters. Since the image
encoder consumes most GPU memory and time. In practice, we mainly apply the WoRA on the image encoder.

Figure 3: An overview of our data filtering process. We first
employ Blip-2 [32] to extract features from the input image-
text pair (𝐼 ,𝑇 ) and the distractor text 𝑇𝐶 . Next, we compute
the similarity and rank the results accordingly, ultimately
generating the filtered dataset.

training set. Employing the same calculation as in the first phase,
we extract image features 𝑓𝐼𝐶 and text features 𝑓𝑇𝐶 for all pairs
(𝐼𝐶 ,𝑇𝐶 ). Each image calculates the cosine similarity with both the
ground-truth text and a subset of 10,000 random distractor texts
𝑓𝑇𝐶′ . Similarly, the similarity can be formulated as:

𝑆𝑖𝑚𝑠𝑒𝑙 𝑓 = 𝑐𝑜𝑠
(
𝑓𝐼𝐶 , 𝑓𝑇𝐶

)
, 𝑆𝑖𝑚𝑜𝑡ℎ𝑒𝑟 = 𝑐𝑜𝑠

(
𝑓𝐼𝐶 , 𝑓𝑇𝐶′

)
. (2)

Upon computing and ranking the similarities across the entire
training set, we set a relatively loose ranking threshold of 1800,
given that most pairs are human-annotated. This selection process
results in the removal of 10% low-quality image-text pairs, leaving
90% to form a refined dataset, Refined-CUHK, for model fine-tuning.

Figure 4: Visual explanation of data filtering. The part on
the left of the image shows the high-quality image retained
after our screening strategy and its corresponding red text de-
scription, while the person image on the right represents the
low-quality image text pairs that are filtered out beyond the
threshold, i.e., top50. We deploy the real-world training set
as distractors to filter low-relevance synthesized image-text
pairs according to the similarity since there are no overlaps.

Discussion. The mechanism of filtering. The motivation is
within the spectrum of generated datasets. (1) It is worth noting
that not all contents bear relevance, with a portion comprising
low-quality image-text pairs. Such instances of subpar alignment
between textual descriptions and corresponding images can invari-
ably exert a deleterious impact, compromising the model training.
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Predominantly, the segments of the dataset that contribute most
significantly to the performance of the model are those encom-
passing high-quality data, often referred to as the ‘coreset’. (2) The
extensive volume of data implicated in the pretraining phase in-
curs substantial computational costs, necessitating considerable
resources in terms of computational power and temporal invest-
ment. Thus, data filtering provides two primary advantages: (1) Our
filtering algorithm identifies the core set of image-text pairs that are
most crucial for improving data quality during model training. This
selective process ensures the model is exposed to higher-quality
data, enhancing its learning capabilities. (2) Retaining only the
core set significantly reduces the dataset size, thereby decreasing
computational overhead during training. This results in reduced
computational requirements and training time. Figure 4 illustrates
an example of the data filtering process.

3.3 Weighted Low-Rank Adaptation
While the introduction of a pretrain-finetune paradigm to trainmod-
els for person search tasks has achieved commendable results [73],
the expansion in model and dataset sizes significantly increases the
number of parameters to be trained, demanding substantial com-
putational resources and sacrificing training efficiency. To address
this issue, several parameter-efficient fine-tuning methods [20]
have been proposed, aiming to fine-tune pretrained models us-
ing the minimum number of parameters. Among these, LoRA [21]
has gained popularity due to its simplicity and efficacy. LoRA em-
ploys a low-rank decomposition for the pretrained weight matrix
𝑊0 ∈ R𝑚×𝑛 ,𝑊0+△𝑊 =𝑊0+𝐵𝐴, where 𝐵 ∈ R𝑚×𝑟 ,𝐴 ∈ R𝑟×𝑛 , rank
𝑟 ≪ min (𝑚,𝑛). △𝑊 is adjusted by 8

𝑟 . Inspired by the LoRA [21],
which updates only a small part of the model weight to improve
efficiency, DoRA [43] decomposes the weight into two parts: direc-
tion and amplitude. DoRA improves the adaptability and efficiency
of the model, which can be formulated as𝑊𝐷𝑜𝑅𝐴 = 𝑚

𝑊0+𝐵𝐴
∥𝑊0+𝐵𝐴∥2

,

where𝑚 ∈ R1×𝑛 is the magnitude vector. ∥·∥2 denotes the L2 norm
of a matrix across each column.

However, these two methods still limit the parameter freedom.
Therefore, we introduce theWeighted Low-RankAdaptation (WoRA)
model to address the capacity gap still present between LoRA [21]
and fine-tuning (see Figure 2 right). Drawing from the DoRA [43]
approach, which reparameterizes model weights into magnitude
and direction components for fine-tuning, WoRA introduces new
learnable parameters, 𝛼 and 𝛽 , to facilitate parameter learning.
Given that pretrained weights already possess a vast repository of
knowledge suitable for various downstream tasks, we configure
these learnable parameters to ensure the model acquires sufficient
capability in both magnitude and direction. This allows for the
model to adapt to downstream tasks by updating parameters that
exhibit significant magnitude or directional changes. The formal
representation of our WoRA model is:

𝑊𝑊𝑜𝑅𝐴 =𝑚
𝛽 ∗𝑊0 + 𝛼 ∗ 𝐵𝐴

∥𝛽 ∗𝑊0 + 𝛼 ∗ 𝐵𝐴∥2
. (3)

In our model, parameters denoted with an overline represent train-
able parameters. The proposed Weighted Low-Rank Adaptation
(WoRA) demonstrates learning capabilities comparable to full fine-
tuning. During inference, WoRA integrates with pretrained weights,

Figure 5: Intuitive comparison of LoRA, DoRA, and our pro-
posed WoRA. (a) Here we show a common case during op-
timization, i.e., negative correlation against𝑊0, which both
LoRA and DoRA are struggling with. The bias parameter
𝐵𝐴 is hard to learn, considering the weight decay and other
regularization. (b) In contrast, we deploy two float scalars in
WoRA, i.e., 𝛼 and 𝛽 , which could efficiently adjust the vector
and provide better flexibility.

introducing no additional latency while enhancing both learnabil-
ity and computational efficiency. Moreover, by incorporating new
learnable parameters, WoRA achieves superior performance com-
pared to LoRA [21] and DoRA [43].
Discussion. Why is WoRA better than LoRA and DoRA? Both
DoRA and LoRA are specific cases of the proposed WoRA. Specifi-
cally, DoRA can be derived from WoRA by setting 𝛼 = 1 and 𝛽 = 1
as fixed constants. Similarly, setting 𝛼 = 1, 𝛽 = 1, and𝑚 = 1 yields
the identical behavior as LoRA. Consider a scenario involving neg-
ative correlation, which is common during training. As illustrated
in Figure 5 (a), both LoRA and DoRA struggle with the typical
negative correlation against the original weight𝑊0, necessitating
the learning of a large 𝐵𝐴—a challenging and unstable pro-
cess due to weight decay and other regularization terms. In
contrast, by introducing two scalar parameters, 𝛼 and 𝛽 , WoRA
provides a more flexible and adaptive space for optimization. Our
method can readily achieve negative correlation by setting a nega-
tive 𝛽 , as depicted in Figure 5 (b). Additionally, 𝛼 offers fine-grained
control over 𝐵𝐴 during optimization. We will add an illustration
of this to the revised version. Time Cost: WoRA introduces three
additional trainable parameters compared to LoRA, resulting in a
slightly longer training time due to the increased complexity of
weight calculation. Although WoRA’s training time is marginally
higher than that of DoRA and LoRA, the additional trainable pa-
rameters enable better weight adjustment, ultimately enhancing
performance. As shown in Table 5, a small increase in training
time (approximately 30 minutes) significantly improves the model’s
fine-tuning capability. Memory Cost: It is noteworthy that our
space complexity is equivalent to DoRA, while WoRA introduces
greater freedom in direction and magnitude, thereby facilitating
fine-tuning. WoRA adds only two constant learnable scalars per
weight update compared to DoRA, resulting in a negligible increase
in space complexity.
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4 EXPERIMENT
4.1 Experimental Setup
Datasets. Our study involves processing and training on four
datasets. For pretraining, we utilize the synthetic dataset,MALS [73],
which comprises 1,510,330 image-text pairs, each annotatedwith rel-
evant attribute labels. For fine-tuning, we employCUHK-PEDES [37],
RSTPReid [86], and ICFG-PEDES. CUHK-PEDES aggregates 40,206
images of 13,003 individuals from 5 existing person reID datasets:
CUHK03 [39],Market-1501 [80], SSM [70], VIPER [17], and CUHK01 [38].
Each image is paired with descriptions from two sentences, result-
ing in a total of 80,412 sentences. Our approach is evaluated on
the public text-based person search dataset CUHK-PEDES. RST-
PReid contains 20,505 images of 4,101 individuals, compiled from
MSMT17 [68]. ICFG-PEDES [13], also derived from MSMT17, con-
sists of 54,522 images of 4,102 individuals.
Evaluation metrics. We adopt the mean Average Precision (AP)
and Recall@1,5,10 as our primary evaluationmetrics. The Recall@K,
whose value is 1 if the first matched image has appeared before
the K-th image. Recall@K is sensitive to the position of the first
matched image and suits the test set with only one true-matched
image in the gallery. The average precision (AP) is the area under
the PR(Precision-Recall) curve, considering all ground-truth images
in the gallery. mAP is calculated and averaged for the average
accuracy (AP) of each category.
Implementation Details. Our model with the proposed WoRA,
undergoes pretraining across 32 epochs on 8 NVIDIA A800 GPUs
via Pytorch, adopting a batch size of 150. The optimization strategy
employs the AdamW optimizer [46], integrating a weight decay fac-
tor of 0.01. Initiation of the learning rate is set at 1𝑒−5, incorporating
a warm-up phase over the initial 2600 steps, which then transitions
into a linear decay schedule ranging from 1𝑒−4 down to 1𝑒−5. Image
preprocessing includes resizing to 384 × 128 dimensions, coupled
with augmentation strategies such as random horizontal flipping,
RandAugment [11], and random erasing [85]. For the pretraining
phase, the image encoder is initialized using Swin-B [45], enhanced
by the application of the WoRA method. Both the text encoder
and cross encoder commence with configurations derived from the
initial and final 6 layers of Bert [12], respectively. Subsequent to
the pretraining, the model is fine-tuned on designated downstream
datasets over 30 epochs. Initial WoRA settings for the image en-
coder, rank = 8, 𝛼 = 8, and 𝛽 = 1, are preserved, with the learning rate
commencing at 1𝑒−4. This phase includes a warm-up period span-
ning the first three epochs, succeeded by a methodical reduction
of the learning rate according to a linear scheduler. In addition to
image data augmentation mentioned during pretraining, Easy Data
Augmentation (EDA) [67] is employed for text data augmentation,
with the batch size as 120. For each text query, its cosine similarity
with all images is calculated, selecting the top 128 candidate images.
Subsequently, the match probability between the text query and
each selected image candidate is computed and ranked [73].

4.2 Comparison with Competitive Methods
We deploy the Weighted Low-Rank Adaptation (WoRA) for text-
based person search tasks. Performance comparisons are made
using Recall@1,5,10 and mean Average Precision (mAP) metrics,

Method #Parameter R@1 R@5 R@10 mAP
CNN-RNN [53] - 8.07 - 32.47 -
GNA-RNN [37] - 19.05 - 53.64 -
PWM-ATH [8] - 27.14 49.45 61.02 -
GLA [7] - 43.58 66.93 76.2 -
Dual Path [83] - 44.40 66.26 75.07 -
CMPM+CMPC [78] - 49.37 - 79.21 -
MIA [48] - 53.10 75.00 82.90 -
A-GANet [42] - 53.14 74.03 81.95 -
ViTAA [63] 177M 55.97 75.84 83.52 51.60
IMG-Net [66] - 56.48 76.89 85.01 -
CMAAM [1] - 56.68 77.18 84.86 -
HGAN [79] - 59.00 79.49 86.62 -
NAFS [16] 189M 59.94 79.86 86.70 54.07
DSSL [86] - 59.98 80.41 87.56 -
MGEL [61] - 60.27 80.01 86.74 -
SSAN [13] - 61.37 80.15 86.73 -
NAFS [16] 189M 61.50 81.19 87.51 -
TBPS [18] 43M 61.65 80.98 86.78 -
TIPCB [9] 185M 63.63 82.82 89.01 -
LBUL [65] - 64.04 82.66 87.22 -
CAIBC [64] - 64.43 82.87 88.37 -
AXM-Net [14] - 64.44 80.52 86.77 58.73
LGUR [57] - 65.25 83.12 89.00 -
CFine [72] - 69.57 85.93 91.15 -
VGSG [19] - 71.38 86.75 91.86 67.91
TBPS-CLIP [5] 149M 73.54 88.19 92.35 65.38
IRRA [25] 194M 73.38 89.93 93.71 66.13
RaSa [4] 210M 76.51 90.29 94.25 69.38
APTM [73] 214M 76.53 90.04 94.15 66.91
Baseline* 214M 75.42 88.86 92.77 66.61
Ours 127M 76.38 89.72 93.49 67.22

Table 1: Performance Comparison on CUHK-PEDES. Here
we show the performance of the previous methods on the re-
call@1,5,10, mAP in % and the parameter number. Baseline*:
We re-implement APTM [73].

alongside a comparison of parameter count (params in Millions, M)
and computational efficiency (FLOPs) against the baseline model
APTM. Through trainable adjustments to weight parameters, the
WoRA method indicated robust performance across both datasets,
significantly reducing computational parameters and time. Specifi-
cally, compare to APTM, which is trained on 1.51M data, our data
filtering algorithm remove 21% of low-quality, noisy data, utilizing
1.19M data for computations. Our implementation of WoRA on the
CUHK-PEDES dataset reduce trainable parameters to 127.37M, a
41% decrease fromAPTM,with FLOPs reduce to 23.21G, a 39% reduc-
tion. The overall training duration for pretraining and fine-tuning
is cut by 19.82%, with our model achieving slight improvements
in recall rates and mAP, as evidenced in Table 1. Moreover, the
pretrained model adjusted through WoRA achieves competitive
performance on the RSTPReid and ICFG-PEDES dataset, as shown
in Table 2 and 3. To show the performance of our model more intu-
itively, we present three visual retrieval results on CUHK-PEDES
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Method #Parameter R@1 R@5 R@10 mAP
DSSL [86] - 32.43 55.08 63.19 -
LBUL [65] - 45.55 68.20 77.85 -
IVT [58] - 46.70 70.00 78.80 -
CAIBC [64] - 47.35 69.55 79.00 -
CFine [72] - 50.55 72.50 81.60 -
TBPS-CLIP [5] 149M 61.95 83.55 88.75 48.26
IRRA [25] 194M 60.20 81.30 88.20 47.17
RaSa [4] 210M 66.90 86.50 91.35 52.31
APTM [73] 214M 67.50 85.70 91.45 52.56
Baseline* 214M 66.40 85.55 91.10 52.21
Ours 127M 66.85 86.45 91.10 52.49

Table 2: Performance Comparison on RSTPReid. Here we
show the performance of the previous methods on the re-
call@1,5,10 and mAP in % and the parameter number. Base-
line*: We re-implement APTM [73].

Method #Parameter R@1 R@5 R@10 mAP
Dual Path [83] - 38.99 59.44 68.41 -
CMPM+CMPC [78] - 43.51 65.44 74.26 -
MIA [48] - 46.49 67.14 75.18 -
SCAN [30] - 50.05 69.65 77.21 -
ViTAA [63] 177M 50.98 68.79 75.78 -
SSAN [13] - 54.23 72.63 79.53 -
IVT [58] - 56.04 73.60 80.22 -
LGUR [57] - 59.02 75.32 81.56 -
CFine [72] - 60.83 76.55 82.42 -
TBPS-CLIP [5] 149M 65.05 80.34 85.47 39.83
IRRA [25] 194M 63.46 80.25 85.82 38.06
RaSa [4] 210M 65.28 80.04 85.12 41.29
APTM [73] 214M 68.51 82.99 87.56 41.22
Baseline* 214M 67.81 82.70 87.32 41.22
Ours 127M 68.35 83.10 87.53 42.60

Table 3: Performance Comparison on ICFG-PEDES. Here
we show the performance of the previous methods on the
recall@1,5,10 andmAP in % and the parameter number. Base-
line*: We re-implement APTM [73].

in Figure 6. Our model adeptly captures fine-grained, word-level
details, enabling it to accurately differentiate subtle variations in
clothing colors among individuals. Furthermore, it exhibits robust
retrieval capabilities, effectively identifying subjects even when
parts of their details are obscured. This indicates the strong per-
formance of our model in handling nuanced visual variations and
partial occlusions within complex scenes.

4.3 Ablation Study and Further Discussion
The impact of data filtering. Here, “baseline” refers to the APTM
method as implemented in our experimental setup, and "top50"
denotes our data filtering approach with a threshold set to top50
for selecting the pre-training dataset MALS. From Table 4, it is evi-
dent that training the pre-trained models with our filtered dataset
results in improvements of 6.26% in Recall@1, demonstrating the
efficacy of our dataset filtering for pre-training. Similarly, we find
that filtering on the downstream dataset also facilitates the learning,
since the filtering algorithm generally removes the noise. In Table 5,

Figure 6: Qualitative person search results using text query
of our methods, placing in descending order from left to
right based on matching probability. The images in green
boxes are the correct matches, and the images in red boxes
are the wrong matches. The green texts show that our results
successfully match.

Figure 7: The impact of different WoRA ranks on perfor-
mance. We observe that the result is not sensitive to the rank.
Generally, rank=8 is the best hyper-parameter in terms of
performance on Recall@1,5,10.

the notation “ft90%” signifies the leverage of our dataset filtering
method to refine the finetune dataset CUHK-PEDES, ultimately
retaining 90% of its data for training. The model trained after ap-
plying “ft90%” exhibits a 0.25% increase in Recall@1, substantiating
the effectiveness of dataset filtering on the comprehensive model.

Moreover, we assess the impact of Weighted Low-Rank Adap-
tation (WoRA) on the complete model. Initially, comparing the
impacts of using LoRA [21] and DoRA [43] models of Low-Rank
Adaptation on our fully trained model revealed improvements in
model speed but not in performance. Subsequently, applying WoRA
to models trained on the top50 pre-training selection and the ft90%
finetuned dataset, we achieve a Recall@1 of 76.38%, surpassing the
baseline by 0.96%, and an mAP of 67.22%, exceeding the baseline
by 0.61%, thereby establishing state-of-the-art (SOTA) mAP perfor-
mance. The computation time for the complete model is reduced
from 23h to 18h, marking a 19.82% acceleration. In Figure 7, we
compare the effects of different rank values on the performance of
WoRA. The experiment shows that the model has the best perfor-
mance on Recall@1,5,10 when rank is equal to 8. We can observe
that model performance may not be as sensitive in different ranks.
Performance can be improved basically with the WoRA model. The
results we present in this paper are obtained using rank=8, which
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Method # Data (M) # Trainable Flops (G) CUHK-PEDES RSTPReid ICFG-PEDES Time
Params (M) R@1 mAP R@1 mAP R@1 mAP (hours)

Pretraining Stage

Baseline* (APTM [73]) 1.51M 213.99 M 38.02 G 3.99 3.62 4.40 3.95 0.77 0.59 18h
Ours (top50) 1.19M 213.99 M 38.00 G 10.25 10.24 12.65 9.37 8.07 2.35 14h

Ours (top50+WoRA) 1.19M 127.37 M 23.21 G 10.71 10.33 13.00 9.59 10.80 3.10 14h*

Finetune Stage

Baseline* (APTM [73]) 0.068M 213.99 M 44.93 G 75.42 66.61 66.32 52.30 67.66 41.98 4.2h
Ours (top50) 0.061M 213.99 M 44.93 G 75.67 66.27 66.40 52.21 67.80 42.38 3.8h

Ours (top50+WoRA) 0.061M 127.37 M 30.13 G 76.38 67.22 66.85 52.49 68.35 42.60 3.8h*

Table 4: Compared with APTMmethod at recall@1 and mAP results on CUHK-PEDES, RSTPReid and ICFG-PEDES. Meanwhile,
we also compare the data volume, params (M) and Flops (G) of the model. Ablation study about our methods on pretrain. The
top50 denotes the results trained by using a pre-trained dataset filtered using a data filtering method. The top50+WoRA is our
ultimate two-stage approach, and by adding WoRA to fine-tune the model, we can improve the performance of the pre-trained
model while saving 19.82% training time. Time* indicates that the time decrease significantly because the bottleneck of model
at other places. Thus, even though we optimize the GPU FPS, it have minimal impact on the overall computation time.

Method top50 ft 90% R@1 mAP

Baseline* 75.42 66.61
Baseline* ! 75.83 66.70
Baseline* ! ! 75.67 66.27

LoRA ! 74.40 64.95
LoRA ! ! 74.29 (-1.38) 65.59 (-0.68)
DoRA ! 75.49 66.92
DoRA ! ! 75.73 (+0.06) 66.75 (+0.48)

WoRA (Ours) ! 75.67 67.09
WoRA (Ours) ! ! 76.38 (+0.71) 67.22 (+0.95)

Table 5: Comparison of our WoRA with baseline, LoRA and
DoRA in the different situations. Finally, the experiment
shows that our methods achieve the best recall@1 and mAP
in %. ft 90% denotes the utilization of our dataset filtering
method to refine the finetune dataset CUHK-PEDES, ulti-
mately retaining 90% of its data for training, while top50 is
using a data filtering approach with a threshold set to top50
for selecting the pre-training dataset MALS.

has achieved the best performance on Recall@1,5,10. As shown
in Table 5, we could observe two points (1) WoRA is better than
both LoRA and DoRA, whether the performance of Recall@1 or
mAP. (2) Furthermore, if we both leverage the top50 and ft90% fil-
tering strategy, WoRA is also the best performing, which surpasses
the baseline by 0.71% Recall@1 and 0.95% mAP under the same
conditions. Meanwhile, in order to compare the effectiveness of
WoRA. We control all the learning rates unchanged and compare
the performance of LoRA, DoRA, and WoRA (ous) in Figure 8. we
use the same ranks for LoRA, DoRA, andWoRA for comparison. We
can clearly see from the figure that under the condition of a fixed
learning rate, the WoRA method proposed by us is consistently
better than the LoRA and DoRA model mAP under the condition of
the same rank. For example, when the same rank is 64, our method
is +0.57% mAP higher than LoRA. +2.38% mAP higher than DoRA.

Figure 8: Compare the performance of LoRA, DoRA, and
WoRA in terms of different rank. Our WoRA consistently
surpasses both LoRA and DoRA on various rank settings.

Therefore, it can be clearly seen that our WoRA method is superior
to DoRA and LoRA under the condition of a fixed learning rate.
The impact of WoRA. We further investigate the impact of Low-
Rank Adaptation on pre-training, where “WoRA” in Table 4 and 5
signifies our Weighted Low-Rank Adaptation approach. Implement-
ing WoRA in the pre-trained models led to a +6.72% boost in Re-
call@1 and a +6.71% enhancement in mAP, concurrently reducing
the time by 22.22%, thereby validating the efficiency of our dataset
filtering and WoRA in model pre-training.

5 CONCLUSION
In this work, we introduce a new Filtering-WoRA paradigm, which
contains a filtering algorithm to identify this crucial data subset and
WoRA layers (Weighted Low-Rank Adaptation) for light fine-tuning.
Filtering strategy for image-text pairs within language-based person
search datasets, designed to isolate a core set from large-scale, noise-
containing datasets of generated image-text pairs. WoRA (Weighted
Low-Rank Adaptation) learning strategy to efficiently update the
portion of model parameters. Extensive experiments indicate that
our approach is 19.82% faster than existing language-based person
search methods while maintaining comparable accuracy with state-
of-the-art (SOTA) language-based person search models. On three
public benchmarks, CUHK-PEDES, RSTPReeid, and ICFG-PEDES,
our method achieves competitive recall rates and mean Average
Precision (mAP).
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