
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOW TRANSFORMERS SOLVE PROPOSITIONAL LOGIC
PROBLEMS: A MECHANISTIC ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown amazing performance on tasks that
require planning and reasoning. Motivated by this, we investigate the internal
mechanisms that underpin a network’s ability to perform complex logical reason-
ing. We first construct a synthetic propositional logic problem that serves as a
concrete test-bed for network training and evaluation. Crucially, this problem de-
mands nontrivial planning to solve. We perform our study on two fronts. First,
we pursue an understanding of precisely how a three-layer transformer, trained
from scratch and attains perfect test accuracy, solves this problem. We are able to
identify certain “planning” and “reasoning” circuits in the network that necessitate
cooperation between the attention blocks to implement the desired logic. Second,
we study how a pretrained LLM, Mistral 7B, solves this problem. Using activa-
tion patching, we characterize internal components that are critical in solving our
logic problem. Overall, our work systemically uncovers novel aspects of small
and large transformers, and continues the study of how they plan and reason.

1 INTRODUCTION

Language models using the transformer architecture (Vaswani et al., 2017) have shown remarkable
capabilities on many natural language tasks (Brown et al., 2020; Radford et al., 2019b). Trained
with causal language modeling wherein the goal is next-token prediction on huge amounts of text,
these models exhibit deep language understanding and generation skills. An essential milestone in
the pursuit of models which can achieve a human-like artificial intelligence, is the ability to perform
human-like reasoning and planning in complex unseen scenarios. While some recent works using
probing analyses have shown that the activations of the deeper layers of a transformer contain rich
information about certain mathematical reasoning problems (Ye et al., 2024), the question of what
mechanisms inside the model enables such abilities remains unclear.

While the study of how transformers reason in general remains a daunting task, in this work,
we aim to improve our mechanistic understanding of how a Transformer reason through simple
propositional logic problems. For concreteness’ sake, consider the following problem:

Rules: A or B implies C. D implies E. Facts: A is true. B is false. D is true.
Question: what is the truth value of C?

An answer with minimal proof is “A is true. A or B implies C; C is true.”

The reasoning problem, while simple-looking on the surface, requires the model to perform several
actions that are essential to more complex reasoning problems, all without chain of thought (CoT).
Before writing down any token, the model has to first discern the rule which is being queried: in this
case, it is “A or B implies C”. Then, it needs to rely on the premise variables A and B to the locate
the relevant facts, and find “A is true” and “B is false”. Finally, it needs to decide that “A is true” is
the correct one to invoke in its answer due to the nature of disjunction. It follows that, to write down
the first token “A”, the model already has to form a “mental map” of the variable relations, value
assignments and query! Therefore, we believe that this is close to the minimal problem to examine
how a model internalizes and plans for solving a nontrivial mathematical reasoning problem where
apparent ambiguities in the problem specification cannot be resolved trivially.
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In this work, we are primarily interested in understanding how transformers solve simple reasoning
problems of this form from the perspective of circuit analysis (Wang et al., 2023; Rauker et al.,
2023): we aim to understand how the transformer utilizes its internal components (attention heads,
MLPs, etc.) to execute the causal path of “QUERY→Answer”. We perform two flavors of ex-
periments. The first is on shallow transformers trained purely on the synthetic propositional logic
problems, where we mainly rely on linear probing and causal interventions to understand the model’s
reasoning strategy. The other set of experiments are on a pre-trained LLM (Mistral-7B), where we
primarily rely on causal intervention techniques and examining the attention statistics to discover
and verify the circuits for explaining the reasoning actions of the model.

At a high level, we make the following discoveries based on our two fronts of analysis:

1. (§3) We discover that small transformers, trained purely on the synthetic problem, utilize cer-
tain “routing embeddings” to significantly alter the information flow of the deeper layers when
solving different sub-categories of the reasoning problem. We also characterize the different
reasoning pathways: we find that problems querying for reasoning chains involving logical op-
erators typically require greater involvement of all the layers in the model.

2. (§4) Of particular interest is our characterization of the circuit which the pretrained LLM
Mistral-7B-v0.1 employs to solve the minimal version of the reasoning problem. We find four
families of attention heads which have surprisingly specialized roles in processing different
sections of the context: queried-rule locating heads, queried-rule mover heads, fact-processing
heads, and decision heads. We find evidence suggesting that the model follows the natural rea-
soning path of “QUERY→Relevant Rule→Relevant Fact(s)→Decision”. We present the circuit
discovery process in §4.3.1, and circuit verification in §4.3.2.

In particular, our analysis of Mistral-7B in §4 is, to our knowledge, the first to characterize the
critical components of the circuit employed by an LLM in the wild for solving a nontrivial logical
reasoning problem (involving distracting clauses) that requires a correct execution of the reason-
ing path “Query→Relevant rule(s)→Relevant fact(s)→Decision” fully in context. Furthermore, we
make concrete progress towards general techniques of verifying the necessity and sufficiency of a
(general-purpose) pretrained LLM’s reasoning circuit.

Additionally, we define the scope of our analysis as follows. First, in the shallow transformer experi-
ments, we focus on the variant which only has self-attention layers in addition to layer normalization,
positional encoding, embedding and softmax parameters. While we could have also included MLP
layers, we choose not to because the no-MLP models already achieve 100% test accuracy on the
problem, and adding MLPs would unnecessarily complicate the analysis. As a second way to focus
the scope of paper, in the Mistral-7B experiments, we do not seek to uncover every model com-
ponent that participates in solving the reasoning problem. Instead, we focus on those which have
the strongest causal influence on the model’s QUERY-sensitive reasoning actions. By doing so, we
can fully justify the necessity of these key components for the model’s reasoning actions, without
guessing about the roles of less-impactful sub-circuits (for handling low-level text processing, for
instance).

1.1 RELATED WORKS

Mechanistic interpretability. Our work falls in the area of mechanistic interpretability, which aims
to understand the mechanisms that enable capabilities of the LLM; such studies involve uncovering
certain “circuits” in the network (Elhage et al., 2021; Olsson et al., 2022; Meng et al., 2022; Vig et al.,
2020; Feng & Steinhardt, 2024; Wu et al., 2023; Wang et al., 2023; Hanna et al., 2024; Merullo et al.,
2024; McGrath et al., 2023; Singh et al., 2024; Feng et al., 2024). While the definition of a “circuit”
varies across different works, in this paper, our definition is similar to the one in Wang et al. (2023):
it is a collection of model components (attention heads, neurons, etc.) with the “edges” in the circuit
indicating the information flow between the components in the forward pass; the “excitation” of the
circuit is the input tokens.

Evaluation of reasoning abilities of LLMs. Our work is also related to the line of work which
focus on empirically evaluating the reasoning abilities of LLMs across different types of tasks (Xue
et al., 2024; Chen et al., 2024; Patel et al., 2024; Morishita et al., 2023; Seals & Shalin, 2024; Zhang
et al., 2023; Saparov & He, 2023; Saparov et al., 2024; Luo et al., 2024; Han et al., 2024; Tafjord
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et al., 2021; Hendrycks et al., 2021; Dziri et al., 2024; Yang et al., 2024). While these studies
primarily benchmark their performance on sophisticated tasks, our work focuses on understanding
“how” transformers reason on logic problems accessible to fine-grained analysis.

Analysis of how LLMs reason. There are far fewer studies that focus on providing fine-grained
analysis of how LLMs reason. To the best of our knowledge, only a handful of works, such as Xue
et al. (2024); Zečević et al. (2023); Ye et al. (2024), share similar goals of understanding how trans-
formers perform multi-step reasoning through detailed empirical or theoretical analysis. However,
none studies the [Variable relationships]+[Variable value assignment]+[Query] type problem in con-
junction with analysis on both small transformers trained purely on the synthetic problem, and large
language models trained on a large corpus of internet data.

Activation patching. At its core, activation patching, a.k.a. causal mediation analysis (Vig et al.,
2020; Meng et al., 2022; Hase et al., 2024; Heimersheim & Nanda, 2024; Zhang & Nanda, 2024),
uses causal interventions for uncovering the internal mechanisms or “circuits” of LLMs that en-
able them to perform certain tasks. Typically, the LLM is run on pairs of “original” and “altered”
prompts, and we search for components inside the model that “alter” the model’s “original behavior”
by replacing parts of the model’s activation with “altered activations” when running on the original
prompts. The opposite “altered→original” intervention can also be adopted.

2 DATA MODEL: A PROPOSITIONAL LOGIC PROBLEM

In this section, we describe the synthetic propositional logic problem that shall be the data model of
this paper. Our problem follows an implicit causal structure, as illustrated in Figure 1. The structure
consists of two distinct chains: exactly one containing a logical operator at the end of the chain, and
one forming a purely linear chain. The two chains do not share any proposition variable.

K D

V E

Logical 
operator A

P T S

Figure 1: Synthetic data model. The causal struc-
ture has two chains: one with a logical operator
(LogOp) at the end and the other being purely a
linear causal chain. They do not share any propo-
sition variable. This example is the length-3 case
and all symbols are explained in §2.

We require the model to generate a minimal
reasoning chain, consisting of “relevant facts”,
proper rule invocations, and intermediate truth
values, to answer the truth-value query. Con-
sider an example constructed from the causal
graph in Figure 1, written in English:

• Rules: K implies D. D or E implies A. V
implies E. T implies S. P implies T.

• Facts: K is true. P is true. V is false.

• Query: A.

• Answer: K is true. K implies D; D is true.
D or E implies A; A is true.

In this example, the QUERY token A is the ter-
minating node of the OR chain. Since any true
input to an OR gate (either D or E) results in A
being true, the minimal solution chooses only
one of the starting nodes from the OR chain to construct its argument: in this case, node K is cho-
sen.

Minimal proof and solution strategy. In general, the problem requires a careful examination of
the rules, facts and query to correctly answer the question. First, the QUERY token determines the
chain to deduce its truth value. Second, if it is the logical-operator (LogOp) chain being queried,
the model needs to check the facts to determine the correct facts to write down at the start of the
reasoning steps (this step can be skipped for queries on the linear chain). Third, the proof requires
invoking the rules to properly deduce the truth value of the query token.

Importance of the first answer token. Correctly writing down the first answer token is central to
the accuracy of the proof, because as discussed in §1, it requires the model to process every part of
the context properly without CoT due to the minimal-proof requirement of the solution.
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3 THE REASONING CIRCUIT IN A SMALL TRANSFORMER

In this section, we study how small GPT-2-like transformers, trained solely on the logic problem,
approach and solve it. While there are many parts of the answer of the transformer which can lead
to interesting observations, in this work, we primarily focus on the following questions:

1. How does the transformer mentally process the context and plan its answer before writing down
any token? In particular, how does it use its “mental notes” to predict the crucial first token?

2. How does the transformer determine the truth value of the query at the end?

We pay particular attention to the first question, because as noted in §2, the first answer token
reveals the most about how the transformer mentally processes all the context information without
any access to chain of thought (CoT). We delay the less interesting answer of question 2 to the
Appendix due to space limitations.

3.1 LEARNER: A DECODER-ONLY ATTENTION-ONLY TRANSFORMER

In this section, we study decoder-only attention-only transformers, closely resembling the form of
GPT-2 (Radford et al., 2019a). We train these models exclusively on the synthetic logic problem.
The LogOp chain is queried 80% of the time, while the linear chain is queried 20% of the time
during training. Details of the model architecture are provided in Appendix B.2.

Architecture choice for mechanistic analysis. We select a 3-layer 3-head transformer to initiate
our analysis since it is the smallest transformer that can achieve 100% test accuracy; we also show
the accuracies of several candidate model sizes in Figure 6 in Appendix B for more evidence. Note
that a model’s answer on a problem is considered accurate only if every token in its answer matches
that of the correct answer. Please refer to Appendix B.2 for an illustration of the model components.

3.2 MECHANISM ANALYSIS

The model approximately follows the strategy below to predict the first answer token:

1. (Linear vs. LogOp chain) At the QUERY position, the layer-2 attention block sends out a special
“routing” signal to the layer-3 attention block, which informs the latter whether the chain being
queried is the linear one or not. The third layer then acts accordingly.

2. (Linear chain queried) If QUERY is for the linear chain, the third attention block focuses almost
100% of its attention weights on the QUERY position, that is, it serves a simple “message
passing” role: indeed, layer-2 residual stream at QUERY position already has the correct (and
linearly decodable) answer in this case.

3. (LogOp chain queried) The third attention block serves a more complex purpose when the Lo-
gOp chain is queried. In particular, the first two layers construct a partial answer, followed by
the third layer refining it to the correct one.

We illustrate the overall reasoning strategy and core evidence for it in Figure 8 in Appendix B.3.

3.2.1 LINEAR OR LOGOP CHAIN: ROUTING SIGNAL AT THE QUERY POSITION

The QUERY token is likely the most important token in the context for the model: it determines
whether the linear chain is being queried, and significantly influences the behavior of the third
attention block. The transformer makes use of this token in its answer in an intriguing way.

Routing direction at QUERY. There exists a “routing” direction hroute present in the embedding
generated by the layer-2 attention block, satisfying the following properties:

1. α1(X)hroute is present in the embedding when the linear chain is queried, and α2(X)hroute

is present when the LogOp chain is queried, where the two αi(X)’s are sample dependent, and
satisfy the property that α1(X) > 0, and α2(X) < 0.

2. The “sign” of the hroute signal determines the “mode” which layer-3 attention operates in at the
ANSWER position. When a sufficiently “positive” hroute is present, layer-3 attention acts as if

4
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QUERY is for the linear chain by placing significant attention weight at the QUERY position.
A sufficiently “negative” hroute causes layer-3 to behave as if the input is the LogOp chain: the
model focuses attention on the rules and fact sections, and in fact outputs the correct first token
of the LogOp chain!

We discuss our empirical evidence below to support and elaborate on the above mechanism.

Evidence 1a: chain-type disentanglement at QUERY. We first observe that, at the QUERY position,
the layer-2 attention block’s output exhibits disentanglement in its output direction depending on
whether the linear or LogOp chain is being queried, as illustrated in Figure 2.

To generate Figure 2, we constructed 200 samples, with the first half querying the linear chain and
the second half querying the LogOp chain. We then extracted the layer-2 self-attention block output
at the QUERY position for each sample, and calculated the pairwise cosine similarity between these
outputs.

Figure 2: Cosine similarity matrix between output
embeddings from layer-2 attention block. Sam-
ples 0 to 99 query for the linear chain, samples
100 to 199 query for the LogOp chain. Observe
the in-group clustering in angle (top left and bot-
tom right), and the negative cross-group cosine
similarity (top right and bottom left).

Evidence 1b: distinct layer-3 attention behav-
ior w.r.t. chain type. When the linear chain
is queried, the layer-3 attention heads predomi-
nantly focus on the QUERY position, with over
90% of their attention weights on the QUERY
position on average (based on 1k test sam-
ples). In contrast, when the LogOp chain is
queried, less than 5% of layer-3 attention is
on the QUERY on average. Instead, attention
shifts to the Rules and Facts sections of the con-
text, as shown in Figure 9 in Appendix B.4.

Observations 1a and 1b suggest that given a
chain type (linear or LogOp), certain direc-
tion(s) in the layer-2 embedding significantly
influences the behavior of the third attention
block in the aforementioned manner. We con-
firm the existence and role of this special direc-
tion and reveal more intriguing details below.

Evidence 1c: computing hroute, and proving its
role with interventions. To erase the instance-
dependent information, we average the output
of the second attention block over 1k samples
where QUERY is for the linear chain. We denote this estimated average as ĥroute which effectively
preserves the sample-invariant signal. To test the influence of ĥroute, we investigate its impact on
the model’s reasoning process, and we observe two intriguing properties:

1. (Linear→LogOp intervention) We generate 500 test samples where QUERY is for the linear
chain. Subtracting the embedding ĥroute from the second attention block’s output causes the
model to consistently predict the correct first token for the LogOp chain on the test samples. In
other words, the “mode” in which the model reasons is flipped from “linear” to “LogOp”.

2. (LogOp→linear intervention) We generate 500 test samples where QUERY is for the LogOp
chain. Adding ĥroute to the second attention block’s output causes the three attention heads in
layer 3 to focus on the QUERY position: greater than 95% of the attention weights are on this
position averaged over the test samples. In this case, however, the model does not output the
correct starting node for the linear chain on more than 90% of the test samples.

It follows that hroute indeed exists, and the “sign” of it determines the attention patterns in layer 3
(and the overall network’s output!) in the aforementioned manner.

3.2.2 ANSWER FOR THE LINEAR AND LOGOP CHAIN

Linear chain: answer at layer-2 residual stream at QUERY position. At this point, it is clear
to us that, when QUERY is for the linear chain, the third layer mainly serves a simple “message

5
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Query

Key/value

Output

Query: E

A or B implies C

Answer:

Queried-rule 
locating heads

(9,25;26), (12,9), (14,24;26)

D is true

Queried-rule 
mover heads
(13,11;22), (15,8)

D implies E

A is true

B is false

Fact-processing 
heads

(16,12;14), (14,26)

Decision heads
(19,8;9;16), (17,25)

Attention head type
(Layer idx, head idx)

Component Legend

Figure 3: High-level properties of Mistral-7B’s reasoning circuit. The (chunks of) input tokens are
on the left, which are passed into the residual stream and processed by the attention heads. We
illustrate the information flow manipulated by the different types of attention heads we identified to
be vital to the reasoning task.

passing” role: it passes the information in the layer-2 residual stream at the QUERY position to the
ANSWER position. One natural question arises: does the input to the third layer truly contain the
information to determine the first token of the answer, namely the starting node of the linear chain?
The answer is yes.

Evidence 2: linearly-decodable linear-chain answer at layer 2. We train an affine classifier with
the same input as the third attention block at the QUERY position, with the target being the start
of the linear chain; the training samples only query for the linear chain, and we generate 5k of
them. We obtain a test accuracy above 97% for this classifier (on 5k test samples), confirming that
layer 2 already has the answer linearly encoded at the QUERY position. To add further contrasting
evidence, we train another linear classifier with exactly the same task as before, except it needs to
predict the correct start of the LogOp chain. We find that the classifier achieves a low test accuracy
of approximately 27%, and exhibits severe overfitting with the training accuracy around 94%.

LogOp chain: partial answer in layers 1 & 2 + refinement in layer 3. To predict the correct
starting node of the LogOp chain, the model employs the following strategy:

1. The first two layers encode the LogOp and only a “partial answer”. More specifically, we find
evidence that (1) when the LogOp is an AND gate, layers 1 and 2 tend to pass the node(s) with
FALSE assignment to layer 3, (2) when the LogOp is an OR gate, layers 1 and 2 tend to pass
node(s) with TRUE assignment to layer 3.

2. The third layer, combining information of the two starting nodes of the LogOp chain, and the
information in the layer-2 residual stream at the ANSWER position, output the correct answer.

We delay the full set of evidence for the above two claims to Appendix B.4 due to space limits.

4 THE REASONING CIRCUIT IN MISTRAL-7B

We now turn to examine how a pretrained LLM, namely Mistral-7B-v0.1, solves this reasoning
problem. We choose this LLM as it is amongst the smallest accessible model which achieves above
70% accuracy on (a minimal version of) our problem. Our primary focus here is the same as in
the previous section: how does the model infer the first answer token without any CoT? We are
interested in this question as the first answer token requires to model to process all the information
in the context properly without access to any CoT.

We illustrate the reasoning circuit inside the model for this prediction task in Figure 3. At a high
level, there are two intriguing properties of the reasoning circuit of the LLM:1

1We use (ℓ, h) to denote an attention head. When referencing multiple heads in the same layer, we write
(ℓ, h1;h2; ...;hn) for brevity.
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1. Compared to the attention blocks, the MLPs are relatively unimportant to correct prediction.
2. There is a sparse set of attention heads that are found to be central to the reasoning circuit:

the queried-rule locating heads, queried-rule mover heads, fact-processing heads, and decision
heads. We discuss circuit discovery in §4.3.1, and circuit verification in §4.3.2.

4.1 MINIMAL PROBLEM DESCRIPTION

In our Mistral-7B experiments, the input samples have the following properties:

1. We give the model 6 (randomly chosen) in-context examples before asking for the answer.
2. The problem is length-2: only one rule involving the OR gate, and one linear-chain rule. More-

over, the answer is always true. In particular, the truth values of the two premise nodes of the
OR chain always have one FALSE and one TRUE.

3. The proposition variables are all (single-token) capital English letters.

The design decision in the first point is to ensure fairness to the LLM which was not trained on our
specific logic problem. As for the last two points, we restrict the problem in this fashion mainly to
ensure that the first answer token is unique, which improves the tractability of the analysis. Note that
these restrictions do not take away the core challenge of this problem: the LLM still needs to process
all the context information without CoT to determine the correct first token. We discuss concrete
examples and finer details of testing the model on this problem in Appendix C.

4.2 CAUSAL MEDIATION ANALYSIS

We provide evidence in this part of the paper primarily relying on a popular technique in mechanistic
interpretability: causal mediation analysis. Our methodology is roughly as follows:

1. Suppose we are interested in the role of the activations of certain components of the LLM in a
certain (sub-)task. For a running example, say we want to understand what role the attention
heads play in processing and passing QUERY information to the “:” position for inference. Let
us denote the activations as Aℓ,h;t(X), representing the activation of head h in layer ℓ, at token
position t.

2. Typically, the analysis begins by constructing two sets of prompts which differ in subtle ways. A
natural construction in our example is as follows: define sets of samples Dorig and Dalt, where
Xorig,n and Xalt,n have exactly the same context, except in Xorig,n, QUERY is for the LogOp
chain, while in Xalt,n, QUERY is for the linear chain. Moreover, denote the correct targets
yorig,n and yalt,n respectively.

3. We run the LLM on Dorig and Dalt, caching the attention-head activations. We also obtain the
logits of the model. We can compute the model’s logit differences

∆orig,n = logit(Xorig,n)[yorig,n]− logit(Xorig,n)[yalt,n],

∆alt,n = logit(Xalt,n)[yalt,n]− logit(Xalt,n)[yorig,n].
(1)

For a high-accuracy model, ∆orig,n and ∆alt,n should be large and positive for most n’s, since
most of the time it must be able to clearly tell that on an Xorig,n, it is the LogOp chain which is
being queried, not the linear chain (similarly on an Xalt,n).

4. We now perform intervention for all n, ℓ, h and t:
(a) Run the model on Xorig,n, however, replacing the original activation Aℓ,h;t(Xorig,n) by

the altered Aℓ,h;t(Xalt,n). Now let the rest of the run continue.2 Let us denote the logits
obtained in this intervened run as logit→alt;(ℓ,h,t)(Xorig,n).

(b) Now compute the intervened logit difference

∆orig→alt,n;(ℓ,h,t) = logit→alt;(ℓ,h,t)(Xorig,n)[yalt,n]− logit→alt;(ℓ,h,t)(Xorig,n)[yorig,n].

5. Average the ∆orig→alt,n;(ℓ,h,t)’s over n for every ℓ, h and t (recall that n is the sample index).

2Please note that layers ℓ + 1 to L are influenced at and after token position t, and technically speaking,
now operate “out of distribution”.
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(12,9) (13,11;22)

(19,8;9;16)

(16,12;14)

(16,0)
(17,25)

(14,24;26)
(15,8)

(a) Calibrated intervened logit 
difference of the attention heads

(b) Calibrated intervened logit 
difference of the MLPs

Figure 4: Attention head and MLP output patching results (over all token positions in relevant
context) in (a) and (b) respectively. The closer to 1, the greater the causal influence a component has
on the LLM’s correct inference. We highlight the heads with the highest intervened logit difference
in (a). We observe that only a small set of attention heads, and the first MLP layer exhibit strong
causal influence on the model’s correct inference.

6. This procedure helps us identify components that are significant in processing the QUERY infor-
mation for inference. Intuitively, an activation that result in a positive and large ∆orig→alt,n;(ℓ,t)

(with an ideal upper limit being ∆alt,n) play a significant role in this subtask, because this acti-
vation helps “altering” the model’s “belief” from “QUERY is for the LogOp chain” to “QUERY
is for the linear chain”. We denote the components identified as a set C.

7. Remark: due to the symmetry of this running example, it is perfectly sensible to perform
alt → orig interventions too, by mirroring the above procedures; we indeed adopt this mir-
rored procedure too in our experiments for efficient use of model computations.

QUERY-based activation patching is important to reasoning circuit discovery and verification.
To justify this claim, there are two points to emphasize first. (1) To solve the reasoning problem, the
QUERY is critical to initiating the reasoning chain: without it, the rules and facts are completely
useless; with it, the reasoner can then proceed to identify the relevant rules and facts to predict the
answer. (2) The prompt pairs differ only by the QUERY token: there is complete information for
the model to provide answer for both chains given the QUERY.

If performing the aforementioned interventions on a model component leads to a large intervened
logit difference (i.e. it alters the model’s “belief”), then this component must be integral to the
reasoning circuit, because the component is now identified to be QUERY-sensitive and has causal
influence on (parts of) the model’s reasoning actions. Furthermore, if on (most of) the prompt
pairs, by patching all the circuit components in C simultaneously while freezing the rest causes
the intervened logit difference to approach the “maximal” altered logit difference3, then we obtain
evidence suggesting sufficiency of C for explaining the LLM’s (QUERY-sensitive) reasoning actions.

For greater clarity, we provide illustrations of the intervention experiments in Appendix C.2.

4.3 CIRCUIT ANALYSIS

In this section, we discuss properties of the reasoning circuit of Mistral-7B. The order by which we
present the results will roughly follow the process which we discovered and verified the circuit; we
believe this adds greater transparency to the circuit analysis process. We delay the more involved
(and complete) set of experimental results to Appendix C.

4.3.1 CIRCUIT DISCOVERY: NECESSITY-BASED SEARCH FOR MODEL COMPONENTS

We initiate our analysis with QUERY-based patching, following the same procedure as detailed in
§4.2. In this set of experiments, we discover the main attention heads responsible for processing the
context and performing inference as introduced in the beginning of this Section.

3In this case, we simply consider the “maximal” altered logit difference to be the logit difference of the
model run on the altered prompts without interventions, i.e. the ∆alt,n’s.
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Queried-rule locating

Fact processing
Queried-rule mover

Decision

(a) Query (b) Typical attention pattern (c) Value

Figure 5: Patching of query and value activations in (a) and (c); we found that intervening the key
activations only yield trivial scores, so we do not report them here. We show in (b) the typical
attention patterns of a representative set of the attention heads which are identified to be important
in the intervention experiments shown in (a) and (c). There are several distinct observations which
can be made in (b). Queried-rule locating head (12,9): observe that it correctly locates the queried
rule which ends with Q. Queried-rule mover head (13,11): the only token position which it focuses
on is the QUERY token Q. Fact processing head (16,14): attention concentrates in the fact section.
Decision head (19,8): attention focused on the correct first answer token K.

High-level interventions. Figure 4(a) helps us locate a small set of attention heads which are cen-
tral to the “belief altering” of the LLM. More specifically, only attention heads (12,9), (13,11;22),
(14,24;26), (16,0;12;14), (17,25), (19,8;9;16), and (9,25;26)4 are observed with relatively high inter-
vened logit differences. As for the MLPs, shown in Figure 4(b), play little role in this circuit, except
for MLP-0. However, MLP-0 had been observed to act more as a “nonlinear token embedding” than
a complex high-level processing unit (Wang et al., 2023). In the rest of this section, we primarily
devote our analysis to the attention heads, and leave the exact role of the MLPs to future work.

Remark. In Figure 4 and the rest, unless otherwise specified, we adopt a calibrated version of the
logit difference (see Appendix C): the closer to 1, the more significant the component is in “altering”
the “belief” of the model on the selected subtask.

Attention-head sub-component patching (QUERY-based patching). We now aim to understand
why the attention heads identified in the last sub-section are important. For now, we continue with
QUERY altering in the prompt pairs. Through intervening on the sub-components of each attention
head, namely their value, key, and query, and through examining details of their attention weights,
we find that there are roughly four types of attention heads. We show the results in Figure 5.

1. Queried-rule locating head. Attention head (12,9)’s query activation has a large intervened
logit difference according to Figure 5(a), therefore, its query and attention patterns are QUERY-
dependent and contribute to altering the model’s “belief”. Furthermore, at the QUERY position,
we find that on average, its attention weight is above 90% at the “conclusion” variable of the
rule being queried. In other words, it is responsible for locating the queried rule, and storing that
rule’s information at the QUERY position.5

2. Queried-rule mover head. Attention head (13,11)’s value activations have large intervened logit
difference, and intriguingly, its query and key activations do not share that tendency. This al-
ready suggests that its attention pattern performs a fixed action on both the original and altered
prompts, and only the value information is sensitive to QUERY. Furthermore, within the rele-
vant context (excluding the 6 in-context examples given), (13,11) assigns above 50% attention
weight to the QUERY position, and its attention weight at QUERY is about 10 times larger than
the second largest one on average. Recalling the role of layer 12, we find evidence that (13,11)
moves the QUERY and queried-rule information to the “:” position.6

4We discover these two heads with a slightly different patching experiment, presented in Appendix C.3.2.
5(9,25;26), (14,24;26) exhibit similar tendencies, albeit with smaller intervened logit differences.
6(13,22), (15,8), (16,0) also appear to belong to this type, albeit with smaller intervened logit difference.
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3. Fact processing heads. Attention heads (16,12;14) and (14,26)’s query activations have large
intervened logit differences. Within the relevant context, at the “:” token position, their attention
weights are above 56, 80 and 63% respectively in the fact section of the context (starting from
“Fact” and ending on “.” before “Question”).

4. Decision head. Attention head (19,8)’s query activations have large intervened logit differences.
Its attention pattern suggests that it is a “decision” head: within the relevant context, when the
model is correct, the head’s top-2 attention weights are always on the correct starting node of
the queried rule and the correct variable in the fact section, and the two token positions occupy
more than 60% of its total attention in the relevant context on average. In other words, it already
has the answer.7

Due to the space limits, we delay detailed inspection and visualization of the attention statistics
to Appendix C.3.3, and finer-grained activation patching experiments examining the function of the
attention head families to Appendix C.5 (queried-rule locating heads) and C.6 (fact-processing heads
and decision heads). Moreover, we discuss some preliminary evidence which shows the surprising
similarities of the attention circuit in Gemma-2-9B to Mistral-7B’s for solving the logic problem in
Appendix C.7.

4.3.2 CIRCUIT VERIFICATION: A SUFFICIENCY TEST

A natural question now arises: is C sufficient to explain the (QUERY-sensitive) reasoning ac-
tions of the LLM? As explained in §4.2, we quantify sufficiency by measuring the “belief”
altering effect of the circuit, and test C as follows. Given the original and altered prompt
pairs {(Xorig,n,Xalt,n)}n∈[N ] which differ only by QUERY, we aim to verify that, simul-
taneously patching Aℓ,h;t(Xorig,n) → Aℓ,h;t(Xalt,n) for every attention head in the circuit
C = {(12, 9), (13, 11), (16, 12), (19, 8), ...} at their functioning token positions, while freezing all
the other attention heads to the original activations Aℓ,h;t(Xorig,n), lead to the average circuit-
intervened logit difference ∆C

orig→alt = 1
N

∑N
n=1 ∆

C
orig→alt,n approaching or surpassing the av-

erage logit difference of the (un-intervened) model run on the altered prompts, namely ∆alt =
1
N

∑N
n=1 ∆alt,n. We confirm this hypothesis below:

C† Cnull C C −QRLH C −QRMH C − FPH C −DH

∆C†

orig→alt/∆alt -1.0 0.98 -1.02 -0.99 -0.25 -0.89

Table 1: ∆C†

orig→alt/∆alt, with different choices of C†. Cnull denotes the empty circuit, i.e. the case
where no intervention is performed. We abbreviate the attention head families, for example, DH =
decision heads; C −DH = full circuit but with the decision heads removed.

We find that by patching all 14 attention heads in C, ∆C
orig→alt is about 98% of the “maximal”

average logit difference ∆alt on the altered samples. Moreover, removing any one of the four
families of attention heads from C in the circuit interventions renders the “belief altering” effect of
the intervention almost trivial. We present further discussions of the experimental procedure and
results, and caveats of reasoning circuit verification in Appendix C.4.

5 CONCLUSION

We studied the reasoning mechanisms of both small transformers and LLMs on a synthetic proposi-
tional logic problem. We analyzed a shallow decoder-only attention-only transformer trained purely
on this problem as well as a pretrained Mistral-7B LLM. We uncovered interesting mechanisms
the small and large transformers adopt to solve the problem. For the small models, we found
the existence of “routing” signals that significantly alter the model’s reasoning pathway depending
on the sub-category of the problem instance. For Mistral-7B, we characterized the circuit formed
by four families of attention heads that implement the reasoning pathway of “QUERY→Relevant
Rule→Relevant Facts→Decision”, and make concrete progress towards evaluating the necessity and
sufficiency of the reasoning circuit through carefully designed causal interventions. These findings
provide valuable insights into the inner workings of LLMs on mathematical reasoning problems.

7(17,25), (19,9;16) exhibit similar tendencies, albeit with smaller intervened logit differences.
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A PROPOSITIONAL LOGIC PROBLEM AND EXAMPLES

In this section, we provide a more detailed description of the propositional logic problem we study
in this paper, and list representative examples of the problem.

At its core, the propositional logic problem requires the reasoner to (1) distinguish which chain type
is being queried (LogOp or linear), and (2) if it is the LogOp chain being queried, the reasoner must
know what truth value the logic operator outputs based on the two input truth values.

Below we provide a comprehensive list of representative examples of our logic problem at length
2 (i.e. each chain is formed by one rule). We use [Truth values] to denote the relevant input truth
value assignments (i.e. relevant facts) to the chain being queried below.

1. Linear chain queried, [True]
• Rules: A or B implies C. D implies E.
• Facts: A is true. B is true. D is true.
• Question: what is the truth value of C?
• Answer: D true. D implies E; E True.

2. Linear chain queried, [False]
• Rules: A or B implies C. D implies E.
• Facts: A is true. B is true. D is false.
• Question: what is the truth value of C?
• Answer: D false. D implies E; E undetermined.

3. LogOp chain queried, LogOp = OR, [True, True]
• Rules: A or B implies C. D implies E.
• Facts: A is true. B is true. D is true.
• Question: what is the truth value of C?
• Answer: B true. A or B implies C; C True.

Remark. In this case, the answer “A true. A or B implies C; C True” is also correct.
4. LogOp chain queried, LogOp = OR, [True, False]

• Rules: A or B implies C. D implies E.
• Facts: A is true. B is false. D is true.
• Question: what is the truth value of C?
• Answer: A true. A or B imples C; C True.

5. LogOp chain queried, LogOp = OR, [False, False]
• Rules: A or B implies C. D implies E.
• Facts: A is false. B is false. D is true.
• Question: what is the truth value of C?
• Answer: A false B false. A or B implies C; C undetermined.

6. LogOp chain queried, LogOp = AND, [True, True]
• Rules: A and B implies C. D implies E.
• Facts: A is true. B is true. D is true.
• Question: what is the truth value of C?
• Answer: A true B true. A and B implies C; C True.

7. LogOp chain queried, LogOp = AND, [True, False]
• Rules: A and B implies C. D implies E.
• Facts: A is true. B is false. D is true.
• Question: what is the truth value of C?
• Answer: B false. A and B implies C; C undetermined.

8. LogOp chain queried, LogOp = AND, [False, False]
• Rules: A and B implies C. D implies E.
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• Facts: A is false. B is false. D is true.
• Question: what is the truth value of C?
• Answer: A false. A and B implies C; C undetermined.

Remark. In this case, the answer “B false. A and B implies C; C undetermined” is also correct.

The length-3 case is a simple generalization of this set of examples, so we do not cover those
examples here.

B LENGTH-3 SMALL TRANSFORMER STUDY: EXPERIMENTAL DETAILS

B.1 DATA DEFINITION AND EXAMPLES

As illustrated in Figure 1, the propositional logic problem always involve one logical-operator (Lo-
gOp) chain and one linear chain. In this paper, we study the length-3 case for the small-transformer
setting, and length-2 case for the Mistral-7B-v0.1 case.

The input context has the following form:

RULES_START K implies D. V implies E. D or E implies A.
P implies T. T implies S. RULES_END
FACTS_START K TRUE. V FALSE. P TRUE. FACTS_END
QUERY_START A. QUERY_END
ANSWER

and the answer is written as

K TRUE. K implies D; D TRUE. D or E implies A; A TRUE.

In terms the the English-to-token mapping, RULES_START, RULES_END, FACTS_START,
FACTS_END, QUERY_START, QUERY_END ANSWER, . and ; are all unique single tokens. The
logical operators and and or and the connective implies are unique single tokens. The proposi-
tion variables are also unique single tokens.
Remark. The rules and facts are presented in a random order in the respective sections of the context
in all of our experiments unless otherwise specified. This prevents the model from adopting position-
based shortcuts in solving the problem.

Additionally, for more clarity, it is entirely possible to run into the scenario where the LogOp chain
is queried, LogOp = OR and the two relevant facts both have FALSE truth values (or LogOp = AND
and both relevant facts are TRUE), in which case the answer is not unique. For instance, if in the
above example, both K and V are assigned FALSE, then both answers below are logically correct:

K FALSE V FALSE. K implies D; D UNDETERMINED. V implies E;
E UNDETERMINED. D or E implies A; A UNDETERMINED.

and

V FALSE K FALSE. V implies E; E UNDETERMINED.
K implies D; D UNDETERMINED. D or E implies A; A UNDETERMINED.

Problem specification. In each logic problem instance, the proposition variables are randomly
sampled from a pool of 80 variables (tokens). The truth values in the fact section are also randomly
chosen. In the training set, the linear chain is queried 20% of the time; the LogOp chain is queried
80% of the time. We train every model on 2 million samples.

Architecture choice. Figure 6 indicates the reasoning accuracies of several candidate model vari-
ants. We observe that the 3-layer 3-head variant is the smallest model which achieves 100% accu-
racy. We found that 3-layer 2-head models, trained of some random seeds, do converge and obtain
near 100% in accuracy (typically above 97%), however, they sometimes fail to converge. The 3-layer
3-head variants we trained (3 random seeds) all converged successfully.
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Figure 6: Reasoning accuracies of several models on the length-3 problem. x-axis: model architec-
ture (number of layers, number of heads); y-axis: reasoning accuracy. Note that the 3-layer 3-head
variant is the smallest which obtains 100% accuracy on the logic problems.

B.2 SMALL-TRANSFORMER CHARACTERISTICS, AND TRAINING DETAILS

B.2.1 TRANSFORMER DEFINITION

The architecture definition follows that of GPT-2 closely. We illustrate the main components of this
model in Figure 7, and point out where the frequently used terms in the main text of our paper are
in this model.

Input

Attention block 
L=1

+

Attention block 
L=2

+

Attention block 
L=3

+

Linear classifier

Layer-1 residual stream

Layer-2 residual stream

Layer-3 residual stream

Layer-3 attention block 
embedding

Layer-2 attention block 
embedding

Layer-1 attention block 
embedding

Output

Attn 1

Attn 2

Rep’n @ 
position 1

Rep’n @ 
position 2

Rep’n @ …

Rep’n @ 
position t Value 1

Value 2
Projection

Attention block 
embedding at token 

position t

Attention block embedding

Attention weights/probabilities

Figure 7: Illustration of the major components of a 3-layer attention-only decoder-only transformer
on the left, and a rough “sketch” of what is computed inside an attention block (2 attention heads for
simplicity of the sketch).

The following is the more technical definition of the model. Define input x = (x1, x2, ..., xt) ∈ Nt,
a sequence of tokens with length t. It is converted into a sequence of (trainable) token embeddings
Xtoken = (e(x1), e(x2), ..., e(xt))

T ∈ Rt×de , where we denote the hidden embedding dimension
of the model with de. Adding to it the (trainable) positional embeddings P = (p1,p2, ...,pt)

T ∈
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Rt×de , we form the zero-th layer embedding of the transformer
X0 = Xtoken + P = (e(x1) + p1, ..., e(xt) + pt). (2)

This zero-th layer embedding is then processed by the attention blocks as follows.

Let the model have L layers and H heads. For layer index ℓ ∈ [L] and head index j ∈ [H], attention
head Aℓ,j is computed by

Aℓ,j(Xℓ−1) = S
(

causal
[

1√
dh

(
Qℓ,jX̃

T
ℓ−1

)T

Kℓ,jX̃
T
ℓ−1

])
X̃ℓ−1V

T
ℓ,j ∈ Rt×dh , (3)

where dh = de

H .

We explain how the individual components are computed below.

• Let us begin with how the S(...) term is computed.

• X̃ℓ−1 = LayerNorm(Xℓ−1) ∈ Rt×de , where LayerNorm denotes the layer normalization oper-
ator (Ba et al., 2016).

• Qℓ,j ,Kℓ,j ∈ Rdh×de are the key and query matrices of attention head (ℓ, j), where dh = de

H .
They are multiplied with the input X̃ℓ−1 to obtain the query and key activations Qℓ,jX̃

T
ℓ−1 and

Kℓ,jX̃ℓ−1, both in the space Rdh×t. We then perform the “scaled dot-product” of the query and
key activations to obtain

1√
dh

(
Qℓ,jX̃

T
ℓ−1

)T

Kℓ,j , X̃
T
ℓ−1 ∈ Rt×t, (4)

which was introduced in Vaswani et al. (2017) and also used in GPT2 (Radford et al., 2019b).
• The causal mask operator causal : Rt×t → Rt×t allows the lower triangular portion of the input

(including the diagonal entries) to pass through unchanged, and sets the upper triangular portion
of the input to −U , where U is a very large positive number (some papers simply denote this
−U as −∞). In other words, given any M ∈ Rt×t and (i, k) ∈ [t]× [t],

[causal [M ]]i,k = [M ]i,k , if i ≥ k;

[causal [M ]]i,k = −U, if i < k.
(5)

• S : Rt×t → Rt×t is the softmax operator, which computes the row-wise softmax output from
the input square matrix. In particular, given a square input matrix M ∈ Rt×t with its upper
triangular portion set to −U (note that the causal mask operator indeed causes the input to S to
have this property), we have

[S(M)]i,k =
exp ([M ]i,k)∑i
n=1 exp([M ]i,n)

, if i ≥ k;

[S(M)]i,k = 0, if i < k.

(6)

• To recap a bit, we have now explained how to compute the first major term in equation 3, namely

S
(

causal
[

1√
dh

(
Qℓ,jX̃

T
ℓ−1

)T

Kℓ,jX̃
T
ℓ−1

])
∈ [0, 1]t×t. It reflects the attention pattern (also

called attention probabilities) of the attention head (ℓ, j) illustrated in Figure 7’s right half.
Intuitively speaking, the (i, k) entry of this t by t matrix reflects how much the attention head
moves the information from the previous layer ℓ − 1 at the source token position of k to the
current layer ℓ at the target token position i.

• Now what about X̃ℓ−1V
T
ℓ,j? Vℓ,j ∈ Rdh×de is the value matrix of attention head (ℓ, j). It is

multiplied with X̃ℓ−1 to obtain the value activation X̃ℓ−1V
T
ℓ,j ∈ Rt×dh .

• At this point, we have shown how the whole term in equation equation 3 is computed.

Having computed the output of the all H attention heads in the attention block at layer ℓ, we find
the output of the attention block as follows:

Xℓ = Xℓ−1 + Concat[Aℓ,1(Xℓ−1), ...,Aℓ,H(Xℓ−1)]W
T
O,ℓ. (7)

The operators are defined as follows:
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• Concat[·] is the concatenation operator, where Concat[Aℓ,1(Xℓ−1), ...,Aℓ,H(Xℓ−1)] ∈ Rt×de .

• WO,ℓ ∈ Rde×de is the projection matrix (sometimes called output matrix) of layer ℓ. In our
implementation, we allow this layer to have trainable bias terms too.

Finally, having computed, layer by layer, the hidden outputs Xℓ,t for ℓ ∈ [L], we apply an affine
classifier (with softmax) to obtain the output of the model

f(x) = S(X̃L,tW
T
class + bclass) (8)

This output indicates the probability vector of the next word.

In this paper, we set the dimension of the hidden embeddings de = 768.

B.2.2 TRAINING DETAILS

In all of our experiments, we set the learning rate to 5× 10−5, and weight decay to 10−4. We use a
batch size of 512, and train the model for 60k iterations. We use the AdamW optimizer in PyTorch,
with 5k iterations of linear warmup, followed by cosine annealing to a learning rate of 0. Each model
is trained on a single V100 GPU; the full set of models take around 2 - 3 days to finish training.

B.3 HIGH-LEVEL REASONING STRATEGY OF THE 3-LAYER TRANSFORMER

We complement the text description of the reasoning strategy of the 3-layer transformer in the main
text with Figure 8 below. It not only presents the main strategy of the model, but also summarizes
the core evidence for specific parts of the strategy.

Query for linear chain Query for LogOp chain

Layer 2 sends “                ” to layer 3 
at QUERY position

Layer 3 @ ANSWER focuses ~100% 
attention on QUERY position

Layer 2 sends “                  ” to layer 3 
at QUERY position

Layer 3 @ ANSWER allocates ~0% attention on 
QUERY, instead focuses on rules and facts

Layer-2 resid stream @ QUERY:
linearly decodable answer

Layer-2 resid stream @ ANSWER: 
Linearly decodable “partial” answer

Layer-3 pre-projection embd @ ANSWER: 
Linearly decodable relevant premise variables

Layer-3 post-projection embd @ ANSWER: 
linearly decodable answer

Query type

Routing in layer 2

Routing-dependent 
action in layer 3

Answer

Answer

Answer

Figure 8: High-level overview of how the 3-layer transformer solves the logic problem. As shown
in the grey blocks on the left, the model performs “routing” in layer 2 by sending a routing signal
hroute to layer 3 (with its “sign” dependent on the query type), then the layer-3 attention block acts
according to the “sign” of the routing signal sent to it. The middle (right) chain shows the strategy
when the problem queries for linear (LogOp) chain.

B.4 ANSWER FOR THE LOGOP CHAIN

Evidence 3a: Distinct behaviors of affine predictors at different layers. We train two affine classifiers
at two positions inside the model (each with 10k samples): Wresid,ℓ=2 at layer-2 residual stream,
and Wattn,ℓ=3 at layer-3 attention-block output, both at the position of ANSWER, with the target
being the correct first token. In training, if there are two correct answers possible (e.g. OR gate,
starting nodes are both TRUE or both FALSE), we randomly choose one as the target; in testing,
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we deem the top-1 prediction “correct” if it coincides with one of the answers. We observe the
following predictor behavior on the test samples:

1. Wattn,ℓ=3 predicts the correct answer 100% of the time.
2. Wresid,ℓ=2 always predicts one of the variables assigned FALSE (in the fact section) if LogOp

is the AND gate, and predicts one assigned TRUE if LogOp is the OR gate.

Evidence 3b: linearly decodable LogOp information from first two layers. We train an affine clas-
sifier at the layer-2 residual stream to predict the LogOp of the problem instance, over 5k samples
(and tested on another 5k samples). The classifier achieves greater than 98% accuracy. We note that
training this classifier at the layer-1 residual stream also yields above 95% accuracy.

Evidence 3c: identification of LogOp-chain starting nodes at layer 3. Attention heads (3,1) and
(3,3), when concatenated, produce embeddings which we can linearly decode the two starting nodes
of the LogOp chain with test accuracy greater than 98%. We also find that they focus their attention
in the rule section of the context (as shown in Figure 9). Due to causal attention, this means that
they determine the two starting nodes from the LogOp-relevant rules. Remark. The above pieces
of observations suggest the “partial information→refinement” process.8 To further validate that the
embedding from the first two layers are indeed causally linked to the correct answer at the third
layer, we perform an activation patching experiment.

Evidence 3d: linear non-decodability of linear chain’s answer. To provide further contrasting evi-
dence for the linear decodability of the LopOp chain’s answer, we experimentally show that it is not
possible to linearly decode the answer of the linear chain in the model. Due to the causal nature of
the reasoning problem (it is only possible to know the answer at or after the QUERY token position),
and the causal nature of the decoder-only transformer, we train a set of linear classifiers on all token
positions at or after the QUERY token and up to the ANSWER token, and on all layers of the resid-
ual stream of the transformer. We follow the same procedure as in Evidence 3c, except in this set of
experiments, for contrasting evidence, QUERY is for the LopOp chain, while the classifier is trained
to predict the answer of the Linear chain. The maximum test accuracy of the linear classifiers across
all aforementioned token positions and layer indices is only 32.7%. Therefore, the answer of the
Linear chain is not linearly encoded in the model when QUERY is for the LopOp chain.

Evidence 3e: layer-2 residual stream at ANSWER is important to correct prediction. We verify that
layer-3 attention does rely on information in the layer-2 residual stream (at the ANSWER position):

• Construct two sets of samples D1 and D2, each of size 10k: for every sample X1,n ∈ D1

and X2,n ∈ D2, the context of the two samples are exactly the same, except the LogOp is
flipped, i.e. if X1,n has disjunction, then X2,n has the conjunction operator. If layer 3 of the
model has no reliance on the Residℓ=2 (layer-2 residual stream) for LogOp information at the
ANSWER position, then when we run the model on any X2,n, patching Residℓ=2(Xn,2) with
Residℓ=2(Xn,1) at ANSWER should not cause significant change to the model’s accuracy of
prediction. However, we observe the contrary: the accuracy of prediction degrades from 100%
to 70.87%, with standard deviation 3.91% (repeated over 3 sets of experiments).

Observation: LogOp-relevant reasoning at the third layer. We show that the output from attention
heads (3,1) and (3,3) (before the output/projection matrix of the layer-3 attention block), namely
A3,1(X2) and A3,3(X2), when concatenated, contain linearly decodable information about the two
starting nodes of the LogOp chain. We frame this as a multi-label classification problem, detailed as
follows:

1. We generate 5k training samples and 5k test samples, each of whose QUERY is for the LogOp
chain. For every sample, we record the target as a 80-dimension vector, with every entry set to 0
except for the two indices corresponding to the two proposition variables which are the starting
nodes of the LogOp chain.

2. Instead of placing softmax on the final classifier of the transformer, we use the Sigmoid function.
Moreover, instead of the Cross-Entropy loss, we use the Binary Cross-Entropy loss (namely the

8In fact, the observations suggest that layer 3 performs a certain “matching” operation. Take the OR gate
as an example. Knowing which of the three starting nodes (for LogOp and linear chain) are TRUE, and which
two nodes are the starting nodes for the LogOp chain are sufficient to determine the first token! This exact
algorithm, however, is not fully validated by our evidence; we leave this as part of our future work.
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torch.nn.functional.binary cross entropy with logits in PyTorch, which
directly includes the Sigmoid for numerical stability).

3. We train an affine classifier, with its input being the concatenated Concat[A3,1(X2),A3,3(X2)]
(a 512-dimensional vector) on every training sample, and with the targets and training loss de-
fined above. We use a constant learning rate of 0.5 × 10−3, and weight decay of 10−2. The
optimizer is AdamW in PyTorch.

4. We assign a “correct” evaluation of the model on a test sample only if it correctly outputs the
two target proposition variable as the top-2 entries in its logits. We observe that the classifier
achieves greater than 98% once it converges.

Figure 9: Attention statistics, averaged over 500 samples, all of which query for the LogOp chain.
The x-axis is simply an example prompt that helps illustrate where the attention is really placed at.
Observe that only attention head (3,2) pays significant attention to the fact section. The other two
heads focus on the rule section. Note that none of them concentrate attention on the QUERY token.
Reminder: due the the design of the problem, the rule, fact and query sections all have consistent
length for every sample!

B.5 EXTRA REMARKS

Observation 3 supplement: linearly-decodable linear-chain answer at layer 2. We simply frame
the learning problem as a linear classification problem. The input vector of the classifier is the same
as the input to the layer-3 self-attention block, equivalently the layer-2 residual-stream embedding.
The output space is the set of proposition variables (80-dimensional vector). We train the classifier
on 5k training samples (all whose QUERY is for the linear chain) using the AdamW optimizer, with
learning rate set to 5× 10−3 and weight decay of 10−2. We verify that the trained classifier obtains
an accuracy greater than 97% on an independently sampled test set of size 5k (all whose QUERY is
for the linear chain too).

Remarks on truth value determination. Evidence suggests that determining the truth value of the
simple propositional logic problem is easy for the model, as the truth value of the final answer is
linearly decodable from layer-2 residual stream (with 100% test accuracy, trained on 10k samples)
when we give the model the context+chain of thought right before the final truth value token. This
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is expected, as the main challenge of this logic problem is not about determining the query’s truth
value, but about the model spelling out the minimal proof with careful planning. When abundant
CoT tokens are available, it is natural that the model knows the answer even in its second layer.

C THE REASONING CIRCUIT IN MISTRAL-7B: EXPERIMENTAL DETAILS

C.1 PROBLEM FORMAT

We present six examples of the propositional-logic problem in context to the Mistral-7B model, and
ask for its answer to the seventh problem. An example problem is presented below.

Rules: Z or F implies B. D implies C.
Facts: D is true. Z is true. F is false.
Question: state the truth value of C.
Answer: D is true. D implies C; C is true.
Rules: U implies Y. G or I implies Q.
Facts: I is true. U is true. G is false.
Question: state the truth value of Y.
Answer: U is true. U implies Y; Y is true.
Rules: G or Z implies E. U implies K.
Facts: U is true. G is true. Z is false.
Question: state the truth value of E.
Answer: G is true. G or Z implies E; E is true.
Rules: G implies U. Y or A implies V.
Facts: Y is true. G is true. A is false.
Question: state the truth value of V.
Answer: Y is true. Y or A implies V; V is true.
Rules: U implies W. H or B implies L.
Facts: B is false. U is true. H is true.
Question: state the truth value of W.
Answer: U is true. U implies W; W is true.
Rules: F or A implies Y. E implies I.
Facts: A is false. F is true. E is false.
Question: state the truth value of Y.
Answer: F is true. F or A implies Y; Y is true.
Rules: B or F implies D. S implies T.
Facts: S is true. F is true. B is false.
Question: state the truth value of T.
Answer:

Remark. To ensure fairness to the LLM, we balance the number of in-context examples which
queries the OR chain and the linear chain: each has 3 in-context examples. The order in which the
in-context examples are presented (i.e. the order in which the examples with OR or linear-chain
answer) is random. Please note that, in the six in-context examples, we do allow the truth value
assignment for the premise variable of the linear chain to be FALSE when this chain is not being
queried, however, the actual question (the seventh example which the model needs to answer) always
sets the truth value assignment of the linear chain to be TRUE, so the model cannot take a shortcut
and bypass the “QUERY→Relevant Rule” portion of the reasoning path.

Additionally, when reporting the accuracy of the model being above 70% in the main text, we
are querying the model for the LogOp and linear chain with 50% probability respectively. More
precisely, we test the model on 400 samples, and we find that the model has 96% accuracy when
QUERY is for the linear chain, and 70% accuracy when QUERY is for the OR chain (so they average
above 70% accuracy).

C.2 CAUSAL MEDIATION ANALYSIS: FURTHER EXPLANATIONS

This subsection complements the causal mediation analysis methodologies we presented in §4.2 in
the main text. In particular, we aim to visualize how the interventions are done in the circuit discov-
ery and verification processes, by using a 2-layer 2-head transformer as an example for simplicity.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 10 illustrates the activation patching procedure of circuit discovery. Recall that we are study-
ing how a component inside the transformer causally influences the output of the model. In the
specific example, we show how we would examine the causal influence of attention head (0,2)’s
activations on the correct inference of the model.

Original Input

MLP0

+

(0,1) (0,2)

+

MLP1

+

+

Classifier

Altered Input

MLP0

+

(0,2)

(1,1) (1,2)

Patch altered activation 
onto the original one!

Original Input

MLP0

+

(0,1) (0,2)

+

MLP1

+

+

Classifier

(1,1) (1,2)

Altered activations

Original activations

Patching-influenced activations

Causal influence ✓

Figure 10: Illustration of how activation patching is performed in the circuit-discovery process
(necessity-based patching). We use a 2-layer 2-head transformer as a simplified example here, and
use (ℓ, h) to denote an attention head.
In this specific illustrated example, we are studying the causal influence of attention head (0,2)’s ac-
tivation on the correct inference of the model. After caching the altered activations of (0,2) (shown
on the left), we run the model on the original prompt and cache the activations (shown in the mid-
dle), then replace the original activation of head (0,2) by its altered activations, and let the rest of the
layers be computed normally (shown on the right) — they now operate out of distribution, and are
colored in green.
In this specific example, the intervened run outputs logits which reflect “belief altering”: that is, the
probability for the answer token of the original prompt now is lower than the answer token for the
altered prompt. This indicates that head (0,2) has causal influence on the corrent inference of the
model.

Circuit verification, on the other hand, goes through a somewhat more complex process of interven-
tions, as illustrated in Figure 11. Recall our main procedure (discussed in the main text).

1. We run the LLM on the original prompts, and cache the activations of the attention heads.

2. Now, we run the LLM on the corresponding altered prompts, however, we freeze all the attention
heads’ activations inside the model to their activations on the original prompts, except for those
in the circuit C which we wish to verify (i.e. only the attention heads in C are allowed to run
normally). We record the (circuit-intervened) altered logit differences on the altered prompts.

3. We average the circuit-intervened altered logit differences across the samples, namely
1
N

∑N
n=1 ∆

C
orig→alt

9, and check whether they approach the “maximal” altered logit difference,
namely ∆alt

10.
9This specific term reflects, on average, how much the model favors outputting the answer token for the

altered prompts over the original prompts after the circuit interventions.
10Recall that this term is obtained by running the LLM on the altered prompts without any modification to its

internal activations at all. This specific term reflects, on average, how much the (un-intervened) model favors
outputting the answer tokens for the altered prompts over those of the original prompts, when it is run on the
altered prompts.
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Verifying circuit
C = { (0,2), (1,1) }
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+
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✓

Freeze every head’s output except 
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+

(0,1) (0,2)

+
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+

+

Classifier

(1,1) (1,2)

Null circuit has ~0 
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⨉

Figure 11: Illustration of how activation patching is performed in the circuit-verification process
(sufficiency-based patching). We use a 2-layer 2-head transformer as a simplified example here. We
use (ℓ, h) to denote an attention head.
In this specific illustrated example, we are verifying whether the circuit C = {(0, 2), (1, 1)} consist-
ing of the two attention heads is sufficient for altering the “belief” of the model.
We first obtain ∆alt, the average altered logit difference, by running the model on the altered prompts
without interventions. We also run the model on the original prompts and cache the attention heads’
activations (these “original” activations are colored in blue in the figure).
The naive “baseline” for sufficiency verification is the null circuit Cnull = ∅ (shown in the middle):
we freeze all the attention heads to their original activations when running the model on the altered
prompts. This null circuit, as shown in this example, barely alters the model’s “belief” from the
original, as ∆Cnull

orig→alt ≈ −∆alt, i.e. the model still strongly favors outputting the answer tokens for
the original prompts over those of the altered prompts on average.
In contrast, if we unfreeze the attention heads in the circuit C when running the model (shown on
the right), we observe that the model’s circuit-intervened logit difference approaches the “maximal”
altered logit difference ∆alt. This indicates that the attention heads in C are sufficient for correctly
manipulating the information flow (and processing the information) for reaching the right answer.

Remark. As the reader can observe, we do not freeze the MLPs in our intervention experiments.
We note that the MLPs do not move information between the residual streams at different token
positions, as they only perform processing of whatever information present at the residual stream.
Therefore, similar to Wang et al. (2023), we consider the MLPs as part of the “direct” path between
two attention heads, and allow information to flow freely through them, instead of freezing them and
disrupting the information flow between attention heads.

C.3 FINER DETAILS OF QUERY-BASED ACTIVATION PATCHING

In this subsection, we present and visualize the attention heads with the highest average intervenes
logit differences, along with their standard deviations (error bars).

C.3.1 QUERY-BASED ACTIVATION PATCHING EXPERIMENTS: METRICS

We rely on a calibrated version of the logit-difference metric often adopted in the literature for the
QUERY-based activation patching experiments (aimed at keeping the score’s magnitude between 0
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(a) Single-head patching (b) Head group patching

(12,9) (13,11)

(19,8;9;16)

(16,12;14)

(16,0)

(17,25)

(14,24;26)

(9,24 - 27)

(15,8)

Figure 12: Attention head patching, highlighting the ones with the highest intervened logit differ-
ence; x-axis is the head index. (a) shows single-head patching results (same as the one shown in
the main text, repeated here for the reader’s convenience), and (b) shows a coarser-grained head
patching in groups. In (b), we only highlight the head groups that are not captured well by (a).

and 1). In particular, we compute the following metric for head (ℓ, h) at token position t:

1
N

∑
n∈[N ] ∆orig→alt,n;(ℓ,h,t) −∆†

orig

∆alt −∆†
orig

. (9)

where ∆†
orig = 1

N

∑
n∈[N ] logit(Xorig,n)[yalt,n] − logit(Xorig,n)[yorig,n], and ∆alt =

1
N

∑
n∈[N ] logit(Xalt,n)[yalt,n] − logit(Xalt,n)[yorig,n]. The closer to 1 this score is, the stronger

the model’s “belief” is altered; the closer to 0 it is, the closer the model’s “belief” is to the original
unaltered one.

Each of our experiments are done on 60 samples unless otherwise specified — we repeat some
experiments (especially the attention-head patching experiments) to ensure statistical significance
when necessary.

C.3.2 ATTENTION HEAD GROUP PATCHING

We note that Grouped-Query Attention used by Mistral-7B adds subtlety to the analysis of which
attention heads have strong causal influence on the LLM’s correct output. (In Mistral-7B-v0.1,
each attention layer has 8 key and value activations, and 32 query activations. Therefore, heads
(ℓ, h×4) to (ℓ, h×4+3) share the same key and value activation.) Patching a single head might not
yield a high logit difference, since other heads in the same group (which possibly perform a similar
function) could overwhelm the patched head and maintain the model’s previous “belief”. Therefore,
we also run a coarser-grained experiment which simultaneously patches the attention heads sharing
the same key and value activations, shown in Figure 12(b). This experiment reveals that heads
belonging to the group (9, 24 - 27) also have high intervened logit difference. Combining with the
observation that (9,25;26) have somewhat positive scores in the single-head patching experiments,
and by examining these two head’s attention patterns (which shall be discussed in detail in the
immediate next subsection), we determine that they also should be included in the circuit.

C.3.3 ATTENTION PATTERNS OF QUERY-SENSITIVE ATTENTION HEADS

In this subsection, we provide finer details on the attention patterns of the attention heads we dis-
covered in Section 4.3.1. Note that the attention weights percentage we present in this section are
calculated by dividing the observed attention weight at a token position by the total amount of at-
tention the head places in the relevant context, i.e. the portion of the prompt which excludes the 6
in-context examples.

Queried-rule locating heads. Figure 13 presents the average attention weight the queried-rule
locating heads place on the “conclusion” variable and the period “.” immediately after the queried
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rule at the QUERY token position (i.e. the query activation of the heads come from the residual
stream at the QUERY token position) — (12,9) is an exception to this recording method, where we
only record its weight on the conclusion variables alone, and already observe very high weight on
average. The heads (12,9), (14,24), (14,26), (9,25), (9,26) indeed place the majority of their attention
on the correct position consistently across the test samples. The reason for counting the period after
the correct conclusion variable as “correctly” locating the rule is that, it is known that LLMs tend to
use certain “register tokens” to record information in the preceding sentence.

Figure 13: Average attention weights of the queried-rule locating heads, along with the standard
deviations. The weights are calculated by dividing the actual attention weight placed on the correct
“conclusion” variable of the rule and the period “.” immediately after, by the total amount of at-
tention placed in the relevant context (i.e. the prompt excluding the 6 in-context examples). Head
(12,9) is an exception: we only record its attention right on the conclusion variable, and still observe
93.0± 9.4% “correctly placed” attention on average.

We can observe that head (12,9) has the “cleanest” attention pattern out of the ones identified, placing
on average 93.0 ± 9.4% of it attention on the correct conclusion variable alone. The more diluted
attention patterns of the other heads likely contribute to their weaker intervened logit difference
score shown in §4.3.1 in the main text.

Queried-rule mover heads. Figure 14 shows the attention weight of the queried-rule mover heads.
While they do not place close to 100% attention on the QUERY location consistently (when the
query activation comes from the residual stream from token “:”, right before the first answer token),
the top-1 attention weight consistently falls on the QUERY position, and the second largest attention
weight is much smaller. In particular, head (13,11) places 54.2 ± 12.5% attention on the QUERY
position on average, while the second largest attention weight in the relevant context is 5.2± 1.1%
on average (around 10 times smaller; this ratio is computed per sample and then averaged).

Extra note about head (16,0): it does not primarily act like a “mover” head, as its attention statistics
suggest that it processes an almost even mixture of information from the QUERY position and the
“:” position. Therefore, while we present its statistics along with the other queried-rule mover heads
here since it does allocate significant attention weight on the QUERY position on average, we do
not list it as such in the circuit diagram of Figure 3. Furthermore, we do not include it as part of
the circuit C in our circuit verification experiments.

Fact processing heads. Figure 15 below shows the attention weights of the fact processing heads;
the attention patterns are obtained at the “:” position, right before the first answer token, and we sum
the attention weights in the Fact section (starting at the first fact assignment, ending on the last “.” in
this section of the prompt). It is clear that they place significant attention on the Fact section of the
relevant context. Additionally, across most samples, we find that these heads exhibit the tendency to
assign lower amount of attention on the facts with FALSE value assignments across most samples,
and on a nontrivial portion of the samples, they tend to place greater attention weight on the correct
fact (this second ability is not consistent across all samples, however). Therefore, they do appear
to perform some level of “processing” of the facts, instead of purely “moving” the facts to the “:”
position.
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Figure 14: Average attention weights of the queried-rule mover heads, along with the standard
deviations. The raw attention patterns are obtained at token position “:” (i.e. the query activation
comes from the residual stream at the “:” position), right before the first answer token, and the exact
attention weight (indicated by the blue bars) is taken at the QUERY position; for head (16,0), we
also obtain its attention weight at the “:” position, as we found that it also allocates a large amount
of attention weight to this position in addition to the QUERY position. Note: for (15,8), we found
that it only acts as a “mover” head when the linear chain is being queried, so we are only reporting
its attention weight statistics in this specific scenario; the other heads do not exhibit this interesting
behavior, so we report those heads’ statistics in all query scenarios.

Figure 15: Average attention weights of the fact processing heads computed at the “:” token position
(last position before the answer), along with the standard deviations. The weights are calculated by
dividing the actual attention weight placed in the Fact section by the total amount of attention placed
in the relevant context (i.e. the part of the prompt excluding the 6 in-context examples).

Decision heads. Figure 16 shows the attention weights of the decision heads on samples where the
model outputs the correct answer (therefore, about 70% of the samples). The attention patterns are
obtained at the “:” position. We count the following token positions as the “correct” positions:

• In the Rules section, we count the correct answer token and the token immediately following it
as correct.

• In the Facts section, we count the sentence of truth value assignment of the correct answer
variable as correct (for example, “A is true.”).
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• Note: the only exception is head (19,8), where we only find its attention on exactly the correct
tokens (not counting any other tokens in the context); we can observe that it still has the cleanest
attention pattern for identifying the correct answer token.

Figure 16: Average attention weights of the decision heads, along with the standard deviations. The
weights are calculated by dividing the actual attention weight placed on the correct answer tokens
by the total attention the model places in the relevant context.

An interesting side note worth pointing out is that, (17,25) tends to only concentrate its attention in
the facts section, similar to the fact-processing heads. The reason which we do not classify it as a
fact-processing head and instead as a decision head is that, in addition to finding that their attention
patterns tend to concentrate on the correct fact, evidence presented in §C.6 below suggest that they
are not directly responsible for locating and moving the facts information to the “:” position, while
the heads (16,12;14) exhibit such tendency strongly.

C.4 SUFFICIENCY TESTS FOR CIRCUIT VERIFICATION

In §4.3.2, we presented a sufficiency test of the circuit. Here, we elaborate further on the experi-
mental procedures and finer details of the experiment.

The circuit which we perform verification on is the union of the four attention head families, C =
QRLH ∪QRMH ∪ FPH ∪DH , with

• QRLH = Queried-Rule Locating Heads = {(9, 25; 26), (12, 9), (14, 24; 26)} patched at token
position QUERY;

• QRMH = Queried-Rule Mover Heads = {(13, 11; 22), (15, 8)} patched at the “:” position
(the last position of context);

• FPH = Fact-Processing Heads = {(16, 12; 14), (14, 26)} patched at the “:” position;

• DH = Decision Heads = {(19, 8; 9; 16), (17, 25)} patched at the “:” position.

An exception is that the queried-rule locating head (14, 24) is also patched at the “:” position, as we
observed that it tends to concentrate attention at the queried rule at this position: it does not locate
the queried rule as consistently as it does at the QUERY position, however. We still chose to patch
it at this position as we found that it tends to improve the altered logit difference, indicating that
either the model relies on this head to pass certain additional information about the queried rule to
the “:” position, or certain later parts of the circuit do rely on this head for queried-rule information.
The exact function of this attention head remains part of our future study in the reasoning circuit
of Mistral-7B. We likely need to examine this head’s role in other reasoning problems to clearly
understand what its role is at different token positions, and whether there is deeper meaning behind
the fact that, their apparently redundant actions at different token positions all seem to have causal
influence on the model’s inference.

Challenges of reasoning circuit sufficiency verifications. From what we can see, verifying the suf-
ficiency of a reasoning circuit is a major open problem. Part of the root of the problem lies in what
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exactly counts as a circuit that is truly relevant to reasoning: attention heads and MLPs responsible
for lower-level processing such as performing change of basis of the token representations, storing
information at register tokens (such as the periods “.” after sentences), and so on, do not truly be-
long to a “reasoning” circuit in the narrow definition of the term. In our considerations, a “narrow”
definition of a reasoning circuit is one which is QUERY sensitive and has strong causal influence on
the correct output of the model on the reasoning problems. The first condition of QUERY sensitivity
is justified by noting that the QUERY lies at the root of the reasoning chain of “QUERY→Relevant
Rule(s)→Relevant Fact(s)→Decision”. We do not analyze through what circuit/internal processing
the “QUERY”, “Relevant Rule(s)” and “Relevant Fact(s)” underwent from token level to represen-
tation level (notice that the reasoning circuit we identified starts at layer 9: it is entirely possible
for the token embeddings of these important items to have undergone significant processing by the
attention heads and MLPs in the lower layers). Simply setting the lower layers’ embeddings to the
zero vector, to their mean activations or some fixed embeddings which erase the instance-dependent
information could completely break the circuit.

C.5 QUERIED-RULE LOCATION INTERVENTIONS: ANALYZING THE QUERIED-RULE
LOCATING HEADS

In this experiment, we only swap the location of the linear rule with the LogOp rule in the Rule sec-
tion of the question, while keeping everything else the same (including all the in-context examples).
As an example, we alter “Rules: A or B implies C. D implies E.” to “Rules: D implies E. A or B
implies C.” while keeping everything else the same. The two prompts have the same answer.

(a) Key patching - loss increase
Left: QUERY lin chain; Right: QUERY OR chain

(b) Average increase in loss
Top: QUERY lin chan; Bottom: QUERY OR chain

Figure 17: Key activations patching results. In this experiment, we swap the location of the linear
rule and the LogOp rule in the Rule section and keep everything else in the prompt the same; we
patch the key activations of the attention heads in the Rule section only. (a) visualizes the average
increase in the cross-entropy loss with respect to the true target (the true first token of the answer)
for all key indices, and (b) shows the average and standard deviation of the top three key indices
with the highest loss increase. Observe that these are the keys for the queried-rule locating heads
(12,9), (14,24;26) and (9,25;26) identified in §4.3.1.

If the queried-rule locating heads (with heads (12,9), (14,25;26), (9,25;26) being the QUERY-
sensitive representatives) indeed perform their functions as we described, then when we run the
model on the clean prompts, patching in the altered key activations at these heads (within the Rules
section) should cause “negative” change to the model’s output, since it will cause these heads to
mistake the queried-rule location in the altered prompt to be the right one, consequently storing the
wrong rule information at the QUERY position. In particular, the model’s cross-entropy loss with
respect to the original target should increase. This is indeed what we observe.
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(a) Key (b) Value (c) Query

Figure 18: Key, value and query activation patching in the Facts section, with the metric being the
calibrated intervened logit difference. The truth value assignments for the OR chain is flipped (while
keeping everything else in the prompt the same), and the OR chain is always queried. Observe that
only the key activations at index (16,3) obtain a high intervened logit difference score of approxi-
mately 0.34 (this key index corresponds to the attention heads (16, 12 - 15)). Also observe that the
value and query activations in the facts section do not exhibit strong causal influence on the correct
inference of the model.

The average increase in cross-entropy loss exhibit a trend which corroborate the hypothesis above,
shown in Figure 17. While the average cross-entropy loss on the original samples is 0.463, patching
(12,9), (14,24;26) and (9,25;26)’s keys (with corresponding key indices (12,2), (14,6) and (9,6)) in
the Rule section. Patching the other QUERY-sensitive attention heads’ keys in the Rule section, in
contrast, show significantly smaller influence on the loss on average, telling us that their responsi-
bilities are much less involved with directly finding or locating the queried rule via attention.

Note: this set of experiments was run on 200 samples instead of 60, since we noticed that the
standard deviation of some of the attention heads’ loss increase is large.
Remark. While attention heads with key index (15,5) (i.e. heads (15, 20-23)) did not exhibit nontriv-
ial sensitivity to QUERY-based patching (discussed in Section 4.3.1 in the main text), patching this
key activation does result in a nontrivial increase in loss. Examining the attention heads belonging
to this group, we find that they indeed also perform the function of locating the queried rule similar
to head (12,9). We find them to be less accurate and place less attention on the exact rule being
queried on average, however: this weaker “queried-rule locating ability” likely contributed to their
low scores in the QUERY-based patching experiments presented in the main text.

C.6 FACTS INTERVENTIONS: ANALYZING THE FACT-PROCESSING AND DECISION HEADS

In this section, we aim to provide further validating evidence for the fact-processing heads and the
decision heads. We experiment with flipping the truth value assignment for the OR chain while
keeping everything else the same in the prompt (we always query for the OR chain in this experi-
ment). As an example, we alter “Rules: A or B implies C. D implies E. Facts: A is true. B is false.
D is true. Query: please state the truth value of C.” to “Rules: A or B implies C. D implies E. Facts:
A is false. B is true. D is true. Query: please state the truth value of C.”. In this example, the
answer is flipped from A to B. The (calibrated) intervened logit difference is still a good choice in
this experiment, therefore we still rely on it to determine the causal influence of attention heads on
the model’s inference, just like in the QUERY-based patching experiments.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Key (b) Value (c) Query

Figure 19: Key, value and query activation patching at the “:” position (last token position in the
context, right before the answer token), with the metric being the calibrated intervened logit differ-
ence. The truth value assignments for the OR chain is flipped (while keeping everything else in the
prompt the same), and the OR chain is always queried. Observe that only the query activations at
index (19,8) obtain a high intervened logit difference score of approximately 0.28; the other decision
heads (19,9;16) and (17,25) also obtain nontrivial scores when their queries are patched. Also ob-
serve that the key and value activations at the “:” position do not exhibit strong causal influence on
the correct inference of the model when we only flip the truth value assignments for the OR chain.

If the fact-processing heads (with (16,12;14) being the QUERY-sensitive representatives) indeed
perform their function as described (moving and performing some preliminary processing of the
facts as described before), then patching the altered key activations in the Facts section of the prob-
lem’s context would cause these attention heads to obtain a nontrivial intervened logit difference,
i.e. it would help in bending the model’s “belief” in what the facts are (especially the TRUE assign-
ments in the facts section), thus pushing the model to flip its first answer token. This is indeed what
we observe. In Figure 18, we see that only the key activations with index (16,3) (corresponding to
heads (16, 12 - 15)) obtain a much higher score than every other key index, yielding evidence that
only the heads with key index (16,3) rely on the facts (especially the truth value assignments) for
answer. Moreover, notice that patching the key activations of the decision heads does not yield a
high logit difference on average, telling us that the decision heads do not directly rely on the truth
value assignment of the variables for inference (we wish to emphasize again that, the positions of the
variables in the Facts section are not altered, only the truth value assignments for the two variables
of the OR chain are flipped).

Finally, for additional insights on the decision heads (19,8;9;16) and (17,25), we find that by patch-
ing the query activations of these decision heads at the “:” position yields nontrivial intervened logit
difference, as shown in Figure 19(c) ((19,8) has an especially high score of about 0.27). In other
words, the query activation at the “:” position (which should contain information for flipping the
answer from one variable of the OR chain to the other, as gathered by the fact-processing heads) be-
ing fed into the decision heads indeed have causal influence on their “decision” making. Moreover,
patching the value activation of these heads at “:” does not yield nontrivial logit difference, further
suggesting that it is their attention patterns (dictated by the query information fed into these heads)
which influence the model’s output logits.
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C.7 EARLY EVIDENCE OF A SIMILAR REASONING CIRCUIT IN GEMMA-2-9B

In this section, we present a preliminary analysis of the reasoning circuit of Gemma-2-9B in solv-
ing the same reasoning problem which Mistral-7B was examined on from before. We find that the
discovered attention heads’ attention patterns inside Gemma-2-9B bear surprising resemblance to
Mistral-7B’s: according to their highly specialized attention patterns, they can also be categorized
into the four families of attention heads which Mistral-7B employs to solve the problem, namely the
queried-rule locating heads, queried-rule mover heads, fact-processing heads, and decision heads.
While it is too early to draw precise conclusions on how similar the two circuits in the two LLMs
truly are, the preliminary evidence suggests that the reasoning circuit we found in this work poten-
tially has some degree of universality.

Additionally, we caution the reader that the experimental study in this subsection is less exhaustive
in nature compared to our study of Mistral-7B, due to limitations in our computation budget.

C.7.1 QUERY-BASED ATTENTION HEAD ACTIVATION PATCHING

We perform activation patching of the attention head output of Gemma-2-9B, by flipping the
QUERY in the prompt pairs. This is the same procedure we used to discover the attention head cir-
cuit for Mistral-7B as discussed in §4.2 and C.2. We highlight the attention heads with the strongest
causal influence on the model’s (correct) inference in Figure 20.

(a) Query (c) Value(b) Head output

(19,11)(20,7)
(21,7)

(22,5)

(23,6;12)

(24,5)

Val. of (24,15)

Val. of (20,7)

Val. of (23,6)(25,7)

(26,0) (26,12)

(27,15)(28,12)

(30,9)

Figure 20: QUERY-based activation patching results of Gemma-2-9B, with sub-component patching
on the query and value activations. We highlight the attention heads with the highest calibrated
intervened logit difference.

C.7.2 ATTENTION PATTERNS OF QUERY-SENSITIVE ATTENTION HEADS IN GEMMA-2-9B

Queried-rule locating heads. The queried rule locating heads inside Gemma-2-9B, namely
{(19, 11), (21, 7), (22, 5), (23, 12)}, are very similar in their attention patterns to those in Mistral-
7B. At the QUERY position, their attention concentrates on the conclusion token of the queried rule,
and the “.” which follows. Interestingly, heads (21,7), (22,5) and (23,12) also tend to place some
attention on the “implies” token of the queried rule. Another intriguing difference they exhibit is
redundant behavior: these attention heads are often observed to have almost exactly the same atten-
tion pattern at the “.” and “Answer” token positions following the QUERY token. We visualize their
attention statistics at the QUERY position in Figure 21.
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Figure 21: Average attention weights of the queried-rule locating heads in Gemma-2-9B, along
with the standard deviations. The attention pattern is obtained at the QUERY position (i.e. query
activation of the attention head is from the residual stream at the QUERY token position). We record
the attention weight on the queried rule.

Queried-rule mover heads. When the query activations of the queried-rule mover heads
{(20, 7), (23, 6), (24, 15)} come from the “:” residual stream, they have fixed attention patterns
which focus a large portion of their attention weights on the QUERY token and two token positions
following it, namely the “.” and “Answer” token. Their attention weights are slightly more diffuse
compared to their counterparts in Mistral-7B, likely due to the queried-rule locating heads perform-
ing similar functions at the “.” and “Answer” positions. Furthermore, as shown in Figure 20(c),
we note that these attention heads are the only ones where patching their value activations results
in a large intervened logit difference, further suggesting their role in performing a fixed “moving”
action. We record their attention weights in Figure 22.

Figure 22: Average attention weights of the queried-rule mover heads in Gemma-2-9B, along with
the standard deviations. The attention pattern is obtained at the “:” position, and we sum the attention
weights at the QUERY position and the “.” and “Answer” token positions which immediately follow
QUERY.

Fact-processing heads. The fact-processing heads {(24, 5), (25, 7), (26, 0), (26, 12)}’s attention
patterns at the “:” position tend to place larger weight on the correct fact for the answer, similar to
the fact-processing heads in Mistral-7B. An interesting difference does exist though: heads (24,5)
and (25,7) also tend to place a nontrivial amount of weight on the QUERY and “:” token positions,
indicating that these heads are relying on some form of mixture of information present at those
positions for processing. While it is reasonable to hypothesize that these heads are likely relying on
the queried-rule information present in the QUERY and “:” residual streams, we have not confirmed
this hypothesis in our current experiments. We visualize the statistics of these heads in Figure 23.
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Figure 23: Average attention weights of the fact-processing heads in Gemma-2-9B, along with the
standard deviations. The attention pattern is obtained at the “:” position. We record the attention
weights at the correct fact, QUERY and “:” positions, and the maximum weight on any other posi-
tion.

Decision heads. The decision heads {(28, 12), (30, 9)}’s attention pattern are obtained at the “:”
position. They bear strong resemblance to those in Mistral-7B: they place significant attention on
the correct answer token (in both the rules and facts sections, same as Mistral-7B’s decision heads),
and little attention weight anywhere else. This is shown in Figure 24.

Figure 24: Average attention weights of the decision in Gemma-2-9B, along with the standard devi-
ations. The attention pattern is obtained at the “:” position. We record the attention weights at the
correct answer token positions.

C.7.3 CIRCUIT VERIFICATION

We perform a sufficiency test of the attention-head circuit, following the same methodology as in
the Mistral case, as discussed in §4.2 and C.4.

The circuit which we perform verification on is the union of the four attention head families, C =
QRLH ∪QRMH ∪ FPH ∪DH , with

• QRLH = Queried-Rule Locating Heads = {(19, 11), (21, 7), (22, 5), (23, 12)};
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• QRMH = Queried-Rule Mover Heads = {(20, 7), (23, 6), (24, 15)};
• FPH = Fact-Processing Heads = {(24, 5), (25, 7), (26, 0), (26, 12)};
• DH = Decision Heads = {(28, 12), (30, 9)}.

Remark. The circuit verification is performed in a coarser-grained manner in this experiment, as
we patch the output of the attention heads in C from the QUERY position to the “:” position, instead
of clearly distinguishing the token positions which each head primarily focuses on.

C† Cnull C C −QRLH C −QRMH C − FPH C −DH

∆C†

orig→alt/∆alt -1.0 0.94 -0.97 -0.40 0.17 -1.11

Table 2: ∆C†

orig→alt/∆alt for Gemma-2-9B, with different choices of C†. Cnull denotes the empty
circuit, i.e. the case where no intervention is performed. We abbreviate the attention head families,
for example, DH = decision heads; C −DH = full circuit but with the decision heads removed.

We find that by patching all 13 attention heads in C, ∆C
orig→alt is about 94% of the “maximal”

average logit difference ∆alt on the altered samples. Moreover, removing any one of the four
families of attention heads from C in the circuit interventions renders the “belief altering” effect of
the intervention almost trivial.
Remark. We find it surprising that two LLMs (Mistral-7B and Gemma-2-9B) which are trained with
different procedures and data ended up relying on attention-head circuits which bear strong resem-
blance to each other’s. In the current literature, it is unclear how one can rigorously quantify the
similarity of two nontrivial circuits inside different LLMs, however, this subsection does yield pre-
liminary evidence that, the reasoning circuit we discover potentially has some degree of universality
to it, and is likely an emergent trait of LLMs.
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