
Poisson Variational Autoencoder

Hadi Vafaii1 Dekel Galor1 Jacob L. Yates1
vafaii@berkeley.edu galor@berkeley.edu yates@berkeley.edu

1UC Berkeley

Abstract

Variational autoencoders (VAE) employ Bayesian inference to interpret sensory
inputs, mirroring processes that occur in primate vision across both ventral [1] and
dorsal [2] pathways. Despite their success, traditional VAEs rely on continuous la-
tent variables, which deviates sharply from the discrete nature of biological neurons.
Here, we developed the Poisson VAE (P-VAE), a novel architecture that combines
principles of predictive coding with a VAE that encodes inputs into discrete spike
counts. Combining Poisson-distributed latent variables with predictive coding in-
troduces a metabolic cost term in the model loss function, suggesting a relationship
with sparse coding which we verify empirically. Additionally, we analyze the
geometry of learned representations, contrasting the P-VAE to alternative VAE
models. We find that the P-VAE encodes its inputs in relatively higher dimensions,
facilitating linear separability of categories in a downstream classification task
with a much better (5×) sample efficiency. Our work provides an interpretable
computational framework to study brain-like sensory processing and paves the way
for a deeper understanding of perception as an inferential process.

Perception as
Inference Rate Coding Predictive Coding

Adrian & Zotterman,
1926

Rao & Ballard, 1999

Gregory, 1980

Friston, 2005

Srinivasan et al., 1982

Clark, 2013

Poisson Variational Autoencoder

• Encodes inputs into discrete spike counts, significantly
enhancing the model’s bio-realism and interpretability.

• A metabolic cost term emerges in the model objective
“for free,” suggesting a connection to Sparse Coding.

• Brings major theories in neuroscience closer together,
under the unifying umbrella of Bayesian Inference.

Perkel & Bullock,
1968

Barlow, 1972

Zohary et al., 1994

Neisser, 1967Alhazen, ~1000 AD
Helmholtz, 1860s

Lee & Mumford, 2003
Barlow, 2001

Knill & Pouget, 2004
Yuille & Kersten, 2006

Friston, 2010

Amortized Sparse Coding is a
special case of the Poisson VAE

Linear Poisson VAE = Amortized Sparse Coding

Linear Gaussian VAE = Probabilistic PCA

Figure 1: Graphical abstract. Introducing the Poisson Variational Autoencoder (P-VAE), which
draws on key concepts in neuroscience. When trained on natural image patches, P-VAE with a linear
decoder develops Gabor-like feature selectivity, reminiscent of Sparse Coding [3]. In sharp contrast,
the standard Gaussian VAE learns the principal components [4].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:vafaii@berkeley.edu

1 Introduction

The study of artificial neural networks (ANN) and neuroscience has always been closely linked,
driving advancements in both fields [5–10]. Despite the close proximity of the two fields, most ANN
models deviate substantially from biological brains [11, 12]. A major challenge is designing models
that not only perform well computationally but also exhibit “brain-like” structure and function. This
is seen both as a goal for improving ANNs [13–15], and better understanding biological brains [8, 9,
16–19], which has recently been referred to as the neuroconnectionist research programme [20].

Drawing from neuroscience, a major guiding idea is that perception is a process of inference [21, 22],
where the brain constructs a representation of the external world by inferring the causes of sensory
inputs [23–26]. This concept is mirrored in “generative AI” where models learn the generative
process underlying their inputs [27–29]. However, in this vein, there is a tension between small
well-understood models that are directly inspired by cortex, such as sparse coding [3] and predictive
coding [30], and deep generative models that perform well [31–34].

The variational autoencoder (VAE; [35, 36]) model family is a promising candidate for neurocon-
nectionist goals for multiple reasons. First, VAEs learn probabilistic generative models of their
inputs and are grounded in Bayesian probability theory, providing a solid theoretical foundation that
directly incorporates the concept of perceptual inference [10, 22]. Second, the VAE model family,
specifically hierarchical VAEs, is broad with other generative models, such as diffusion models,
understood as special cases of hierarchical VAEs [37–39]. Finally, VAEs learn representations that are
similar to cortex [1, 2, 40], exhibit cortex-like topographic organization [41, 42], and make perceptual
errors that mimic those of humans [43], indicating a significant degree of neural, organizational, and
psychophysical alignment with the brain.

However, standard VAEs diverge from brains in the way they encode information. Biological
neurons fire all-or-none action potentials [44], and are thought to represent information via firing
rate [45–49]. These firing rates must be positive and generate discrete “spike” counts, which exhibit
conditionally Poisson-like statistics in small counting windows [49–51]. In contrast, VAEs are
typically parameterized with real-valued, continuous, Gaussian distributions [52].

Contributions. In this work, we address this discrepancy by introducing the Poisson Variational
Autoencoder (P-VAE), a novel architecture that combines perceptual inference with two other
inspirations from neuroscience (Fig. 1). First, that information is encoded in the rates of discrete
spike counts, which are approximately Poisson-distributed on short time intervals. And second, that
feedforward connections encode deviations from expectations contained in feedback connections
(Fig. 2a; [30, 53]). We introduce a reparameterization trick for Poisson samples (Algorithm 1), and
derive the evidence lower bound (ELBO) objective for the P-VAE (eq. (3)). Overall, we believe
P-VAE introduces a promising new model at the intersection of computational neuroscience and
machine learning that offers several appealing features over existing VAE architectures:

• The P-VAE loss derivation (eq. (3)) naturally results in a metabolic cost term that penalizes
high firing rates, such that P-VAE with a linear decoder implements amortized sparse coding
(Fig. 2b). We validate this prediction empirically.

• P-VAE largely avoids the prevalent posterior collapse issue, maintaining many more active
latents compared to alternative VAE models (Table 1), especially the continuous ones.

• P-VAE encodes its inputs in relatively higher dimensions, facilitating linear separability of
categories in a downstream classification task with a much better (5×) sample efficiency.

We evaluate these results on two natural image datasets and MNIST. The P-VAE paves the way for
the future development of interpretable hierarchical models that perform “brain-like” inference.

2 Background & Related work

Perception as inference: connections to neuroscience and machine learning. A centuries-old
idea [21, 22], “perception as inference” argues that coherent perception of the world results from the
unconscious inference over the causes of the senses. In other words, the brain learns a generative
model of the sensory inputs. This has led to fruitful theoretical work in neuroscience [23, 54–56] and
machine learning [57, 58], including VAEs [52]. See Marino [10] for a review.

2

Efficient, predictive, and sparse coding. Another longstanding idea in neuroscience is that brains
are adapted to the statistics of the environment. Efficient coding states that brains represent as much
information about the environment as possible while minimizing neural resource use [59, 60].

Predictive coding [30, 61, 62] postulates that the brain generates a statistical prediction of its inputs,
with feedforward networks carrying only the prediction errors or unexplained information [63]. More
recently, ANNs based on predictive coding have been shown to capture a wide range of phenomena
in biological neurons across the visual system [64, 65]. More broadly, prediction in time has emerged
as an objective that lends itself to brain-like representations [66, 67].

Sparse coding (SC) is directly inspired by efficient coding, aiming to explain inputs as sparsely as
possible [47, 68]. SC was the first unsupervised model to learn representations closely resembling
the receptive fields of V1 neurons [3] and predicts an array of empirical features of neural activity
[69–79]. SC is formalized with a generative model where neural activations z are sampled from a
sparsity-inducing prior, z ∼ p(z), and the input image x is reconstructed as a linear combination of
basis vectors Φ, plus additive Gaussian noise, x̂ = Φz + ε. The SC loss is as follows:

LSparseCoding (x;Φ, z) = ∥x−Φz∥22 + β ∥z∥1 . (1)

Commonly used algorithms for sparse coding include the locally competitive algorithm (LCA; [80]),
which is a biologically plausible algorithm to optimize eq. (1), and iterative shrinkage-thresholding
algorithm (ISTA; [81, 82]), which has shown robust performance in learning sparse codes given a
fixed dictionary Φ.

VAE objective. VAEs define a probabilistic generative model p(x, z), where x denotes the observed
data and z are some latent variables. The generative process samples z from a prior distribution
p(z) and then generates the observed data x from the conditional distribution pθ(x|z), also known
as the “decoder”. The “encoder”, qϕ(z|x), performs approximate inference on the inputs. Model
parameters are learned by maximizing the evidence lower bound (ELBO) objective, which is derived
from variational inference (see appendix A for the full set of derivations). The ELBO is given by:

log p(x) ≥ Eqϕ(z|x)

[
log pθ(x|z)

]
−DKL

(
qϕ(z|x)

∥∥ p(z)) = LVAE(x;θ,ϕ). (2)

The first term captures the reconstruction performance of the decoder, and the second term, the “KL
term,” captures the divergence of the approximate posterior from the prior.

The specific form of these distributions is up to the practitioner. In standard VAEs, factorized
Gaussians are typically used: q = N (z;µ(x),σ2(x)) and p = N (z;0,1). The likelihood, pθ(x|z),
is also typically modeled as a Gaussian conditioned on a parameterized neural network decθ(z).

Amortized inference in VAEs. A major contribution of VAEs is the idea of amortizing inference
over the latents z with a black box ANN [83, 84]. “Amortized” inference borrows a term from finance
to capture the idea of spreading out costs—here, the cost of performing inference over multiple
samples. In amortized inference, a neural network learns (during training) how to map a data sample
to a distribution over latent variables given the sample. The cost is paid during training, but the
trained model can then be used to perform inference on future samples efficiently. It has been argued
that the brain performs amortized inference for computational efficiency [85].

VAEs connection to biology. VAEs have been shown to contain individual latents that resemble
neurons, capturing a wide range of the phenomena observed in visual cortical areas [40] and human
perceptual judgments [43]. Like many other ANN models [86, 87], VAEs have been found to learn
representations that are predictive of single-neuron activity in both the ventral [1] and dorsal [2]
streams. However, unlike most ANNs, the mapping from certain VAEs to neural activity is incredibly
sparse, even one-to-one in some cases [1, 2].

Discrete VAEs. VAEs with discrete latent spaces, such as VQ-VAE [88] and Categorical VAE
[89], are designed to capture complex data structures by mapping inputs to a finite set of latent
variables. Unlike traditional VAEs that use continuous latent spaces, these models leverage discrete
representations to enhance interpretability and can yield high performance with lower capacity [90].

3

Algorithm 1 Reparameterized sampling (rsample) for Poisson distribution.

Input:
λ ∈ RB×K

>0 # rate parameter; B, batch size; K, latent dimensionality.
n_exp # number of exponential samples to generate.
temperature # controls the sharpness of the thresholding.

1: procedure RSAMPLE(λ, n_exp, temperature)
2: Exp← Exponential(λ) ▷ create exponential distribution
3: ∆t← Exp.rsample((n_exp,)) ▷ sample inter-event times, ∆t : [n_exp×B ×K]
4: times← cumsum(∆t, dim=0) ▷ compute arrival times, same shape as ∆t

5: indicator← sigmoid
(

1−times
temperature

)
▷ soft indicator for events within unit time

6: z ← sum(indicator, dim=0) ▷ event counts, or number of spikes, z : [B ×K]
7: return z
8: end procedure

VAEs connection to sparse coding. Previous work has attempted to connect sparse coding and
VAEs directly [91–93], with each approaching the problem differently. Geadah et al. [91] introduced
sparsity-inducing priors (such as Laplace or Cauchy) and a linear decoder with an overcomplete
latent space. Tonolini et al. [92] introduced a spike and slab prior into a modified ELBO, and Xiao
et al. [93] added a sparse coding layer learned by ISTA to the latent space of a VQ-VAE. Notably,
none of the three ended up minimizing the sparse coding loss. Two of the three maintain the linear
generative model with an overcomplete latent space, but the ELBO in both requires an additional
approximation step for the KL term [91, 92].

3 Poisson Variational Autoencoder

E
ncoder

sample from

independent
neurons

D
ec

od
er

E
ncoder

linear decoder

overcomplete
latent space:

element-wise
product

Legend
Input data

(e.g., images)

Residual (feedfwd) information

Prior rates Spike counts

Input reconstruction

Dictionary of basis elements

Reconstruction loss

a

b

Figure 2: (a) Model architecture. Colored shapes indicate
learnable model parameters, including the prior firing rates, r.
We color code the model’s inference and generative compo-
nents using red and blue, respectively. The P-VAE encodes
its inputs in discrete spike counts, z, significantly enhancing
its biological realism. (b) “Amortized Sparse Coding” is a
special case within the P-VAE model family: it’s a P-VAE
with a linear decoder and an overcomplete latent space.

Our main contribution is integrating
Poisson-distributed latents into VAEs,
where both the approximate posterior
and the prior are parameterized as
Poisson distributions. Critically, the
latents z are no longer continuous
variables, but rather they are discrete
spike counts. To perform inference
over discrete latents, we introduce a
Poisson reparameterization trick. We
then derive the KL term and obtain the
full P-VAE objective.

Poisson reparameterization trick.
For a homogeneous Poisson process
[94–96], given a window size ∆t = 1,
and rate λ, we can generate Pois-
son distributed counts by drawing ran-
domly distributed wait-times from an
exponential distribution with mean
1/λ and counting all events where
the cumulative time is less than 1.
Because the exponential distribution
is trivially reparameterized [35], and
PyTorch contains an implementation
[97], we need only to approximate the
hard threshold for comparing cumula-
tive wait times with the window size.
We accomplish this by replacing the
indicator function with a sigmoid as in refs. [89, 98].

4

P
er

ce
nt

Figure 3: Relaxed Poisson distribution.
Samples are drawn using Algorithm 1
for λ = 1. At non-zero temperatures,
samples are non-integer, but approach
the true Poisson distribution as T → 0.

Algorithm 1 demonstrates the steps: Given a matrix of
rates λ, sample n_exp wait times t1, t2, ...tn_exp for each
element of λ by sampling from an exponential distribu-
tion with mean 1/λ(i). We then calculate the cumulative
event times S(n_exp) =

∑n_exp
j=1 tj , pass them through

a sigmoid σ(1−S
temperature), and sum over samples to get

event counts, z. The temperature controls the sharpness
of the thresholding. We adaptively scale the number of
samples, n_exp, by keeping track of the maximum rate
in each batch, λmax, and then use the inverse cumulative
density function (cdf) for Poisson to find the number of
samples, n_exp, such that cdf(n_exp;λmax) = 0.99999.

At non-zero temperatures, our parameterization algorithm
provides a continuous relaxation of the Poisson distri-
bution. Figure 3 shows histograms of samples drawn
using Algorithm 1 for rate λ = 1 and temperatures
T = 1.0, 0.1, 0.01, and 0. The latter case (T = 0, true Poisson) is equivalent to torch.poisson().

P-VAE architecture. The architecture of P-VAE captures the interactions between feedforward
and feedback connections that are present in all visual cortical areas [99]. Feedforward areas carry
sensory information and feedback connections are thought to carry modulatory signals such as
attention [53] or prediction [30], which interact multiplicatively with feedforward inputs [53, 100].

P-VAE embodies this idea by having the posterior rates depend on the prior, such that rprior = r and
rpost. = r ⊙ δr(x), where ⊙ is the Hadamard (element-wise) product. The prior rates, r ∈ RK , are
learnable parameters that capture expectations about the statistics of the input. The encoder outputs,
δr(x) ∈ RK , capture deviations from the prior. Thus, P-VAE models the interaction between
prior expectations, and deviations from them, in a multiplicative and symmetric way. This results
in a posterior, q(z|x) = Pois(z; r ⊙ δr(x)), and prior, p(z) = Pois(z; r), where z is the spike
count variable. Notably, this multiplicative relationship is maximally general, as any pair of positive
variables, rprior, and rpost. can be expressed as a base variable, r := rprior, multiplied by their relative
ratio, δr := rpost./r. The general model architecture is shown in Fig. 2a.

P-VAE loss function. For a comprehensive derivation of the P-VAE objective, see appendix A.
Here, we report the final result:

LPVAE = Ez∼Pois(z;r⊙δr)

[
∥x− dec(z)∥22

]
+

K∑
i=1

rif(δri), (3)

where dec(·) is the decoder neural network, and f(y) := 1− y + y log y (see supplementary Fig. 6).

P-VAE relationship to sparse coding. The KL term in eq. (3) penalizes firing rates. Both r and δr
are positive by definition, and f(y) ≥ 0, strongly resembling the sparsity penalty in Olshausen and
Field [3]. To make this connection more explicit, we make two additional assumptions (Fig. 2b):

1. The decoder is a linear generative model: x̂ = Φz, with x ∈ RM and Φ ∈ RM×K .
2. The latent space is overcomplete: K > M .

Because both Ez∼Pois(z;λ)[zi] and Ez∼Pois(z;λ)[zizj] have closed-form solutions (eq. (21)), the
reconstruction term in eq. (3) can be computed analytically for a linear decoder, resulting in:

LSC-PVAE (x; δr, r,Φ) = ∥x−Φλ∥22 + λTdiag(ΦTΦ) + β

K∑
i=1

rif(δri). (4)

where λ = r⊙δr(x) are the posterior firing rates, f(y) is defined as above, and β is a hyperparameter
that scales the contribution of the KL term, and changes the sparsity penalty for the P-VAE.

5

Table 1: Models considered in this paper.

Discrete

Poisson VAE
(P-VAE)

Categorical VAE
(C-VAE; [89, 98])

Continuous

Gaussian VAE
(G-VAE; [35, 36])

Laplace VAE
(L-VAE; [40, 91])

The relationship between the linear P-VAE loss (eq. (4)) and the sparse coding loss (eq. (1)) can now
be seen. Both contain a term that minimizes the squared error of the reconstruction and a term (two
terms for P-VAE) that penalizes non-zero firing rates. Unlike prior work that directly implemented
amortized sparse coding [91, 92], here the activity penalty naturally emerges from the derivations,
and the only additional assumption was an overcomplete linear generative model. The inference is
accomplished using a parameterized feed-forward neural network, δr(x), thus, it is amortized. We
call this specific case of P-VAE “Amortized Sparse Coding” (Fig. 2b).

Note that a closed-form derivation of the reconstruction term is possible for any VAE with a linear
decoder and a generating distribution that has a mean and variance (see eq. (22)).

This closed-form expression of the loss given a linear decoder is useful because we can see how
different parameters contribute to the loss. Furthermore, we can compute gradients of the whole loss
exactly, and use this to evaluate our Poisson reparameterization.

4 Experiments

To evaluate the P-VAE, we perform three sets of experiments. First, we utilize the theoretical results
for a linear decoder (eqs. (4) and (22)) to test the effectiveness of our reparameterization algorithm.
We compare to alternative VAE models with established reparameterization tricks (e.g., Gaussian).

Second, to confirm P-VAE with a linear decoder not only resembles amortized sparse coding, but
practically performs like sparse coding, we compare to standard and well-established sparse coding
algorithms such as the locally competitive algorithm (LCA; [80]) and the widely-used iterative
shrinkage-thresholding algorithm (ISTA; [81, 82]) to see if P-VAE reproduces their results.

Third, we test the P-VAE in a generic representation learning context and evaluate the geometry of
learned representations for downstream tasks. For these experiments, both the encoder and decoder’s
architecture is a ResNet (see appendix B for full architecture and training details).

Alternative models. We compare P-VAE to both discrete and continuous VAEs (Table 1). Other
than the traditional Gaussian, we compare to Laplace-distributed VAEs because previous work
found the Laplace distribution supported robust sparse representations [40, 91]. Additionally, we
compare to Categorical VAEs, trained using the Gumbel-Softmax trick [89, 98]. We use PyTorch’s
implementation which is based on Maddison et al. [98].

Finally, we test models where latents are Gaussian passed through an activation function before
passing to the decoder. We call these models G-VAE+act, where act ∈ {relu, exp}, but they capture
other families of distributions (truncated Gaussian and log-normal). We include these to test the
hypothesis that positive constraints (and not discrete latents) are the key contribution of Poisson
[101].

Datasets. For sparse coding results, we use 101 natural images from the van Hateren dataset [102].
We tile the images to extract 16× 16 patches and apply whitening and contrast normalization, as is
typically done in sparse coding literature [3, 103]. To test the generalizability of our sparse coding
results, we repeat these steps on CIFAR10 [104], a dataset we call CIFAR16×16. For the general
representation learning results, we use MNIST. See appendix B for additional details.

Statistical tests. In the VAE literature, it is known that random seeds can have a large effect
compared to architecture or regularization [105]. Therefore, we train each configuration using 5
different random initializations. We report 99% confidence intervals throughout, and perform paired
t-tests, reporting significance for p < 0.01 (FDR corrected using the Benjamini-Hochberg method).

6

Poisson VAE (# dead neurons: 8)

Laplace VAE (# dead neurons: 416)

Gaussian VAE (# dead neurons: 401)

Categorical VAE (# dead neurons: 4) Iterative shrinkage-thresholding algorithm (ISTA)

Locally competitive algorithm (LCA)

Figure 4: Learned basis elements, K = 512 total, each made of 16 × 16 = 256 pixels (i.e.,
Φ ∈ R256×512). These results are from fully linear VAEs (both the encoder and decoder were
linear). Features are ordered from top-left to bottom-right, in ascending order of their associated
KL divergence (P-VAE, G-VAE, L-VAE), or the magnitude of posterior logits (C-VAE). The sparse
coding results (LCA and ISTA) are ordered randomly.

Training details. Because we considered a variety of architectures, training time is variable. We
trained 195 VAE models, n = 5 seeds each, resulting in a total of 195× 5 = 975 VAEs. For sparse
coding models, we ran ISTA [81, 82] and LCA [80] with 270 hyperparameter combinations each. See
appendix B for more details. Training all models took roughly a week on 8 RTX 6000 Ada GPUs.

Evaluating Poisson reparameterization. P-VAE with a linear decoder has a closed form solution
eq. (4), which lets us evaluate how well our reparameterized gradients perform compared to the exact
ones. We compare our results to the gold-standard Gaussian as well as Categorical and Laplace
VAEs. Table 4 shows the results. Monte-Carlo sampling with Poisson reparameterization closely
matches exact inference just like established methods for Gaussian and Laplace. In contrast, the
straight-through (ST; [106]) estimator performs poorly (see also supplementary Fig. 7).

The P-VAE learns basis vectors similar to those from sparse coding. A major result from sparse
coding is that it learns basis vectors (dictionaries) that resemble the “Gabor-like” receptive fields of
cortical neurons [3]. Inspecting the dictionaries learned by different models demonstrates this is not
trivial (Fig. 4). As expected from theoretical results [4], G-VAE (top left) learn probabilistic PCA, but
with many noisy elements. As demonstrated previously [40, 91], L-VAE (lower left) learn Gabor-like
elements. However, there are a large number of noisy basis vectors. It is of note that previous work
did not show complete dictionaries for their results with Laplace priors [40, 91]. In contrast, P-VAE
(top middle) learns Gabor-like filters that cover space, orientation, and spatial frequency. The quality
is comparable to sparse coding dictionaries learned with LCA/ISTA (top/lower right panels). C-VAE
also learns Gabors, although there are significantly more noisy basis elements.

The P-VAE avoids posterior collapse. A striking feature of Fig. 4 is the sheer number of noisy
basis vectors for both continuous VAEs (G-VAE, L-VAE). We suspected this reflected dead neurons
with vanishing KL, which is indicative of a collapsed latent dimension that’s no longer encoding
information. To quantify this, we binned the distribution of KL values and thresholded the resulting
distribution at discontinuous points (see supplemental Fig. 8). Table 2 shows the results of this
analysis for all VAEs with valid KL terms. Across all datasets, both continuous VAEs suffered from
large numbers of dead neurons, whereas P-VAE largely avoided this problem. On both natural image
datasets, P-VAE had ∼2% dead neurons compared to ∼80% for G-VAE and L-VAE. Having a more
expressive encoder slightly increases this percentage, but a dramatic difference between P-VAE and
continuous VAEs (G-VAE, L-VAE) persists.

The P-VAE learns sparse representations. To quantify whether P-VAE learns sparse representa-
tions, we compared our VAE models to sparse coding trained with LCA and ISTA and quantified the
lifetime sparsity [69]. The lifetime sparsity of the j-th latent is:

7

Table 2: Proportion of active neurons. All models considered in this table had a latent dimensionality
of K = 512. The decoders were linear, and the encoders were either linear or convolutional.

Model
van Hateren

linear conv

CIFAR16×16

linear conv

MNIST

linear conv

P-VAE
L-VAE
G-VAE

0.984±.011 0.819±.041

0.188±.000 0.222±.003

0.218±.003 0.246±.000

0.999±.002 0.928±.045

0.193±.003 0.230±.000

0.105±.008 0.246±.000

0.537±.008 0.426±.011

0.027±.000 0.034±.002

0.027±.000 0.031±.000

sj =

(
1− 1

N

)−1
(
1− 1

N

(
∑

i zij)
2∑

i z
2
ij

)
, (5)

where N is the number of images, and zij is sampled from the posterior for the i-th image. Intuitively,
sj = 1 whenever neuron j responds to a single stimulus out of the entire set (highly selective). In
contrast, sj = 0 whenever the neuron responds equally well to all stimuli indiscriminately.

Fig. 5a shows the reconstruction performance (MSE) compared to lifetime sparsity (s, eq. (5)) for
all VAEs. The G-VAE finds good reconstructions (MSE = 71.49) but with low sparsity (s = 0.37).
The P-VAE finds much sparser solutions (s = 0.94), but at a cost of reconstruction quality (MSE =
102.68). Because the P-VAE KL term explicitly penalizes rate (eq. (3)), we explored different β
values for P-VAE with a linear encoder and decoder (Fig. 5a, blue curve). This maps out a rate-
distortion curve, allowing us to compare what level of sparsity P-VAE matches G-VAE performance.
Even with a simpler (linear) encoder, P-VAE matches G-VAE in performance with a 1.6× sparser
solution (at β = 0.6). The addition of a relu activation to G-VAE increased the sparsity (s = 0.69).
By comparing the P-VAE with a linear encoder to P-VAE with a convolutional encoder, we find that
increasing decoder complexity for the same β = 1 maintains the same MSE but increases sparsity
(blue open circle), suggesting amortization quality can significantly shift this curve [33, 107, 108].

Figure 5: Reconstruction performance versus sparsity of representations. (a) Results for VAE model
family. The curve is sigmoid fit to a P-VAE with both linear encoder and decoder, and varying β
values (this is β from eq. (4)). (b) Amortization gap of P-VAE (blue open circle) compared to sparse
coding (LCA/ISTA). Solid points are obtained from LCA inference applied to the P-VAE basis
vectors with different sparsity levels (βLCA is the one from eq. (1)). The curve is a sigmoid fit.

DoesP-VAE match the performance of traditional sparse coding trained with LCA or ISTA? Figure 5b
compares P-VAE to sparse coding models that were trained using a wide range of hyperparameters,
and the best models were selected for each class (appendix B). P-VAE achieves a similar sparsity
to LCA and ISTA (s = 0.94, 0.91, and 0.96, respectively), but the best LCA model drastically
outperforms P-VAE on MSE for similar levels of sparsity. This suggests our convolutional encoder is
struggling to close the amortization gap. To test this hypothesis, we performed LCA inference on basis
elements learned by P-VAE (Fig. 5b curve/solid points). We explored a range of hyperparameters
to determine whether the MSE improved for similar sparsity levels. Indeed, LCA inference using
P-VAE dictionary, was able to nearly match the performance of sparse coding LCA for similar levels
of sparsity. This confirms our hypothesis that a large amortization gap remains for the specific encoder
architectures we tested, highlighting the need for improved inference algorithms/architectures [108].

8

Table 3: Geometry of representations (K = 10 only; see Table 5 for the full set of results).

Latent
dim. Model

KNN classification (N, # labeled samples)

N = 200 N = 1,000 N = 5,000

Shattering
dim.

K = 10

P-VAE
C-VAE
L-VAE
G-VAE
G-VAE +relu

G-VAE +exp

0.815±.002 0.919±.001 0.946±.017

0.705±.002 0.800±.002 0.853±.040

0.757±.003 0.869±.002 0.924±.028

0.673±.003 0.813±.002 0.891±.033

0.694±.003 0.817±.003 0.877±.045

0.642±.003 0.784±.002 0.863±.032

0.797±.009

0.795±.006

0.751±.008

0.758±.007

0.762±.007

0.737±.008

The P-VAE is more sample efficient in downstream tasks. We test the unsupervised learned
representations on a downstream classification task. We first trained all VAE models with K = 10
dimensional latent space and a convolutional encoder and decoder on the MNIST training set (see
supplementary Fig. 9 for the quality of generated samples and reconstruction performance). Next, we
used the trained encoders to extract representations and evaluated their performance on classifying
MNIST digits. We define VAE representation to be the output of the encoder. Following conventions
in the VAE literature [105], we used the mean vectors µ for continuous VAEs (G-VAE, L-VAE). For
the P-VAE, we used log δr, and for the C-VAE, we used logits.

We split the MNIST validation set into two 5,000 sample sets, used as train/test sets for this task. We
train a K-nearest neighbors (KNN) classifier with a varying number of limited supervised samples
(N = 200, 1000, 5000) drawn without replacement from the first set (train), to measure classification
accuracy on the withheld set (test). KNN is nonparametric, and its performance is directly influenced
by the geometry of representations by explicitly capturing the distance between encoded samples
[109]. We find that using only N = 200 samples, P-VAE achieves ∼ 82% accuracy in held out
data; whereas, G-VAE achieves the same level of accuracy at N = 1000 samples (Table 3). By this
measure, P-VAE is 5×more sample efficient. But from Alleman et al. [110], we know that the choice
of activation function changes the geometry of learned representations. Therefore, we also tested
G-VAE models with an activation function (relu and exp) applied to latents after sampling from the
posterior. This biological constraint improved G-VAE, but it still underperformed P-VAE (Table 3).
We also found this result held for higher dimensional latent spaces (supplementary Table 5).

The P-VAE learns representations with higher dimensional geometry. The preceding results
are indicative of substantial differences in the geometry of the representations learned by P-VAE
compared to other VAE families (Table 3). To test this more explicitly, we calculated the “shattering
dimensionality” of the latent space [111–113]. Shattering dim measures the average accuracy over all
possible pairwise classification tasks. This is called “shattering” because if the model shatters data
points around into a high dimensional space, they will become more linearly separable. For MNIST
with 10 classes, there are

(
10
5

)
= 252 possible classifications. We trained logistic regression on the

entire training set to classify each of the 252 arbitrary splits and measured the average performance
on the entire validation set. The far right column of Table 3 shows the measured shattering dims. For
K = 10, the shattering dim was significantly higher for discrete VAEs (P-VAE, C-VAE). For higher
dimensional latent spaces P-VAE strongly outperformed alternative models (Table 5).

5 Conclusions

In this paper, we describe the P-VAE, which performs posterior inference encoded in discrete spike
counts. We introduce a Poisson reparameterization trick and derive the ELBO for Poisson-distributed
VAEs. The P-VAE loss results in a KL term that penalizes firing rates like sparse coding [3]. We
show that P-VAE with a linear generative model reduces to amortized sparse coding.

When trained on natural image patches, P-VAE with a linear decoder learns sparse solutions with
Gabor-like basis vectors resembling sparse coding, both in the form of the learned basis as well as
the lifetime sparsity of the latents. We evaluated the representations on downstream classification
tasks and found that P-VAE encodes its inputs in a higher dimensional space that enabled good linear
separability between classes.

9

Limitations and future directions. P-VAE samples Poisson latents. Although this is inspired by
the statistics of spike counts in the brain over short time intervals [50], there are deviations from
Poisson throughout the cortex over longer time windows [51]. Extending P-VAE to hierarchical
architectures [33] will make the latents conditionally Poisson, but not marginally Poisson (as they
are modulated by top-down rates). Further extensions could implement doubly-stochastic spike
generation [51, 114]. A second limitation is the amortization gap we observed between our current
implementation of P-VAE and traditional sparse coding. This could likely be closed with more
expressive encoders [115] or through iterative inference [116], but it is an open area of research [108].

Overall, theP-VAE is a promising step towards learning brain-like representations in deep hierarchical
generative models.

6 Code & Data

Our code, data, and model checkpoints are available here: https://github.com/hadivafaii/PoissonVAE.

7 Acknowledgments

This work was supported by the National Institute of Health under award number NEI EY032179.
Additionally, this material is based upon work supported by the National Science Foundation Grad-
uate Research Fellowship Program under Grant No. DGE-1752814 (DG). Any opinions, findings,
conclusions, or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation. We thank our anonymous reviewers
for their helpful comments, and the developers of the software packages used in this project, including
PyTorch [97], NumPy [117], SciPy [118], scikit-learn [119], pandas [120], matplotlib [121], and
seaborn [122].

References
[1] Irina Higgins et al. “Unsupervised deep learning identifies semantic disentanglement in single

inferotemporal face patch neurons”. In: Nature Communications 12.1 (2021), p. 6456. DOI:
10.1038/s41467-021-26751-5.

[2] Hadi Vafaii et al. “Hierarchical VAEs provide a normative account of motion processing in
the primate brain”. In: Thirty-seventh Conference on Neural Information Processing Systems.
2023. URL: https://openreview.net/forum?id=1wOkHN9JK8.

[3] Bruno A Olshausen and David J Field. “Emergence of simple-cell receptive field properties
by learning a sparse code for natural images”. In: Nature 381.6583 (1996), pp. 607–609. DOI:
10.1038/381607a0.

[4] Michael E. Tipping and Christopher M. Bishop. “Probabilistic Principal Component Analy-
sis”. In: Journal of the Royal Statistical Society Series B: Statistical Methodology 61.3 (Jan.
1999), pp. 611–622. ISSN: 1369-7412. DOI: 10.1111/1467-9868.00196.

[5] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous
activity”. In: The bulletin of mathematical biophysics 5 (1943), pp. 115–133. DOI: 10.1007/
BF02478259.

[6] Patricia S Churchland and Terrence J Sejnowski. “Perspectives on cognitive neuroscience”.
In: Science 242.4879 (1988), pp. 741–745. DOI: 10.1126/science.3055294.

[7] Michael SC Thomas and James L McClelland. “Connectionist models of cognition”. In:
The Cambridge handbook of computational psychology (2008), pp. 23–58. URL: http:
//www7.bbk.ac.uk/psychology/dnl/wp-content/uploads/2023/10/Thomas-
McClelland-proof.pdf.

[8] Nikolaus Kriegeskorte. “Deep neural networks: a new framework for modeling biological
vision and brain information processing”. In: Annual Review of Vision Science 1 (2015),
pp. 417–446. DOI: 10.1101/029876.

[9] Grace W. Lindsay. “Convolutional Neural Networks as a Model of the Visual System: Past,
Present, and Future”. In: Journal of Cognitive Neuroscience 33.10 (Sept. 2021), pp. 2017–
2031. ISSN: 0898-929X. DOI: 10.1162/jocn_a_01544.

10

https://github.com/hadivafaii/PoissonVAE
https://doi.org/10.1038/s41467-021-26751-5
https://openreview.net/forum?id=1wOkHN9JK8
https://doi.org/10.1038/381607a0
https://doi.org/10.1111/1467-9868.00196
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://doi.org/10.1126/science.3055294
http://www7.bbk.ac.uk/psychology/dnl/wp-content/uploads/2023/10/Thomas-McClelland-proof.pdf
http://www7.bbk.ac.uk/psychology/dnl/wp-content/uploads/2023/10/Thomas-McClelland-proof.pdf
http://www7.bbk.ac.uk/psychology/dnl/wp-content/uploads/2023/10/Thomas-McClelland-proof.pdf
https://doi.org/10.1101/029876
https://doi.org/10.1162/jocn_a_01544

[10] Joseph Marino. “Predictive coding, variational autoencoders, and biological connections”. In:
Neural Computation 34.1 (2022), pp. 1–44. DOI: 10.1162/neco_a_01458.

[11] Jeffrey S Bowers et al. “Deep problems with neural network models of human vision”. In:
Behavioral and Brain Sciences 46 (2023), e385. DOI: 10.1017/S0140525X22002813.

[12] Felix A. Wichmann and Robert Geirhos. “Are Deep Neural Networks Adequate Behavioral
Models of Human Visual Perception?” In: Annual Review of Vision Science 9.Volume 9,
2023 (2023), pp. 501–524. ISSN: 2374-4650. DOI: 10.1146/annurev-vision-120522-
031739.

[13] Anthony Zador et al. “Catalyzing next-generation Artificial Intelligence through NeuroAI”.
In: Nature Communications 14.1 (2023), p. 1597. DOI: 10.1038/s41467-023-37180-x.

[14] Fabian H Sinz et al. “Engineering a less artificial intelligence”. In: Neuron 103.6 (2019),
pp. 967–979. DOI: 10.1016/j.neuron.2019.08.034.

[15] Demis Hassabis et al. “Neuroscience-inspired artificial intelligence”. In: Neuron 95.2 (2017),
pp. 245–258. DOI: 10.1016/j.neuron.2017.06.011.

[16] Nancy Kanwisher et al. “Using artificial neural networks to ask ‘why’ questions of minds
and brains”. In: Trends in Neurosciences (2023). DOI: 10.1016/j.tins.2022.12.008.

[17] Blake Richards et al. “The application of artificial intelligence to biology and neuroscience”.
In: Cell 185.15 (2022), pp. 2640–2643. DOI: 10.1016/j.cell.2022.06.047.

[18] Blake A Richards et al. “A deep learning framework for neuroscience”. In: Nature Neuro-
science 22.11 (2019), pp. 1761–1770. DOI: 10.1038/s41593-019-0520-2.

[19] David GT Barrett et al. “Analyzing biological and artificial neural networks: challenges with
opportunities for synergy?” In: Current Opinion in Neurobiology 55 (2019), pp. 55–64. DOI:
10.1016/j.conb.2019.01.007.

[20] Adrien Doerig et al. “The neuroconnectionist research programme”. In: Nature Reviews
Neuroscience (2023), pp. 1–20. DOI: 10.1038/s41583-023-00705-w.

[21] Ibn al-Haytham. Book of optics (Kitab Al-Manazir). 1011–1021 AD.
[22] Hermann Von Helmholtz. Handbuch der physiologischen Optik. Vol. 9. Voss, 1867.
[23] Tai Sing Lee and David Mumford. “Hierarchical Bayesian inference in the visual cortex”. In:

JOSA A 20.7 (2003), pp. 1434–1448. DOI: 10.1364/JOSAA.20.001434.
[24] Bruno A. Olshausen. “Perception as an Inference Problem”. In: The Cognitive Neurosciences

(5th edition) (2014). Ed. by Michael Gazzaniga and George R. Mangun. DOI: 10.7551/
mitpress/9504.003.0037. URL: http://rctn.org/bruno/papers/perception-
as-inference.pdf.

[25] Edwin Garrigues Boring. “Perception of objects”. In: American Journal of Physics (1946).
DOI: 10.1119/1.1990807.

[26] Karl Friston. “The free-energy principle: a unified brain theory?” In: Nature Reviews Neuro-
science 11.2 (2010), pp. 127–138. DOI: 10.1038/nrn2787.

[27] Sam Bond-Taylor et al. “Deep generative modelling: A comparative review of vaes, gans,
normalizing flows, energy-based and autoregressive models”. In: IEEE transactions on
pattern analysis and machine intelligence 44.11 (2021), pp. 7327–7347. DOI: 10.1109/
TPAMI.2021.3116668.

[28] Stanley H. Chan. Tutorial on Diffusion Models for Imaging and Vision. 2024. arXiv: 2403.
18103 [cs.LG].

[29] Wayne Xin Zhao et al. A Survey of Large Language Models. 2023. arXiv: 2303.18223
[cs.CL].

[30] Rajesh PN Rao and Dana H Ballard. “Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects”. In: Nature Neuroscience 2.1
(1999), pp. 79–87. DOI: 10.1038/4580.

[31] Robin Rombach et al. “High-Resolution Image Synthesis With Latent Diffusion Models”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2022, pp. 10684–10695.

[32] Tero Karras et al. “A Style-Based Generator Architecture for Generative Adversarial Net-
works”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR). June 2019. URL: https://openaccess.thecvf.com/content_CVPR_
2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_
Adversarial_Networks_CVPR_2019_paper.html.

11

https://doi.org/10.1162/neco_a_01458
https://doi.org/10.1017/S0140525X22002813
https://doi.org/10.1146/annurev-vision-120522-031739
https://doi.org/10.1146/annurev-vision-120522-031739
https://doi.org/10.1038/s41467-023-37180-x
https://doi.org/10.1016/j.neuron.2019.08.034
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1016/j.tins.2022.12.008
https://doi.org/10.1016/j.cell.2022.06.047
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1016/j.conb.2019.01.007
https://doi.org/10.1038/s41583-023-00705-w
https://doi.org/10.1364/JOSAA.20.001434
https://doi.org/10.7551/mitpress/9504.003.0037
https://doi.org/10.7551/mitpress/9504.003.0037
http://rctn.org/bruno/papers/perception-as-inference.pdf
http://rctn.org/bruno/papers/perception-as-inference.pdf
https://doi.org/10.1119/1.1990807
https://doi.org/10.1038/nrn2787
https://doi.org/10.1109/TPAMI.2021.3116668
https://doi.org/10.1109/TPAMI.2021.3116668
https://arxiv.org/abs/2403.18103
https://arxiv.org/abs/2403.18103
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.1038/4580
https://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Karras_A_Style-Based_Generator_Architecture_for_Generative_Adversarial_Networks_CVPR_2019_paper.html

[33] Arash Vahdat and Jan Kautz. “NVAE: A Deep Hierarchical Variational Autoencoder”. In:
Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc., 2020,
pp. 19667–19679. URL: https://papers.nips.cc/paper_files/paper/2020/hash/
e3b21256183cf7c2c7a66be163579d37-Abstract.html.

[34] Rewon Child. “Very Deep {VAE}s Generalize Autoregressive Models and Can Outperform
Them on Images”. In: International Conference on Learning Representations. 2021. URL:
https://openreview.net/forum?id=RLRXCV6DbEJ.

[35] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: (2014). arXiv:
1312.6114v11 [stat.ML].

[36] Danilo Jimenez Rezende et al. “Stochastic backpropagation and approximate inference in
deep generative models”. In: International Conference on Machine Learning. PMLR. 2014,
pp. 1278–1286. URL: https://proceedings.mlr.press/v32/rezende14.html.

[37] Diederik P Kingma and Ruiqi Gao. “Understanding Diffusion Objectives as the ELBO
with Simple Data Augmentation”. In: Thirty-seventh Conference on Neural Information
Processing Systems. 2023. URL: https://openreview.net/forum?id=NnMEadcdyD.

[38] Karsten Kreis et al. NeurIPS 2023 Tutorial on Latent Diffusion Models. https : / /
neurips2023-ldm-tutorial.github.io/. 2023.

[39] Diederik Kingma et al. “Variational diffusion models”. In: Advances in neural information
processing systems 34 (2021), pp. 21696–21707.

[40] Ferenc Csikor et al. “Top-down perceptual inference shaping the activity of early visual
cortex”. In: bioRxiv (2023). DOI: 10.1101/2023.11.29.569262.

[41] T. Anderson Keller et al. “Modeling Category-Selective Cortical Regions with Topographic
Variational Autoencoders”. In: SVRHM 2021 Workshop @ NeurIPS. 2021. URL: https:
//openreview.net/forum?id=yGRq_lW54bI.

[42] T. Anderson Keller and Max Welling. “Topographic VAEs learn Equivariant Capsules”. In:
Advances in Neural Information Processing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran
Associates, Inc., 2021, pp. 28585–28597. URL: https://proceedings.neurips.cc/
paper/2021/hash/f03704cb51f02f80b09bffba15751691-Abstract.html.

[43] Katherine R Storrs et al. “Unsupervised learning predicts human perception and misperception
of gloss”. In: Nature Human Behaviour 5.10 (2021), pp. 1402–1417. DOI: 10.1038/s41562-
021-01097-6.

[44] Edgar Adrian. The activity of the nerve fibres. https://www.nobelprize.org/prizes/
medicine/1932/adrian/lecture/. 1932.

[45] Edgar Douglas Adrian and Yngve Zotterman. “The impulses produced by sensory nerve-
endings: Part II. The response of a Single End-Organ”. In: The Journal of Physiology (1926),
pp. 151–71. DOI: 10.1113/jphysiol.1926.sp002281.

[46] Donald H Perkel and Theodore H Bullock. “Neural coding”. In: Neurosciences Research
Program Bulletin (1968). URL: https://ntrs.nasa.gov/citations/19690022317.

[47] Horace B Barlow. “Single units and sensation: a neuron doctrine for perceptual psychology?”
In: Perception 1.4 (1972), pp. 371–394. DOI: 10.1068/p010371.

[48] Ehud Zohary et al. “Correlated neuronal discharge rate and its implications for psychophysical
performance”. In: Nature 370.6485 (1994), pp. 140–143. DOI: 10.1038/370140a0.

[49] Fred Rieke et al. Spikes: exploring the neural code. MIT press, 1999.
[50] Malvin C Teich. “Fractal character of the auditory neural spike train”. In: IEEE Transactions

on Biomedical Engineering 36.1 (1989), pp. 150–160.
[51] Robbe LT Goris et al. “Partitioning neuronal variability”. In: Nature neuroscience 17.6 (2014),

pp. 858–865.
[52] Diederik P Kingma and Max Welling. “An introduction to variational autoencoders”. In:

Foundations and Trends® in Machine Learning 12.4 (2019), pp. 307–392. DOI: 10.1561/
2200000056.

[53] Charles D Gilbert and Wu Li. “Top-down influences on visual processing”. In: Nature Reviews
Neuroscience 14.5 (2013), pp. 350–363.

[54] David C Knill and Alexandre Pouget. “The Bayesian brain: the role of uncertainty in neural
coding and computation”. In: Trends in Neurosciences 27.12 (2004), pp. 712–719. DOI:
10.1016/j.tins.2004.10.007.

12

https://papers.nips.cc/paper_files/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
https://papers.nips.cc/paper_files/paper/2020/hash/e3b21256183cf7c2c7a66be163579d37-Abstract.html
https://openreview.net/forum?id=RLRXCV6DbEJ
https://arxiv.org/abs/1312.6114v11
https://proceedings.mlr.press/v32/rezende14.html
https://openreview.net/forum?id=NnMEadcdyD
https://neurips2023-ldm-tutorial.github.io/
https://neurips2023-ldm-tutorial.github.io/
https://doi.org/10.1101/2023.11.29.569262
https://openreview.net/forum?id=yGRq_lW54bI
https://openreview.net/forum?id=yGRq_lW54bI
https://proceedings.neurips.cc/paper/2021/hash/f03704cb51f02f80b09bffba15751691-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f03704cb51f02f80b09bffba15751691-Abstract.html
https://doi.org/10.1038/s41562-021-01097-6
https://doi.org/10.1038/s41562-021-01097-6
https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
https://www.nobelprize.org/prizes/medicine/1932/adrian/lecture/
https://doi.org/10.1113/jphysiol.1926.sp002281
https://ntrs.nasa.gov/citations/19690022317
https://doi.org/10.1068/p010371
https://doi.org/10.1038/370140a0
https://doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056
https://doi.org/10.1016/j.tins.2004.10.007

[55] Horace Barlow. “Redundancy reduction revisited”. In: Network: computation in neural
systems 12.3 (2001), p. 241. DOI: 10.1080/net.12.3.241.253.

[56] Karl Friston. “The free-energy principle: a rough guide to the brain?” In: Trends in cognitive
sciences 13.7 (2009), pp. 293–301.

[57] Peter Dayan et al. “The Helmholtz machine”. In: Neural Computation 7.5 (1995), pp. 889–
904. DOI: 10.1162/neco.1995.7.5.889.

[58] William Lotter et al. “Deep Predictive Coding Networks for Video Prediction and Unsu-
pervised Learning”. In: International Conference on Learning Representations. 2017. URL:
https://openreview.net/forum?id=B1ewdt9xe.

[59] Fred Attneave. “Some informational aspects of visual perception.” In: Psychological review
61.3 (1954), p. 183. DOI: 10.1037/h0054663.

[60] Horace B. Barlow. “Possible principles underlying the transformation of sensory messages”.
In: Sensory communication 1.01 (1961), pp. 217–233. URL: https://www.cnbc.cmu.edu/
~tai/microns_papers/Barlow-SensoryCommunication-1961.pdf.

[61] Mandyam Veerambudi Srinivasan et al. “Predictive coding: a fresh view of inhibition in
the retina”. In: Proceedings of the Royal Society of London. Series B. Biological Sciences
216.1205 (1982), pp. 427–459. DOI: 10.1098/rspb.1982.0085.

[62] Karl Friston. “A theory of cortical responses”. In: Philosophical transactions of the Royal
Society B: Biological Sciences 360.1456 (2005), pp. 815–836. DOI: 10.1098/rstb.2005.
1622.

[63] Andy Clark. “Whatever next? Predictive brains, situated agents, and the future of cognitive
science”. In: Behavioral and brain sciences 36.3 (2013), pp. 181–204. DOI: 10.1017/
S0140525X12000477.

[64] William Lotter et al. “A neural network trained for prediction mimics diverse features of
biological neurons and perception”. In: Nature machine intelligence 2.4 (2020), pp. 210–219.
DOI: 10.1038/s42256-020-0170-9.

[65] Beren Millidge et al. “Predictive coding networks for temporal prediction”. In: PLOS Compu-
tational Biology 20.4 (2024), e1011183.

[66] Yosef Singer et al. “Hierarchical temporal prediction captures motion processing along the
visual pathway”. In: Elife 12 (2023), e52599.

[67] Pierre-Étienne Fiquet and Eero Simoncelli. “A polar prediction model for learning to represent
visual transformations”. In: Advances in Neural Information Processing Systems 36 (2024).

[68] Bruno A Olshausen and David J Field. “Sparse coding of sensory inputs”. In: Current opinion
in neurobiology 14.4 (2004), pp. 481–487. DOI: 10.1016/j.conb.2004.07.007.

[69] William E Vinje and Jack L Gallant. “Sparse coding and decorrelation in primary visual
cortex during natural vision”. In: Science 287.5456 (2000), pp. 1273–1276. DOI: 10.1126/
science.287.5456.1273.

[70] Alison L Barth and James FA Poulet. “Experimental evidence for sparse firing in the neocor-
tex”. In: Trends in neurosciences 35.6 (2012), pp. 345–355. DOI: 10.1016/j.tins.2012.
03.008.

[71] R Quian Quiroga et al. “Sparse but not ‘grandmother-cell’coding in the medial temporal
lobe”. In: Trends in cognitive sciences 12.3 (2008), pp. 87–91. DOI: 10.1016/j.tics.2007.
12.003.

[72] Tomáš Hromádka et al. “Sparse representation of sounds in the unanesthetized auditory
cortex”. In: PLoS biology 6.1 (2008), e16. DOI: 10.1371/journal.pbio.0060016.

[73] Cindy Poo and Jeffry S Isaacson. “Odor representations in olfactory cortex: “sparse" coding,
global inhibition, and oscillations”. In: Neuron 62.6 (2009), pp. 850–861. DOI: 10.1016/j.
neuron.2009.05.022.

[74] Jason Wolfe et al. “Sparse and powerful cortical spikes”. In: Current opinion in neurobiology
20.3 (2010), pp. 306–312. DOI: 10.1016/j.conb.2010.03.006.

[75] Ben DB Willmore et al. “Sparse coding in striate and extrastriate visual cortex”. In: Journal
of neurophysiology 105.6 (2011), pp. 2907–2919. DOI: 10.1152/jn.00594.2010.

[76] Bilal Haider et al. “Synaptic and network mechanisms of sparse and reliable visual cortical
activity during nonclassical receptive field stimulation”. In: Neuron 65.1 (2010), pp. 107–121.
DOI: 10.1016/j.neuron.2009.12.005.

13

https://doi.org/10.1080/net.12.3.241.253
https://doi.org/10.1162/neco.1995.7.5.889
https://openreview.net/forum?id=B1ewdt9xe
https://doi.org/10.1037/h0054663
https://www.cnbc.cmu.edu/~tai/microns_papers/Barlow-SensoryCommunication-1961.pdf
https://www.cnbc.cmu.edu/~tai/microns_papers/Barlow-SensoryCommunication-1961.pdf
https://doi.org/10.1098/rspb.1982.0085
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1038/s42256-020-0170-9
https://doi.org/10.1016/j.conb.2004.07.007
https://doi.org/10.1126/science.287.5456.1273
https://doi.org/10.1126/science.287.5456.1273
https://doi.org/10.1016/j.tins.2012.03.008
https://doi.org/10.1016/j.tins.2012.03.008
https://doi.org/10.1016/j.tics.2007.12.003
https://doi.org/10.1016/j.tics.2007.12.003
https://doi.org/10.1371/journal.pbio.0060016
https://doi.org/10.1016/j.neuron.2009.05.022
https://doi.org/10.1016/j.neuron.2009.05.022
https://doi.org/10.1016/j.conb.2010.03.006
https://doi.org/10.1152/jn.00594.2010
https://doi.org/10.1016/j.neuron.2009.12.005

[77] Sylvain Crochet et al. “Synaptic mechanisms underlying sparse coding of active touch”. In:
Neuron 69.6 (2011), pp. 1160–1175. DOI: 10.1016/j.neuron.2011.02.022.

[78] Carl CH Petersen. “Sensorimotor processing in the rodent barrel cortex”. In: Nature Reviews
Neuroscience 20.9 (2019), pp. 533–546. DOI: 10.1038/s41583-019-0200-y.

[79] Emmanouil Froudarakis et al. “Population code in mouse V1 facilitates readout of natural
scenes through increased sparseness”. In: Nature neuroscience 17.6 (2014), pp. 851–857.
DOI: 10.1038/nn.3707.

[80] Christopher J Rozell et al. “Sparse coding via thresholding and local competition in neural
circuits”. In: Neural Computation 20.10 (2008), pp. 2526–2563. DOI: 10.1162/neco.2008.
03-07-486.

[81] I. Daubechies et al. “An iterative thresholding algorithm for linear inverse problems with a
sparsity constraint”. In: Communications on Pure and Applied Mathematics 57.11 (2004),
pp. 1413–1457. DOI: 10.1002/cpa.20042.

[82] Amir Beck and Marc Teboulle. “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009), pp. 183–202.
DOI: 10.1137/080716542.

[83] Ankush Ganguly et al. “Amortized Variational Inference: A Systematic Review”. In: Journal
of Artificial Intelligence Research 78 (2023), pp. 167–215. DOI: 10.1613/jair.1.14258.

[84] Brandon Amos. “Tutorial on Amortized Optimization”. In: Foundations and Trends® in
Machine Learning 16.5 (2023), pp. 592–732. ISSN: 1935-8237. DOI: 10.1561/2200000102.

[85] Samuel Gershman and Noah Goodman. “Amortized inference in probabilistic reasoning”. In:
Proceedings of the annual meeting of the cognitive science society. Vol. 36. 36. 2014. URL:
https://escholarship.org/uc/item/34j1h7k5.

[86] Colin Conwell et al. “What can 1.8 billion regressions tell us about the pressures shaping
high-level visual representation in brains and machines?” In: bioRxiv (2023). DOI: 10.1101/
2022.03.28.485868.

[87] Eric Elmoznino and Michael F Bonner. “High-performing neural network models of visual
cortex benefit from high latent dimensionality”. In: bioRxiv (2022), pp. 2022–07. DOI:
10.1101/2022.07.13.499969.

[88] Aaron Van Den Oord, Oriol Vinyals, et al. “Neural discrete representation learning”. In:
Advances in neural information processing systems 30 (2017).

[89] Eric Jang et al. “Categorical Reparameterization with Gumbel-Softmax”. In: International
Conference on Learning Representations. 2017. URL: https://openreview.net/forum?
id=rkE3y85ee.

[90] Hiromichi Kamata et al. “Fully spiking variational autoencoder”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 36. 6. 2022, pp. 7059–7067.

[91] Victor Geadah et al. “Sparse-Coding Variational Auto-Encoders”. In: bioRxiv (2024). DOI:
10.1101/399246.

[92] Francesco Tonolini et al. “Variational sparse coding”. In: Uncertainty in Artificial Intelligence.
PMLR. 2020, pp. 690–700.

[93] Pan Xiao et al. “SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA”.
In: (2024). arXiv: 2303.16666 [cs.CV].

[94] David Roxbee Cox and Valerie Isham. Point processes. Vol. 12. CRC Press, 1980.
[95] Oleksandr Shchur et al. “Fast and Flexible Temporal Point Processes with Triangular Maps”.

In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33.
Curran Associates, Inc., 2020, pp. 73–84. URL: https://proceedings.neurips.cc/
paper_files/paper/2020/hash/00ac8ed3b4327bdd4ebbebcb2ba10a00-Abstract.
html.

[96] Oleksandr Shchur. “Modeling Continuous-time Event Data with Neural Temporal Point
Processes”. PhD thesis. Technische Universität München, 2022.

[97] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates,
Inc., 2019. URL: https://papers.nips.cc/paper_files/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

14

https://doi.org/10.1016/j.neuron.2011.02.022
https://doi.org/10.1038/s41583-019-0200-y
https://doi.org/10.1038/nn.3707
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1162/neco.2008.03-07-486
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1137/080716542
https://doi.org/10.1613/jair.1.14258
https://doi.org/10.1561/2200000102
https://escholarship.org/uc/item/34j1h7k5
https://doi.org/10.1101/2022.03.28.485868
https://doi.org/10.1101/2022.03.28.485868
https://doi.org/10.1101/2022.07.13.499969
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.1101/399246
https://arxiv.org/abs/2303.16666
https://proceedings.neurips.cc/paper_files/paper/2020/hash/00ac8ed3b4327bdd4ebbebcb2ba10a00-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/00ac8ed3b4327bdd4ebbebcb2ba10a00-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/00ac8ed3b4327bdd4ebbebcb2ba10a00-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[98] Chris J. Maddison et al. “The Concrete Distribution: A Continuous Relaxation of Discrete
Random Variables”. In: International Conference on Learning Representations. 2017. URL:
https://openreview.net/forum?id=S1jE5L5gl.

[99] Daniel J Felleman and David C Van Essen. “Distributed hierarchical processing in the primate
cerebral cortex”. In: Cerebral Cortex 1.1 (1991), pp. 1–47. DOI: 10.1093/CERCOR/1.1.1.

[100] Anita A Disney. “Neuromodulatory control of early visual processing in macaque”. In:
Annual Review of Vision Science 7 (2021), pp. 181–199.

[101] James C. R. Whittington et al. “Disentanglement with Biological Constraints: A Theory of
Functional Cell Types”. In: The Eleventh International Conference on Learning Representa-
tions. 2023. URL: https://openreview.net/forum?id=9Z_GfhZnGH.

[102] J Hans Van Hateren and Arjen van der Schaaf. “Independent component filters of natural
images compared with simple cells in primary visual cortex”. In: Proceedings of the Royal
Society of London. Series B: Biological Sciences 265.1394 (1998), pp. 359–366.

[103] Victor Boutin et al. “Sparse deep predictive coding captures contour integration capabilities
of the early visual system”. In: PLoS computational biology 17.1 (2021), e1008629.

[104] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny
images”. In: (2009).

[105] Francesco Locatello et al. “Challenging common assumptions in the unsupervised learning
of disentangled representations”. In: international conference on machine learning. PMLR.
2019, pp. 4114–4124. URL: https://proceedings.mlr.press/v97/locatello19a.
html.

[106] Yoshua Bengio et al. “Estimating or Propagating Gradients Through Stochastic Neurons for
Conditional Computation”. In: (2013). arXiv: 1308.3432 [cs.LG].

[107] Alexander Alemi et al. “Fixing a Broken ELBO”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, July 2018, pp. 159–168. URL: https:
//proceedings.mlr.press/v80/alemi18a.html.

[108] Chris Cremer et al. “Inference suboptimality in variational autoencoders”. In: International
Conference on Machine Learning. PMLR. 2018, pp. 1078–1086.

[109] Kilian Q Weinberger and Lawrence K Saul. “Distance metric learning for large margin nearest
neighbor classification.” In: Journal of machine learning research 10.2 (2009).

[110] Matteo Alleman et al. “Task structure and nonlinearity jointly determine learned represen-
tational geometry”. In: The Twelfth International Conference on Learning Representations.
2024. URL: https://openreview.net/forum?id=k9t8dQ30kU.

[111] Mattia Rigotti et al. “The importance of mixed selectivity in complex cognitive tasks”. In:
Nature 497.7451 (2013), pp. 585–590. DOI: 10.1038/nature12160.

[112] Silvia Bernardi et al. “The geometry of abstraction in the hippocampus and prefrontal cortex”.
In: Cell 183.4 (2020), pp. 954–967.

[113] Matthew T Kaufman et al. “The implications of categorical and category-free mixed selectivity
on representational geometries”. In: Current opinion in neurobiology 77 (2022), p. 102644.

[114] Cina Aghamohammadi et al. “A doubly stochastic renewal framework for partitioning spiking
variability”. In: bioRxiv (2024), pp. 2024–02.

[115] Karol Gregor and Yann LeCun. “Learning fast approximations of sparse coding”. In: Proceed-
ings of the 27th international conference on international conference on machine learning.
2010, pp. 399–406.

[116] Joe Marino et al. “Iterative Amortized Inference”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Pro-
ceedings of Machine Learning Research. PMLR, July 2018, pp. 3403–3412. URL: https:
//proceedings.mlr.press/v80/marino18a.html.

[117] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp. 357–362. DOI: 10.1038/s41586-020-2649-2.

[118] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.
In: Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[119] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal of machine
Learning research 12 (2011), pp. 2825–2830. DOI: 10.5555/1953048.2078195.

15

https://openreview.net/forum?id=S1jE5L5gl
https://doi.org/10.1093/CERCOR/1.1.1
https://openreview.net/forum?id=9Z_GfhZnGH
https://proceedings.mlr.press/v97/locatello19a.html
https://proceedings.mlr.press/v97/locatello19a.html
https://arxiv.org/abs/1308.3432
https://proceedings.mlr.press/v80/alemi18a.html
https://proceedings.mlr.press/v80/alemi18a.html
https://openreview.net/forum?id=k9t8dQ30kU
https://doi.org/10.1038/nature12160
https://proceedings.mlr.press/v80/marino18a.html
https://proceedings.mlr.press/v80/marino18a.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5555/1953048.2078195

[120] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb. 2020. DOI:
10.5281/zenodo.3509134.

[121] John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in science &
engineering 9.03 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[122] Michael L Waskom. “Seaborn: statistical data visualization”. In: Journal of Open Source
Software 6.60 (2021), p. 3021. DOI: 10.21105/joss.03021.

[123] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc.,
2017. URL: https : / / papers . nips . cc / paper _ files / paper / 2017 / hash /
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[124] Prajit Ramachandran et al. “Searching for Activation Functions”. In: International Confer-
ence on Learning Representations. 2018. URL: https://openreview.net/forum?id=
SkBYYyZRZ.

[125] Stefan Elfwing et al. “Sigmoid-weighted linear units for neural network function approxima-
tion in reinforcement learning”. In: Neural Networks 107 (2018), pp. 3–11. DOI: 10.1016/j.
neunet.2017.12.012.

[126] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: (2014).
arXiv: 1412.6980 [cs.LG].

[127] Ilya Loshchilov and Frank Hutter. “SGDR: Stochastic Gradient Descent with Warm
Restarts”. In: International Conference on Learning Representations. 2017. URL: https:
//openreview.net/forum?id=Skq89Scxx.

[128] Casper Kaae Sønderby et al. “Ladder Variational Autoencoders”. In: Advances in Neural Infor-
mation Processing Systems. Vol. 29. Curran Associates, Inc., 2016. URL: https://papers.
nips.cc/paper_files/paper/2016/hash/6ae07dcb33ec3b7c814df797cbda0f87-
Abstract.html.

[129] Samuel R. Bowman et al. “Generating Sentences from a Continuous Space”. In: Proceedings
of the 20th SIGNLL Conference on Computational Natural Language Learning. Berlin,
Germany: Association for Computational Linguistics, Aug. 2016, pp. 10–21. DOI: 10.18653/
v1/K16-1002.

[130] Hao Fu et al. “Cyclical Annealing Schedule: A Simple Approach to Mitigating KL Vanishing”.
In: Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational Linguistics, June 2019,
pp. 240–250. DOI: 10.18653/v1/N19-1021.

[131] Michael Teti. LCA-PyTorch. [Computer Software] https://doi.org/10.11578/dc.
20230728.4. June 2023. DOI: 10.11578/dc.20230728.4. URL: https://doi.org/10.
11578/dc.20230728.4.

[132] Shakir Mohamed et al. “Monte Carlo Gradient Estimation in Machine Learning”. In: Journal
of Machine Learning Research 21.132 (2020), pp. 1–62. URL: http://jmlr.org/papers/
v21/19-346.html.

16

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=SkBYYyZRZ
https://openreview.net/forum?id=SkBYYyZRZ
https://doi.org/10.1016/j.neunet.2017.12.012
https://doi.org/10.1016/j.neunet.2017.12.012
https://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://papers.nips.cc/paper_files/paper/2016/hash/6ae07dcb33ec3b7c814df797cbda0f87-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/6ae07dcb33ec3b7c814df797cbda0f87-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/6ae07dcb33ec3b7c814df797cbda0f87-Abstract.html
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/K16-1002
https://doi.org/10.18653/v1/N19-1021
https://doi.org/10.11578/dc.20230728.4
https://doi.org/10.11578/dc.20230728.4
https://doi.org/10.11578/dc.20230728.4
https://doi.org/10.11578/dc.20230728.4
https://doi.org/10.11578/dc.20230728.4
http://jmlr.org/papers/v21/19-346.html
http://jmlr.org/papers/v21/19-346.html

A Full derivations

In this section, we provide a self-contained and pedagogical introduction to VAEs, derive the P-VAE
loss function, and highlight how combining Poisson-distributed latents with predictive coding leads
to the emergence of a metabolic cost term in the P-VAE loss. For the case of a linear decoder,
the reconstruction loss assumes a closed-form solution. This means we can compute the gradients
analytically, which we can then use to evaluate the Poisson reparameterization trick.

A.1 Deriving the evidence lower bound (ELBO) loss

For completeness, let’s first go over the basics. This section will provide a quick refresher on
variational inference and how to derive the VAE loss from scratch. Assume the data x ∈ RM and
K-dimensional latent variables z are jointly distributed as p(x, z), with the data generated by the
following process:

p(x) =

∫
p(x, z) dz =

∫
p(x|z)p(z) dz, (6)

In Bayesian posterior inference, the goal is to identify which latents z are likely given data x. In
other words, we want to approximate P (z|x), the optimal but intractable posterior distribution.

Variational inference and VAE loss function. To achieve approximate Bayesian inference, a
common approach is to define a family of variational densities Q and find a member q(z|x) ∈ Q
such that it sufficiently approximates the optimal posterior. We call q(z|x) the approximate posterior.
The general aim of variational inference (VI) can be summarized as follows:

VI : find a q(z|x) ∈ Q such that q(z|x) is a good approximation of p(z|x). (7)

The goodness of our approximate posterior, or its closeness to the true posterior, is measured using
the Kullback-Leibler (KL) divergence:

q∗ = argmin
q∈Q

DKL

(
q(z|x)

∥∥ p(z|x)). (8)

We cannot directly optimize eq. (8), because p(z|x) is intractable. Instead, we rearrange some terms
and arrive at the following loss function:

LNELBO(q) = −Ez∼q(z|x)

[
log p(x|z)

]
+DKL

(
q(z|x)

∥∥ p(z)). (9)

NELBO stands for negative ELBO, also known as “variational free energy.” Notably, finding a q ∈ Q
that minimizes LNELBO(q) in eq. (9) is equivalent to finding the optimal q∗ in eq. (8).

The first term in eq. (9), often called the reconstruction term, captures the likelihood of the observed
data x, given latents z, under the approximate posterior. For all our VAE models, we approximate the
reconstruction term as the mean squared error between input data and their reconstructed version, as
is typically done in the literature. The second term, known as the KL term, is more interesting. This
term can assume very different forms depending on the distribution used.

A.2 The KL term

In this section, we will derive closed-form expressions for the KL term for different choices of the
distributions q(z|x) and p(z). Specifically, we will focus on Gaussian and Poisson parameterizations.

Predictive coding assumption. We will draw inspiration from predictive coding and assume that
the bottom-up inference pathway only encodes the residual information relative to the top-down, or
predicted information. We will apply this idea to both Gaussian and Poisson cases, and find that only
in the Poisson case, the outcome becomes interpretable and resembles sparse coding.

17

Gaussian. Let q(z|x) = N (z;µq(x),σq(x)) and p(z) = N (z;µp,σp), where the mean and
variance are either outputs of the encoder network (red) or parameters of the decoder network (blue).

Now, let us implement the predictive coding assumption, where the encoder only keeps track of
residual information that is not already contained in the prior information. Mathematically, this idea
can be formalized as follows:

µp → µ, µq → µ+ δµ

σp → σ, σq → σ · δσ (10)

With these modifications, the Gaussians KL term becomes:

DKL (q ∥ p) =
1

2

(δµ2

σ2
+ δσ2 − log δσ2 − 1

)
. (11)

In standard Gaussian VAEs, the prior has no learnable parameter. Instead, we have µ → 0 and
σ → 1. Therefore, the final form of the KL term for a standard Gaussian VAE is:

DKL (q ∥N (0,1)) =
1

2

(
δµ2 + δσ2 − log δσ2 − 1

)
. (12)

We observe that the KL term vanishes when δµ→ 0 and δσ → 1. This happens whenever no new
information is propagated through the encoder, a phenomenon known as posterior collapse.

Other than this trivial observation, eq. (12) does not really lend itself to interpretation. In contrast,
will show below that a Poisson parameterization of VAEs leads to a much more interpretable outcome
for the KL term.

Poisson. Now suppose q(z|x) = Pois(z; rδr(x)), and p(z) = Pois(z; r), where z is literally the
spike count of a single latent dimension—or shall we say, neuron?

In the Poisson case, the KL term becomes more interpretable, as we will show below. Recall that the
Poisson distribution for a single variable z, given rate λ ∈ R>0, is given by:

Pois(z;λ) = λze−λ

z!
. (13)

Plug this expressions into the KL divergence definition to get:

DKL (q ∥ p) = Ez∼q

[
log

q

p

]
= Ez∼q

[
log

(rδr)ze−rδr/z!

rze−r/z!

]

= Ez∼q

[
log

((
rδr

r

)z

e−rδr+r

)]

= Ez∼q

[
log δrz + log e−rδr+r

]

= Ez∼q

[
z log δr − rδr + r

]
= Ez∼q

[
z
]
log δr − rδr + r

= rδr log δr − rδr + r

= r (1− δr + δr log δr)

= rf(δr),

(14)

where we have define f(y) := 1− y + y log y.

18

To examine the behavior of the Poisson KL term, we assume δr = 1 + ϵ, where ϵ≪ 1, then Taylor
expand f . Calculating the first and second derivatives of f(y) = 1− y + y log y gives f ′(y) = log y
and f ′′(y) = 1/y. Thus:

f(1 + ϵ) = f(1) + ϵf ′(1) +
ϵ2

2!
f ′′(1) +O(ϵ3)

= 0 + 0 +
ϵ2

2!
+O(ϵ3)

≈ 1

2
ϵ2

(15)

Plug this back into eq. (14) to get:
DKL (q ∥ p) = rf(δr)

= rf(1 + ϵ)

≈ 1

2
rϵ2.

(16)

For small deviations ϵ, the KL term simplifies to the product of the prior firing rate, r, and ϵ2. See
Fig. 6 for a visualization of the full function, f(δr) = 1− δr + δr log δr, along with its quadratic
approximation near δr = 1.

0 1 2 3 4 5
r

0

1

2

3

4

1
r+

r
lo

g
r f (r)

0 1 2 3 4 5
r

0.5 * (1 r)2

Figure 6: Left, residual term f(δr) from eq. (14). Right, quadratic approximation of f from eq. (15).

In general, there are two ways to minimize the KL term:

• r → 0: dead prior neurons.
• δr → 1: posterior collapse.

Together with the reconstruction loss, the NELBO for a 1-dimensional P-VAE reads:
LPVAE (r, δr) = Lrecon. (r, δr) + r (1− δr + δr log δr) . (17)

Finally, it is easy to show that for K-dimensional latent space, eq. (14) generalizes to:

DKL

(
Pois(z; r ⊙ δr(x))

∥∥Pois(z; r)) = r · f(δr), (18)

where ⊙ and · denote the Hadamard (element-wise) and vector products, respectively.

A.3 Connection to sparse coding

Equation (17) mirrors sparse coding due to the presence of the firing rate in the objective function.
Furthermore, it follows the principle of predictive coding by design. Thus, our Poisson formulation
of VAEs effectively unifies these two major themes in theoretical neuroscience. Let’s explore this
curious connection to sparse coding more closely below.

19

A.4 Statistically independent neurons

Suppose our P-VAE has K statistically independent neurons, and z ∈ ZK
≥0 is the spike count variable,

where Z≥0 = {0, 1, 2, . . .} is the set of non-negative integers. Let us use bold font r and δr to refer
to the firing rate vectors of the representation and error units, respectively. Recall that we allowed
these variables to interact in a multiplicative way to construct the posterior rates, λi(x) = riδri(x).
More explicitly, we have:

q(z|x) = Pois(z; rδr) =
K∏
i=1

Pois(zi; riδri) =
K∏
i=1

λzi
i e−λi

zi!
,

p(z) = Pois(z; r) =
K∏
i=1

Pois(zi; ri) =
K∏
i=1

rzii e−ri

zi!
.

(19)

Note that, unlike a standard Gaussian VAE, the prior in P-VAE is parameterized using r, which is
learned from data along with the other parameters. Similar to standard Gaussian VAEs, δr(x) is
parameterized as a neural network.

A.5 Linear decoder

Following the sparse coding literature, we will now assume our decoder generates the input image
x ∈ RM as a linear sum of K basis elements, Φ ∈ RM×K . We approximate the reconstruction loss
as the mean squared error between the input x, and its reconstruction Φz. Given these assumptions,
the VAE reconstruction loss becomes:

Lrecon. (x; q) = Ez∼ q(Z|X=x)

[
∥x−Φz∥22

]
. (20)

For a linear decoder, the reconstruction term ∥x−Φz∥22 contains only the first and second moments
of z. Consequently, the expectation in eq. (20) can be analytically resolved. This yields the loss
function, and consequently, its gradients in closed form. Specifically, for the Poisson case, we only
need to know the following expectation values:

Ez∼Pois(z;λ)

[
zi

]
= λi,

Ez∼Pois(z;λ)

[
zizj

]
= λiλj + δijλi.

(21)

More generally, whenever the VAE decoder is linear, the following result holds:

Lrecon. (x; q,Φ) = ∥x−ΦEq[Z]∥22 +Varq[Z]Tdiag(ΦTΦ). (22)

Note that a linear decoder is the only assumption we needed to obtain this closed-form solution.
There are no restrictions on the form of the encoder: it can be linear, or as complicated as we want.
We only have to compute the mean and variance of the posterior. Here are the reconstruction losses
for both Poisson and Gaussian VAEs with linear decoders, put side-by-side for comparison:

Poisson: Lrecon. (x;λ,Φ) = ∥x−Φλ∥22 + λTdiag(ΦTΦ),

Gaussian: Lrecon. (x;µ,σ,Φ) = ∥x−Φµ∥22 + (σ2)Tdiag(ΦTΦ).
(23)

Given these assumptions, the NELBO (eq. (17)) for P-VAE with a linear decoder becomes:

LSC-PVAE (x; δr, r,Φ) = ∥x−Φλ∥22 + λTdiag(ΦTΦ) + β

K∑
i=1

rif(δri). (24)

20

Recall that we have f(y) = 1− y + y log y (see Fig. 6). We introduced the β term here to control
the trade-off between the reconstruction and the KL term. Additionally, we dropped the explicit
dependence of δr(x) on the input image x to increase readability.

A.6 Linear encoder

We can further simplify the P-VAE architecture by making the encoder also linear. Let’s use
W ∈ RK×M to denote encoder weights, and assume an exponential link function mapping the input
into the residual firing rates. In other words, we have δr = exp(Wx). To obtain the final form of
the loss function, we start from eq. (24), plug in log(δr) = Wx, and rearrange some terms to find:

LVAE = λTΦTΦλ+ λTdiag(ΦTΦ− βI) + λT (βW − 2ΦT)x+ β

K∑
i=1

ri + xTx. (25)

B Architecture, training, and hyperparameter details

B.1 Datasets: additional details

We consider three datasets in this paper. We tile up the van Hateren dataset of natural images [102]
and CIFAR10 into 16× 16 patches and apply whitening and contrast normalization using the code
made available by Boutin et al. [103]. This operation results in the following total number of samples:

• van Hateren: #train = 107,520, #validation = 28,224,

• CIFAR16×16: #train = 200,000, #validation = 40,000.

We use the MNIST dataset primarily for the downstream classification task. After the training is
done, we use the following train/validation split to evaluate the models:

• K-nearest neighbor classification (tables 3 and 5): For this task, we only make use of the
validation set for both training and testing of the classifier. We divide up the N = 10,000
validation samples into two disjoint sets of N = 5,000 samples each. We then draw
random samples (without replacement) from the first half and use them for training the KNN
classifier. We then test the performance on the other half.

• Shattering dimensionality (tables 3 and 5, last column): We use the entire MNIST training
set (N = 60,000 samples) to train logistic regression classifiers on extracted representations.
We then test the results using the entire validation set (N = 10,000 samples).

B.2 Architecture details

For sparse coding results, we focused on models with linear decoders. For the fully linear models
(Figs. 4 and 8) both the encoder and decoder were linear layers, without bias.

For the convolutional components, we use residual layers without batch norm. For van Hateren and
CIFAR16×16 datasets, the encoders had 5 layers (2× conv each). The decoders had 8 convolutional
layers (1 × conv each). For the MNIST dataset, the encoders had 7 layers (2 × conv each). The
decoders had 10 convolutional layers (1×conv each). For all convolutional encoders, the output from
ResNet was followed by a learned pooling layer. The pooled output was then fed into a feed-forward
layer inspired by Transformers [123], which includes a layer norm as the final operation, the output of
which was fed into a linear layer that projects features into posterior distribution parameters. For all
convolutional decoders, nearest neighbor upsampling was performed to scale up the spatial dimension
of reconstructions.

We experimented with both leaky_relu and swish activation functions [124, 125], and found that
swish consistently outperformed leaky_relu in all our experiments across datasets and VAE models.

Please see our code for the full architecture details.

21

B.3 Training: VAE models

We used a variety of learning rates and batch sizes, depending on the dataset and architecture. For
linear models, we used lr = 0.005, and for fully conv models we used lr = 0.002. All models were
trained using the AdaMax optimizer [126] with a cosine learning rate schedule [127]. Please see our
code for the full details of training hyperparameters.

KL annealing. For all VAE models, we annealed the KL term during the first half of the training,
which is known to be an effective trick in training VAEs [2, 33, 128–130].

Temperature annealing. For discrete VAEs (P-VAE, C-VAE), we also annealed the temperature
from a large value to a smaller value during the same first half of training. We found that the specific
functional form of temperature annealing (e.g., linear, exponential, etc) did not matter as much as
the final temperature. For both P-VAE and C-VAE, we start from Tstart = 1.0 and anneal down to
Tstop = 0.05 for P-VAE, and Tstop = 0.1 for C-VAE. We found that the C-VAE performance was not
very sensitive to the choice of Tstop, corroborating previous reports [89, 98].

The P-VAE was relatively more sensitive to the value of Tstop, and we found marginal improvements
when we went lower than Tstop = 0.1 to Tstop = 0.05. A possible future direction involves defining
separate temperatures for the forward and backward passes. For example, setting the forward Tstop to
zero after the annealing period might further improve performance. We leave this as future work.

B.4 Training: sparse coding models

To fit LCA and ISTA models, we explored a combination of 6 β schedules (same β as in eq. (1)),
3 numbers of iteration (for inference), 3 learning rates, and 5 different seeds (for dictionary ini-
tialization). The code for LCA was obtained from the public python library “lca-pytorch” ([131]),
and the code for ISTA was obtained from public “sparsecoding” repository of the Redwood Center
for Theoretical Neuroscience (with added clipping of coefficients to be nonnegative, following the
thresholding step).

We explored learning rates of 1×10−1, 1×10−2, and 1×10−3. We trained all models for 100 epochs.
We scheduled the β parameters linearly, starting from βstart, and stepped it up every five epochs by
βstep, until it reached βend. We explored the following β schedules (expressed as βstart:βend:βstep):

0.05:0.7:0.1, 0.01:0.1:0.01, 0.1:1.0:0.1, 0.05:0.7:0.05, 0.05:0.5:0.05, 0.1:0.1:0

We also explored the inference iteration limits of 100, 500, and 900 iterations. We selected the best
fits to include in the main results shown in Figs. 4 and 5.

C Supplementary results

In this section, we include additional results that further support those reported in the main paper,
including:

• Table 4: Contains the negative ELBO values for all VAE models with a linear decoder. This
table reveals a comparable performance between using Monte-Carlo samples to estimate
gradients, versus optimizing the exact loss (see eqs. (4) and (22) to (24)), highlighting the
effectiveness of our Poisson reparameterization algorithm.

• Figure 7: Uses the same data from the Table 4 to visualize the effects.
• Table 5: Contains the full set of downstream classification results. Related to Table 3.
• Figure 8: Shows how the distribution of KL values (or the norm of decoder weights in the

case of linear decoders) can be used to determine dead neurons that don’t contribute to the
encoding of information.

• Figure 9: Shows MNIST samples generated from the latent space of different VAE models,
as well as their reconstruction performance.

22

https://github.com/lanl/lca-pytorch
https://github.com/rctn/sparsecoding/

Table 4: The reparameterized gradient estimators work as well as exact ones, across datasets and
encoder architectures (linear vs. conv). Note that exact gradients are only computable for linear
decoders (see eqs. (22) to (24)). The values are negative ELBO (lower is better), shown as mean±99%
confidence interval calculated from n = 5 different random initializations. EX, exact, MC, Monte-
Carlo, ST, straight-through [106].

Model
van Hateren

linear conv

CIFAR16×16

linear conv

MNIST

linear conv

P-VAE
EX
MC
ST

168.0±.8 162.4±.2

167.2±.1 163.4±.1

179.3±.1 179.4±.1

167.1±.2 162.1±.1

167.3±.1 162.9±.2

182.3±.1 182.3±.2

41.5±.1 39.7±.2

41.7±.2 40.1±.2

44.8±.1 44.2±.1

G-VAE EX
MC

160.3±.1 154.4±.1

160.3±.1 154.4±.1

165.9±.1 149.2±.0

165.9±.1 149.2±.1

40.6±.1 40.0±.1

40.7±.1 40.1±.0

C-VAE
EX
MC
ST

174.9±.1 186.3±.8

170.5±.1 171.9±.2

174.2±.2 181.1±.3

177.1±.1 180.6±.5

174.7±.1 176.5±.1

180.2±.0 185.6±.2

56.1±.7 59.1±.0

39.7±.2 59.1±.0

49.3±.1 63.8±3.4

L-VAE EX
MC

167.3±.0 159.0±.2

167.3±.0 159.2±.2

170.1±.1 154.3±.1

170.1±.1 154.5±.1

42.1±.1 41.0±.0

42.1±.0 41.0±.0

R
el

at
iv

e
pe

rfo
rm

ac
e

dr
op

 [%
]

EX

Linear encoder

MC ST EX MC ST EX MC ST

C
onv encoder

van Hateren MNIST

Figure 7: Performance drop relative to the best fit. Blue circles are P-VAE, and red ones are G-VAE.
There are n = 5 circles in each condition, corresponding to 5 random initializations. Using Monte-
Carlo samples [132] and our Poisson reparameterization trick (Algorithm 1) to estimate gradients
performs comparably to the situation where exact gradients are available (see eqs. (22) to (24)). EX,
exact, MC, Monte-Carlo, ST, straight-through [106].

23

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100

101

102
Co

un
t

Gaussian (# dead neurons: 401)
dead
alive

0.00 0.02 0.04 0.06 0.08 0.10

Poisson (# dead neurons: 8)
dead
alive

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100

101

102

Co
un

t

Laplace (# dead neurons: 416)
dead
alive

4.5 5.0 5.5 6.0 6.5 7.0

Categorical (# dead neurons: 4)
dead
alive

Figure 8: Identifying dead neurons using a histogram-based method. We bin the KL values and
determine the gap between small values and larger ones. We identify neurons with KL values lower
than the identified threshold (black dashed lines) and pronounce them dead. The figure shows the
distribution of KL values over all neurons (K = 512) for P-VAE, G-VAE, and L-VAE. The KL term
is a single number for the C-VAE because its latent space consists of a single one-hot categorical
distribution with K = 512 categories. Therefore, for the C-VAE, we use the distribution of decoder
weight norms instead. These are the same models shown in Fig. 4, where both encoder and decoder
are linear. Table 2 uses this method to quantify the proportion of active neurons for VAEs across
different datasets and choice of encoder architectures.

Table 5: Geometry of representations. Full set of results. Related to Table 3.

Latent
dim. Model

KNN classification (N, # labeled samples)

N = 200 N = 1,000 N = 5,000

Shattering
dim.

K = 10

P-VAE
C-VAE
L-VAE
G-VAE
G-VAE +relu

G-VAE +exp

0.815±.002 0.919±.001 0.946±.017

0.705±.002 0.800±.002 0.853±.040

0.757±.003 0.869±.002 0.924±.028

0.673±.003 0.813±.002 0.891±.033

0.694±.003 0.817±.003 0.877±.045

0.642±.003 0.784±.002 0.863±.032

0.797±.009

0.795±.006

0.751±.008

0.758±.007

0.762±.007

0.737±.008

K = 50

P-VAE
C-VAE
L-VAE
G-VAE
G-VAE +relu

G-VAE +exp

0.825±.002 0.927±.001 0.957±.005

0.770±.002 0.880±.001 0.920±.009

0.710±.003 0.836±.003 0.902±.038

0.604±.003 0.746±.002 0.837±.022

0.710±.002 0.844±.002 0.904±.026

0.694±.003 0.836±.002 0.906±.027

0.935±.003

0.899±.004

0.770±.007

0.743±.007

0.786±.006

0.762±.007

K = 100

P-VAE
C-VAE
L-VAE
G-VAE
G-VAE +relu

G-VAE +exp

0.807±.002 0.925±.001 0.958±.013

0.753±.002 0.876±.001 0.925±.005

0.701±.004 0.830±.003 0.896±.046

0.636±.003 0.789±.002 0.875±.024

0.757±.002 0.881±.001 0.933±.019

0.695±.003 0.846±.002 0.918±.024

0.949±.002

0.884±.004

0.767±.007

0.763±.007

0.818±.006

0.793±.006

24

Gaussian VAE Poisson VAE

Laplace VAE Categorical VAE

Gaussian VAE

Laplace VAE

Poisson VAE

Categorical VAE

Figure 9: Generated samples (left) and reconstruction performance (right). These results shown
here are from fully convolutional (both encoder and decoder) models with a latent dimensionality of
K = 10.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: we provide comprehensive theoretical and empirical evidence to support our
claims of (1) introducing the P-VAE and its reparameterization trick; (2) P-VAE containing
amortized sparse coding as a special case; (3) P-VAE largely avoiding posterior collapse;
and (4) P-VAE facilitating linear separability of categories at better sample efficiency, in
sections 3 and 4, and supplemental appendices A to C.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of (1) Poisson possibly not being a perfect description of
cortical activity, and (2) amortization gap, are shown explicitly and thoroughly discussed in
sections 4 and 5. Specifically, we have a dedicated paragraph for limitations in section 5.
We evaluated our claims using multiple well-known datasets such as the van Hateren natural
images [102], CIFAR10, and MNIST, on tasks such as reconstruction, sparse coding, and
classification.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

26

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full derivation of the P-VAE loss function, which is self-
contained in the paper (section 3) and supplement (appendix A).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose all details relating to the algorithm, including the optimization
objective (eq. (3)), architecture and training details (appendix B), and pseudo-code for
Poisson reparameterized sampling (Algorithm 1). In addition, we intend to release all code
and data needed for replicating our work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

27

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our code, data, and model checkpoints are available from the following GitHub
repository: https://github.com/hadivafaii/PoissonVAE.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details about how the data was used for training and testing, as well as
which hyperparameters were used, are available at appendix B. In addition, the provided
code replicates our results and therefore contains all details of implementation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

28

https://github.com/hadivafaii/PoissonVAE
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: As stated in section 4, the paper reports confidence intervals and t-test signifi-
cance tests, using false discovery rate (FDR) correction for multiple comparisons. The exact
implementation details are included in the provided code for reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details about our compute resources (GPUs), and duration of
training in section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper follows the code of ethics, including preserving anonymity (such as
in releasing code anonymously).

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

29

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper is considered foundational research, and does not target practical
tasks that can be deployed outside of the research field. Thus we do not anticipate negative
social impacts from this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper utilizes publicly domain datasets (not scraped), and poses no safety
risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

30

Answer: [Yes]

Justification: We properly cite papers that introduce algorithms (such as LCA), datasets
(such as MNIST, CIFAR10, van Hateren), and code (such as LCA and ISTA).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper consist of our codebase which includes
notebooks to replicate our experiments and analyses, and contains documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

31

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Background & Related work
	Poisson Variational Autoencoder
	Experiments
	Conclusions
	Code & Data
	Acknowledgments
	Full derivations
	Deriving the evidence lower bound (ELBO) loss
	The KL term
	Connection to sparse coding
	Statistically independent neurons
	Linear decoder
	Linear encoder

	Architecture, training, and hyperparameter details
	Datasets: additional details
	Architecture details
	Training: VAE models
	Training: sparse coding models

	Supplementary results

