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Abstract

A significant limitation of one-class classification anomaly detection methods is their reliance
on the assumption that unlabeled training data only contains normal instances. To overcome
this impractical assumption, we propose two novel classification-based anomaly detection
methods. Firstly, we introduce a semi-supervised shallow anomaly detection method based on
an unbiased risk estimator. Secondly, we present a semi-supervised deep anomaly detection
method utilizing a nonnegative (biased) risk estimator. We establish estimation error bounds
and excess risk bounds for both risk minimizers. Additionally, we propose techniques to
select appropriate regularization parameters that ensure the nonnegativity of the empirical
risk in the shallow model under specific loss functions. Our extensive experiments provide
evidence of the effectiveness of the risk-based anomaly detection methods.

1 Introduction

Anomaly Detection (AD) can be defined as the task of identifying instances that deviates significantly from
the majority of the data instances, see e.g., (Chandola et al., 2009; Pang et al., 2020; Ruff et al., 2021) for
comprehensive surveys on AD. One important approach for AD is one-class classification Khan & Madden
(2014); Tax & Duin (1999). It can be viewed as a specialized binary classification problem aimed at learning a
model that distinguishes between positive (normal) and negative (anomalous) classes. This approach assumes
that the unlabeled dataset primarily consists of data from the normal class. By utilizing a sufficient amount
of normal data, one-class classification AD (OC-AD) methods identify a decision boundary that encompasses
all the normal points. For example, the decision boundaries of shallow OC-AD methods include a hyperplane
with maximum margin Schölkopf et al. (2001), a compact spherical boundary Tax & Duin (1999; 2004),
an elliptical boundary (Rousseeuw & Van Driessen, 1999; Rousseeuw, 1985), a pair of subspaces Wang &
Cherian (2019), or even a collection of multiple spheres Görnitz et al. (2018). To enhance their applicability in
high-dimensional settings, these shallow methods have been extended into deep methods Erfani et al. (2016);
Ruff et al. (2018).

Unsupervised learning, where only unlabeled data is available, represents the most common setting in AD.
Unsupervised AD methods typically assume that the training data consists solely of normal instances Hodge
& Austin (2004); Pimentel et al. (2014); Zimek et al. (2012). However, in real-world scenarios, labeled
samples may be available alongside the unlabeled dataset, leading to the development of semi-supervised
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AD methods, including semi-supervised OC-AD methods Görnitz et al. (2009); Munoz-Mari et al. (2010);
Ruff et al. (2020). It is important to note that unsupervised/semi-supervised shallow/deep one-class anomaly
detection methods do not explicitly handle mixed unlabeled data. This is because they typically assume that
there are no anomalous instances present in the unlabeled dataset, which is impractical in real-world scenarios.
Classification methods that handle mixed unlabeled data have been extensively studied in the field of learning
with positive and unlabeled examples (LPUE or PU learning). In this context, we have access to information
on positive and unlabeled data, but negative data is unavailable. PU learning methods have also been utilized
as semi-supervised AD methods Bekker & Davis (2020); Blanchard et al. (2010); Chandola et al. (2009); Ju
et al. (2020). It is widely recognized that incorporating labeled anomalies, even if only a few instances, can
greatly enhance the AD performance Görnitz et al. (2013); Kiran et al. (2018). Semi-supervised AD methods
that consider the availability of negative data have demonstrated highly promising AD performance Han
et al. (2022); Ruff et al. (2021; 2020).

To overcome the impractical assumption of OC-AD methods, we adopt the key concept of risk-based PU
learning methods du Plessis et al. (2014; 2015); Kiryo et al. (2017); Sakai et al. (2017). These methods
propose empirical estimators for the risk associated with the learning problem. In order to improve anomaly
detection performance, we focus on the semi-supervised setting where a negative dataset is also available. It is
noteworthy that the estimation of risk in anomaly detection is a relatively unexplored subject, distinguished
by specific characteristics, especially in terms of error bounds, which are not commonly found in current
anomaly detection approaches.

Contributions Our main contributions are summarized as follows.

• Considering AD as a semi-supervised binary classification problem, where we have access to a positive
dataset, a negative dataset, and an unlabeled dataset that may contain anomalous examples, we introduce
two risk-based AD methods. These methods include a shallow AD approach developed using an unbiased
risk estimator and a deep AD method based on a nonnegative risk estimator.

• We develop methods to select suitable regularization that ensures the nonnegativity of the empirical risk
in the proposed shallow AD method. This is crucial as negative empirical risk can lead to significant
overfitting issues Kiryo et al. (2017).

• We additionally establish estimation error bounds and excess risk bounds for the two risk minimizers,
building upon the theoretical findings presented in Kiryo et al. (2017); Niu et al. (2016).

• We conduct extensive experiments on benchmark AD datasets obtained from Adbench Han et al. (2022) to
compare the performance of our proposed risk-based AD (rAD) methods against various baseline methods.

Organization We discuss related work in Section 2 and provide a brief background on risk estimators
in Section 3. We then introduce the two risk estimators that form the basis of our risk-based AD methods
in Section 4. Additionally, we present a theoretical analysis in Section 5, present experimental results in
Section 6, highlight limitations in Section 7, and conclude the paper in Section 8. All proofs and additional
experiments can be found in the supplementary material.

2 Related work

We direct readers to Ruff et al. (2021); Roth et al. (2022) for a comprehensive review of recent advancements
in anomaly detection techniques (with a particular focus on industrial anomaly detection). We remark that
our primary contribution lies in delving deeper into the approach of risk estimation, a technique that remains
relatively unexplored within the context of anomaly detection. In the following, we provide a brief overview
of the most relevant works related to our proposed risk-based anomaly detection methods.

AD methods Outlier detection (Hawkins, 1980; Hodge & Austin, 2004), novelty detection (Salu, 1988;
Pimentel et al., 2014), and AD are closely related topics. In fact, these terms have been used interchangeably,
and solutions to outlier detection and novelty detection are often used for AD and vice versa. AD methods can
be generally classified into three types (i) density-based methods, which estimate the probability distribution
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of normal instances Lecun et al. (2006); Li et al. (2019); Parzen (1962); Pincus (1995), (ii) reconstruction-based
methods, which learn a model that fails to reconstruct anomalous instances but succeeds to reconstruct
normal instances Dhillon et al. (2004); Hawkins (1974); Hawkins et al. (2002); Huang et al. (2006); Yan et al.
(2021), and (iii) one-class classification methods. We refer the readers to Ruff et al. (2021) for a comprehensive
review of the three types of AD methods.

PU learning methods Regarding PU learning methods, they can be classified into three categories:
biased learning, two-step techniques, and class-prior incorporation. Similarly to one-class classification AD
methods, biased PU learning methods make an impractical assumption: they assume/label all unlabeled
instances as negative, see e.g., Lee & Liu (2003); Liu et al. (2003). Although the PU learning methods
using two-step techniques do not have such assumption, they are heuristics since they first identify “reliable"
negative examples and then apply (semi-)supervised learning techniques to the positive labeled instances
and the reliable negative instances, see e.g., Li & Liu (2003); Chaudhari & Shevade (2012). To have some
theoretical guarantee, the class-prior incorporation methods need to assume that the class priors are known,
see e.g., du Plessis et al. (2014); Elkan & Noto (2008); Hsieh et al. (2019). We refer the readers to Bekker &
Davis (2020) and the references therein for more details on the three types of PU learning methods. Methods
that rely on risk estimators du Plessis et al. (2014; 2015); Kiryo et al. (2017); Sakai et al. (2017) belong to
the third category.

3 Background on risk estimators

Let x and y ∈ {+1,−1} be random variables with joint density p(x, y). The class-conditional densities
are pp(x) = P (x|y = +1) and pn(x) = P (x|y = −1). Let πp = p(y = +1) and πn = p(y = −1) be the
class-prior probabilities for the positive and negative classes. We have πp + πn = 1. Suppose the positive (P),
negative (N ) and unlabeled (U) data are sampled independently as (P) = {xp

i }np

i=1 ∼ pp(x), (N ) = {xn
i }nn

i=1 ∼
pn(x), (U) = {xu

i }nu
i=1 ∼ p(x), where

p(x) = πppp(x) + πnpn(x). (1)

Given (P), (N ) and (U), let us consider a binary classification problem from x to y. Suppose g : Rd → R
is a decision function that needs to be trained from (P), (N ) and (U), and ℓ : R × {+1,−1} → R is a loss
function that imposes a cost ℓ(t, y) if the predicted output is t and the expected output is y. Under loss ℓ, let
us denote

R+
p (g) = Ex∼pp(x)[ℓ(g(x),+1)],R+

n (g) = Ex∼pn(x)[ℓ(g(x),+1)],R+
u (g) = Ex∼p(x)[ℓ(g(x),+1)],

R−
p (g) = Ex∼pp(x)[ℓ(g(x),−1)],R−

n (g) = Ex∼pn(x)[ℓ(g(x),−1)],R−
u (g) = Ex∼p(x)[ℓ(g(x),−1)].

Given ℓ and assuming that πp is known (in practice, πp can be effectively estimated from (P), (N ) and (U)
du Plessis & Sugiyama (2013); Saerens et al. (2002)), our goal is to find g that minimizes the risk of g, which
is defined by

R(g) := E(x,y)∼p(x,y)[ℓ(g(x), y)] = πpR+
p (g) + πnR−

n (g). (2)

In ordinary classification, the optimal classifier minimizes the expected misclassification rate that corresponds
to using zero-one loss in (2), ℓ0-1(t, y) = 0 if ty > 0 and ℓ0-1(t, y) = 1 otherwise. We denote I(g) =
E(x,y)∼p(x,y)[ℓ0-1(g(x), y)].

PN risk estimator In supervised learning when we have fully labeled data, R(g) can be approximated by
a PN risk estimator R̂pn(g) = πpR̂+

p (g) + πnR̂−
n (g), where

R̂+
p (g) := 1

np

np∑
i=1

ℓ(g(xp
i ),+1), R̂−

n (g) := 1
nn

nn∑
i=1

ℓ(g(xn
i ),−1). (3)

PU risk estimator In PU learning when (N ) is unavailable, du Plessis et al. (2014; 2015); Kiryo et al. (2017)
propose methods to approximate R(g) from (P) and (U). From (1) we have πnR−

n (g) = R−
u (g) − πpR−

p (g),
which implies that

R(g) = πp(R+
p − R−

p ) + R−
u (g). (4)
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When ℓ satisfies the symmetric condition ℓ(t,+1) + ℓ(t,−1) = 1 then we have R(g) = 2πpR+
p (g) −πp + R−

u (g),
which can be approximated by

R̂(1)
pu (g) = 2πpR̂+

p (g) − πp + R̂−
u (g), (5)

where R̂+
p (g) is defined in (3) and R̂−

u (g) = 1
nu

∑nu

i=1 ℓ(g(xu
i ),−1), see du Plessis et al. (2014). When ℓ

satisfies the linear-odd condition ℓ(t,+1) − ℓ(t,−1) = −t then R(g) can be approximated by

R̂(2)
pu (g) = −πp

1
np

np∑
i=1

g(xp
i ) + R̂−

u (g), (6)

see du Plessis et al. (2015). The authors in Kiryo et al. (2017) propose a non-negative PU risk estimator

R̂(3)
pu (g) = πpR̂+

p (g) + max{0, R̂−
u (g) − πpR̂−

p (g)}, (7)

where R̂−
p (g) = 1

np

∑np

i=1 ℓ(g(xp
i ),−1). Note that R̂(3)

pu (g) is a biased estimator.

NU risk estimator Similarly, considering NU learning when (P) is unavailable, see Sakai et al. (2017),
NU risk estimators can be formulated by combining the equation πpR+

p (g) = R+
u (g) − πnR+

n (g) (which is
derived from (1) ) and (2) to obtain

R(g) = −πn(R+
n − R−

n ) + R+
u (g). (8)

With a loss satisfying the symmetric condition, we have a nonconvex NU risk estimator

R̂(1)
nu(g) = 2πnR̂−

n (g) − πn + R̂+
u (g), (9)

where R̂−
n (g) is defined in (3) and R̂+

u (g) = 1
nu

∑nu

i=1 ℓ(g(xu
i ),+1). And with a loss satisfying the linear-odd

condition, we get a convex NU risk estimator

R̂(2)
nu(g) = πn

1
nn

nn∑
i=1

g(xn
i ) + R̂+

u (g). (10)

Finally, Sakai et al. (2017) proposes to use a linear combination between the PN, the NU, and the PU risk
ofdu Plessis et al. (2014; 2015).

4 The proposed semi-supervised anomaly detection methods

In the previous section, we presented risk estimators for the PU learning problem where (N ) is unavailable.
Let us consider the setting where we have access to (P), (N ) as well as (U). We perceive semi-supervised
AD as a binary classification problem from x to y ∈ {+1,−1}, where +1 represents the normal class and −1
represents the anomalous class. Our goal is to propose risk estimators for the risk in (2). Specifically, we
propose two risk estimators for semi-supervised AD that lead to two risk-based AD methods.

If we take a convex combination of (2) and (8), we obtain

R(g) = a(−πn(R+
n − R−

n ) + R+
u (g)) + (1 − a)(πpR+

p (g) + πnR−
n (g))

= aR+
u (g) + (1 − a)πpR+

p (g) + πnR−
n (g) − aπnR+

n , (11)

where a ∈ (0, 1).

The empirical version of (11) yields the following linear combination of PN and NU risk estimators:

R̂(2)
s (g) = aR̂+

u (g) + (1 − a)πpR̂+
p (g) + πnR̂−

n (g) − aπnR̂+
n (g). (12)

While R̂(2)
s (g) was also considered in Sakai et al. (2017), they only focused on the set of linear classifiers with

two specific losses – the (scaled) ramp loss and the truncated (scaled) squared loss (see (Sakai et al., 2017,
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Section 4.1)). We consider a more general setting for R̂(2)
s and also propose methods to choose appropriate

regularization for R̂(2)
s to avoid negative empirical risks. In fact, R̂(2)

s may take negative values when ℓ is
unbounded due to the negative term −aπnR̂+

n (g). Theorem 1 summarizes the conditions that guarantee a
nonnegative objective.

Inspired by R̂(3)
pu (g) in (7), we also propose the following nonnegative risk estimator:

R̂(1)
s (g) = πnR̂−

n (g) + (1 − a)πpR̂+
p (g) + amax{0, R̂+

u (g) − πnR̂+
n (g)}, (13)

where the max term is introduced since R+
u (g) − πnR+

n (g) = πpR+
p must be nonnegative. Note that R̂(3)

pu (g)
was designed for the PU learning problem while we propose R̂(1)

s (g) for the AD problem which often assumes
anomalies are rare. In other words, we put more emphasis on R̂+

u (g) rather than R̂−
u (g).

In Section 5, we will establish the theoretical estimation error bounds and excess risk bounds for the minimizers
of both ming∈G R̂(1)

s (g) and ming∈G R̂(2)
s (g), where G is some class function. We now present the practical

optimization problems involved when using R̂(1)
s (g) and R̂(2)

s (g).

Optimization problems Suppose g is parameterized by w, which needs to be learned from (P), (N ) and
(U). When R̂(1)

s in (13) is used, the corresponding optimization problem for AD is

min
w

{πn

nn

nn∑
i=1

ℓ(g(xn
i ),−1) + (1 − a)πp

np

np∑
i=1

ℓ(g(xp
i ),+1)

+ amax
{

0, 1
nu

nu∑
i=1

ℓ(g(xu
i ),+1) − πn

nn

nn∑
i=1

ℓ(g(xn
i ),+1)

}
+ λR(w)

}
,

(14)

where R is some regularizer, and λ ≥ 0 is regularization parameter. And when R̂(2)
s in (12) is used, the

corresponding optimization problem is

min
w

{ a

nu

nu∑
i=1

ℓ(g(xu
i ),+1) + (1 − a)πp

np

np∑
i=1

ℓ(g(xp
i ),+1)

+ πn

nn

nn∑
i=1

ℓ(g(xn
i ),−1) − aπn

nn

nn∑
i=1

ℓ(g(xn
i ),+1) + λR(w)

}
.

(15)

Unfortunately, the objective of (15) is not guaranteed to be nonnegative due to the negative term
− aπn

nn

∑nn

i=1 ℓ(g(xn
i ),+1). As pointed out by Kiryo et al. (2017), this can lead to serious overfitting problems.

The following theorem provides methods to choose the regularization parameters such that the nonnegativity
of the objective of (15) is guaranteed.

Theorem 1 Suppose there exist positive constants b1, b2 and b3 such that

ℓ(t,−1) − ℓ(t,+1) ≥ −b1|t|, and ℓ(t,−1) ≥ b2(b3 − |t|). (16)

(In Table 1 we give examples of loss functions that satisfy (16), see their proofs in the supp. material.)

(i) We have

πn

nn

nn∑
i=1

ℓ(g(xn
i ),−1) − aπn

nn

nn∑
i=1

ℓ(g(xn
i ),+1) ≥ (1 − a)πnb2b3 − ((1 − a)b2 + ab1)πn

nn

nn∑
i=1

|g(xn
i )|.

(ii) If we choose λ and R such that

λR(w) ≥ ((1 − a)b2 + ab1)πn

nn

nn∑
i=1

|g(xn
i )| − (1 − a)πnb2b3 (17)
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Table 1: Examples of loss functions satisfying (16)

Name ℓ(t, y) = ℓ(z) with z = ty Bounded (b1, b2, b3)
Hinge loss max{0, 1 − z} × (2, 1, 1)

Double hinge loss max{0, (1 − z)/2,−z} × (1, 1/2, 1)
Squared loss 1

2 (z − 1)2 × (2, 1/2, 1/2)

Modified Huber loss
{

max{0, 1 − z}2 if z ≥ −1
−4z otherwise

× (4, 1, 1/2)

Logistic loss ln(1 + exp(−z)) × (1, 1, ln 2)
Sigmoid loss 1/(1 + exp(z)) ✓ (1, 1/2, 1)
Ramp loss max{0,min{1, (1 − z)/2}} ✓ (1, 1/2, 1)

then the objective of (15) is always nonnegative.

(iii) Consider the specific case g(x) = ⟨w, ϕ(x)⟩, where ϕ : Rd → Rq is a feature map transformation. The
following choices of λ and R satisfy (17).

• R(w) = ∥w∥2
2 and λ ≥ ((1−a)b2+ab1)2πnc2

4(1−a)b2b3
, where c = max{∥ϕ(xn

i )∥2 : i = 1, . . . , nn} (note that, in practice,
we can scale the data to have c = 1).

• R(w) = ∥w∥1 and λ ≥ c∞((1 − a)b2b3 + ab1)πn, where c∞ = max{∥ϕ(xn
i )∥∞ : i = 1, . . . , nn} (in practice,

we can scale the data to have c∞ = 1).

We consider both a shallow and deep implementation of the rAD method. In the following, πe
p and πe

n = 1−πe
p

will denote estimates of the real class-prior probabilities πp and πn, respectively.

A shallow rAD method We plug in g(x) = ⟨w, ϕ(x)⟩ in (15) (the empirical version of (12)), where
ϕ : Rd → Rq is a feature map transformation, and choose the regularization method proposed in Theorem 1
(iii). Specifically, we solve the following minimization problem:

min
w

{ a

nu

nu∑
i=1

ℓ(w⊤ϕ(xu
i ),+1) +

(1 − a)πe
p

np

np∑
i=1

ℓ(w⊤ϕ(xp
i ),+1)

+ πe
n

nn

nn∑
i=1

ℓ(w⊤ϕ(xn
i ),−1) − aπe

n

nn

nn∑
i=1

ℓ(w⊤ϕ(xn
i ),+1) + λR(w)

}
.

(18)

A deep rAD method We plug in g(x) = ϕ(x; W) in (14) (the empirical version of (13)), where W is a
set of weights of a deep neural network. Specifically, we train a deep neural network by solving the following
optimization problem:

min
W

{πe
n

nn

nn∑
i=1

ℓ(ϕ(xn
i ; W),−1) +

(1 − a)πe
p

np

np∑
i=1

ℓ(ϕ(xp
i ; W),+1)

+ amax
{

0, 1
nu

nu∑
i=1

ℓ(ϕ(xu
i ; W),+1) − πe

n

nn

nn∑
i=1

ℓ(ϕ(xn
i ; W),+1)

}
+ λR(W)

}
,

(19)

where R can be any regularizer. Note that we focus on these specific implementations but it is also possible
to consider a deep model with (15) or a shallow model with (14). It is noteworthy to mention that in our
initial numerical findings, we have observed that the shallow model in (18) frequently yields better results
compared to the shallow model with (14), while the deep model in (19) outperforms the deep model with
(15).
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5 Risk bounds
In this section, we establish the estimation error bound and the excess risk bound for ĝ1 and ĝ2 which are
the empirical risk minimizers obtained by ming∈G R̂(1)

s (g) and ming∈G R̂(2)
s (g), where G is a function class.

Let g∗ be the true risk minimizer, that is, g∗ = arg ming∈G R(g). Throughout this section, we assume that (i)
G =

{
g
∣∣ ∥g∥∞ ≤ Cg

}
for some constant Cg, and (ii) there exists Cℓ > 0 such that sup|t|≤Cg

maxy ℓ(t, y) ≤ Cℓ.
It is worth noting that the set of linear classifiers with bounded norms and feature maps is a special case of
Condition (i)

G = {g(x) = ⟨w, ϕ(x)⟩H
∣∣ ∥w∥H ≤ Cw, ∥ϕ(x)∥H ≤ Cϕ}, (20)

where H is a Hilbert space, ϕ is a feature map, and Cw and Cϕ are positive constants.

Given g, R̂(2)
s (g) is an unbiased estimator of R(g) but R̂(1)

s is a biased estimator. The following proposition
estimates the bias of R̂(1)

s (see Inequality (21)) and shows that, for a fixed g, R̂(1)
s (g) and R̂(2)

s (g) converge
to R(g) with the rate O

(
πn√
nn

+ πp√
np

+ a√
nu

)
(see Inequality (22) and (23)).

Proposition 1 Consider a classifier g. Suppose there exists ρg > 0 such that R+
p (g) ≥ ρg > 0 and denote

ϵg = aπnCℓ exp
(

− 2π2
pρ2

g

C2
ℓ

(1/nu+π2
n/nn)

)
. Then the bias of R̂(1)

s (g) satisfies

0 ≤ E[R̂(1)
s (g)] − R(g) ≤ ϵg. (21)

Moreover, for any δ > 0, we have the following inequalities hold with probability at least 1 − δ

|R̂(2)
s (g) − R(g)| ≤ Cℓ

√
ln(2/δ)/2

( (1 + a)πn√
nn

+ (1 − a)πp√
np

+ a
√
nu

)
, (22)

and

|R̂(1)
s (g) − R(g)| ≤ Cℓ

√
ln(2/δ)/2

( (1 + a)πn√
nn

+ (1 − a)πp√
np

+ a
√
nu

)
+ ϵg. (23)

Estimation error bound The Rademacher complexity of G for a sample of size n drawn from some
distribution q (see e.g., Mohri et al. (2018)) is defined by Rn,q(G) := EZ∼qn [Eσ[supg∈G( 1

n

∑n
i=1 σig(Zi))]],

where Z1, . . . , Zn are i.i.d random variables following distribution q, Z = (Z1, . . . , Zn), σ1, . . . , σn are
independent random variables uniformly chosen from {−1, 1}, and σ = (σ1, . . . , σn). Similarly to (Kiryo
et al., 2017, Theorem 4), we can establish the following estimation error bound for ĝ1.

Theorem 2 (Estimation error bound for ĝ1) We assume that (i) there exists ρ > 0 such that R+
p (g) ≥ ρ

for all g ∈ G, (ii) if g ∈ G then −g ∈ G, and (iii) t 7→ ℓ(t, 1) and t 7→ ℓ(t,−1) are Lℓ-Lipschitz continuous
over {t : |t| ≤ Cg}. Denote ϵ = aπnCℓ exp

(
− 2π2

pρ2

C2
ℓ

(1/nu+π2
n/nn)

)
. For any δ > 0, the following inequality hold

with probability at least 1 − δ

R(ĝ1) − R(g∗) ≤ 8(1 + a)πnLℓRnn,pn
(G) + 8(1 − a)πpLℓRnp,pp

(G) + 8aLℓRnu,p(G)+

+ 2Cℓ

√
ln(2/δ)/2

( (1 + a)πn√
nn

+ (1 − a)πp√
np

+ a
√
nu

)
+ 2ϵ.

(24)

By using basic uniform deviation bound Mohri et al. (2018), the McDiarmid’s inequality McDiarmid (1989),
and Talagrand’s contraction lemma Ledoux & Talagrand (1991), we can prove the following estimation error
bound for ĝ2.

Theorem 3 (Estimation error bound for ĝ2) Assume that t 7→ ℓ(t, 1) and t 7→ ℓ(t,−1) are Lℓ-Lipschitz
continuous over {t : |t| ≤ Cg}. For any small δ > 0, the following inequality hold with probability at least 1 − δ

R(ĝ2) − R(g∗) ≤ 4(1 − a)πpLℓRnp,pp
(G) + 4(a+ 1)πnLℓRnn,pn

(G) + 4aLℓRnu,p(G)+

+ 2Cℓ

√
ln(6/δ)/2

( (1 − a)πp√
np

+ (1 + a)πn√
nn

+ a
√
nu

)
.

(25)
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Note that Theorem 3 explicitly states the error bound for ĝ2 with any loss function that satisfies the Lipschitz
continuity assumption. The (scaled) ramp loss and the truncated (scaled) squared loss considered in Sakai
et al. (2017) have Lℓ = 1/2.

Excess risk bound The excess risk focuses on the error due to the use of surrogates for the 0-1 loss
function. Denote I∗ = infg∈F I(g) and R∗ = infg∈F R(g), where F is the set of all measurable functions. By
using (Bartlett et al., 2006, Theorem 1) (see (42) in the supp. material), Theorem 2, and Theorem 3, we can
derive the following excess risk bound for ĝ1 and ĝ2.

Corollary 1 If ℓ is a classification-calibrated loss (see Definition 1 in the supp. material), then there exists
a convex, invertible, and nondecreasing transformation ψℓ with ψℓ(0) = 0 and the following inequalities hold
with probability at least 1 − δ

I(ĝ1) − I∗ ≤ ψ−1
ℓ (B1 + R(g∗) − R∗), I(ĝ2) − I∗ ≤ ψ−1

ℓ (B2 + R(g∗) − R∗),

where B1 and B2 are the right hand side of (24) and (25), respectively.

6 Experiments

A. Experiments with shallow rAD

Baseline methods and implementation We compare rAD with OC-SVM Schölkopf et al. (2001),
ECOD Li et al. (2022), COPOD Li et al. (2020), semi-supervised OC-SVM Munoz-Mari et al. (2010), and
the PU methods using the risk estimator R̂pu(g) given in (4). Note that R̂pu(g) = R̂(1)

pu (g) given in (5) if ℓ
satisfies the symmetric condition, and R̂pu(g) = R̂(2)

pu (g) given in (6) if ℓ satisfies the linear-odd condition.
We implement rAD and PU methods with 3 losses: squared loss, hinge loss, and modified Huber loss. For
rAD, we use l2 regularization and take ϕ(x) = x in (18), i.e. no kernel is used. We set a = 0.1 and πe

p = 0.8
(πe

n = 0.2) as default values for both the shallow rAD and the PU methods. Note that the real πn of the
datasets can be different.

Datasets We test the algorithms on 26 classical anomaly detection benchmark datasets from Han et al.
(2022), whose πn ranges from 0.02 to 0.4. The real πn of the datasets are given in the first column of Table 2.
We randomly split each dataset 30 times into train and test data with a ratio of 7:3, i.e. we have 30 trials for
each dataset. Then, for each trial, we randomly select 5% of the train data to make the labeled data and
keep the remaining 95% as unlabeled data.

Experimental results In Table 2, we report the mean and standard error (SE) of the AUC (area under
the ROC curve) over 30 trials of the 26 benchmark datasets. We observe that, on average, rAD outperforms
the PU methods, OC-SVM methods, ECOD, and COPOD. The difference between the AUC of rAD and that
of PU is large on the datasets with πn ≤ 0.2 but it is small when πn is larger. We also notice that rAD with
modified Huber loss often gives better results than rAD with square loss and hinge loss.

Sensitivity analysis for πe
p With a = 0.1, we run shallow rAD on the 30 trials for πe

p ∈ {1−πn, 0.9, 0.7, 0.6}
( when πe

p = 1 −πn, no approximation is made). The results are reported in Table 3 for 9 benchmark datasets
and the results of the 17 remaining datasets are given in Table 5 in the supp. material. From Table 2– 5, we
can see that we can obtain good results even if πe

p is different from πp. In fact, with a = 0.1, we get worse
AUC means when πe

p is close to πp. The combination (a, πe
p) = (0.1, 0.8) or (a, πe

p) = (0.1, 0.7) seem to be
good choices across the datasets. Compared to the other two losses, we found the modified Huber loss to be
robust to the values of πe

p.

Sensitivity analysis for a We run shallow rAD (with fixed πe
p = 0.8) on the 30 trials of each dataset for

a ∈ {0.3, 0.7, 0.9}. The results are reported in Table 4 for the 9 benchmark datasets and the results of the 17
remaining datasets are given in Table 6 in in the supp. material. From Table 2, 4 and 6, we can see that the
AUC means do not decrease significantly when we increase a (except for the dataset InternetAds). Hence,
shallow rAD with πe

p = 0.8 is also robust to different values of a.

B. Experiments with deep rAD
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Table 2: Mean (and SE ×102) of the AUC over 30 trials. The best means are highlighted in bold. d, n, and πn denote
the feature dimension, the sample size of the dataset, and the ratio of negative samples in the dataset.

dataset
(d, n, πn)

rAD PU OC-SVM ECOD COPOD semi-
OC-SVMsquare hinge m-Huber square hinge m-Huber

pendigits
(16, 6870, 0.02) 0.98( 0.22) 0.98(0.22) 0.98( 0.22) 0.78( 4.79) 0.78(4.83) 0.78(4.77) 0.86(0.31) 0.92(0.16) 0.90(0.17) 0.82(2.48)

mammography
(6, 11 183, 0.02) 0.91( 0.29) 0.91(0.29) 0.91( 0.29) 0.87( 1.49) 0.87(1.49) 0.87(1.48) 0.77(0.47) 0.91(0.30) 0.91(0.29) 0.61(2.97)

optdigits
(64, 5216, 0.03) 1.00( 0.07) 1.00(0.07) 1.00( 0.06) 0.76( 2.93) 0.75(3.02) 0.77(2.89) 0.46(0.53) 0.60(0.40) 0.68(0.35) 0.83(1.82)

Stamps
(9, 340, 0.09) 0.90( 1.44) 0.90(1.24) 0.90( 1.46) 0.76( 3.37) 0.77(3.76) 0.71(4.21) 0.65(1.74) 0.88(0.64) 0.93(0.44) 0.69(3.85)

cardio
(21, 1831, 0.10) 0.92( 2.03) 0.89(2.12) 0.93( 1.99) 0.83( 2.09) 0.81(2.31) 0.84(1.93) 0.87(0.32) 0.94(0.23) 0.93(0.21) 0.79(1.32)

InternetAds
(1555, 1966, 0.19) 0.73( 3.00) 0.87(0.49) 0.75( 0.92) 0.64( 3.45) 0.77(0.57) 0.77(0.66) 0.60(0.54) 0.68(0.46) 0.68(0.46) 0.64(0.97)

Cardiotocography
(21, 2114, 0.22) 0.86( 1.32) 0.84(1.68) 0.88( 1.10) 0.81( 1.86) 0.79(2.01) 0.82(1.75) 0.72(0.41) 0.78(0.33) 0.66(0.40) 0.81(0.80)

magic.gamma
(10, 19 020, 0.35) 0.78( 0.47) 0.78(0.49) 0.78( 0.45) 0.78( 0.69) 0.77(0.71) 0.78(0.68) 0.56(0.18) 0.64(0.12) 0.68(0.11) 0.54(0.32)

SpamBase
(57, 4207, 0.40) 0.94( 0.15) 0.94(0.15) 0.94( 0.16) 0.93( 0.20) 0.93(0.19) 0.93(0.21) 0.54(0.28) 0.66(0.21) 0.69(0.21) 0.64(0.85)

satimage-2
(36, 5803, 0.01) 0.99( 0.17) 0.99(0.16) 0.99( 0.17) 0.80( 4.40) 0.77(4.29) 0.82(4.47) 1.00(0.09) 0.96(0.37) 0.97(0.31) 0.51(4.52)

thyroid
(6, 3772, 0.02) 1.00( 0.05) 1.00(0.04) 1.00( 0.05) 0.86( 2.95) 0.87(2.95) 0.86(2.89) 0.93(0.31) 0.98(0.07) 0.94(0.15) 0.70(2.25)

vowels
(12, 1456, 0.03) 0.85( 1.45) 0.82(1.59) 0.86( 1.42) 0.63( 2.59) 0.62(2.45) 0.64(2.66) 0.72(1.40) 0.58(1.20) 0.49(1.12) 0.69(2.55)

Waveform
(21, 3443, 0.03) 0.83( 1.49) 0.81(1.80) 0.84( 1.33) 0.66( 2.67) 0.66(2.68) 0.67(2.64) 0.67(0.70) 0.61(0.71) 0.74(0.53) 0.78(1.11)

CIFAR10-1
(512, 5263, 0.05) 0.77( 0.84) 0.77(0.84) 0.77( 0.86) 0.59( 1.70) 0.59(1.83) 0.59(1.63) 0.64(0.50) 0.53(0.45) 0.49(0.45) 0.74(0.75)

SVHN-1
(512, 10 000, 0.05) 0.83( 0.46) 0.83(0.45) 0.84( 0.47) 0.69( 1.42) 0.69(1.57) 0.69(1.33) 0.66(0.27) 0.65(0.30) 0.63(0.31) 0.71(0.77)

20news-1
(768, 2514, 0.05) 0.64( 1.56) 0.61(1.14) 0.68( 1.70) 0.51( 1.57) 0.52(1.21) 0.53(1.57) 0.52(0.71) 0.48(0.76) 0.48(0.71) 0.65(1.54)

agnews-1
(768, 10000, 0.05) 0.97( 0.27) 0.93(0.69) 0.98( 0.18) 0.79( 1.28) 0.74(1.53) 0.81(1.12) 0.76(0.25) 0.75(0.24) 0.76(0.24) 0.89(0.40)

amazon
(768, 10000, 0.05) 0.80( 0.76) 0.76(0.87) 0.82( 0.69) 0.63( 0.98) 0.60(1.06) 0.63(0.95) 0.54(0.40) 0.51(0.39) 0.48(0.39) 0.78(0.56)

imdb
(768, 10000, 0.05) 0.82( 0.73) 0.77(1.00) 0.83( 0.65) 0.63( 1.30) 0.61(1.22) 0.65(1.35) 0.50(0.43) 0.49(0.42) 0.50(0.42) 0.78(0.60)

yelp
(768, 10000, 0.05) 0.89( 0.85) 0.83(1.36) 0.90( 0.73) 0.70( 1.63) 0.67(1.67) 0.71(1.55) 0.61(0.31) 0.55(0.32) 0.52(0.33) 0.82(0.63)

mnist
(100, 7603, 0.09) 0.96( 0.14) 0.96(0.15) 0.96( 0.14) 0.92( 0.59) 0.92(0.57) 0.92(0.60) 0.80(0.24) 0.75(0.23) 0.78(0.22) 0.85(0.55)

campaign
(62, 41 188, 0.11) 0.85( 0.16) 0.85(0.17) 0.85( 0.16) 0.84( 0.30) 0.84(0.30) 0.84(0.30) 0.68(0.12) 0.77(0.09) 0.78(0.09) 0.77(0.41)

vertebral
(6, 240, 0.13) 0.72( 2.57) 0.75(2.64) 0.74( 2.58) 0.59( 2.60) 0.58(2.68) 0.60(2.65) 0.48(2.18) 0.43(1.38) 0.35(1.08) 0.68(2.59)

landsat
(36, 6435, 0.21) 0.73( 0.20) 0.73(0.21) 0.73( 0.19) 0.70( 0.52) 0.70(0.51) 0.71(0.51) 0.35(0.28) 0.36(0.25) 0.42(0.24) 0.76(0.60)

satellite
(36, 6435, 0.32) 0.80( 0.22) 0.80(0.22) 0.80( 0.22) 0.80( 0.26) 0.80(0.25) 0.80(0.27) 0.55(0.30) 0.59(0.25) 0.64(0.23) 0.67(0.72)

fault
(27, 1941, 0.35) 0.64( 0.87) 0.62(0.76) 0.64( 0.91) 0.58( 1.30) 0.58(1.27) 0.59(1.29) 0.52(0.52) 0.47(0.47) 0.46(0.49) 0.57(0.99)
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Table 3: AUC means of shallow rAD over 30 trials for different πe
p. The significant changes in the AUC means are

highlighted in bold.

Dataset square
/
πe

p hinge
/
πe

p m-Huber
/
πe

p

1 − πn 0.9 0.7 0.6 1 − πn 0.9 0.7 0.6 1 − πn 0.9 0.7 0.6
pendigits 0.96 0.98 0.98 0.98 0.94 0.98 0.98 0.98 0.97 0.98 0.98 0.98

mammography 0.90 0.91 0.91 0.91 0.90 0.91 0.91 0.91 0.90 0.91 0.91 0.91
optdigits 0.96 0.99 0.997 0.997 0.93 0.99 0.997 0.997 0.98 0.996 0.998 0.998
Stamps 0.80 0.80 0.82 0.82 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.80
cardio 0.91 0.91 0.92 0.92 0.87 0.88 0.88 0.89 0.92 0.93 0.94 0.94

InternetAds 0.77 0.77 0.70 0.60 0.86 0.85 0.86 0.86 0.87 0.87 0.86 0.86
Cardiotocography 0.89 0.88 0.89 0.89 0.87 0.85 0.87 0.87 0.90 0.90 0.90 0.90

magic.gamma 0.78 0.77 0.78 0.78 0.78 0.77 0.78 0.78 0.78 0.78 0.78 0.78
SpamBase 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.94 0.94 0.94 0.94 0.94

Table 4: AUC means of shallow rAD over 30 trials for different a. The significant changes in the AUC means are
highlighted in bold.

Dataset square
/
a hinge

/
a m-Huber

/
a

0.3 0.7 0.9 0.3 0.7 0.9 0.3 0.7 0.9
pendigits 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

mammography 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
optdigits 0.997 0.995 0.99 0.996 0.995 0.99 0.997 0.996 0.99
Stamps 0.83 0.82 0.82 0.81 0.82 0.81 0.80 0.81 0.81
cardio 0.92 0.91 0.91 0.88 0.87 0.85 0.93 0.93 0.93

InternetAds 0.79 0.69 0.62 0.87 0.85 0.77 0.83 0.71 0.65
Cardiotocography 0.87 0.87 0.87 0.86 0.85 0.83 0.90 0.89 0.88

magic.gamma 0.78 0.78 0.78 0.78 0.78 0.77 0.78 0.78 0.78
SpamBase 0.94 0.94 0.93 0.94 0.94 0.93 0.94 0.94 0.94
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Baseline methods and implementation We compare deep rAD with the Latent Outlier Exposure
method (LOE) Qiu et al. (2022), the deep semi-supervised AD method (deep SAD) Ruff et al. (2020) and
the PU learning method with nonnegative risk estimator and sigmoid loss (nnPU) Kiryo et al. (2017). For
deep SAD and nnPU, we use default hyperparameter settings and network architectures as in their original
implementation by the authors. We use the same network architectures as deep SAD for experiments on
Fashion-MNIST and MNIST datasets. For experiments on CIFAR-10, the network architecture from nnPU is
used. In deep rAD, the optimization problem in (19) is solved using ADAM. We implement 4 losses for deep
rAD: squared loss, sigmoid loss, logistic loss, and modified Huber loss. We set a = 0.1 and πe

p = 0.8 (thus
πe

n = 0.2) as default values for deep rAD.

Datasets We test the algorithms on 3 benchmark k-classes-out datasets: MNIST, Fashion-MNIST, and
CIFAR-10 (all have 10 classes). We use AD setups following previous works Chalapathy et al. (2018); Ruff
et al. (2020): for each πn ∈ {0.01, 0.05, 0.1, 0.2}, we set one of the ten classes to be a positive class, letting
the remaining nine classes be anomalies and maintaining the ratio between normal instances and anomaly
instances such that the setup has the required πn (so we have 10 setups corresponding to 10 classes). We
note that the anomalous data in our generation process can originate from more than one of the nine classes
(unlike in the setup of deep SAD where the anomaly is only from one of the nine classes). For each πn, we
repeat this generation process 2 times to get 20 AD setups (or 20 trials). Then, in each trial, we randomly
choose γl (with γl ∈ {0.05, 0.1, 0.2}) portion of the train data to be labeled and keep the remaining (1 − γl)
portion as unlabeled data. Note that we make the labeled data for nnPU only from normal instances. To
make labeled data for deep rAD and deep SAD, (1 − πn) portion is taken from the nnPU labeled data (which
contain only normal instances), and the remaining πn portion is taken from the anomalous instances. Hence,
the number of labeled anomalous instances for deep rAD and deep SAD is about (γl × πn) portion of the
train data.

Experiment results In Figure 1, we report the mean and standard deviation (std) of the AUC over 20
trials on the datasets with increasing pollution ratio πn and default γl = 0.05. The results for γl ∈ {0.1, 0.2}
are given in Figures 2 and 3. Figures 1, 2 and 3 show that, on CIFAR-10, LOE performs the best and
deep rAD methods on average provide better AUC than deep SAD and nnPU; deep rAD and deep SAD
have similar performance when πn = 0.01 but their AUC difference is significant when πn is increased. On
FMNIST, deep rAD methods, on average, are better than the others when πn is increased but the AUC
improvement is small. On MNIST, deep SAD is best; and when either πn or γl is increased, deep rAD catch
up with deep SAD while LOE gives worse AUC than the others. Deep rAD with quadratic loss underperforms
the other rAD methods on MNIST and FMNIST. On average, deep rAD with logistic loss performs best
among the rAD methods. It is also interesting to note that in the presence of anomalies from multiple classes,
the performance of deep SAD degrades over the performance reported in Ruff et al. (2020). The degradation
is more severe for CIFAR-10.

To observe the impact of the amount of labeled data, we report the results for the datasets with πn = 0.1
and γl ∈ {0.05, 0.1, 0.2} in Figure 5. We observe that all the semi-supervised methods improve when we
increase γl. From γl = 0.05 to γl = 0.1 (i.e., 5% more labeled data), deep rAD methods show a significant
improvement in performance.

Sensitivity analysis for πe
p We run deep rAD with a = 0.1 on the 20 trials of each dataset for πe

p ∈
{1 − πn, 0.9, 0.7, πn} (when πe

p = 1 − πn, it is an exact estimation of πp, and when πe
p = πn, we can say πe

p is
a bad estimation of πp). We report the result in Table 7 in the supp. material. Again, we see that πe

p is not
necessarily a precise estimation of πp; and (a, πe

p) = (0.1, 0.8) or (a, πe
p) = (0.1, 0.7) are good settings. These

results are consistent with the results of shallow rAD.

Sensitivity analysis for a We fix πe
p = 0.8 and run deep rAD with additional values of a ∈ {0.5, 0.9}

(a = 0.1 is the default setting). We report the results for the datasets with πn = 0.1 and γl = 0.05 in Figure 4.
The results for the datasets with other values of πn and γl are given in the supp. material. We observe that
on CIFAR-10, AUC decreases when a is increased; however, the difference is not significant. On FMNIST
and MNIST, deep rAD with πe

p = 0.8 is quite robust to the change of a.
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Figure 1: AUC mean and std over 20 trials with various
πn and γl = 0.05

Figure 2: AUC mean and SE over 20 trials with various
πn and γl = 0.1

Figure 3: AUC mean and std over 20 trials with various
πn and default γl = 0.2

Figure 4: AUC mean and std over 20 trials at various
a for the datasets with γl = 0.05 and πn = 0.1

7 Limitations

On the implementation side, although the experiments have shown that our rAD methods are quite robust
to the changes of the parameters a and πe

p, we still have to tune them to obtain the best AD performance.
Furthermore, solving the optimization problem in (19) is challenging for very large-scale dataset since the
max operator does not allow parallel computations. On the theoretical side, although the risk bounds are
established for the proposed risk minimizers in Section 5, we still need the assumption that πp and πn are
known in advance, which is a limitation.
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Figure 5: AUC mean and std over 20 trials at various γl for fixing πn = 0.1

8 Conclusion

With semi-supervised classification based on risk estimators, we have introduced a shallow AD method
equipped with suitable regularization as well as a deep AD method. Theoretically, we have established the
estimation error bounds and the excess risk bounds for the two risk minimizers. Empirically, the shallow
AD methods show significant improvement over the baseline methods while the deep AD methods compete
favorably with the baselines. Let us conclude the paper by giving some possible future research directions
that address the limitation given in Section 7. One possible research direction is to develop a method that
can learn the best combination of (a, πe

p) from the available data. On the other hand, our experiments have
shown that using a = 0.1, precise estimation of πp and πn are not necessarily needed to obtain good accuracy
in terms of AUC. Hence, another possible research direction would be to study the theoretical bounds of
the risk minimizers with πp and πn replaced by some estimates. Finally, investigating effective optimization
techniques to tackle the nonconvex Problem (19) is also an important research direction aimed at overcoming
the difficulties associated with handling exceedingly large-scale datasets.

Acknowledgement We express our sincere appreciation to the reviewers and the action editor for their
comments, which greatly helped improve the paper.
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