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ABSTRACT
Knowledge distillation is useful in training a neural document rank-

ing model by employing a teacher to guide model refinement. As a

teacher may not perform well in all cases, over-calibration between

the student and teacher models can make training less effective.

This paper studies a generalized KL divergence loss in a weighted

form for refining ranking models in searching text documents, and

examines its formal properties in balancing knowledge distillation

in adaption to the relative performance of the teacher and student

models. This loss differentiates the role of positive and negative

documents for a training query, and allows a student model to take

a conservative or deviate approach in imitating the teacher’s behav-

ior when the teacher model is worse than the student model. This

paper presents a detailed theoretical analysis with experiments on

the behavior and usefulness of this generalized loss.
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1 INTRODUCTION
Large-scale search systems for text documents typically employ

multi-stage ranking in practice. The first retrieval stage extracts

top candidate documents matching a query from a large search

index with a fast and relatively efficient ranking method. The sec-

ond stage or a later stage uses a more complex machine learn-

ing algorithm to re-rank top results thoroughly. Recent sparse

retriever studies exploit learned neural representations DeepIm-

pact [28], uniCOIL [12, 22] and SPLADE [7, 9]. An alternative

method is dense retrieval which uses a dual encoder architecture

with single-vector [33, 48], multi-vector document representations

(e.g. [17, 34]).

To boost the relevance of thesemodels, knowledge distillation [14]

is critical during training to transfer knowledge from a powerful

teacher model through behavior imitation [11, 15, 23]. KL diver-

gence is a popular training loss for knowledge distillation in docu-

ment ranking [23, 33, 34, 42, 43].

One drawback of KL-divergence loss for document ranking is

that it does not exploit characteristics of contrastive learning in

ranking model refinement because it does not differentiate positive

and negative documents for a training query. As a result, it over-

calibrates between the student and teacher models with a tight

distribution matching in every document without prioritization
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even when the teacher performs worse than the student model.

The previous work has used the weighted sum of a contrastive loss

such as log-likelihood with KL divergence as a regularization to

reduce over-fitting, and a recent BKL study [45] improves this by

regularizing KL divergence with an entropy and L1-norm loss. As

discussed in Section 2, this BKL regularization can behave incor-

rectly in three significant case regions when a teacher is better than

and is worse than a student model for a training query.

To address the aforementioned weakness, the contribution of this

paper is a generalized KL-divergence loss formula called weighted

KL divergence (WKL) with a detailed analysis of its theoretical

properties. Instead of following the regularization approach, this

generalized loss guides knowledge distillation adaptively in ranking

model refinement by differentiating the role of positive and negative

documents and prioritizing the alignment of a student model and

a teacher model for effectively separating positive and negative

documents. This paper provides a loss lower bound analysis and a

relative gradient contribution study to characterize the behavior

of WKL during model training, compared to KL divergence. Our

analysis shows that this generalized loss can dynamically assess

the relative performance of the teacher and student model in each

training query, and adaptively adjust the imitating behavior of

the student model. so that the teacher model is followed when

it performs better than the student model, and is conservatively

followed or not followed at all when this teacher performs worse

than the student model.

This paper also provides experimental evidence that WKL out-

performs other loss options and examines sensitivities of WKL

parameters when refining three student models including SPLADE

sparse retrieval, ColBERT ranking with a multi-vector representa-

tion [34], and a single-vector SimLM dense retriever [42].

2 BACKGROUND AND RELATEDWORK
Problem definition.We follow the notation used in [45]. Given

query 𝑄 , document search on a collection of 𝑁 text documents

(i.e., D = {𝑑𝑖 }𝑁𝑖=1
) finds top 𝑘 results with a ranking mainly based

on their query-document similarity. For training a retriever or re-

ranker, contrastive learning is widely used. Let D+
be the subset of

all positive documents, and D−
be a subset containing all negative

documents for query 𝑄 . We assume that in a training dataset, all

positive documents are ranked equally. That is true for the MS

MARCO passage dataset where there are only binary labels.

The top one probability distribution over these documents is:

𝑃 (𝑑𝑖 |𝑄,D+,D−,Θ) =

exp(𝑆(𝑄,𝑑𝑖 ,Θ))∑𝑁
𝑗=1

exp(𝑆(𝑄,𝑑 𝑗 ,Θ))

where Θ is the vector of neural parameters involved. 𝑆(𝑄,𝑑𝑖 ,Θ)

is a scoring function that captures the semantic similarity of a

document with a query. For the simplicity of presentation when

no confusion is caused, we will not list Θ and 𝑄 explicitly in each

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Conference’17, July 2017, Washington, DC, USA Anonymous

symbol below and the loss function is specified for each query 𝑄

based on parameters Θ under the training documents D+
and D−

.

Knowledge distillation is a training methodology that guides the

refinement of a neural student model using a teacher model. Let

𝑝𝑖 or 𝑞𝑖 denote 𝑃 (𝑑𝑖 |𝑄,D+,D−,Θ) where 𝑝𝑖 and 𝑞𝑖 refer to the

teacher’s and student’s predictions, respectively.

To train a ranking model, the standard loss function includes

the negative log-likelihood or its variation: −∑
𝑑 𝑗 ∈D+ log𝑞 𝑗 . KL-

divergence defined below is a popular choice for knowledge distil-

lation as seen in recent ranking studies [33, 34, 38, 42, 49].

LKL =

∑︁
di∈D+∪D−

pi ln

pi
qi

(1)

where 𝑝𝑖 and𝑞𝑖 refer to the teacher and student’s top one probability

for instance 𝑑𝑖 in D+
or D−

, respectively. KL-divergence measures

the distance between teacher’s and student’s distributions. It is

known that the lower bound of KL-divergence loss is 0 and this is

achieved when ∀𝑑𝑖 , 𝑝𝑖 = 𝑞𝑖 .

Related retrieval methods. Large-scale search systems for

text documents typically employ multi-stage ranking in practice.

The first stage retriever aims to fetch top 𝑘 documents using a fast

and relatively simple method. There are two categories of retrieval

techniques in deriving a document and query representation. One

category of document retrieval is lexical sparse retrieval models,

such as BM25, which take advantage of fast inverted index imple-

mentations on CPUs. This method gains its popularity recently due

to the advancement of learned sparse representations that derive

token weights from a BERT-based neural model [6, 9, 12, 22, 28, 37].

Dense retrieval is an alternative approach for first-stage search

with a dual encoder architecture (e.g. [10, 44]). Distillation is shown

to be effective for dense retrieval training and KL-divergence loss

is a popular choice in recent studies, such as RocketQAv2 [33],

SimLM [42] and RetroMAE [43], AR2 [49], and UnifiedR [38].

Re-ranking and multi-vector representations. The second
or later stage of search can employ a more complex re-ranker to

re-evaluate the top 𝑘 documents fetched by an earlier stage. There

is a possibility to use a single-vector dense retrieval model for re-

ranking. As pointed out in recent studies [21, 35, 40], single-vector

dense models can struggle in handling out-of-domain datasets

where training data is limited (including zero-shot retrieval), and

in answering entity-centric questions. As a remedy, multi-vector

representations including ColBERT and its new enhancements [20,

21, 27, 31] have been proposed to improve the model expressiveness

by capturing fine-grained token-level information.

Listwise losses. A listwise loss design that considers the impact

of relative rank positions of matched documents for a query has

been shown to be useful in learning-to-rank and aligning such a

loss with a targeted ranking metric approximately such as NDCG is

ideal [25, 41]. Since neural information retrieval typically requires

a large number of training examples to be effective, and training

data such as MS MARCO only contains few labeled positive docu-

ments and sampled negative documents on a relatively large scale,

it is more important to separate positive and negative documents

properly for a query-specific loss. This motivates our design. The

previous work has considered the relevance gain by swapping two

documents in a listwise loss, e.g. LambdaMART [1]. CL-DRD [47]

uses a listwise loss based on rank position. Weighting training

instances is studied in the focal loss for visual object classifica-

tion [24], and such a loss is not designed for knowledge distillation.

Nevertheless, our work is influenced by the above studies.

Regularization of knowledge distillationwith a contrastive
loss. A key weakness of knowledge distillation with KL divergence

loss for document ranking is that a teacher model may not perform

well in all cases and adaptive deprioritization is needed. A common

approach to balance knowledge distillation is to combine the KL di-

vergence loss with a contrastive rank loss such as the log-likelihood

using a weighted sum as a regularization, defined as:

LKLL =

∑︁
𝑑𝑖 ∈𝐷+∪𝐷−

𝑝𝑖 ln

𝑝𝑖

𝑞𝑖
− 𝜆

∑︁
𝑑𝑖 ∈𝐷+

log𝑞𝑖 . (2)

The above loss is not adaptive to the relative performance of

a teacher model and a student model. An improvement called

BKL [45] combines the negative entropy component of positive

documents and the L1-norm expression of negative documents for

a given query to balance knowledge distillation.

3 LOSS DESIGN AND ANALYSIS
3.1 Design considerations
Our goal of loss design optimization is to control the imitation of

the teacher’s rank scoring when refining a student model based

on each training query so that when the student mimics when the

teacher is better and it should restrain distillation or deviate when

the teacher is worse. This can be analyzed by examining the gra-

dient contribution of each document for parameter update during

SGD-based training compared to KL divergence, as illustrated in

Figure 1, and a desired loss should follow the gradient update direc-

tion of KL divergence loss when the teacher model performs better

than the student model for a training query. When this teacher

performs worse, this targeted loss should deviate in an opposite

update direction or at least restrain the update size cautiously even

in the same update direction.

The weakness of BKL [45] is that its formula over-corrects the

behavior of KL divergence and fails to meet the above objective

in three significant case regions. As shown in Section 4, when a

teacher’s model performs much better than a student in ranking

a negative example, BKL’s regularization formula unintentionally

lets the student model deviate from the teacher’s ranking score

in a wrong learning direction. It also fails in some cases to follow

aggressively even when the teacher model performs worse for a

positive document.

KL divergence gradient 
update size & direction

Follow if teacher 
is better than 
student model

Restrain or 
deviate if 
teacher is 
worse 

Gradient of adaptive loss

Figure 1: Loss design goal: Adaptive control of student model
learning from teacher compared to the KL divergence loss
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To meet the above expectation and goal illustrated in Figure 1,

and avoid the misbehavior in both BKL and KLL, our approach

described below does not take the regularization approach of BKL

and KLL. Instead we directly generalize the KL divergence loss with

an easy-to-implement weighting formula described in Section 3.2.

In generalizing the KL divergence loss, our main strategy is to ex-

plicitly prioritize the separation of positive and negative documents

for each query through a weight adjustment by down-weighting

positive documents ranked high on the top positions, and negative

documents ranked low at the bottom positions by a student model.

This is illustrated in Figure 2 where documents are sorted from left

to right in a non-decreasing order of their student rank score.

It is not obvious that the goal illustrated in Figure 1 could be

accomplished by the above simple strategies illustrated in Figure 2

for ranking. Through a gradient contribution analysis, Section 4 an-

alytically reveals that it is true under the generalized KL divergence

loss described below. Namely, it allows learning from a teacher be-

come better behaved in adaptation to the relative performance of

the teacher model and the student model, and can restrain imitation

when this teacher performs worse than the student.

Positive 
documents Negative 

documents…

Upweight Downweight 

Downweight 

Figure 2: Prioritize separation of positives and negatives

3.2 Generalized KL-Divergence
This generalized KL-divergence loss in a weighted format (WKL) is

defined as follows:

LWKL =

∑︁
𝑑 𝑗 ∈D+

(1 − 𝑞 𝑗 )𝛾1𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
+

∑︁
𝑑𝑖 ∈D−

(𝑞𝑖 )
𝛾2,𝑖𝑝𝑖 ln

𝑝𝑖

𝑞𝑖
.

The weight for each divergence term 𝑝𝑖 log
𝑝𝑖
𝑞𝑖

corresponds to

the importance to align the student’s scoring of such a document

with the teacher’s model. For a positive document 𝑑 𝑗 , the goal is to

have 𝑞 𝑗 as large as possible towards 1, and thus we use (1 − 𝑞 𝑗 )𝛾
1

as the weight. Here 𝛾1 is a fixed hyperparameter controlling the

scale of weight in the exponent. We require 𝛾1 ≥ 0. For a negative

document 𝑑𝑖 , the goal is to have 𝑞𝑖 as small as possible towards 0,

and thus we use (𝑞𝑖 )
𝛾2,𝑖

as the weight. We require either 𝛾2,𝑖 > 0

for all negative documents or 𝛾2,𝑖 = 0 for all negative documents.

For two negative documents 𝑑𝑖 and 𝑑 𝑗 where 𝑞𝑖 ≥ 𝑞 𝑗 , we require
𝛾2,𝑖 ≤ 𝛾2, 𝑗 .

Notice that KL divergence loss is a special form ofWKLwhen set-

ting all control parameters as zero (𝛾1 = 𝛾2,𝑖 = 0). WKL weights the

divergence loss contribution from positive documents and negative

documents differently. We explain how the above design matches

the design consideration illustrated in Figure 2.

• Given two positive documents 𝑑𝑖 and 𝑑 𝑗 , if 𝑞𝑖 ≥ 𝑞 𝑗 , then (1 −
𝑞𝑖 )

𝛾1 ≤ (1 − 𝑞 𝑗 )
𝛾1
. Thus a low-scoring positive document is

weighted more than a high-scoring positive document. When

such a document is ranked close to negative documents, or even

below some negative documents, that results in a poor bound-

ary separation of positive and negative documents. Thus the

alignment with the teacher’s model for such a positive document

should be prioritized.

• Among negative documents, if 𝑞𝑖 ≤ 𝑞 𝑗 , requiring 𝛾2,𝑖 ≤ 𝛾2, 𝑗

implies that (𝑞𝑖 )
𝛾2,𝑖 ≥ (𝑞𝑖 )

𝛾2, 𝑗 ≥ (𝑞𝑖 )
𝛾2, 𝑗 . High-scoring negative

documents are weighted more and low-scoring negative docu-

ments have a reduced priority to follow what the teacher does.

When the score of a negative example in a student model is high

and is getting closer or exceeds some of the positive examples,

the positive and negative document regions would overlap as

shown in Figure 2 and then that is a high-priority case to address.

3.3 Loss minimization and its bound
The result below shows that the WKL loss has a constant lower

bound, and thus training that minimizes such a loss has a boundary

to hit. If a loss function has no lower bound, training would not

converge. Note that 𝑝𝑖 values from the teacher’s model are constant.

Theorem 1. Loss minimization. When 𝛾1 ≥ 1 or 𝛾1 = 0,

LWKL ≥
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈𝐷−

𝑝𝑖𝑞
𝛾2,𝑖

𝑖
ln𝑞𝑖

+

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖 .

(3)

When 0 < 𝛾1 < 1,

LWKL ≥𝑟1
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈𝐷−

𝑝𝑖𝑞
𝛾2,𝑖

𝑖
ln𝑞𝑖 +

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗

+ (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖 .

(4)

Proof. When 𝛾1 ≥ 1, we follow Bernoulli’s inequality (1 −
𝑞𝑖 )

𝑟1 ≥ 1 − 𝑟1𝑞𝑖 , given 0 ≤ 𝑞 𝑗 ≤ 1. Since ln𝑝𝑖 ≤ 0 and ln𝑞𝑖 ≤ 0,

LWKL =

∑︁
𝑑 𝑗 ∈D+

(1 − 𝑞 𝑗 )𝛾1𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑝𝑖

−
∑︁

𝑑 𝑗 ∈D+

(1 − 𝑞 𝑗 )𝛾1𝑝 𝑗 ln𝑞 𝑗 −
∑︁

𝑑𝑖 ∈D−
𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑞𝑖

≥
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖

−
∑︁

𝑑 𝑗 ∈D+

(1 − 𝑞 𝑗𝛾1)𝑝 𝑗 ln𝑞 𝑗 −
∑︁

𝑑𝑖 ∈D−
𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑞𝑖

≥
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈𝐷−

𝑝𝑖𝑞
𝛾2,𝑖

𝑖
ln𝑞𝑖

+

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖
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When 𝛾1 = 0,

LWKL ≥
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈D−

𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑞𝑖

+

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖 .

When 0 < 𝛾1 < 1, we first show that (1 − 𝑥)
𝛾1 ≥ 𝛾1(1 − 𝑥) with

𝑥 ∈ [0, 1]. It is true when 𝑥 = 0 and 𝑥 = 1. For 𝑥 ∈ (0, 1), let function

𝑓 (𝑥) = (1 − 𝑥)
𝛾1

+ 𝛾1𝑥 . Then 𝑓
′
(𝑥) = −𝑟1(1 − 𝑥)

𝛾1−1
+ 𝛾1 < 0. Then

𝑓 (𝑥) is monotonically decreasing and 𝑓 (𝑥) > 𝑓 (1) for 𝑥 ∈ (0, 1),

which leads to (1 − 𝑥)
𝛾1 > 𝛾1(1 − 𝑥). We apply this inequality for

𝑥 = 𝑞 𝑗 for a positive document below.

LWKL =

∑︁
𝑑 𝑗 ∈D+

(1 − 𝑞 𝑗 )𝛾1𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑝𝑖

−
∑︁

𝑑 𝑗 ∈D+

(1 − 𝑞 𝑗 )𝛾1𝑝 𝑗 ln𝑞 𝑗 −
∑︁

𝑑𝑖 ∈D−
𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑞𝑖

≥
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖

−
∑︁

𝑑 𝑗 ∈D+

𝛾1(1 − 𝑞 𝑗 )𝑝 𝑗 ln𝑞 𝑗 −
∑︁

𝑑𝑖 ∈D−
𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln𝑞𝑖

≥𝑟1
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈𝐷−

𝑝𝑖𝑞
𝛾2,𝑖

𝑖
ln𝑞𝑖 +

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗

+ (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖

□

The first component of the right hand side in Inequalities (3)

and (4) is KL divergence for positive documents. The sum of the

first and second components on the right-hand side approaches a

constant lower bound, reached when 𝑝𝑖 = 𝑞𝑖 for all positive docu-

ments and 𝑞𝑖 = 0 for all negative documents. The third component

is the negative entropy of positive documents. The third component

is bounded by − 2𝛾
𝑒 , approached when all 𝑞 𝑗 values are equal for all

positive documents 𝑑 𝑗 . This is shown in the theorem below.

Theorem 2. Constant-bounded loss. If 𝛾2,𝑖 > 0, and when 𝛾1 ≥ 1

or 𝛾1 = 0,

LWKL ≥
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 (−1 + ln 𝑝𝑖 ) −

2𝛾1

𝑒
.

(5)

If 𝛾2,𝑖 > 0, and when 0 < 𝛾1 < 1,

LWKL ≥
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 (−𝛾1 + ln 𝑝𝑖 ) −

2𝛾1

𝑒
.

(6)

If 𝛾2,𝑖 = 0, and when 𝛾1 ≥ 1 or 𝛾1 = 0,

LWKL ≥ − 2𝛾1

𝑒
. (7)

If 𝛾2,𝑖 = 0, and when 0 < 𝛾1 < 1,

LWKL ≥(1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

(−𝑝 𝑗 + 𝑝 𝑗 ln𝑝 𝑗 ) −
2𝛾1

𝑒
.

(8)

Notice that 𝑝𝑖 and 𝑝 𝑗 from the teacher’s model in the above

bound expressions are constants. The proof for Theorem 2 is based

on Theorem 1 and is listed in Appendix A.

Based on the components of the derived lower bound, minimiz-

ing WKL will minimize the original KL-divergence loss for positive

documents and maximize the entropy among them. This lower

bound minimization implies a balanced trend towards a narrower

gap between teacher’s and student’s predictions of positive docu-

ments and relatively equal student predictions among them while

preferring low scores for negative documents.

4 RELATIVE GRADIENT CONTRIBUTIONS
We analyze the impact of up-weighting and down-weighting indi-

vidual KL-divergence terms in terms of their corresponding gradient

contributions for parameter update during model refinement be-

cause gradients of the loss controls the update size to the network

weight parameters in the SGD-based training process. Let 𝜃 be one

of parameters Θ used in the computation network that maps the

input features to score 𝑆(𝑄,𝑑𝑖 ,Θ) for each document 𝑑𝑖 . defined in

Section 2. Then given Loss 𝐿𝐴 , and 𝐴 can be𝑊𝐾𝐿, 𝐵𝐾𝐿, or others.

𝜕𝐿𝐴

𝜕𝜃
=

∑︁
𝑑𝑖 ∈D+

⋃D−

𝜕𝐿𝐴(𝑖)

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝑆(𝑄,𝑑𝑖 ,Θ)

𝜕𝑆(𝑄,𝑑𝑖 ,Θ)

𝜕𝜃

where 𝐿𝐴(𝑖) is the relevant loss term contributed by document 𝑑𝑖 .

For KL divergence loss 𝐿𝐾𝐿 in Equation (1), 𝐿𝐾𝐿(𝑖) = 𝑝𝑖 ln
𝑝𝑖
𝑞𝑖
.

𝜕𝐿𝐾𝐿(𝑖)

𝜕𝑞𝑖
= −𝑝𝑖

𝑞𝑖
.

To understand if a loss function 𝐿𝐴 follows the KL divergence

loss when a teacher model performs better than a student or not,

we compare the pairwise ratio of the gradient contribution from

document 𝑑𝑖 in above additive formulas for
𝜕𝐿𝐴(𝑖)
𝜕𝑞𝑖

compared to

𝜕𝐿𝐾𝐿 (𝑖)
𝜕𝑞𝑖

. Namely

𝜕LA(i)
𝜕𝑞𝑖

= 𝑔𝐴
𝜕LKL(i)
𝜕𝑞𝑖

(9)

The top portion of Table 1 gives the expected behavior of a

knowledge distillation loss compared to KL divergence loss when a

teacher model performs better or worse than a student. The bottom

of portion of Table 1 explains the meaning of different ranges of

𝑔𝐴 value on the gradient contribution of document 𝑑𝑖 . Here the

relative performance assessment of a teacher model and a student

model for a document is defined below based on the relative ratio

of teacher prediction and student prediction.

• A teach model performs better than a student model when

𝑝𝑖 > 𝑞𝑖 if 𝑑𝑖 is a positive document when 𝑝𝑖 < 𝑞𝑖 if 𝑑𝑖 is a

negative document

• A teach model performs worse than a student model when

𝑝𝑖 < 𝑞𝑖 if 𝑑𝑖 is a positive document, and when 𝑝𝑖 > 𝑞𝑖 if 𝑑𝑖
is a negative document.

For 𝐿𝑊𝐾𝐿 , the contribution 𝐿𝑊𝐾𝐿(𝑖) from document 𝑑𝑖 is (1 −
𝑞𝑖 )
𝛾1𝑝𝑖 ln

𝑝𝑖
𝑞𝑖

for a positive document, and 𝑞
𝛾2,𝑖

𝑖
𝑝𝑖 ln

𝑝𝑖
𝑞𝑖

for a negative

document. It is easy to verify that

𝜕LWKL(i)
𝜕𝑞𝑖

= 𝑔𝑊𝐾𝐿
𝜕LKL(i)
𝜕𝑞𝑖

(10)

where

𝑔𝑊𝐾𝐿 =


(1 − 𝑞𝑖 )𝛾1−1 ×

(
𝛾1𝑞𝑖 ln

𝑝𝑖
𝑞𝑖

+ 1 − 𝑞𝑖
)

if 𝑑𝑖 ∈ D+
;

𝑞
𝛾2,𝑖

𝑖
×
(
1 − 𝛾2,𝑖 ln

𝑝𝑖
𝑞𝑖

)
if 𝑑𝑖 ∈ D− .
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Scenarios Expected behavior
Teacher is better than student 𝑔𝐴 ≥ 1 preferred. At least 𝑔𝐴 > 0

Teacher is worse 𝑔𝐴 ≤ 0 preferred. At most 𝑔𝐴 < 1

Condition Behavior interpretation on 𝑑𝑖 contribution by 𝐿𝐴
𝑔𝐴 > 1 Aggressively follow KL divergence

𝑔𝐴 = 1 Exactly follow KL divergence

0 < 𝑔𝐴 < 1 Conservatively follow

𝑔𝐴 = 0 Not follow. No contribution from 𝑑𝑖 in 𝐿𝐴 .

𝑔𝐴 < 0 Not follow. Deviate from 𝑑𝑖 from KL Divergence

Table 1: Expected gradient contribution behavior from docu-
ment 𝑑𝑖 in loss 𝐿𝐴 compared to KL divergence

For KL divergence regularized together with the log-likelihood

(Equation (2)),

𝑔𝐾𝐿𝐿 =

{
1 +

𝜆
𝑝𝑖

if 𝑑𝑖 ∈ D+
;

1 if 𝑑𝑖 ∈ D− .

Thus KLL always follows KL divergence loss even a teacher per-

forms worse than a student. BKL in [45] improves this by combining

the KL divergence with a log likelihood rank loss linearly using a

small 𝜆 parameter value.

𝑔𝐵𝐾𝐿 =

{
1 − 𝜆

𝑝𝑖
𝑞𝑖 log(𝑒 × 𝑞𝑖 ) if 𝑑𝑖 ∈ D+

;

1 − 𝑞𝑖𝜆

𝑝𝑖 ln 2
if 𝑑𝑖 ∈ D− .

Constant 𝑒 is the base of the natural logarithms.

Table 2 gives a comparison of the behavior of WKL and BKL for

the gradient contribution of an individual document 𝑑𝑖 compared

to KL divergence compared to KL divergence based on different

𝑔𝑊𝐾𝐿 and 𝑔𝐵𝐾𝐿 value ranges and the relative ratio of teacher’s and

student’s predictions
𝑝𝑖
𝑞𝑖
. Notice that when 𝑝𝑖 > 𝑞𝑖 , we consider

a teacher model performs better than a student if 𝑑𝑖 ∈ D+
, and

performs worse if 𝑑𝑖 ∈ D−
. When 𝑝𝑖 < 𝑞𝑖 , we consider this teacher

model performs better than a student if 𝑑𝑖 ∈ D−
, and performs

worse if 𝑑𝑖 ∈ D+
.

Table 2 lists the conditions representing three significant misbe-

havior regions, to be illustrated in Figure 3(a), in which BKL fails

to meet the expectation discussed in the top portion of Table 1.

WKL is well-behaved as shown from this table and its behavior is

formally characterized by the following theorem.

Theorem 3. When a teacher model performs better than a student
model in ranking a document for a query, 𝑔𝑊𝐾𝐿 > 0. When this
teacher model performs worse, 𝑔𝑊𝐾𝐿 < 1, and 𝑔𝑊𝐾𝐿 ≤ 0 when

𝑞𝑖 ≥ max(𝑒×𝑝𝑖 , 1

𝛾1+1
) for 𝑑𝑖 ∈ D+ and when 𝑝𝑖

𝑞𝑖
≥ 𝑒

1

𝑟
2,𝑖 for 𝑑𝑖 ∈ D− .

Proof. For 𝑑𝑖 ∈ D+
, we consider the ratio 𝑔𝑊𝐾𝐿 defined in

Equation (10) in two cases.

• When 𝑝𝑖 > 𝑞𝑖 , 𝛾1𝑞𝑖 ln
𝑝𝑖
𝑞𝑖

+ 1 − 𝑞𝑖 > 0. Thus 𝑔𝑊𝐾𝐿 > 0.

• When 𝑝𝑖 < 𝑞𝑖 ,𝛾1𝑞𝑖 ln
𝑝𝑖
𝑞𝑖

+1−𝑞𝑖 < 1−𝑞𝑖 . Thus𝑔𝑊𝐾𝐿 < (1−𝑞𝑖 )𝛾1 ≤
1.

When 𝑞𝑖 ≥ 𝑒 × 𝑝𝑖 , 𝛾1𝑞𝑖 ln
𝑝𝑖
𝑞𝑖

+ 1 − 𝑞𝑖 ≤ −𝛾1𝑞𝑖 + 1 − 𝑞𝑖 ≤ 0 if

𝑞𝑖 ≥ 1

𝛾1+1
.

Thus 𝑔𝑊𝐾𝐿 ≤ 0 when 𝑞𝑖 ≥ max(𝑒 × 𝑝𝑖 , 1

𝛾1+1
).

For 𝑑𝑖 ∈ D−
,

• When 𝑝𝑖 > 𝑞𝑖 , 1 − 𝛾2,𝑖 ln
𝑝𝑖
𝑞𝑖

< 1. Then 𝑔𝑊𝐾𝐿 < 𝑞
𝛾2,𝑖

𝑖
≤ 1.

When
𝑝𝑖
𝑞𝑖

≥ 𝑒
1

𝑟
2,𝑖 , 1 − 𝛾2,𝑖 ln

𝑝𝑖
𝑞𝑖

≤ 0. Then 𝑔𝑊𝐾𝐿 ≤ 0.

• When 𝑝𝑖 < 𝑞𝑖 , 1 − 𝛾2,𝑖 ln
𝑝𝑖
𝑞𝑖

> 0. Then 𝑔𝑊𝐾𝐿 > 0.

□

 Teacher is worse

 Teacher is worse

 Teacher is better

 Teacher is better

Misbehavior 
region

Misbehavior 
region

Misbehavior 
region

Misbehavior region

(a) Relative gradient contribution ratio 𝑔 of BKL and KLL

Misbehavior
region

Misbehavior region

Misbehavior region

Misbehavior 
region

(b) Gradient contribution ratio of WKL with 𝛾1 = 𝛾2,𝑖=5, 3, or 1

Figure 3: WKL vs. BKL & KLL when teacher is better or worse

To illustrate the comparison in Table 2 using an example, Fig-

ure 3(a) plots the gradient contribution ratio 𝑔𝐵𝐾𝐿 in a blue dot and

𝑔𝐾𝐿𝐿 in a purple triangle with 𝜆 = 0.1. The x-axis is
𝑝𝑖
𝑞𝑖

varying

from 0.01 from 10 at Figure 3(b) plots 𝑔𝑊𝐾𝐿 with 𝛾1 = 𝛾2,𝑖=5, 3, or

1 marked as WKL-5 (a light blue triangle), WKL-3 (a dark blue dot),

and WKL-1 (a purple square), respectively.

The rectangle red boxes marked the misbehavior regions show

that the areas where the gradient contribution ratio values do not

match the expected behavior described in the top portion of Table 1.

From Figure 3(b), 𝑔𝑊𝐾𝐿 values are outside the red misbehavior

regions, and thus WKL follows KL divergence loss if the teacher

model does better than the student, but it restrains gradient update

with a conservative size, or deviates in an opposite direction when

the teacher is worse.

From Figure 3(a), there are three significant misbehavior regions

in red into which BKL gradient ratios fall, meaning BKL fails to

meet the expectations as summarized in Table 2. There are two

misbehavior regions into which KLL falls.

For example, Figure 3(b) illustrates that for positive documents,

when the teacher performs better with
𝑝𝑖
𝑞𝑖

> 1,𝑔𝑊𝐾𝐿 > 0 or exceeds

1 and WKL allows the student to follow the teacher’s parameter
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Scenarios Behavior of WKL Behavior of BKL
Positive document 𝑑𝑖
Teacher: better 𝑔𝑊𝐾𝐿 > 0 𝑔𝐵𝐾𝐿 > 0

𝑝𝑖 > 𝑞𝑖 Conservatively or aggressively follow Conservatively or aggressively follow

Student: better 𝑔𝑊𝐾𝐿 < 1 to conservatively follow or deviate 𝑔𝐵𝐾𝐿 varies from negative to positive

𝑝𝑖 < 𝑞𝑖 𝑔𝑊𝐾𝐿 ≤ 0 when
𝑞𝑖
𝑝𝑖

≥ 𝑒, 𝑞𝑖 ≥ 1

𝑟1+1
to deviate Misbehavior: 𝑔𝐵𝐾𝐿 > 1 aggressively follows when 𝑞𝑖 > 𝑒

−1

Negative document 𝑑𝑖
Student: better 𝑔𝑊𝐾𝐿 < 1 to conservatively follow or deviate Misbehavior: When 𝑝𝑖 >> 𝑞𝑖 , 𝑔𝐵𝐾𝐿 ≈ 1

𝑝𝑖 > 𝑞𝑖 𝑔𝑊𝐾𝐿 ≤ 0 when
𝑝𝑖
𝑞𝑖

≥ 𝑒
1

𝑟
2,𝑖 to deviate Otherwise 0 < 𝑔𝐵𝐾𝐿 < 1 to conservatively follow

Teacher: better 𝑔𝑊𝐾𝐿 > 0 0 < 𝑔𝐵𝐾𝐿 < 1 if
𝑝𝑖
𝑞𝑖

> 𝜆
ln 2

to conservatively follow

𝑝𝑖 < 𝑞𝑖 Conservatively/aggressively follow Misbehavior: 𝑔𝐵𝐾𝐿 ≤ 0 if
𝑝𝑖
𝑞𝑖

≤ 𝜆
ln 2

to deviate

Table 2: A comparison of relative gradient contributions by document 𝑑𝑖 in 𝐿𝑊𝐾𝐿 and 𝐿𝐵𝐾𝐿 compared to 𝐿𝐾𝐿 , 𝑝𝑖 is teacher
prediction, 𝑞𝑖 is student prediction.

update direction. When the teacher under-performs with
𝑝𝑖
𝑞𝑖

< 1,

𝑔𝑊𝐾𝐿 become close to 0 or even negative, and the student does

not learn much from the teacher or its learning deviates from the

teacher’s learning direction. In comparison from the left portion

of Figure 3(b), BKL still forces the student to follow the teacher’s

direction with𝑔𝐵𝐾𝐿 > 0 or even > 1 in most cases when the teacher

is worse. Thus WKL’s design corrects the misbehavior of BKL.

5 EVALUATION RESULTS
5.1 Evaluation setup for student models
We apply WKL in refining three student models during training.

• The SPLADE model [7, 9] which computes the weight score𝑤 𝑗
of 𝑗-th token term for a sparse vector of document 𝑑 as

𝑤 𝑗 =

∑︁
𝑖∈𝑑

𝑙𝑜𝑔(1 + 𝑅𝑒𝐿𝑈 (𝐻 (ℎ𝑖 )
𝑇 𝐸 𝑗 + 𝑏 𝑗 ))

where document 𝑑 consists of a sequence of BERT last layer’s

embeddings (ℎ1, ℎ2, · · · , ℎ𝑛). 𝐸 𝑗 is the BERT input embedding of

the 𝑗-th token and 𝑏 𝑗 is a token level bias. 𝐻 (.) is a linear layer

with activation and layer normalization.

• Two-stage search pipeline that combines the first-stage SPLADE

retrieval and the second-stage ColBERT top-𝑘 ranking. ColBERT’s

scoring formula is:∑︁
ℎ𝑖 ∈𝑀(𝑄,Θ)

𝑚𝑎𝑥ℎ 𝑗 ∈𝑀(𝑑,Θ)
𝐻 (ℎ𝑖 )

𝑇𝐻 (ℎ 𝑗 )

where each document 𝑑 and given query 𝑄 use a multi-vector

representation 𝑀(𝑑,Θ) and 𝑀(𝑄,Θ) respectively, and ℎ𝑖 , ℎ 𝑗 are

BERT last layer’s embeddings and 𝐻 (.) is one linear layer with

normalization on the output representation.

• Dense single-vector retriever SimLM [42]. It is a state-of-the-art

dual-encoder with optimized pretraining [42, 43].

WKL parameters. We have considered a special version of

WKL. For negative document 𝑑𝑖 , we set 𝛾2,𝑖 = 𝛾1 − 𝛽𝑖 . The exponent
weight bias 𝛽𝑖 is defined as

𝛽𝑖 = 𝛼
©­« 1

𝜋 (𝑖)
− 1

|D+ |
∑︁

𝑑 𝑗 ∈D+

1

𝜋 ( 𝑗 )

ª®¬ . (11)

Here 𝜋 (𝑖), 𝜋 ( 𝑗 ) are the rank of negative document 𝑑𝑖 and positive

document 𝑑 𝑗 respectively. Bias 𝛽𝑖 represents the importance of

correcting the ranking position of negative document 𝑑𝑖 , compared

against the harmonic average position of positive documents. The

above use of a rank position is motivated by the previous work

which considers the relevance gain by swapping two documents in

a ranked order, e.g. LambdaMART [1] and CL-DRD [47]. The above

expression satisfies |𝛽𝑖 |< 𝛼 . Among negative documents, if 𝑞𝑖 > 𝑞 𝑗 ,

document 𝑑𝑖 is ranked before 𝑑 𝑗 .
1

𝜋 (𝑖)
> 1

𝜋 (𝑗 )
. Thus 𝛽𝑖 > 𝛽 𝑗 . Then

𝛾2,𝑖 < 𝛾2, 𝑗 . That meets the requirement specified in Section 3.2.

Exponent bias 𝛽𝑖 is updated based on its rank position immedi-

ately after each training iteration where 𝑞𝑖 is recomputed, which

makes the loss function non-differentiable. Thus during training,

we opt to periodically update 𝛽𝑖 using the latest student’s model per-

formance, and the priority adjustment of each negative document

is stable for a block of training iterations. This design allows 𝛽𝑖 to

be treated as a constant in the loss function. This is a reasonable

tradeoff as model refinement that addresses ranking accuracy for a

negative document takes a number of iterations and continuous 𝛽𝑖
adjustment for such a document may not yield sufficient benefits.

Since 𝛾1 and 𝛼 determine the value of 𝛾2,𝑖 for every document

𝑑𝑖 , the rest of this section will use two hyperparameters 𝛾1 and 𝛼

to adjust the configuration of WKL, and investigate the sensitivity

with different choices of 𝛾1 and 𝛼 values in model refinement.

Datasets and metrics.We use the MS MARCO datasets for full

passage ranking [2, 5]. MS MARCO contains 8.8 million passages

and 502,940 training queries with binary judgment labels for each

query. The development (Dev) query set contains 6980 test queries

while the test sets in TREC deep learning (DL) 2019 and 2020 tracks

provide 43 and 54 queries, respectively. Following the common

practice, we report mean reciprocal rank (MRR@10) for the Dev

set and NDCG@10 score for TREC DL test sets. The recall ratio at

1000 is another metric which is the percentage of relevant-labeled

results appeared in the final top-1000 results.

The second data collection used is called BEIR which contains

the 13 publicly available datasets [40] for evaluating the zero-shot

performance of the trained models. BEIR is a heterogeneous bench-

mark containing a variety of IR tasks.
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Our evaluation implementation uses C++ and Python. The im-

plementation of SPLADE model follows its official release [39] and

sparse retrieval code in PISA [29] with some optimization [18, 32].

We follow the SBERT library [36] to implement ColBERT. Two

teachers are used during training. For SimLM, we use the code

and checkpoint released in the SimLM project GitHub. The cross

encoder teacher adopted for ColBERTv2 and SPLADE isMiniLM-l-6-

v2 [30] with 0.407 MRR@10 on MS MARCO Dev on top of SPLADE

retrieval. For SimLM, we use a cross encoder teacher from the re-

leased SimLM project [42] with 0.438 MRR@10. More information

on training and configurations can be found in Appendix B.

5.2 Refinement of student models
Two-stage search with ColBERT and SPLADE. Table 3 com-

pares the two-stage search trained under WKL and other distil-

lation loss options in terms of MRR@10 or NDCG@10. The col-

umn for BEIR lists the average NDCG@10 across 13 datasets, and

the detailed number on the zero-shot performance of two-stage

SPLADE/ColBERT with WKL is in Table 4. We have listed pub-

lished SPLADE++ and ColBERT performance. To demonstrate our

evaluation is conducted competitive to the state-of-the-art research

with multi-vector representations, this table lists dense retrievers

with multi-vector representations like CITADEL and ALIGNER. We

also include SLIM+ which improves multi-vector representations

with a sparse scheme. The table also lists ColBERT re-ranking with

uniCOIL first-stage retrieval and CQ quantization [46].

For WKL, re-ranking is applied to top 1,000 results of SPLADE

retrieval. The middle portion of 3 also lists the results under dif-

ferent loss options including MarginMSE loss [15] and BKL [45].

“KLDiv_logL” uses 𝐿𝐾𝐿𝐿 with negative log likelihood loss on in-

batch negatives plus KL-divergence loss. “CL-DRD” is a listwise loss

in CL-DRD for curriculum learning [47]. Recall@1000 is the same

as SPLADE for all loss options due to re-ranking and is not listed.

Training for all loss options is conducted under the same training

setup in terms of negative samples, the starting warm-up check-

point, and the machine environment. WKL visibly outperforms

other loss options for the test datasets.

Overall speaking, this table shows that the two-stage SPLADE

and ColBERT search refined with WKL delivers a good and well-

balanced performance across the tested datasets. We have per-

formed paired t-tests on the 95% confidence level. We mark the

results with ‘
†
’ if a baseline result is in statistically significant degra-

dation from WKL. We do not perform t-tests on DL’19 and DL’20

as these sets are relatively small.

The bottom portion of Table 3 lists the SPLADE/ColBERT per-

formance refined with WKL for MS MARCO passage Dev set under

different hyperparameter 𝛾1 and 𝛼 values. When 𝛾1 is too small,

WKL performance is similar as KL-divergence and when 𝛾1 be-

comes too big, the gradient will reduce quickly towards 0 and such

a value is not preferred. Thus (𝛾1 =5, 𝛼= 1.0) is a good choice.

Student model SPLADE.When focusing on the first retrieval

stage with SPLADE, Table 5 compares different loss options and

mark the results with ‘
†
’ if a baseline result is in statistically signif-

icant degradation from WKL. Recall@1000 for these losses is near

identical as 0.983 for the Dev set, and thus it is not listed. WKL still

Dev DL19 DL20 BEIR(Avg)
MRR@10 NDCG@10 NDCG@10 NDCG@10

Related performance numbers from other papers
SPLADE++ [8] 0.380 0.732 – 0.507

ColBERTv2 0.397 – – 0.499

uniCOIL/ColBERTv2 0.387 0.746 0.726 –

SLIM++ [20] 0.404 0.714 0.697 0.490

CITADEL [21] 0.399 0.703 0.702 0.501

ALIGNER [31] 0.403 – – 0.511

SPLADE + top-1000 ColBERT re-ranking
KLDiv 0.406

†
0.716 0.719 0.489

MarginMSE 0.406
†

0.704 0.710 0.503

KLDiv_logL 0.405
†

0.711 0.699 0.499

CL-DRD 0.406
†

0.700 0.693 0.497

BKL 0.407 0.716 0.736 0.506

WKL (𝛾1=5, 𝛼=1) 0.411 0.744 0.741 0.515
𝛾1, 𝛼 for WKL in other values

2,0, 0.0 0.404 0.716 0.709

2.0, 0.5 0.404 0.733 0.725

2.0, 1.0 0.404 0.740 0.728

3.0, 0.0 0.405 0.735 0.717

4.0, 0.0 0.408 0.740 0.734

4.0, 1.0 0.410 0.735 0.731

4.0, 1.5 0.404 0.724 0.740

5.0, 0.0 0.409 0.737 0.722

5.0, 1.5 0.407 0.742 0.731

6.0, 0.0 0.410 0.750 0.724

Table 3: Two-stage search with different loss options and
WKL parameters

Dataset BM25 SPLADE++ SimLM ColBERTv2 BM25/miniLM WKL

Search Tasks

DBPedia 0.313 0.436 0.351 0.446 0.400 0.459
FiQA 0.236 0.349 0.298 0.356 0.309 0.372

NQ 0.329 0.533 0.502 0.562 0.453 0.562
HotpotQA 0.603 0.693 0.568 0.667 0.677 0.692

NFCorpus 0.325 0.345 0.318 0.338 0.364 0.348

T-COVID 0.656 0.725 0.515 0.738 0.766 0.746

Touche-2020 0.367 0.242 0.292 0.263 0.314 0.316

Semantic Relatedness Tasks

ArguAna 0.315 0.518 0.376 0.463 0.473 0.578
C-FEVER 0.213 0.237 0.171 0.176 0.239 0.231

FEVER 0.753 0.796 0.689 0.780 0.756 0.779

Quora 0.789 0.849 0.797 0.852 0.843 0.746

SCIDOCS 0.158 0.161 0.137 0.154 0.170 0.164

SciFact 0.665 0.710 0.559 0.568 0.697 0.698

Average 0.440 0.507 0.429 0.499 0.497 0.515
BM25 Diff – 15.24% -2.60% 13.47% 12.94% 16.92%

Table 4: Zero-shot performance (average NDCG@10) on BEIR

outperforms other loss options with a smaller advantage in the Dev

set while having a larger improvement of DL’19 and DL’20 test sets.

The bottom portion of Table 5 lists SPLADE performance refined

with WKL under different hyperparameters 𝛾1 and 𝛼 values. As one

can see, 𝛾1 = 5 and 𝛼 = 1 perform decently well.

Student dense retrieval model SimLM. WKL is applied to

train on a SOTA dense retrieval model SimLM [42] and Table 6 lists

MRR@10 and Recall@1000 for the Dev set, and NDCG for DL 19

and DL 20. WKL delivers 0.394 in MRR@10 with a warmup using

KL divergence. Without warmup, WKL delivers 0.381. For dense

retrievers, the released SimLM checkpoint [3] gives 0.344 MRR@10

using the standard MS MARCO. This is below 0.411 reported in [3]
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Loss Dev DL19 DL20

options MRR@10 NDCG@10 NDCG@10

KLDiv 0.399
†

0.656 0.689

MarginMSE 0.397
†

0.664 0.678

KLDiv_logL 0.396
†

0.669 0.672

CL-DRD 0.400 0.674 0.662

WKL (𝛾1=5, 𝛼=1) 0.4013 0.7445 0.7206
𝛾1, 𝛼 for WKL in other values

2,0, 0.0 0.3993 0.7435 0.7177

3.0, 0.0 0.4008 0.7348 0.7255

4.0, 0.0 0.4006 0.7309 0.7215

5.0, 0.0 0.4007 0.7456 0.7256

5.0, 1.5 0.4008 0.7192 0.7335
6.0, 0.0 0.4003 0.7317 0.7180

Table 5: SPLADE with different losses and WKL parameters

Model Dev Dev DL19 DL20
MRR@10 R@1K NDCG@10 NDCG@10

SimLM with title [42] 0.4111 0.987 0.712 0.697

SimLM w/o title 0.344 0.947 0.650 0.641

Model refinement without title annotation
KLDiv 0.365 0.951 0.685 0.611

WKL 0.381 0.981 0.690 0.696

KL+WKL (𝛾1=1,𝛼=0) 0.395 0.982 0.708 0.706

𝛾1, 𝛼 for KL+WKL in other values
2,0 0.394 0.980

3,0 0.393 0.981

4,0 0.392 0.981

Table 6: Dense retriever SimLM with WKL and different pa-
rameters

which evaluates the modified MS MARCO dataset with title an-

notation. Title annotation is considered unfair in [19] since the

original dataset released doesn’t utilize title information. The num-

bers reported from recent papers RocketQAv2 [33], LexMAE [37],

RetroMAE and RetroMAE-2 [26, 43] were boosted by this title an-

notation. All experiments for WKL follow the standard approach

of using the original MS MARCO without title annotation, and the

WKL improvement in refining SimLM is reasonable compared to

KL divergence loss.

The bottom portion of Table 6 lists the performance of SimLM

refined with WKL after KL divergence warmup for MS MARCO

passage Dev set under different hyperparameter 𝛾1 and 𝛼 values.

The result shows that (𝛾1 =1, 𝛼= 0) is a good choice for SimLM.

6 CONCLUDING REMARKS
The contribution of this work is to provide a detailed analysis of a

generalized KL divergence loss in an easy-to-implement weighted

format. Our lower bound analysis gives an insight into the behav-

ior characteristic of WKL during model refinement. The relative

gradient contribution study reveals that WKL follows the gradient

update direction of KL divergence loss when the teacher model

performs better than the student model for a training query. When

this teacher performs worse, WKL deviates in an opposite update

direction or restrains the update size cautiously in the same update

direction. Such adaptive learning behavior for knowledge distilla-

tion is accomplished by prioritizing scoring alignment of teacher

and student models through KL divergence term weighting based

on their relative performance for a positive or negative document.

The evaluation gives evidences that WKL can effectively refine

three student models for MS MARCO passages and BEIR datasets.

Our future work is to investigate the use ofWKL in more ranking

models and experiments. The limitation of this work is that the

applicability of WKL is restricted to ranking applications where

binary positive and negative labels are assigned per training queries.

This considers that it is hard and costly to build a dataset at a large

scale for ranker training with multi-level labels in practice. It is

interesting to extend WKL in the future for training data with

mult-level labels.

A PROOF OF THEOREM 2
Proof. let 𝑅𝐻𝑆(𝑖) be the 𝑖-th component of in the right-hand

side of Inequality (3) or Inequality (4) in Theorem 1.

We further four cases in order to derive a lower constant bound.

Case 1) We consider the cases of 𝛾2,𝑖 > 0.

• We apply a known inequality: ln𝑥 ≤ 𝑥 − 1 when 𝑥 is positive

and the equality is reached when 𝑥 = 1.∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
≥

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 (1 −
𝑞 𝑗

𝑝 𝑗
) ≥

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 −
∑︁

𝑑 𝑗 ∈D+

𝑞 𝑗 .

The lower bound is accomplished when 𝑝 𝑗 = 𝑞 𝑗 for all positive

documents. Since∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 = 1 and

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑞𝑖 = 1,

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
≥ −

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 +

∑︁
𝑑𝑖 ∈D−

𝑞𝑖 .

• Based on the above derivation, when 𝛾1 ≥ 1 or 𝛾1 = 0,

𝑅𝐻𝑆(1) + 𝑅𝐻𝑆(2) ≥ −
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 +

∑︁
𝑑𝑖 ∈D−

𝑞𝑖 −
∑︁

𝑑𝑖 ∈D−
𝑝𝑖𝑞

𝛾2,𝑖

𝑖
ln𝑞𝑖 ,

≥ −
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 (𝑞𝑖 − 𝑞𝛾2,𝑖

𝑖
ln𝑞𝑖 )

≥ −
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 .

When 0 < 𝛾1 < 1,

𝑅𝐻𝑆(1) + 𝑅𝐻𝑆(2) = 𝛾1(−
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 +

∑︁
𝑑𝑖 ∈D−

𝑞𝑖 ) −
∑︁

𝑑𝑖 ∈D−
𝑝𝑖𝑞

𝛾2,𝑖

𝑖
ln𝑞𝑖 ,

≥ −𝛾1

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 (𝛾1𝑞𝑖 − 𝑞𝛾2,𝑖

𝑖
ln𝑞𝑖 )

≥ −𝛾1

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 .

Notice that in the above derivation, Expression 𝑞𝑖 − 𝑞𝛾2,𝑖

𝑖
ln𝑞𝑖

has its lower bound achieved when 𝑞𝑖 is approaching 0. When

0 < 𝛾1 < 1 Expression 𝛾1𝑞𝑖 − 𝑞𝛾2,𝑖

𝑖
ln𝑞𝑖 also has its lower bound

achieved when 𝑞𝑖 is approaching 0.

• Nowwe derive a lower bound for𝑅𝐻𝑆(3) =
𝛾

log𝑒

∑
𝑑𝑖 ∈D+ 𝑞𝑖 log𝑞𝑖 .

Since function 𝑥 log𝑥 is convex and following Jensen’s inequality

on a convex function,∑
𝑑 𝑗 ∈D+ 𝑞 𝑗 log𝑞 𝑗

𝑠
≥ (

∑
𝑑 𝑗 ∈D+ 𝑞 𝑗

𝑠
) log(

∑
𝑑 𝑗 ∈D+ 𝑞 𝑗

𝑠
)



On Adaptive Knowledge Distillation with Generalized KL-Divergence Loss for Ranking Model Refinement Conference’17, July 2017, Washington, DC, USA

where 𝑠 = |D+ |. Let 𝑧 =

∑
𝑑𝑖 ∈D− 𝑞𝑖 . Then∑︁

𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗 ≥ (1 − 𝑧) log(

1 − 𝑧
𝑠

) ≥ −2 log 𝑒

𝑒
.

Expression (1 − 𝑧) log(
1−𝑧
𝑠 ) is bounded by − 2 log𝑒

𝑒 by computing

its minimum value.

Adding the above component lower bounds together. When 𝛾1 ≥ 1

or 𝛾1 = 0,

𝐿𝑊𝐾𝐿 = 𝑅𝐻𝑆(1)+𝑅𝐻𝑆(2)+𝑅𝐻 (3)+𝑅𝐻𝑆(4) ≥
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 (−1+ln𝑝𝑖 )−

2𝛾1

𝑒
.

When 0 < 𝛾1 < 1,

𝐿𝑊𝐾𝐿 = 𝑅𝐻𝑆(1) + 𝑅𝐻𝑆(2) + 𝑅𝐻 (3) + 𝑅𝐻𝑆(4) + 𝑅𝐻𝑆(5)

≥ (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝𝑖 ln𝑝𝑖 ) +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 (−𝛾1 + ln 𝑝𝑖 ) −
2𝛾1

𝑒

Case 2) We consider the case of 𝛾2,𝑖 = 0 and 𝛾1 = 0. In this case,

WKL is the same as KL divergence loss.

LWKL = LKL ≥ 0.

The lower bound is accomplished 𝑝𝑖 = 𝑞𝑖 for all positive and nega-

tive documents 𝑑𝑖 .

Case 3) Now we consider the cases of 𝛾2,𝑖 = 0, and 𝛾1 > 0. There

are two subcases.

Subcase 3.1)When 𝛾1 > 1, from Inequality (3),

LWKL ≥
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈𝐷−

𝑝𝑖 ln𝑞𝑖

+

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖

≥ 𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗

≥ −2𝛾1

𝑒
.

Subcase 3.2)When 0 < 𝛾1 < 1, from Inequality (4),

LWKL ≥𝑟1
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
−

∑︁
𝑑𝑖 ∈𝐷−

𝑝𝑖 ln𝑞𝑖 +

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗

+ (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗 +

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln𝑝𝑖

≥𝑟1
∑︁

𝑑 𝑗 ∈D+

𝑝 𝑗 ln

𝑝 𝑗

𝑞 𝑗
+

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 ln

𝑝𝑖

𝑞𝑖

+

𝛾1

log 𝑒

∑︁
𝑑 𝑗 ∈D+

𝑞 𝑗 log𝑞 𝑗 + (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗

≥𝛾1(−
∑︁

𝑑𝑖 ∈D−
𝑝𝑖 +

∑︁
𝑑𝑖 ∈D−

𝑞𝑖 ) + (

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 −
∑︁

𝑑𝑖 ∈D−
𝑞𝑖 )

− 2𝛾1

𝑒
+ (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗

≥(1 − 𝛾1)

∑︁
𝑑𝑖 ∈D−

𝑝𝑖 − (1 − 𝛾1) − 2𝛾1

𝑒
+ (1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

𝑝 𝑗 ln𝑝 𝑗

=(1 − 𝛾1)

∑︁
𝑑 𝑗 ∈D+

(−𝑝 𝑗 + 𝑝 𝑗 ln𝑝 𝑗 ) −
2𝛾1

𝑒
.

□

B TRAINING STEPS AND CONFIGURATIONS
Training for each student model involves two steps: Step 1 is to

warm up the student model with knowledge distillation following

a fixed teacher model. Step 2 is to use the proposed WKL loss or

other loss options to refine the student retriever model and the

student re-ranker model separately. When we compare different

loss functions for the refinement, we always start from the same

model after warm-up and refine it using the same set of training

triplets and the same teacher model. In this way, we rule out the

potential influence caused by different implementation details in

performance comparison.

The cross encoder teacher adopted for ColBERTv2 and SPLADE

is MiniLM-l-6-v2 [30]. For SimLM, we use a cross encoder from the

released SimLM project [42]. Following the setting of SPLADE++,

we use co-Condenser [4] as the pretrained starting checkpoint

and adopt sentenceBERT [13] as the ranker to select hard nega-

tives. This warm-up step chooses margin-MSE [15] as a loss for

knowledge distillation for both retriever and re-ranker. To train the

retrieval model, we also add additional sparsity regularization with

coefficients 0.008 and 0.01 for a query and documents respectively,

following SPLADE++. This observation aligns with the results re-

ported in TAS-B [16]. The above warm-up step allows the SPLADE

retriever to reach 0.394 MRR@10 and the ColBERT re-ranker to

deliver 0.399 MRR@10.

In Step 2 for model refinement, we use the WKL loss for knowl-

edge distillation or another loss function to compare. We index

the corpus with a warm-up retrieval model using PISA [29]. To

speedup training, we only retrieve the top 100 documents (pas-

sages for MS MARCO) per query for re-ranking during training.

Negative sampling uses the top 20 documents per training query

after re-ranking as candidate hard negatives. During model refine-

ment, we sample negative examples from these 20 documents so

that the total number of positive and negative documents is a fixed

constant, limited by the available GPU memory. For our machine

environment, this fixed constant is 6. Namely, if there are 2 positive

documents for a query, we sample at most 4 negative documents.

In terms of training machine resources and parameters, we use

four NVIDIA V100 GPUs to warm up and refine SPLADE with

the training batch size as 128 queries and to warm up and refine

ColBERT with a batch size of 32 queries. This training resource

usage is reasonable compared to what has been used in the pre-

vious work [16, 33, 34]. Learning rates 2e-5 and 1e-5 are used in

the warm-up step and the refinement step, respectively. We update

the exponent weight bias 𝛽𝑖 discussed above every 2000 training

batches, as more frequent update does not lead to an improve-

ment. When training the student retriever, to avoid the expensive

re-indexing time during this update, we re-evaluate the top 50 doc-

uments per training query as an approximation using the model

checkpoint saved after every 2000 batches. The above refinement

with WKL for training takes less than 20 epochs to converge.

The selected default WKL parameters are (𝛾, 𝛼) = (5, 1) for Col-

BERT and SPLADE, and (𝛾, 𝛼) = (1, 0) for SimLM. Section 5 examines

the choices and sensitivities of these WKL parameters for these

models.
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