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ABSTRACT

Classifying nodes in a graph is a common problem. The ideal classifier must
adapt to any imbalances in the class distribution. It must also use information in
the clustering structure of real-world graphs. Existing Graph Neural Networks
(GNNs) have not addressed both problems together. We propose the Enhanced
Cluster-aware Graph Network (ECGN), a novel method that addresses these is-
sues by integrating cluster-specific training with synthetic node generation. Unlike
traditional GNNs that apply the same node update process for all nodes, ECGN
learns different aggregations for different clusters. We also use the clusters to gen-
erate new minority-class nodes in a way that helps clarify the inter-class decision
boundary. By combining cluster-aware embeddings with a global integration step,
ECGN enhances the quality of the resulting node embeddings. Our method works
with any underlying GNN and any cluster generation technique. Experimental
results show that ECGN consistently outperforms its closest competitors by up to
11% on some widely-studied benchmark datasets. The GitHub implementation
for implementation and replication is publicly available on CodeLink.

1 INTRODUCTION

Graph Neural Networks (GNNs) have shown remarkable success in various tasks involving graph-
structured data, including node classification (Kipf & Welling, 2016), link prediction (Zhang &
Chen, 2018), and recommender systems (Ying et al., 2018). Indeed, GNNs have achieved state-of-
the-art performance in many of these tasks. However, existing methods often expect all node classes
and labels to be equally frequent. But in many real-world scenarios, node classes are imbalanced.
For instance, most users on social network platforms are legitimate, but a small percentage are bots.
This imbalance hurts the accuracy of bot detection (Mohammadrezaei et al., 2018). A similar chal-
lenge emerges when classifying websites by topics (Wang et al., 2020). A few topics are extremely
popular, while most are rare. The popular topics (the majority classes) tend to dominate the loss
function. Hence, the GNN focuses on these classes during training. This undermines the accuracy
of the GNN for nodes of the minority classes. Hence, there is a need for GNN models capable of
handling class-imbalanced node classification.

The class imbalance problem has been extensively studied in traditional machine learning. The
solutions typically fall into three categories. Data-level methods balance the class distribution by
over-sampling or under-sampling (Chawla et al., 2002; Kubat & Matwin, 1997). Algorithm-level
approaches adjust the training process by using different misclassification penalties or prior prob-
abilities for different classes (Ling & Sheng, 2008; Cui et al., 2019a). Hybrid methods combine
both strategies to mitigate class imbalance (Batista et al., 2004a). However, all these methods as-
sume independent and identically distributed data. By its very nature, the graph structure introduces
dependencies between the nodes. Hence, such methods can yield suboptimal results when applied
directly to graph datasets.

Compounding the class imbalance problem is the issue of uniform node updates in GNNs. Recall
that GNNs update each node’s embedding using information from the node’s neighbors. The infor-
mation exchange is mediated by trainable weight matrices. The same weights are uniformly applied
to all nodes. However, such uniform node updates can cause two problems.
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While standard GNNs use uniform update rules that aggregate information from neighboring nodes,
they may not fully capture the rich local patterns and community-specific behaviors present in the
graph. By incorporating cluster-aware updates, we aim to enhance the model’s ability to learn
these localized structures. Graphs have intricate substructures, such as clustered communities or
hubs (Girvan & Newman, 2002). Nodes within the same cluster exhibit higher similarity and
stronger dependencies than nodes from different clusters. Current GNNs can miss these nuanced
local patterns and community-specific behaviors by treating all nodes identically. Second, since the
weights are optimized over the entire graph, they can be biased towards the majority class. Hence,
the node update process is sub-optimal for nodes from the minority class. These problems can lead
to poor embedding quality and underperformance in classification.

While imbalanced classification and node clustering are two orthogonal problems, we argue that the
interplay between them can be leveraged to address class imbalance more effectively. Specifically,
clusters capture rich local structures and dependencies within the graph. By incorporating cluster-
aware updates, we can more accurately learn the nuanced relationships between nodes within a
cluster, mitigating the dominance of majority classes during training. Clustering provides a natural
framework for focusing on minority-class nodes in their local context, enabling us to preserve their
distinct patterns and improve their representation quality. Thus, combining these two aspects allows
us to address both class imbalance and the limitations of uniform node updates simultaneously.

Our Contributions: Although some existing studies have addressed either label imbalance (Zhao
et al., 2021a; Zhou & Gong, 2023a) or cluster-aware updates (Chiang et al., 2019), there is little work
on tackling both issues simultaneously. We propose the Enhanced Cluster-aware Graph Network
(ECGN) to bridge this gap.

ECGN operates through a three-phase process. In the pre-training phase, we train cluster-specific
GNNs in parallel. These GNNs extract information from local structures in the graph while ensuring
that all embeddings map to the same latent space. The node generation phase is a novel way to
generate synthetic nodes for the minority class. In particular, the synthetic node representations
incorporate cluster-specific features. Finally, the global-integration phase integrates the outputs of
the previous stages into a cohesive set of node embeddings. These capture the global information
across the entire graph. Our framework can be used with any existing GNN and is applicable whether
or not the clusters are known a priori.

ECGN makes four significant contributions:

• cluster-aware node updates, that capture local cluster-specific information;
• addressing label imbalance via innovative synthetic cluster-aware node generation;
• seamless local to global integration, allowing the embeddings to learn from different

scales; and
• broad applicability, by enabling any underlying GNN model to be used.

We verify the accuracy of ECGN on five benchmark datasets and show that we consistently outper-
form our closest competitors, with a lift of up to 11% in F1 score on the widely studied Citeseer
dataset. These results confirm the applicability of ECGN for a wide range of real-world applications.

2 RELATED WORKS

We discuss the related work on learning under class imbalance, and Graph Neural Networks.

2.1 CLASS IMBALANCE LEARNING

Class imbalance in representation learning is a well-established topic in the field of machine learn-
ing, having been extensively studied over the years (He & Garcia, 2009). The primary objective is to
develop an unbiased classifier for a labeled dataset where the distribution is skewed, with majority
classes having a substantially larger number of samples than minority classes. Notable contributions
to this area include re-weighting and re-sampling techniques. Re-weighting methods modify the loss
function by assigning greater importance to minority classes (Lin et al., 2017; Cui et al., 2019b), or
by enlarging the margins for these classes (Cao et al., 2019; Liu et al., 2019; Menon et al., 2021).
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On the other hand, re-sampling methods aim to balance the dataset by pre-processing the training
samples, employing strategies like over-sampling the minority classes (Chawla et al., 2002), under-
sampling the majority classes (Kubat & Matwin, 1997), or a combination of both (Batista et al.,
2004b).

With advancements in neural networks, re-sampling strategies have evolved to not only include tra-
ditional sampling techniques but also to incorporate generative approaches. For instance, modern
approaches augment minority class samples through generative methods (Liu et al., 2020), where
techniques such as SMOTE (Chawla et al., 2002) generate new samples by interpolating between
existing minority samples and their nearest neighbors. Additionally, other methods synthesize mi-
nority class samples by transferring knowledge from majority classes (Kim et al., 2020; Wang et al.,
2021b). However, most of these existing methods are tailored to independent and identically dis-
tributed samples and are not directly applicable to graph-structured data, where the relational context
between samples must be considered.

2.2 GRAPH NEURAL NETWORKS

Graph Neural Networks, first introduced in 2005 (Gori et al., 2005), have gained tremendous mo-
mentum in recent years with the advancements in deep learning, proving to be highly effective in
processing non-Euclidean structured data. GNNs typically operate using a message-passing frame-
work, where nodes iteratively gather information from their neighbors to learn low-dimensional
embeddings that capture the graph’s structural and feature information (Gilmer et al., 2017). These
techniques are generally divided into two categories: spectral-based and spatial-based methods.
Spectral-based methods exploit graph signal processing and leverage the graph Laplacian matrix to
perform node filtering (Defferrard et al., 2016; Kipf & Welling, 2017; Bianchi et al., 2020), while
spatial-based methods aggregate information directly from the local neighborhood of each node
based on the graph topology (Veličković et al., 2018; Hamilton et al., 2017; You et al., 2019).

Addressing the challenge of class imbalance within GNNs has been an active area of research.
Approaches such as GraphSMOTE (Zhao et al., 2021b) extend the popular SMOTE technique to
the embedding space of GNNs by synthesizing new minority nodes while also generating additional
edges, improving performance in imbalanced settings. Another approach, GraphENS (Park et al.,
2022), generates synthetic minority node features by mixing existing nodes from other classes. In
contrast, ClusterGCN (Chiang et al., 2019) leverages METIS-based graph partitioning to create
subclusters and trains the GNN in an SGD-based framework to capture cluster-specific information.
However, while ClusterGCN captures local structural information by operating on clusters, it still
applies uniform node updates within each subcluster and across the entire graph, meaning the same
update rules and aggregation functions are uniformly applied to all nodes without adapting to their
unique local structures or roles within the graph. This uniformity prevents ClusterGCN from fully
addressing the issue of uniform node updates during training, leading to a loss of fine-grained local-
global patterns crucial for capturing nuanced relationships and dependencies in graph learning.

In addressing the class imbalance problem in graph data, our work builds upon and extends existing
research that has explored various strategies for improving node classification performance under
imbalanced conditions. Recent studies such Park et al. (2021) and Qian et al. (2022) propose novel
methods for mitigating imbalance by modifying graph structures or introducing contrastive learn-
ing techniques. Wang et al. (2021a) introduced Distance-wise Prototypical GNNs, which focus on
learning class prototypes in an imbalanced setting. Similarly, Song et al. (2022) with TAM, and
Zeng et al. (2022) with Imgcl, highlight the importance of incorporating topological awareness and
contrastive learning in handling imbalanced datasets. Moreover, Zhou & Gong (2023b) leverages
data augmentation to improve minority-class representation. Other works include (Liu et al., 2023)
which introduced an interesting topological augmentation framework for class imbalance, and (Li
et al., 2023) which proposed a framework that synthesizes harder minor samples and incorporates
a SemiMixup module to expand minority class decision boundaries without encroaching on neigh-
boring class subspaces. While most of these methods focus on enhancing node embeddings, our
approach distinguishes itself by integrating a cluster-aware framework, where we not only focus on
adjusting the node updates but also generate synthetic minority-class nodes using a Cluster-Aware
SMOTE technique. This results in a more robust decision boundary between classes, particularly
when considering the underlying clustering structure in the graph. Our method, therefore, offers
a complementary approach to the existing literature, enhancing both local cluster information and
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global graph integration. We further demonstrate that ECGN outperforms these state-of-the-art tech-
niques across several benchmark datasets, offering a more effective solution for imbalanced node
classification.

3 PROPOSED ALGORITHM

We are given a graph G = (V,E), where V represents the set of nodes and E denotes the set of
edges. Each node vi ∈ V is associated with a feature vector xi ∈ Rd, forming the node feature
matrix X ∈ Rn×d, where n = |V | is the number of nodes and d is the feature dimension. The
graph structure is represented by the adjacency matrix A ∈ {0, 1}n×n, where Aij = 1 if there is
an edge between nodes vi and vj , and Aij = 0 otherwise. Each node vi ∈ V belongs to a class
yi ∈ {Y1, Y2, . . . , Yc}, where c is the number of classes. The class distribution can be imbalanced.
The classes for a subset of the nodes are known, and our goal is to predict the classes for the
remaining nodes.

Next, we discuss ECGN’s architecture and algorithm, and provide details of our novel node genera-
tion step.

3.1 ARCHITECTURE OF ECGN

Figure 1: Working framework of ECGN architecture. We perform clustering on the nodes initially,
train the sub-clusters independently in parallel, update the node embeddings to the original graph
followed by Cluster-Aware SMOTE step and finally global integration.

The architecture of ECGN is presented in Figure 1. The algorithm begins by clustering the graph,
unless the clusters are already known. Our method is flexible and can work with various clustering
algorithms, though the choice of clustering algorithm does affect the results to some extent. We em-
phasize that the effectiveness of our method is not tied to any specific clustering approach, ensuring
broad applicability across different scenarios. For example, fast algorithms such as Locality Sensi-
tive Hashing (LSH) (Indyk & Motwani, 1998) or METIS (Karypis & Kumar, 1998) can be used for
clustering (see Appendix A.4 for details).

Next comes the pre-training step. We first create a subgraph for each cluster. This subgraph
includes only the nodes and edges within the cluster. Then, for each subgraph, we run a GNN
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Algorithm 1 ECGN for Node Classification

1: Initialize node features: X ∈ Rn×d and adjacency matrix: A ∈ {0, 1}n×n.
2: Define the GNN architecture (network configuration) to be used for both pretraining and global

integration.
3: /* Clustering Step */
4: Clusters C = {C1, C2, . . . , Ck}, either from prior knowledge, or obtained via Locality Sensitive

Hashing (LSH) or METIS partitioning (Appendix A.4).

5: /* Pre-training Step */
6: Initialize GNN parameters θ.
7: for each cluster Ci ∈ C do
8: Construct subgraph GCi = (VCi , ECi) containing only nodes and edges from Ci.
9: Train a GNN on GCi with the objective of node classification within the cluster.

10: Obtain embeddings HCi
← GNN(GCi

| θ) for the nodes in Ci.
11: end for
12: Combine embeddings: H←

⋃
Ci∈C HCi

.

13: /* Synthetic Nodes Generation Step (Section 3.3) */
14: Generate new embeddings for minority class nodes using Cluster-Aware SMOTE .
15: Create nodes corresponding to these embeddings, and add edges to them in the graph.
16: Call the new graph G′ with embeddings H′

17: /* Global Integration Step */
18: H′ ← convolution of G′ using H′ as node features.
19: Perform node classification using the final embeddings H′.

to generate embeddings for nodes in that cluster. All GNNs are run separately but share the same
initialization. The result of this stage is a node embedding {hi} for every node i in the graph. Unlike
embeddings from a global GNN, these embeddings focus on information from the local cluster of
each node. Appendix A.2 provides a detailed description.

The next stage tackles the class imbalance problem. For this, we generate new nodes and edge with a
new technique called Cluster-Aware SMOTE. This differs from standard SMOTE in several ways.
First, our method operates on the latent space of the cluster-aware node embeddings hi instead of
the node features xi. Second, unlike SMOTE, our approach focuses on minority-class nodes that
lie on cluster boundaries. The intuition is that in many real-world datasets, nodes from a given
minority-class collect within one or a few clusters. Hence, the cluster boundaries are a proxy for
inter-class decision boundaries. By generating nodes on the cluster borders, we can improve the
decision boundary for node classification. Finally, after generating nodes with new embeddings, we
link them to existing nodes. This step is needed for the following global aggregation step of ECGN.
Details of Cluster-Aware SMOTE are presented in Section 3.3.

The last step is global integration. Here, we propagation global information throughout the nodes
through graph convolution. The result is a set of node embeddings that combine information from
local clusters as well as global patterns. Finally, these refined embeddings are used for node classi-
fication. Algorithm 1 provides the pseudo-code for ECGN.

3.2 PRE-TRAINING STEP

In the pre-training step, we aim to capture representative local features within each cluster by training
cluster-specific GNN models independently. This process enhances the embeddings for each node
by focusing on local structures relevant to its respective cluster.

We begin with the same initialization across all cluster-specific GraphSAGE models, ensuring con-
sistency in the latent space. Each GraphSAGE model is trained with the same node classification
objective but constrained to its assigned cluster subgraph. Specifically, for each cluster Ci, the
GraphSAGE model learns node embeddings h(l+1)

i at layer l + 1 as:

h
(l+1)
i = σ

(
W

(l)
neigh ·MEAN

(
{h(l)

j : j ∈ N (i)}
)
+W

(l)
self · h

(l)
i

)
, (1)

where:

5
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• N (i) denotes the neighbors of node i within cluster Ci,

• W
(l)
neigh and W

(l)
self are trainable weight matrices for aggregating neighbor and self-node em-

beddings at layer l, respectively,

• MEAN(·) computes the element-wise mean of the embeddings from neighbors {h(l)
j : j ∈

N (i)},
• σ is a non-linear activation function (e.g., ReLU).

The objective for each cluster-specific GraphSAGE model is formulated as a node classification loss
L(k)

cluster for the k-th cluster:

L(k)
cluster = −

∑
i∈Ck

C∑
c=1

yic log ŷic, (2)

where yic is the true label of node i for class c, and ŷic is the predicted probability for class c.

The combination of these cluster-specific embeddings results in enhanced node representations that
capture unique, locally-relevant patterns. These embeddings are then passed to subsequent stages
for integration with global information.

3.3 CLUSTER-AWARE SMOTE

Previous applications of SMOTE in graph contexts had several limitations. Synthetic nodes have
been generated using graph features, but this ignores the link structure of the graph (Zhao et al.,
2021b;a). Also, synthetic nodes were derived from minority-class seed nodes that were chosen
randomly. If the seeds have poor connectivity, so do the synthetic nodes. Hence, the GNN’s node
updates may not efficiently convey information about the minority class.

Our proposed approach, named Cluster-Aware SMOTE, addresses these challenges by leveraging
both intra- and inter-cluster connectivity information. Our method prioritizes minority-class nodes
that lie on the borders of their clusters. The resulting synthetic nodes lead to a more accurate decision
boundary between classes. Also, instead of using the node features, we use the cluster-aware node
embeddings from the pre-training step. This ensures that both features and connectivity information
is used in creating the synthetic nodes.

The synthetic node generation process involves the following steps:

1. Identify Highly Connected Nodes: For each minority node v in class Ym, we compute its
connectivity to nodes in other clusters:

connectivity(v) =
∑
u∈V

C(u)̸=C(v)

Avu (3)

We select the top k nodes with the highest connectivity scores as the seed nodes for gener-
ating synthetic samples.

2. Nearest Neighbor Selection: For each seed node v from the minority class, we find its
nearest neighbor nn(v) within the same class in the embedding space:

nn(v) = arg min
u∈Ym,v ̸=u

∥hv − hu∥ (4)

where hi is the cluster-aware embedding for node i from the pre-training step, and ∥ · ∥
denotes the Euclidean distance. For very large graphs, techniques like FAISS (Douze et al.,
2024) can be used.

3. Synthetic Node Generation: We generate a synthetic node v′ by interpolating between
the embeddings of v and its nearest neighbor nn(v):

xv′ = (1− δ)xv + δxnn(v) (5)

where δ is a random variable drawn from a uniform distribution in the range [0, 1].

6
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4. Edge Preservation: We add the synthetic node v′ to the graph, and add edges from v′ to all
the neighbors of v. Thus, v′ inherits the edges of v. We also add a link from v′ to v. These
steps ensure that the addition of the synthetic node v′ preserves the local graph topology.
The updated adjacency matrix is as follows:

Av′i =

{
Avi if i ̸= v

1 if i = v
(6)

5. Oversampling Control: To control the number of generated nodes, we introduce a pa-
rameter α. For each minority class Ym, we generate α · |Ym| synthetic nodes. We restrict
the value of α such that the number of synthetic nodes remains less than 50% of the ma-
jority class size. This ensures that the synthetic nodes do not degrade performance for the
majority class.

By focusing on nodes with high inter-cluster connectivity and generating synthetic samples in the
latent space, our approach improves the diversity of synthetic nodes and better captures the underly-
ing graph structure. This not only helps in addressing class imbalance but also enhances the overall
classification performance by providing more representative samples for the minority class.

4 EXPERIMENTS

We verify the accuracy of ECGN on five well-studied benchmark datasets. We first describe the
datasets and the competing baselines. Then, we compare all algorithms on the node classification
task. Finally, we show via ablation studies the need for the various steps of ECGN.

Datasets: We evaluate ECGN on several widely-used public datasets for the node classification
task. All the details of datasets and baselines can be found in in Appendix A.1. Specifically, Table 2
shows the statistics and experimental setup for each dataset.

Baselines: We compared ECGN against several state of the art methods. These include GraphSAGE
(with and without cluster information), cluster-aware GNNs such as ClusterGCN (Chiang et al.,
2019), GNNs for imbalanced classification such as GraphSMOTE (Zhao et al., 2021b), recent state
of the art models like GraphENS (Park et al., 2021) and TAM (Song et al., 2022) and various other
reweighting and oversampling schemes. Appendices A.1 and A.5 provide more details about the
baselines and their hyperparameters. All methods were tested on node classification tasks, and
compared on the basis of their F1 scores. To ensure robust and reliable results, we averaged the
F1-scores over four different random seeds.

Direct Inference from Subclusters: We evaluated the effect of bypassing global integration by
directly inferring from subclusters without combining their representations into a global model.
This experiment highlights the role of global integration in connecting local subcluster relationships
with the global graph structure. Details of this experiment are provided in Appendix A.6.

Weight Transfer Strategies: We explored three strategies for transferring pre-trained GNN weights
from subclusters to the global model: Average Weights, Largest Subcluster Weights, and Best Per-
forming Subcluster Weights. These strategies were compared against ECGN without weight transfer
to assess their influence on the global model’s performance. For more details, see Appendix A.7.

Sensitivity to Clustering Algorithms: To evaluate the impact of different clustering methods, in-
cluding METIS, LSH, and Random Clustering, we analyzed how they influence the performance of
our method. This experiment was designed to assess the robustness of our approach to variations in
graph partitioning techniques. Details are provided in Appendix A.9.

Correlation between Clusters and Node Labels: We analyzed the alignment between clusters and
ground truth node labels (classes) by examining the distribution of class labels within clusters. This
analysis provides insights into whether clustering processes naturally reflect the underlying label
structure. See Appendix A.10 for a detailed explanation.

For ECGN, we clusters the graphs using METIS. We used 3 clusters for CORA and CITESEER,
7 for Amazon Computers, 40 for Reddit, and 20 for ogbn-arxiv. Section A.8 discusses how the
number of clusters affect classification accuracy.

7
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Table 1: Results across different graph benchmark datasets: Mean F1-Scores and Balanced Accu-
racies are reported along with standard deviations. ECGN with SMOTE outperforms other methods
in both F1-Score and Balanced Accuracy. The lift is up to 10 − 12% over the closest competitors
(for Citeseer). ECGN with SMOTE is statistically significantly better than all competing methods
at the p < 0.1 level except for the underlined rows.

(a) CORA

Method F1-Score Balanced Accuracy

GraphSAGE 0.655 ± 0.04 0.605 ± 0.04
GraphSAGE (+ Cluster Features) 0.680 ± 0.04 0.635 ± 0.04
SMOTE 0.690 ± 0.03 0.665 ± 0.02
Re-Weighting 0.670 ± 0.02 0.630 ± 0.02
EN-Weighting 0.680 ± 0.04 0.635 ± 0.04
Over-Sampling 0.645 ± 0.03 0.590 ± 0.02
CB-Sampling 0.710 ± 0.02 0.680 ± 0.01
GraphSMOTE 0.710 ± 0.03 0.680 ± 0.01
GraphENS 0.738 ± 0.02 0.712 ± 0.03
TAM 0.735 ± 0.03 0.720 ± 0.03
ClusterGCN 0.727 ± 0.01 0.690 ± 0.03
Cluster-Aware SMOTE only 0.700 ± 0.02 0.670 ± 0.02
ECGN (Without SMOTE) 0.732 ± 0.03 0.710 ± 0.03
ECGN (With SMOTE) 0.740 ± 0.03 0.720 ± 0.03

(b) CITESEER

Method F1-Score Balanced Accuracy

GraphSAGE Baseline 0.3625 ± 0.04 0.305 ± 0.04
GraphSAGE (+ Cluster Features) 0.3825 ± 0.04 0.325 ± 0.04
SMOTE 0.450 ± 0.03 0.430 ± 0.03
Re-Weighting 0.560 ± 0.02 0.530 ± 0.02
EN-Weighting 0.520 ± 0.04 0.500 ± 0.04
Over-Sampling 0.345 ± 0.03 0.300 ± 0.02
CB-Sampling 0.510 ± 0.02 0.490 ± 0.02
GraphSMOTE 0.590 ± 0.03 0.570 ± 0.02
GraphENS 0.630 ± 0.02 0.680 ± 0.03
TAM 0.625 ± 0.03 0.680 ± 0.03
ClusterGCN 0.580 ± 0.03 0.560 ± 0.03
Cluster-Aware SMOTE only 0.460 ± 0.03 0.430 ± 0.03
ECGN (Without SMOTE) 0.610 ± 0.03 0.580 ± 0.03
ECGN (With SMOTE) 0.650 ± 0.03 0.620 ± 0.03

(c) Reddit

Method F1-Score Balanced Accuracy

GraphSAGE Baseline 0.740 ± 0.04 0.700 ± 0.04
GraphSAGE (+ Cluster Features) 0.740 ± 0.04 0.700 ± 0.04
SMOTE 0.760 ± 0.04 0.730 ± 0.04
Re-Weighting 0.770 ± 0.05 0.740 ± 0.05
EN-Weighting 0.750 ± 0.04 0.720 ± 0.04
Over-Sampling 0.750 ± 0.04 0.720 ± 0.04
CB-Sampling 0.710 ± 0.05 0.690 ± 0.05
GraphSMOTE 0.770 ± 0.05 0.740 ± 0.05
GraphENS 0.780 ± 0.05 0.750 ± 0.05

TAM 0.770 ± 0.05 0.740 ± 0.05
ClusterGCN 0.760 ± 0.04 0.730 ± 0.04
ECGN (Without SMOTE) 0.770 ± 0.05 0.740 ± 0.05
ECGN (With SMOTE) 0.790 ± 0.05 0.760 ± 0.05

(d) ogbn-arxiv

Method F1-Score Balanced Accuracy

GraphSAGE Baseline 0.3675 ± 0.04 0.345 ± 0.04
GraphSAGE (+ Cluster Features) 0.3825 ± 0.04 0.355 ± 0.04
SMOTE 0.390 ± 0.04 0.370 ± 0.04
Re-Weighting 0.400 ± 0.05 0.380 ± 0.05
EN-Weighting 0.410 ± 0.05 0.390 ± 0.05
Over-Sampling 0.385 ± 0.04 0.365 ± 0.04
CB-Sampling 0.390 ± 0.04 0.370 ± 0.04
GraphSMOTE 0.410 ± 0.04 0.390 ± 0.04
GraphENS 0.440 ± 0.05 0.420 ± 0.05
TAM 0.430 ± 0.05 0.410 ± 0.05
ClusterGCN 0.430 ± 0.04 0.410 ± 0.04
ECGN (Without SMOTE) 0.442 ± 0.04 0.430 ± 0.05
ECGN (With SMOTE) 0.450 ± 0.05 0.430 ± 0.05

(e) Amazon Computers

Method F1-Score Balanced Accuracy

GraphSAGE Baseline 0.750 ± 0.03 0.720 ± 0.03
GraphSAGE (+ Cluster Features) 0.760 ± 0.03 0.730 ± 0.03
SMOTE 0.760 ± 0.03 0.730 ± 0.03
Re-Weighting 0.730 ± 0.03 0.700 ± 0.03
EN-Weighting 0.740 ± 0.03 0.720 ± 0.03
Over-Sampling 0.710 ± 0.04 0.670 ± 0.04
CB-Sampling 0.700 ± 0.04 0.680 ± 0.04
GraphSMOTE 0.760 ± 0.03 0.730 ± 0.03
GraphENS 0.770 ± 0.04 0.740 ± 0.04
TAM 0.760 ± 0.04 0.730 ± 0.04
ClusterGCN 0.740 ± 0.03 0.720 ± 0.03
ECGN (Without SMOTE) 0.767 ± 0.04 0.740 ± 0.04
ECGN (With SMOTE) 0.770 ± 0.01 0.760 ± 0.01

4.1 RESULTS

Table 1 shows the classification accuracy for all the datasets. We observe the following.

ECGN consistently outperforms other models across all datasets. The closest competitors are
GraphENS, TAM , ClusterGCN and GraphSMOTE. However, ECGN’s F1-scores are higher by an
average of nearly 5%. ECGN outperforms its closest competitors by up to 11% (e.g., on the
Citeseer dataset).

Cluster-aware node updates are necessary. Consider two seemingly simple alternatives to the
cluster-aware node updates of ECGN. One is to just provide the clusters as features to GraphSAGE.

8
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The second is to just use the Cluster-Aware SMOTE without the pre-training step of ECGN. How-
ever, ECGN outperforms the former by 21% on average, and the latter by 14% on average.

Cluster-Aware SMOTE improves classification accuracy. The F1 score of ECGN using Cluster-
Aware SMOTE is 3% higher that ECGN without this step. For Citeseer, the difference increases to
6%. Thus, Cluster-Aware SMOTE adds value.

Global integration is essential for performance. Skipping global integration results in drastic F1-
score reductions, with scores dropping to 0.26 for Citeseer and 0.32 for Cora. These results highlight
that global integration is critical to effectively capture relationships between local subclusters and
the global graph structure. Detailed results are in Appendix A.6.

Direct training outperforms weight transfer strategies. The weight transfer strategies (Aver-
age Weights, Largest Subcluster Weights, Best Performing Subcluster Weights) slightly improve
performance, with the highest F1-score reaching 0.67 on Cora. However, these approaches still un-
derperform compared to direct global model training in ECGN, which achieves consistently higher
accuracy. Refer to Appendix A.7 for the full comparison.

ECGN is robust to different clustering strategies. Our method demonstrates robust performance
across various clustering algorithms, including METIS, LSH, and Random Clustering. This flexi-
bility underscores the adaptability of ECGN to different graph partitioning techniques without sig-
nificant degradation in performance. Details are provided in Appendix A.9.

Clusters align meaningfully but not perfectly with class labels. The analysis shows that clusters
often align with specific class labels. For example, in Cora, Cluster 1 contains over 70% of nodes
from Class 2, while in Citeseer, Cluster 1 has a nearly equal mix of Classes 0 and 1. Similarly, in
the Amazon Computers dataset, Cluster 7 has over 80% of nodes from Class 4. However, not all
clusters exhibit such strong alignment. These findings highlight that clustering processes capture
meaningful patterns but do not always perfectly reflect class labels. See Appendix A.10 for a deeper
analysis.

These experiments further validate the structure and robustness of ECGN, demonstrating its ability
to generalize effectively across both local subcluster models and global models.

5 CONCLUSION AND LIMITATIONS

In this paper, we introduced the Enhanced Cluster-aware Graph Network (ECGN), a novel frame-
work designed to address the challenges of class imbalance and subcluster-specific training in graph
neural networks. By integrating cluster-specific updates, synthetic node generation, and a global
integration step, ECGN demonstrates significant improvements in classification performance on im-
balanced datasets. Our experimental results show that ECGN not only enhances the representation
of minority classes but also maintains the structural integrity of the original graph, leading to more
accurate and robust predictions. We also stated that modifying ECGN either by bypassing global
tuning or integrating weight transfer learning hurts the performance. A detailed analysis of why
ECGN works is provided in Appendix A.3 for more clarity.

However, there are limitations to our approach. The reliance on subcluster partitioning may intro-
duce sensitivity to the quality of the clustering algorithm, and potentially impact the overall per-
formance if the clusters are not well-formed. Additionally, the synthetic node generation process,
while beneficial for handling imbalance, may introduce noise if not carefully managed, especially in
graphs with highly complex structures. Future work will focus on refining these aspects for broader
graph tasks like graph/link predictions, and evaluating ECGN on more diverse graph datasets to
further validate its effectiveness.
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A APPENDIX

A.1 DETAILS OF BASELINES AND EXPERIMENTAL DATASETS

In this section, we provide the details of the baselines implemented and experimental settings.

Table 2: Experimental settings to simulate imbalanced scenario for each datasets

Dataset # Classes # Imbalanced Classes Majority Class Samples Minority Class Samples Total Nodes Total Edges Validation Nodes Testing Nodes

Cora 7 3 200 20 2,708 5,429 2,050 1,426
CiteSeer 6 3 200 20 3,327 4,732 2,324 1,939
Amazon Computers 10 5 800 50 13,352 245,058 9,299 7,053
Reddit 40 10 1500 100 232,965 114,615,892 163,776 118,953
ogbn-arxiv 40 10 1500 100 169,343 1,166,851 118,540 86,348
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• Cluster-GCN: A most popular GCN algorithm that is suitable for SGD-based training
by exploiting the graph clustering structure based on METIS partitioning. (Chiang et al.,
2019).

• GraphSMOTE: An oversampling method specifically designed for graphs that generates
synthetic minority nodes by interpolating between existing nodes within the minority class
(Zhao et al., 2021b).

• Re-Weighting: A classic cost-sensitive approach that adjusts the loss function with weights
inversely proportional to the number of samples in each class (Japkowicz & Stephen, 2002).

• EN-Weighting: A variant of the re-weighting method, which assigns weights based on the
Effective Number of samples in each class (Cui et al., 2019b).

• Over-Sampling: A traditional re-sampling method where minority nodes are repeatedly
sampled until each minority class has the same number of samples as the majority classes.

• CB-Sampling: A re-sampling method inspired by (Butler, 1956), which first selects a class
and then randomly samples a node from that class.

• RU-Selection: A baseline model that supplements the minority class by randomly select-
ing unlabeled nodes with pseudo-labels corresponding to the minority class until the class
distribution is balanced.

• SU-Selection: An extension of RU-Selection that selects unlabeled nodes based on their
similarity to the minority class, rather than random selection.

Here, we provide the details and explain the settings for the imbalanced scenario.

• Cora Dataset: Contains 2708 scientific publications categorized into 7 classes with 5429
links. We simulated a highly imbalanced scenario by sampling only 30% of the total sam-
ples available for the last 3 classes. Full-batch GD training was done, and number of
METIS partition clusters were fixed to be 3. Synthetic nodes were added such that the
minority class samples increases to 100 from 20 for each of the imbalanced class.

• Citeseer Dataset: Contains 3327 scientific publications classified into 6 categories with
4732 links. Full-batch GD training was done, and number of METIS partition clusters were
fixed to be 3. Synthetic nodes were added such that the minority class samples increases to
100 from 20 for each of the imbalanced class.

• Reddit Dataset: Consists of posts made by users on the Reddit online discussion forum,
categorized into 50 classes with over 230K nodes and 11M edges. The training was done
with stochastic neighborhood sampling with batch size of 1024. The number of METIS
partition clusters were fixed to be 40. Synthetic nodes were added such that the minority
class samples increases to 400 from 50 for each of the imbalanced class.

• Amazon Computers Dataset: Contains 13,752 nodes categorized into 10 classes with
245,861 edges. Full-batch GD training was done, and the number of METIS partition
clusters was fixed to 7. Synthetic nodes were added such that the minority class samples
increases to 600 from 100 for each of the imbalanced class.

• ogbn-arxiv Dataset: Comprises 169,343 scientific publications from arXiv, categorized
into 40 classes with 1,166,243 edges. To simulate an imbalanced scenario, we sampled
only 100 nodes for the last 10 classes. The training was done with stochastic neighborhood
sampling with batch size of 1024. The number of METIS partition clusters were fixed to
be 20. Synthetic nodes were added such that the minority class samples increases to 600
from 100 for each of the imbalanced classes.

A.2 ORIGINAL GRAPHSAGE VS. SUBCLUSTERED GRAPHSAGE

Original GraphSAGE GraphSAGE (Hamilton et al., 2017) generates node embeddings by ag-
gregating features from a node’s local neighborhood. Given a graph G = (V,E) with N = |V |
nodes and initial node features X ∈ RN×F , the embedding of node v at layer k is updated as:

1. Neighborhood Aggregation:

h
(k)
N (v) = AGGREGATE(k)

({
h(k−1)
u | u ∈ N (v)

})
, (7)
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where N (v) is the set of neighbors of node v, and h
(k−1)
u is the embedding from the

previous layer.
2. Node Embedding Update:

h(k)
v = σ

(
W(k) · CONCAT

(
h(k−1)
v ,h

(k)
N (v)

))
, (8)

where W(k) is the weight matrix, σ is an activation function, and h
(0)
v = xv .

This process is repeated for K layers to capture K-hop neighborhood information. The final em-
beddings h(K)

v are used for tasks like node classification.

Subcluster-Based GraphSAGE In ECGN, we enhance GraphSAGE by incorporating cluster-
specific information:

1. Graph Partitioning: Divide G into M disjoint subclusters {G1, G2, . . . , GM}, with cor-
responding feature matrices Xi.

2. Localized Learning: For each subcluster Gi, perform GraphSAGE focusing only on
Cluster-Aware edges:

h(k)
v = σ

(
W(k) · CONCAT

(
h(k−1)
v ,AGGREGATE(k)

i

({
h(k−1)
u | u ∈ Ni(v)

})))
,

(9)
where Ni(v) denotes Cluster-Aware neighbors.

3. Embedding Compilation: Combine embeddings from all subclusters:

H(K) =


H

(K)
1

H
(K)
2
...

H
(K)
M

 . (10)

4. Global Integration: Perform an additional GraphSAGE layer over G to integrate global
information:

h(final)
v = σ

(
W(K+1) · CONCAT

(
h(K)
v ,AGGREGATE(K+1)

({
h(K)
u | u ∈ N (v)

})))
.

(11)

Key Advantages

• Enhanced Local Patterns: Captures fine-grained structures within clusters.
• Computational Efficiency: Allows parallel processing of subclusters.
• Global Coherence: Global aggregation integrates inter-cluster relationships.
• Improved Handling of Imbalance: Clustering aids in addressing class imbalance by fo-

cusing on underrepresented nodes within clusters.

By combining localized learning with global integration, the subcluster-based approach in ECGN
effectively captures both local and global graph structures, leading to improved performance in node
classification tasks.

A.3 VISUALIZING THE CLUSTERED COMMUNITIES AND ANALYZING THE SUB-CLUSTERED
APPROACH

In this section, we visualize the clustered communities within the Cora and Citeseer datasets and we
try to provide a theoretical explanation of why our sub-clustered approach is effective. We selected
these datasets due to their manageable size and well-documented structure, which makes them ideal
candidates for visual analysis. We divided the datasets into three clusters using the METIS algorithm
and present the visualizations below.
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(a) Cora Original (b) Cora Clusters

(c) Citeseer Original (d) Citeseer Clusters

Figure 2: Visualizations of the original and clustered versions of the Cora and Citeseer datasets. The
left column shows the original datasets, while the right column shows the datasets divided into three
clusters using METIS clustering.

The figures in Figure 2 depict both the original and clustered versions of the Cora and Citeseer
datasets. The original graphs (Figure 2a and Figure 2c) exhibit dense connectivity, which often
leads to an entangled representation where the underlying community structure is not immediately
apparent. By applying the METIS algorithm, we break down these dense graphs into distinct clusters
(Figure 2b and Figure 2d), revealing the internal structure of the communities.

In this section, we try to provide a theoretical explanation of why our sub-clustered approach is
effective.

Why does the Sub-Clustered Approach Work? The effectiveness of the sub-clustered approach
can be theoretically explained through the following principles:

1. Capturing Localized Patterns When the graph is clustered into k subgraphs using METIS, we
obtain subgraphs G1, G2, . . . , Gk such that:

Gi = (Vi, Ei), where Vi ⊆ V and Ei ⊆ E

The feature matrix for each subgraph is Xi ∈ Rni×d, where ni = |Vi| is the number of nodes in
subgraph Gi.

By training on these subgraphs independently, the model learns localized patterns within each Gi,
which are typically more homogeneous and easier to capture than the global patterns in G. The local
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loss function for each subgraph can be expressed as:

Li =
1

ni

∑
vj∈Vi

L(f(xj), yj)

where f(xj) is the model’s prediction for node vj , and yj is the true label. Training on localized
loss functions Li allows the model to optimize performance within each cluster before aggregating
the knowledge during global integration.

2. Reducing Computational Complexity The computational complexity of training a GNN on a
large graph G is often dominated by the cost of message passing and aggregation across the entire
graph. However, by decomposing G into smaller subgraphs G1, G2, . . . , Gk, and being able to train
them parallel independently, the computational cost is significantly reduced.

The overall complexity can be approximated as:

Total Complexity ≈
k∑

i=1

O(|Ei|)

where |Ei| is the number of edges in subgraph Gi. Since each |Ei| is smaller than |E| (the total
number of edges in the original graph), the sub-clustered approach leads to more efficient training.

3. Addressing Imbalanced Data In imbalanced graphs, certain classes of nodes may be under-
represented, making it difficult for the model to learn their characteristics. By isolating these nodes
within sub-clusters, the model can pay more focused attention to the minority classes.

Let C be the set of classes in the graph, with |Cmin| and |Cmaj| representing the number of nodes in
the minority and majority classes, respectively. After clustering, the number of minority nodes in a
subgraph Gi can be denoted as |Cmin,i|. The training process can now focus on balancing the loss
contributions:

Lbalance
i =

1

|Cmin,i|
∑

vj∈Cmin,i

L(f(xj), yj) +
1

|Cmaj,i|
∑

vj∈Cmaj,i

L(f(xj), yj)

This ensures that the minority class nodes have a more significant influence on the model’s learning
process within each cluster.

4. Global Structure Integration After the initial training on sub-clusters, the model undergoes
global aggregation on the global graph G. This step integrates the knowledge learned from each
sub-cluster and ensures that node representations are coherent across the entire graph. The global
integration process can be represented as:

Lglobal =
1

n

∑
vj∈V

L(f(xj), yj)

This global loss function aligns the local representations and improves the overall performance of
the model.

By training on these clusters and then performing the global integration, the model leverages both
localized knowledge and global context, resulting in more accurate and generalizable node repre-
sentations. The sub-clustered approach mitigates the risk of overfitting to dominant structures and
promotes a more balanced and comprehensive understanding of the graph.

A.4 CLUSTERING AND COMMUNITY DETECTION TECHNIQUES

A.4.1 LOCALITY-SENSITIVE HASHING CLUSTERING (FEATURE BASED CLUSTERING)

We present an standard version of LSH clustering algorithm to efficiently handle large-scale datasets
with millions of nodes. The algorithm uses sparse random projections to group similar feature
vectors into clusters.

Algorithm Description

16
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Given a feature matrix X ∈ Rn×d, where n is the number of samples and d is the number of features,
the goal is to cluster the samples based on their similarity. The optimized algorithm proceeds as
follows:

1. Hash Table Creation: We create T hash tables, each using P random projections. Each
hash table is represented by a sparse random projection matrix R ∈ Rd×P .

Rt ∼ SparseRandomProjection(d, P ) for t = 1, 2, . . . , T

2. Hashing Feature Vectors: Each feature vector xi ∈ Rd is projected into a lower-
dimensional space using the hash tables. The projection is followed by taking the sign
of the resulting vector to create hash keys.

ht
i = sign(xiRt) for i = 1, 2, . . . , n and t = 1, 2, . . . , T

The sign function is applied element-wise, resulting in a hash key ht
i ∈ {−1, 1}P .

3. Bucket Assignment: Each hash key is used to group feature vectors into buckets. A bucket
Bt(h) contains all vectors that share the same hash key h for the t-th hash table.

Bt(h) = {i | ht
i = h}

4. Merging Buckets: We merge buckets from all hash tables into preliminary clusters. Each
node is assigned to a cluster based on its initial bucket assignments, ensuring unique as-
signments.

clusters[i] = cluster id if i ∈ Bt(h) ∀ t
5. Cluster Refinement: Each preliminary cluster is refined by computing the centroid of its

feature vectors and using cosine similarity with a threshold to ensure nodes belong to the
most similar cluster.

similarity(xi, C) =
xi · cC
∥xi∥∥cC∥

where cC =
1

|C|
∑
xj∈C

xj

Each node i is assigned to cluster C∗ if similarity(xi, C∗) > 0.5.
6. Final Cluster Formation: The final clusters are formed by ensuring each node belongs to

one and only one cluster.

Ck → Ck where Ck ∈ R|Ck|×d

The algorithm ensures efficient clustering of high-dimensional data by leveraging the properties
of locality-sensitive hashing and sparse random projections. The resulting clusters can be used in
subsequent tasks such as classification, anomaly detection, and data summarization.

A.4.2 METIS PARTITIONING (STRUCTURE BASED CLUSTERING)

METIS partitioning is a graph partitioning technique designed to divide a graph into smaller, roughly
equal-sized subgraphs while minimizing the edge cuts between them. The primary objective is to
balance the load across subgraphs and reduce the communication volume in parallel computing
environments.

Given a graph G = (V,E) with vertices V and edges E, the goal is to partition G into k subgraphs
G1, G2, . . . , Gk such that:

1. The size of each subgraph is approximately equal, i.e., |Vi| ≈ |V |
k for i = 1, 2, . . . , k. 2.

The number of edges cut, denoted as cut(G), is minimized. This is mathematically represented as
minimizing the sum of weights of edges that have endpoints in different subgraphs:

cut(G) =
∑

(u,v)∈E
u∈Gi,v∈Gj

i ̸=j

w(u, v)

where w(u, v) is the weight of the edge between nodes u and v.
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METIS employs a multilevel approach, which involves three main phases:

1. Coarsening Phase: The graph is iteratively coarsened by collapsing vertices and edges to form a
series of progressively smaller graphs.
2. Partitioning Phase: A partitioning algorithm, often a variant of the Kernighan-Lin or Fiduccia-
Mattheyses heuristic, is applied to the smallest graph to obtain an initial partition.
3. Uncoarsening Phase: The initial partition is projected back through the series of intermediate
graphs, refining the partition at each level to improve the quality of the final partition.

This multilevel approach ensures that the partitioning process is both efficient and effective in pro-
ducing high-quality partitions with balanced subgraph sizes and minimal edge cuts.

A.5 EXPERIMENTAL SETTINGS FOR BASELINE EXPERIMENTS

In our experiments, we use METIS partitioning to create subclusters for all the datasets. The
experiments were configured with consistent training hyperparameters across datasets, including
an initial learning rate of 0.01 for most datasets (with Reddit using 0.001), and the Adam op-
timizer. Each experiment ran for up to 1500 epochs, with early stopping after 40 steps if the
validation performance did not improve. A batch size of 128 was used for Cora and Cite-
seer, while larger datasets such as Reddit, AmazonComputer, and ogbn arxiv used batch sizes
of 1024 or 2048 to accommodate their size. For model architecture, we adopted 2-layer Graph-
SAGE with a layer dimension of 128 for most datasets, though Reddit employed a smaller 64-
dimensional GNN with 1 layer. We used the ’mean’ aggregator for message passing and al-
lowed for dynamic learning rates across layers. Full-batch training was used for Cora, Cite-
seer, and ogbn arxiv, whereas AmazonComputer and Reddit were trained with neighborhood sam-
pling (as documented in https://docs.dgl.ai/en/0.8.x/guide/minibatch-node.
html#guide-minibatch-node-classification-sampler) with 4-layer deep neigh-
borhood samples with sizes [4,4,4,4] due to their size. Additionally, datasets were clustered, with
the number of clusters ranging from 3 (Cora, Citeseer), 7(AmazonComputer), 20(obgn-arxiv) to 40
(Reddit).

A.6 DIRECT INFERENCE FROM SUBCLUSTERS: WHY DO WE NEED GLOBAL INTEGRATION?

In this section, we explore the impact of bypassing the global integration step and directly infer-
ring from subclusters. This approach leverages local structures within each subcluster but neglects
the global graph structure. To evaluate this, we conducted experiments on the Cora and Citeseer
datasets, which offer manageable complexity for detailed analysis.

Table 3: Performance results when directly inferring from subclusters without global integration.

Dataset Num Clusters F1-Score Without Global Integration Best ECGN F1-Score

Citeseer 3 0.26 0.65
Cora 3 0.32 0.74

Table 3 shows that skipping global integration leads to significantly lower F1-scores: 0.26 for Cite-
seer and 0.32 for Cora. This highlights the importance of integrating the global graph after subclus-
ter training. Without it, the model learns Cluster-Aware relations but fails to generalize and learn
inter-cluster relations, causing lower performance.

In conclusion, the global integration step is crucial as it bridges the gap between local subcluster
structures and the overarching global graph. It ensures that the final node embeddings are both
locally accurate and globally consistent, leading to better performance, as evidenced by the increased
F1-scores after global integration.

A.7 REUSING GNN WEIGHTS FROM PRE-TRAINING IN GLOBAL INTEGRATION

We can think of ECGN as a transfer learning approach. In the pre-training step, we learn sepa-
rately from each cluster. Then, we transfer the learnt embeddings to the global integration step.
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This ensures a balance between local and global structures in the graph, which yields the strong
performance of ECGN.

Extending this idea, we can ask: what if we transferred the GNN model weights from pre-training
alongside the node embeddings? To explore this, we experimented with three different strategies for
transferring weights:

1. Average Weights: Initialize the weights of the global GNN with the averaged weights of
all subcluster GNNs.

2. Largest Subcluster Weights: GNN weights from the largest subcluster are transferred to
the global model.

3. Best Performing Subcluster Weights: Weights from the best-performing subcluster are
transferred to the global model.

Table 4: Performance results when transferring weights along with feature representations across
different strategies.

Dataset Weight Transfer Strategy F1-Score with Weight Transfer Best ECGN F1-Score

Citeseer
Average 0.51 0.65
Largest 0.65 0.65

Best 0.66 0.65

Cora
Average 0.52 0.74
Largest 0.66 0.74

Best 0.67 0.74

Amazon Computers
Average 0.54 0.78
Largest 0.68 0.78

Best 0.69 0.78

The results in Table 4 show that transferring pre-trained weights alongside the node embeddings
yields mixed outcomes. The Average Weights strategy consistently performed the worst, likely be-
cause averaging diluted the unique structural information from each subcluster. The Largest Sub-
cluster Weights and Best Performing Subcluster Weights improved performance over averaging but
did not outperform ECGN without weight transfer. Overall, we find that the best performance comes
from ignoring the pre-trained GNN weights in the global integration. This is what ECGN does.

We believe the reason for the above results lies in the delicate balancing act between learning from
the graph’s local structure and its global context. The introduction of pre-trained weights W into
the global model appears to disrupt this balance. The pre-trained weights are perhaps too tailored to
specific clusters. So, they may not generalize well when applied to the entire graph.

In conclusion, weight transfer offers no significant advantage and may reduce performance. The
success of ECGN lies in combining local embeddings through global integration, capturing both
local and global structures without transferring subcluster-specific weights.

A.8 SELECTING THE NUMBER OF CLUSTERS

The number of clusters affects both the effectiveness of the cluster-aware embeddings and ECGN’s
computational efficiency. The key challenge lies in balancing the capture of fine-grained local pat-
terns with the retention of important global structures.

In our experiments, we observed that the model’s performance is relatively robust to the number
of clusters within a reasonable range. As shown in Figure 3, the F1-Score varies with the number
of clusters across different datasets. For datasets like Cora and Citeseer, using 3 to 5 clusters
yielded comparable results, while extreme values—either too low or too high—led to decreased
performance. This suggests that while the number of clusters is important, the model can tolerate
variations without significant loss of effectiveness.
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Figure 3: Effect of Number of Clusters on F1-Score for Various Datasets

A.9 SENSITIVITY TO CLUSTERING ALGORITHMS

We evaluated the impact of different clustering algorithms on our method’s performance by conduct-
ing experiments using METIS (a structure-based clustering algorithm), Locality-Sensitive Hashing
(LSH, a feature-based clustering approach), and Random Clustering. These experiments were per-
formed on the Cora and Citeseer datasets to assess how varying clustering strategies influence the
overall effectiveness of our approach.

Table 5: Impact of Different Clustering Algorithms on Performance (F1-Score)

Clustering Algorithm Cora Citeseer

METIS 0.740 ± 0.03 0.650 ± 0.03
LSH 0.729 ± 0.02 0.639 ± 0.02
Random 0.690 ± 0.05 0.610 ± 0.03

As anticipated, METIS outperforms both LSH and Random Clustering on both datasets. METIS
leverages the underlying graph structure to create clusters that reflect the inherent connectivity of
the data, resulting in higher F1-scores. LSH, being a feature-based method, also provides mean-
ingful clusters, though with slightly lower performance compared to METIS. Interestingly, Random
Clustering achieves competitive results despite lacking semantic or structural coherence. This high-
lights the robustness of our method, which effectively utilizes localized training within clusters to
mitigate class imbalance issues. By grouping and balancing nodes locally, our approach reduces
the dominance of majority classes, thereby enhancing overall performance even when the clustering
quality is suboptimal.

The performance of Random Clustering, although lower than METIS and LSH, remains surprisingly
competitive. This can be attributed to our method’s ability to perform localized training within each
cluster, ensuring that each smaller group of nodes is more balanced. This reduces the dominance
of majority classes within each cluster, allowing the model to learn more effectively. Therefore,
the method demonstrates significant robustness, maintaining effectiveness even when the clustering
lacks inherent semantic or structural coherence.

In scenarios where clustering aligns perfectly with class labels, the performance of our method
could potentially see further improvements due to reduced intra-cluster variance and better sepa-
ration between classes. However, it is important to note that our method does not rely on such
perfect alignment and achieves strong performance even with imperfect clustering, underscoring its
flexibility and adaptability to various clustering qualities.

Overall, the ablation study and subsequent analysis demonstrate that our method is both robust
and flexible, capable of maintaining high performance across different clustering algorithms. This
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adaptability is a key strength, allowing our approach to be effectively applied in various contexts
and with different types of data clustering strategies.

A.10 CORRELATION BETWEEN CLUSTERS AND NODE LABELS(CLASSES)

To better understand the relationship between clusters and node labels (classes), we conducted an
analysis examining how nodes with specific labels are distributed across clusters. Clustering algo-
rithms, such as Locality-Sensitive Hashing (LSH) and METIS, group nodes based on their features
or structural properties. However, these clusters are formed independently of the node labels, mak-
ing it important to investigate the alignment (or lack thereof) between clusters and classes.

This analysis was performed on three datasets: Cora, Citeseer, and Amazon Computers. Figures 4, 5,
and 6 illustrate the distribution of node classes within clusters for each dataset. Each bar plot in these
figures shows the percentage of nodes from different classes within a specific cluster.

Cora Dataset: In the Cora dataset (Figure 4), certain clusters exhibit a strong alignment with spe-
cific classes. For instance, Cluster 1 contains over 70% of nodes from Class 2, suggesting that the
clustering algorithm successfully grouped nodes with similar features from this class. However,
other clusters, such as Cluster 3, display a more diverse mix of classes, indicating that nodes with
overlapping features across classes can be grouped together.

Citeseer Dataset: The Citeseer dataset (Figure 5) reveals a more fragmented relationship between
clusters and classes. For example, Cluster 2 is dominated by Class 2, while Cluster 1 shows an
almost equal mix of Classes 0 and 1. This variation reflects both the dataset’s inherent label imbal-
ance and the clustering algorithm’s sensitivity to feature similarities. Such patterns emphasize that
clusters may not always align perfectly with specific classes.

Amazon Computers Dataset: The Amazon Computers dataset, with its larger number of classes,
exhibits both highly concentrated and diverse clusters (Figure 6). For example, Cluster 7 is domi-
nated by Class 4, with over 80% of its nodes belonging to this class. In contrast, Cluster 2 contains
nodes from a wider range of classes, showcasing the clustering algorithm’s adaptability in handling
datasets with complex structures and larger numbers of classes.

Figure 4: Class distributions across clusters for the Cora dataset.

Key Observations:

• Clusters often show a concentration of nodes from one or two dominant classes, indicat-
ing that clustering algorithms effectively group nodes with similar features or structural
relationships.

• In some cases, nodes from different classes are grouped together, especially when features
overlap or structural relationships between nodes span across classes.

• Datasets with more classes and higher complexity, such as Amazon Computers, display a
mix of highly concentrated and diverse clusters, reflecting the adaptability of the clustering
approach to different data characteristics.

Implications for Methodology: This experiment demonstrates that while clusters and classes may
align in some cases, this alignment is not deterministic. The observed correlations indicate that
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Figure 5: Class distributions across clusters for the Citeseer dataset.

Figure 6: Class distributions across clusters for the Amazon dataset.

clustering captures shared structural or feature-based similarities among nodes, which can serve as a
foundation for localized training. However, the presence of mixed-class clusters highlights the need
for downstream methods that can handle intra-cluster class diversity effectively.
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