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Abstract

Present Large Language Models (LLM) self-001
training methods always under-sample on chal-002
lenging queries, leading to inadequate learning003
on difficult problems which limits LLMs’ abil-004
ity. Therefore, this work proposes a difficulty-005
aware self-training (DAST) framework that fo-006
cuses on improving both the quantity and qual-007
ity of self-generated responses on challenging008
queries during self-training. DAST is speci-009
fied in three components: 1) sampling-based010
difficulty level estimation, 2) difficulty-aware011
data augmentation, and 3) the self-training al-012
gorithm using SFT and DPO respectively. Ex-013
periments on mathematical tasks demonstrate014
the effectiveness and generalization of DAST,015
highlighting the critical role of difficulty-aware016
strategies in advancing LLM self-training.017

1 Introduction018

What doesn’t kill you makes you stronger.019

— Friedrich Wilhelm Nietzsche020

The lack of extensive, high-quality human-021

curated training data for Large Language Models022

(LLMs) constrains the potential upper bounds of023

their capacities, particularly on complex reasoning024

tasks (Cobbe et al., 2021). Recently, self-training025

techniques of LLMs have garnered increasing at-026

tention, which iteratively fine-tunes LLMs on their027

self-generated outputs, attaining sustained improve-028

ments and diminishing the reliance on human inter-029

ventions (Gulcehre et al., 2023; Singh et al., 2024;030

Huang et al., 2023; Zelikman et al., 2022).031

To ensure the quality of LLMs’ self-generated032

training data, previous works employ rejection sam-033

pling (Sordoni et al., 2023) to filter out low-quality034

or incorrect responses with external reward mod-035

els (Gulcehre et al., 2023) or ground-truth labels036

(Singh et al., 2024). This may lead to LLM over-037

sampling originally adept simple queries while038

under-sampling challenging queries (Ding et al.,039

2024; Tong et al., 2024). LLMs’ insufficient learn- 040

ing in challenging instances is primarily in two 041

aspects during self-training. First, when fixing the 042

sampling number, only a few even or no correct re- 043

sponses are acquired on challenging queries, which 044

iteratively exacerbates the distribution imbalance of 045

the training data and severely overfitting on simple 046

questions (Left hand of Figure 1 (a)). Second, the 047

lengths of sampled self-generated responses on dif- 048

ficult questions are not enough (Right hand of Fig- 049

ure 1 (a)). Given that challenging problems require 050

more thinking steps (Snell et al., 2024; Damani 051

et al., 2024), the quality of these responses tends 052

to be lower. As a result, LLMs can not adequately 053

learn from challenging tasks, thereby restricting 054

their capacity improvements. 055

Considering the above two issues, this work 056

proposes a difficulty-aware self-training (DAST) 057

framework which focuses on increasing both the 058

quantity and quality of self-generated responses on 059

challenging queries during self-training: 1) DAST 060

employs a sampling-based, model-specific method 061

to estimate the difficulty level of each query. 2) 062

Two data augmentation approaches are employed to 063

balance the distribution and improve the response 064

quality of training data given the difficulty levels. 065

Specifically, we perform up-sampling on challeng- 066

ing questions to control the data proportion of dif- 067

ferent difficulty levels. We also employ a difficulty- 068

matched few-shot prompting method to control 069

the lengths of responses, encouraging LLMs to 070

increase thinking steps on challenging questions. 071

These two methods are combined incrementally. 3) 072

We finally iteratively perform the above difficulty 073

estimation and data augmentation steps in several 074

rounds for LLM self-training using supervised fine- 075

tuning (SFT) and direct preference optimization 076

(DPO) (Rafailov et al., 2023) respectively. 077

Experiments are conducted on both the in- 078

domain and out-of-domain tasks on various mathe- 079

matical datasets. Results demonstrate that DAST 080
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Figure 1: Changes of data proportion and response length distribution of samples in different difficulty levels
during a three-round self-training process. The vanilla rejection sampling to construct training data (a) is widely
employed in Singh et al. (2024); Gulcehre et al. (2023); Sordoni et al. (2023); Zelikman et al. (2022). (b) and (c)
are the proposed DAST aim to control data proportion and response lengths for challenging queries. Note that in
iteration 0, the training data Du is the original dataset Do with ground-truth labels, while during iteration 1, 2, and
3, the training data is combined of self-generated data Da and the original dataset Do. All the difficulty levels are
measured on the initial policyM0 on the GSM8K test set and are fixed during self-training.

significantly enhances LLMs’ math ability and gen-081

eralizability over several baselines.082

Our contributions are as follows: 1) This work083

first comprehensively incorporates difficulty level084

into LLM self-training, demonstrating the signif-085

icance of difficulty for future works; 2) We pro-086

pose two data augmentation methods in DAST to087

improve both quantity and quality on challenging088

queries using the estimated difficulty level; 3) We089

conduct experiments and validate that DAST can090

enhance LLM’s math ability and generalizability091

using SFT and DPO respectively.092

2 DAST Framework093

2.1 Difficulty Level Estimation094

We employ a sampling-based, model-specific095

method to estimate the difficulty level of each096

question to the model. Given the initial policy097

M0 and the training set Do = {xi, r̂i, ŷi}
N
i=1,098

where xi, ri,yi represent the question, rationale,099

and the ground-truth answer respectively. Each100

rationale r̂i = [r̂i,1, . . . , r̂i,l] contains l reasoning101

steps where l varies in r̂i. For each (xi, r̂i, ŷi) and102

a prompt set P containing K different few-shot103

prompts, we employ each few-shot exemplar pk ∈104

P with the question xi for the policyM0 to gener-105

ate the k-th response
(
yi

(k), ri
(k)

)
=M0 (pk,xi)106

using temperature sampling (T = 0.2, top p =107

0.9). We obtain the response set Y i = {yi
(k)}Kk=1108

and the label set Zi =
{
zi

(k)
}K

k=1
by comparing109

each extracted answers in Y i with the ground-truth 110

ŷi to determine the correctness (zi(k) ∈ {0, 1}, 1 111

for True and 0 for False). The difficulty level di is 112

estimated as follows 1. Details and splits of four 113

difficulty levels are in Table 3. 114

di = P (Y i|xi) =

∑K
k=1 I

(
yi

(k) = ŷi

)
K

(1) 115

2.2 Data Augmentation 116

We augment Do with the strategy A(·) for each 117

query xi according to di by controlling the data 118

proportion and response lengths onM to obtain an 119

augmented dataset Da for self-training as follows. 120

Data Proportion Control As in the left hand of 121

Figure 1 (a), the construction of self-training data 122

using rejection sampling may bias simple questions. 123

Therefore, we set different sampling numbers K 124

for different difficulty levels di of xi. More specif- 125

ically, the sampling number K will multiply by 126

a coefficient β determined by di as presented in 127

Table 3. For di ∈ {M,H,U} which indicates that 128

xi is a challenging question, β is larger to increase 129

the number of correct responses sampled from the 130

policyM. The sampled responses will be added 131

into Da. As illustrated in Figure 1 (b), we can dy- 132

namically control the proportion of samples in all 133

difficulty levels and balance the distribution of the 134

training data in each self-training iteration. 135

1In this study, the challenging queries refer to the queries
estimated in difficulty levels of Middle, Hard, and Unsolved
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Algorithm 1 DAST Algorithm
1: Input: Training set Do, validation set Dv, number

of iterations T , policy model at t-th iterationMt.
2: Output: Optimized policy πθ.
3: for t = 1 to T do
4: for i = 1 to |Do| do
5: Estimate difficulty level di of xi

6: Obtain {r(m)
i ,y

(m)
i }

M

m=1 = A(xi, di)

7: for yi = y
(1)
i to y

(M)
i do

8: if yi ≡ ŷi then
9: Label and add (xi, r

+
i ,y

+
i ) to D(t)

a

10: else
11: Label and add (xi, r

−
i ,y

−
i ) to D(t)

a

12: end if
13: end for
14: end for
15: Update training set Du = Do ∪ D(t)

a

16: whileMt−1’s accuracy improves on Dv do
17: OptimizeMt−1 on Du using SFT or DPO

by minimizing Lsft/Ldpo as in Equation 2 or 3
18: end while
19: Mt ←Mt−1

20: end for

Response Length Control As in the right hand136

of Figure 1 (a), the lengths of responses gener-137

ated using the vanilla few-shot sampling method138

are in averaged length for all difficulty levels139

during self-training (iterations 1, 2, and 3) and140

relatively shorter than lengths of the ground-141

truth responses in Do (iteration 0). To gener-142

ate lengthy and difficulty-matched responses, we143

propose a difficulty-matched few-shot (DMFS)144

prompting method: for each difficulty level d ∈145

{E,M,H,U}, we select samples from the train-146

ing set that exceed the average response length of147

this difficulty level to construct four prompt sets148

PE ,PM .PH ,PU . DMFS examples are employed149

based on di to sample responses for xi onM. Sam-150

pled responses will be added into Da. Therefore,151

length distribution ofDa is close to the ground truth152

in iteration 0 as in Figure 1 (c), which improves the153

response quality with more thinking steps (Snell154

et al., 2024; Yeo et al., 2025).155

2.3 Self-Training156

As presented in Algorithm 1, in the t-th iteration,157

the training set Du is updated by merging the aug-158

mented dataset D(t)
a and initial training set Dt, en-159

suring Du doesn’t diverge too much from Dt. The160

policyMj is fine-tuned based onMj−1/M0 on161

Du using SFT/DPO (Rafailov et al., 2023) by op-162

timizing Lsft/Ldpo in Equation 2/3 respectively.163

Mj is trained to be converged while the accuracy164

doesn’t increase on the validation set Dv. Specifi- 165

cally, we denote DAST using SFT/DPO by DAST- 166

S/DAST-D. For DAST-S, we investigate only em- 167

ploying data proportion control or length control, 168

and denote by DAST-P and DAST-L respectively. 169

3 Experimental Setting 170

Datasets During the training stage, we jointly 171

combine training sets from GSM8K (Cobbe et al., 172

2021) and MATH (Hendrycks et al., 2021) as Dt. 173

We evaluate in-domain (ID) performance on the 174

corresponding test sets. We also assess the out-of- 175

domain (OOD) performance three challenging test 176

sets: TAL-SCQ (math eval, 2023) College (Tang 177

et al., 2024), and TheoremQA (Chen et al., 2016). 178

We standardize the data format as in Appendix E 179

and employ the evaluation script of MWPBench 2 180

(Tang et al., 2024) to judge the correctness of the 181

extracted answer compared with the ground-truth 182

label. Dataset details are in Appendix C. 183

Baselines We utilize in-context learning (ICL) 184

(Brown et al., 2020) to generate responses. We 185

also employ several SFT-based and DPO-based 186

baselines. SFT-based baselines include: 1) single- 187

round standard SFT and difficulty-aware rejection 188

tuning (DART) (Tong et al., 2024) (specified in 189

DART-Uniform and DART-Prob2Diff ); and 2) 190

multi-round ReST-EM (Singh et al., 2024). DPO- 191

based (Rafailov et al., 2023) baselines include 192

single- and multi-round DPO (DPO and mDPO). 193

Detailed implementations of the above baselines 194

can be referred to Appendix D. 195

4 Results and Analysis 196

4.1 Main Experiments 197

Experiments are conducted on Llama-3.1-8B 198

(Llama-3.1) (AI@Meta, 2024) in this work. As 199

in Figure 2, several findings can be found below. 200

1. With different sizes of self-training data in 201

each iteration, DAST-S and DAST-D consistently 202

yield superior performance over corresponding 203

SFT and DPO baselines with comparable or less 204

data, exhibiting the effectiveness and efficiency of 205

DAST for both SFT and DPO during self-training. 206

Data size statistics are presented in Table 4. 207

2. DAST-P exhibits better performance com- 208

pared to DAST-L, suggesting that increasing the 209

data size can gain more improvements than in- 210

creasing the response lengths for challenging 211

2https://github.com/microsoft/unilm/tree/master/mathscale
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Figure 2: Performance results of DAST over various baselines on both in-domain (ID) and out-of-domain (OOD)
mathematical test sets using Llama-3.1. Note that the names of employed baselines are in lowercase.

queries. This can be attributed to that the initial212

policy is suboptimal and the sampled lengthy re-213

sponses are also low-quality. Therefore, raising the214

data quantity can lead to more obvious gains.215

3. DAST-S and DAST-P can better general-216

ize to OOD tasks than others. DAST enables217

LLMs to adequately learn more diverse challeng-218

ing questions, thereby achieving more pronounced219

improvements in relatively challenging OOD tasks.220

4.2 Effects of Data Proportion Control221

In this part, we investigate the research question222

"As self-training progresses iteratively, will increas-223

ing the proportion of challenging samples lead to224

further improvements?". We control the propor-225

tions of challenging queries with fixed data size in226

each iteration by adjusting β during self-training as227

illustrated in Figure 3. Results suggest that LLMs228

perform better when trained on the dataset with a229

balanced distribution (DAST-P-α1) of different dif-230

ficulty levels than more hard samples (DAST-P-α2)231

during self-training. Excessive challenging sam-232

ples may lead to a large distribution shift, affecting233

LLMs’ original abilities on simple queries.234

4.3 Effects of Response Length Control235

In this part, we investigate the research question236

"Will the performance be further improved by em-237

ploying difficult examples across all queries to238

generate lengthy responses during self-training?".239

We generate training data using few-shot examples240

from solely a single difficulty level in the first round241

of DAST to compare with our proposed difficulty-242

matched few-shot (DMFS) prompting method for243

sampling. Results in Table 1 suggest that training244

Figure 3: Results of data proportion control.

data generated by DMFS outperforms those ob- 245

tained from any single level. Tailoring response 246

length to difficulty levels of queries is more ef- 247

fective, as sampling lengthy responses to simple 248

queries may result in overthinking and undermine 249

performances (Halawi et al., 2024). 250

Exam. Level E M H U DMFS
ID 35.58 37.44 38.90 38.66 41.94

OOD 11.45 12.15 12.48 12.06 13.07

Table 1: Results of response length control.

5 Conclusion 251

This work proposes a DAST framework to enhance 252

both the quantity and quality of challenging queries 253

during the self-training process, including three key 254

parts: difficulty level estimation, data augmenta- 255

tion, and a self-training algorithm. Experiments 256

conducted on math tasks using SFT and DPO show- 257

case the effectiveness and generalization of DAST. 258
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Limitations259

The limitations of this work are as follows:260

Response Quality This work enhances the re-261

sponse quality by solely increasing the thinking262

steps or lengths of responses. Although improving263

response quality by adding length is simple yet ef-264

fective for challenging queries, more explorations265

should be conducted to comprehensively evaluate266

the response quality in other dimensions.267

Task Expansion Another limitation is that the268

experiments are solely conducted on mathematical269

reasoning tasks. This constraint primarily arises270

from that many tasks like long-form generations271

are also challenging to evaluate the generation qual-272

ity. Future research endeavors should prioritize a273

wider range of datasets of long-form generation274

tasks to thoroughly assess the applicability and ef-275

fectiveness of DAST.276
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Notation Description
Do Training set containing N Question-Answering pairs. (|Do| = N )
Dv Validation set.
P Set of few-shot exemplars.
Mt Policy model in the t-th ieration whereM0 is the initial policy.
xi The i-th question sample.
r̂i The i-th ground-truth rationale path for xi.

ri
(k) The k-th sampled rationale path to the i-th question xi.
ŷi The i-th ground-truth answer for xi.

yi
(k) The k-th sampled response to the i-th question xi.
pk k-th few-shot exemplar to sample yi

(k).
K Number of sampled responses.
Y i Answering set containing K sampled response

{
yi

(k)
}

for the i-th question xi.
zi

(k) The label of yi
(k) (zi(k) ∈ {0, 1}, 1 for True and 0 for False).

Zi Label set corresponding to Y i.
Lα Training loss functions SFT or DPO where α ∈ {sft,dpo}.
dj Estimated difficulty level for x.
c Co-efficient to control the data proportion of samples in different difficulty levels.
T Temperature of sampling.
T Number of iterations.

Table 2: Summarized notations in this work.

A Protocols460

A.1 Definition of Notations461

The definitions of the notations in this work are462

summarized in Table 2.463

A.2 Difficulty Level Split464

p Difficulty Level Denotation dj β
[0.8, 1.0] Easy E 1
[0.4, 0.8) Middle M 3
(0.0, 0.4) Hard H 5

0.0 Unsolved U 5

Table 3: Difficulty level split.

A.3 Equations465

SFT is optimized by minimizing the negative log-466

likelihood loss as follows.467

Lsft = E
[
− logMj−1(y

+
i , r

+
i |x)

]
(2)468

DPO is optimized to minimize the preference469

loss as follows.470

Ldpo = E
[
− log σ

(
θ(y+

i , r
+
i |x)− θ(y−

i , r
−
i |x)

)]
(3)

471

where (xi,y
+
i , r

+
i ,y

−
i , r

−
i ) ∼ Du and θ(·|x) =472

log
Mj−1(·|x)
M0(·|x) .473

B Related Works 474

LLM Self-Training LLM Self-Training (Gul- 475

cehre et al., 2023; Singh et al., 2024) involves a ma- 476

chine learning paradigm where a LLM iteratively 477

improves its performance by generating and lever- 478

aging its own synthetic data for further training 479

without human intervention also referring to self- 480

taught (Zelikman et al., 2022; Hosseini et al., 2024), 481

self-evolving (Tao et al., 2024), or self-improve 482

(Huang et al., 2023). Such self-training paradigms 483

always involve a generation step by prompting 484

LLMs to self-generate training data and an improve 485

step by training the LLM on the self-generated data 486

(Gulcehre et al., 2023). In the Generation step, to 487

ensure the data quality, the generated data are al- 488

ways filtered and selected using rejection sampling 489

(Yuan et al., 2023) before being employed for train- 490

ing. These signals can be reward scores returned by 491

a reward model (Gulcehre et al., 2023), the binary 492

score to judge the correctness given gold answer for 493

mathematical or coding tasks (Singh et al., 2024; 494

Yuan et al., 2023; Zelikman et al., 2022; Wang et al., 495

2024b), or two scores using two reward model for 496

process and object respectively on reasoning tasks 497

(Yang et al., 2024). LLM itself can be also regarded 498

as judge or the reward model (Yuan et al., 2024; 499

Gu et al., 2025). 500

In the Improve step, the selected data are uti- 501

lized to train the LLM using supervised fine-tuning 502

(SFT) (Gulcehre et al., 2023; Zelikman et al., 2022; 503
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Singh et al., 2024) or reinforcement learning (Gul-504

cehre et al., 2023; Hosseini et al., 2024; Wang et al.,505

2024b). Some studies iteratively train the policy506

LLM based on the previously obtained LLM (Gul-507

cehre et al., 2023) while some train the base LLM508

instead of the LLM obtained from the previous509

iteration (Wang et al., 2024b; Singh et al., 2024;510

Zelikman et al., 2022).511

Data Synthesis on Math Problems Since the512

growth rate of high-quality data is significantly513

outpaced by the expansion of training datasets, syn-514

thetic data has emerged as a promising solution515

(Wang et al., 2024a) to address the data capacity516

limitation and further improve LLM performance517

according to scaling laws (Kaplan et al., 2020).518

Self-training paradigm employs LLM itself to gen-519

erate the synthetic training data on mathematical520

problems (Singh et al., 2024; Zelikman et al., 2022;521

Wang et al., 2024b). Tong et al. (2024) proposes522

to synthesize more responses for challenging ques-523

tions. Yu et al. (2024) bootstraps the diversity of524

math problems by re-writing the training set and525

further fine-tunes LLM on the enhanced training526

set. Li et al. (2024) designs several re-writing prin-527

ciples to enhance both questions and responses to528

obtain an enhanced training set. Luo et al. (2025)529

proposes to synthesize more complex and diverse530

mathematical instructions to improve LLMs’ math-531

ematical reasoning ability. Ding et al. (2024) em-532

ploys the Socratic-Guided Sampling (GSI) method533

to synthesize data to address the long-tail distribu-534

tion issue during self-training. Some studies also535

investigate to synthesizing new questions (Huang536

et al., 2024; Zhou et al., 2024)537

C Dataset Details538

GSM8K GSM8K (Cobbe et al., 2021) 3 is a539

high-quality multi-step mathematical reasoning540

dataset of diverse grade school math word problems541

constructed by human problem writers, including542

7,472 training samples and 1,319 test samples. All543

the questions take 2 to 8 steps to solve, involving544

a series of basic arithmetic operations to parse the545

final answer.546

MATH MATH (Hendrycks et al., 2021) 4 is a547

challenging mathematical dataset with competition548

mathematics problems, consisting of 7,500 training549

samples and 5,000 test samples. Each problem in550

3https://github.com/openai/grade-school-math
4https://github.com/hendrycks/math/

MATH also has a full step-by-step solution which 551

can be used to teach models to generate answer 552

derivations and explanations across several sub- 553

jects including algebra, geometry, number theory, 554

counting and probability, calculus, etc. 555

TAL-SCQ TAL-SCQ5K-EN (math eval, 2023) 5 556

are high-quality mathematical competition datasets 557

in English created by TAL Education Group with 558

totally 5,000 samples. The TAL-SCQ dataset split 559

3,000 and 2,000 questions for training and test- 560

ing respectively. The questions are in the form of 561

multiple-choice and cover mathematical topics at 562

different levels of primary, junior high, and high 563

school. We format all the samples in standard QA 564

format. 565

College (Tang et al., 2024) 6 The College dataset 566

contains 1281 training and 2818 test college-level 567

mathematical problems extracted from 9 textbooks 568

across 7 domains such as linear algebra and differ- 569

ential equations. This dataset is to test generaliza- 570

tion on complex mathematical reasoning in diverse 571

domains. 572

TheoremQA (Chen et al., 2016) 7 The Theo- 573

remQA dataset contains 800 problems focused on 574

utilizing mathematical theorems to solve challeng- 575

ing problems in fields such as math, physics, fi- 576

nance, and engineering, testing generalization on 577

theoretical reasoning in general STEM. The dataset 578

is collected by human experts with very high qual- 579

ity. We filter out the questions requiring pictures 580

and remain 747 samples to test. 581

D Baseline Details 582

ReST-EM Sampling Stage: Set the sampling 583

temperature to 0.5. For each query, sample 10 584

responses. Retain responses based on whether the 585

final answer matches the ground truth. Training 586

Stage: Combine the sampled data from the cur- 587

rent policy model with the original dataset Do to 588

form a new training dataset, which is then used for 589

supervised fine-tuning (SFT). 590

DAST-Uniform Sampling Stage: Set the sam- 591

pling temperature to 0.5. During dataset construc- 592

tion, perform oversampling for difficult samples to 593

ensure every sample has 4 correct responses. Train- 594

ing Stage: Combine the sampled data with the origi- 595

5https://github.com/math-eval/TAL-SCQ5K
6https://github.com/microsoft/unilm/tree/master/mathscale/MWPBench
7https://github.com/wenhuchen/TheoremQA
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nal datasetDo to form a new training dataset, which596

is then used for supervised fine-tuning (SFT).597

DAST-Prob2Diff Sampling Stage: Set the sam-598

pling temperature to 0.5. During dataset construc-599

tion, perform oversampling for difficult samples,600

applying a coefficient based on the difficulty level.601

More challenging samples are assigned more re-602

sponses. Training Stage: Combine the sampled603

data with the original dataset to form a new train-604

ing dataset, which is then used for supervised fine-605

tuning (SFT).606

DPO Sampling Stage: Set the sampling temper-607

ature to 0.5. The dataset construction is similar to608

SFT while we will also add negative samples into609

training data to conduct the DPO algorithm.610

mDPO The sampling stage is similar to ReST-611

EM and we will also add negative samples into612

training data to conduct the DPO algorithm. For613

the multi-round DPO, we sample the self-generated614

training data on the model obtained from the previ-615

ous training iteration but we train the model from616

the initial policy as in Equation 3.617

E Prompt Template618

Prompt and Problem Format

You are an excellent mathematician.
Answer the following mathematical
questions based on your knowledge.

### Question ###: {Question}
### Response ###:
<think>{Reasoning steps}</think>.
The answer is \box{Answer}.

619

F Implementation Details620

Experiments are conducted on Llama-3.1-8B621

(Llama-3.1) 8 (AI@Meta, 2024).622

During dataset construction, we sample the re-623

sponses using 8-shot examples by setting the sam-624

pling temperature to T = 0.5. For response length625

control of DAST, challenging samples are paired626

with longer few-shot examples. When sampling,627

we will dynamically adjust the sampling number628

K to control the training data in each iteration com-629

parable as in Table 4.630

During training, ADAM parameter update is631

used in a mini-batch mode. The initial learning632

rate of 1e-4 is utilized with the 0.05 warm-up ratio633

and 0.01 weight decay of the ADAM optimizer.634

8https://huggingface.co/meta-llama/Llama-3.1-8B

Method Iteration Data Size
ICL - -
SFT - 15k
DART-Uniform - 60k
DART-Prob2Diff - 60k
ReST-EM 1 50k
ReST-EM 2 55k
ReST-EM 3 58k
ReST-EM 4 58k
DAST-P 1 55k
DAST-P 2 56k
DAST-P 3 58k
DAST-P 4 58k
DAST-L 1 56k
DAST-L 2 56k
DAST-L 3 56k
DAST-L 4 56k
DAST-S 1 58k
DAST-S 2 59k
DAST-S 3 60k
DAST-S 4 60k
DPO - 15k
mDPO 1 50k
mDPO 2 55k
mDPO 3 58k
mDPO 4 58k
DPO-D 1 58k
DPO-D 2 59k
DPO-D 3 60k
DPO-D 4 60k

Table 4: .

When training the models, we fix the training steps 635

and ensure that all the models can be trained to 636

convergences. Although the training data size of 637

different methods are different, fixed training steps 638

in total can maintain fairness for all the methods. 639

When decoding, the temperature is also set to 0.2 640

to be consistent with the sampling setting. All the 641

models are quantified using float16 (fp16) to load 642

and save parameters. The vLLM library (Kwon 643

et al., 2023) 9 is utilized to accelerate the generation. 644

All the experiments are conducted on 4 × NVIDIA 645

A100-40GB GPUs. 646

9https://github.com/vllm-project/vllm
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