Under review as a conference paper at ICLR 2026

COMPLETED HYPERPARAMETER TRANSFER ACROSS

Anonymous authors
Paper under double-blind review

Final loss

3.3 - -
2] N -

ABSTRACT

Hyperparameter tuning can dramatically impact training stability of large-scale
models. Recent works on neural network parameterisations, such as uP, have
shown that layer types and sizes should dictate how global hyperparameters should
be rescaled in order to achieve efficient transfer across model sizes. On the other
hand, the established practice for hyperparameter optimisation search is to look
for optimal global base values that apply at some fixed model scale. We transfer
hyperparameters across some of the most relevant scaling axes: width and depth
— using an extension of CompleteP (Dey et al., 2025) —, batch size and training
horizon. Our study covers an extensive range of optimisation hyperparameters of
modern models: learning rates, AdamW parameters, weight decay, initialisation
scales, and residual block multipliers. Lastly, we demonstrate that hyperparam-
eter transfer holds even in the per-layer hyperparameter regime. We characterise
the empirical challenges of navigating the high-dimensional hyperparameter land-
scape, and propose practical guidelines for tackling this optimisation problem. We
suggest a simplified parameterisation of the hyperparameter space that reduces
the dimensionality of the search-space at no performance cost. Our experiments
demonstrate significant training speed improvements in Large Language Models
with the transferred hyperparameters.

50M HP search 50M training run 1.8B training run
3.6 7 mmmsm Optimal global \ !F m
mm= Optimal per-module L
3.5 - =+== Scaling law -
3.4 b

Best grid search loss

33% speedup "*-..

57% speedup

MODULES, WIDTH, DEPTH, BATCH & DURATION

r 2.45

- 2.40

- 2.35

- 2.30

T T T
Oh 27h 55h 83h0.0B 1.6B 3.3B 4.9B 16.4B 32.8B 49.2B
Runtime Tokens Tokens

F 2.25

Figure 1: (Left): We implement an evolutionary strategy to optimise hyperparameters at a small
50M parameters/1.6B tokens horizon (learning rate, initialization scale, Adam ¢, 31, B2 and weight
decay). These hyperparameters can be either learned globally and applied uniformly across the
entire model, or per-module (we consider 13 module types, some additionally tuned per depth).
For a similar total number of runs (3k for global, 5k), (Middle): the per-module approach leads as
expected to better results at the 1.6B horizon, that the global optimum can only achieve with double
that budget. (Right): Crucially, our new parameterisation, Complete¥P , enables a direct transfer
(without any subsequent adaptation) to an ~ 600x larger FLOP budget. While this is true for the
global optimum, this also the case for our granular per-module HP setup, which result in similar
savings at that much larger scale (three seeded runs reported per setup).

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

The remarkable success of large transformer-based models (,) has been driven
by scaling up model size and data. However, to get the most out of these large-scale training runs,
or to even successfully complete them at all, several hyperparameters (HPs), such as learning rates,
weight decay, or initialization scales, must be carefully set.

Parameterisation. To mitigate this HPs tuning cost, recent works have introduced principled pa-
rameterisations, such as the p-parameterisation (uP) (,), with the goal of enabling
the transfer of optimal global hyperparameters from smaller, cheaper-to-train models to their large-
scale counterparts. Effectively, these parameterisations propose to automatically adapt a global
seeded HP to any layer, depending on its width or type. This process has been extended to handle
changes in depth with Depth-uP (,) and further investigated for width and depth in
transformers with CompleteP (R). These methods have been demonstrated to success-
fully transfer optimal global hyperparameters.

Per-module HP. Given the significant performance improvements and cost reduction from optimis-
ing HPs on smaller-scale experiments, it is natural to consider optimising HPs on a finer-grained
scale as well, and explore per-module HPs. When one scales-up a model with uP, Depth-uP or
CompleteP, different layers will receive different HPs depending on their architectural role — for
instance, the learning rates for the embedding layers have to be scaled differently from those for the
hidden weights. It is therefore reasonable to expect that different layers could benefit from indepen-
dent hyperparameter tuning. Put differently, there is little reason to believe the optimal per-module
HPs should all collapse to the same value at some base width at which we optimise them.

Parameterisation-aware per-module HP Optimisation. In this work, we systematically investi-
gate the transfer of per-module hyperparameters across various scaling modalities. The challenge,
however, is one of scale: tuning hyperparameters on a per-module basis creates a combinatorial
explosion in the search space, making it truly intractable at large scale. We propose a practical
methodology to unlock the benefits of per-module tuning by leveraging the power of HP transfer us-
ing parameterisations. We perform the expensive, high-dimensional search for optimal per-module
HPs on a small proxy model, and demonstrate the transfer of the optimal HPs to a large target model.
Our contributions are:

+ Complete@P . We refine the CompleteP parameterisation from (), extending it to
modern Transformer components like Query-Key Normalization (,). We further
identify and rectify minor issues in the original formulation. We illustrate the resulting parame-
terisation permits robust hyperparameter transfer for all theoretically-motivated variants of depth
scaling (o € [%, 1]).

* New scaling directions for HP transfer. We systematically study transfer beyond model size,
including in token horizons and batch size. We make new recommendations for weight-decay
scaling with batch-size adapting the SDE approach of (,) to AdamW.

* Per-module HP transfer. We empirically demonstrate hyperparameter transfer with the right
parameterisations holds for per-module hyperparameters. Optimising per-module hyperparameters
at a small scale yields significant training speed-ups that persist after transfer to larger scale.

* A practical recipe to find per-module HPs. We empirically characterise the per-module hyper-
parameter optimisation landscape. We highlight its challenging nature, marked by sharp “cliffs”
where training diverges, resulting in wasted compute. These characteristics make it highly ineffi-
cient to use random search and have proved very challenging in our experimentations with vanilla
Bayesian optimisation. We show that the landscape is close to “invex”, and opt for simpler local
search strategies are well-suited to navigate this space and find high-performing configurations.

2 HYPERPARAMETER TRANSFER

In this section, we describe the hyperparameter transfer modalities we consider, and the principles
that we follow to adjust HPs while varying other aspects of the training configuration.' We first de-

"To disambiguate, we’ll refer to hyperparameters as aspects of training we want to find optimal values for,
which we contrast with training configuration — the aspects of training we want to control to facilitate scaling
(number of training tokens, number of parameters, batch-size) that are typically integers.

Under review as a conference paper at ICLR 2026

Width Transfer Depth Transfer (¢ =1) Depth Transfer (a =1)

\
| S \ s

w0 [] L[]
2 4.0 \I L Width H Depth § Depth

idt e 0 ° 4 (] ° 4
j . ° 128 g 8 0 0 4 © 8 e g -9 g9 o8
®© 35 oo Y e 512 e e e 12 -3) 8 o o 12
o] o o 1024 o — ’ o 24 e o ' o 24
i o o o § 1536 ° ' ® . 64 o o ¢ ® oo
L st 3 0 ° 1536 . g0 °) 1§ s o ° o

3.0 ¢ D > o 0. °
. Min: 3.023 Min: 3.050

e e e e e B e e e e I e e s e e]
1074 1073 1072 107! 107 1073 1072 107! 1074 1073 1072 107!

Learning Rate

Figure 2: Hyperparameter transfer for global learning rate across depth and width. Each setting is
run with three independent seeds.

scribe hyperparameter transfer in model size (width and depth) in Section 2.1, where we introduce a
variant of the CompleteP parameterisation (Dey et al., 2025). In Section 2.2, we describe principles
we follow for hyperparameter transfer across batch-size. Lastly, we consider hyperparameter trans-
fer in the number of training tokens in Section 2.3, illustrating that optimal HPs do not transfer out
of the box across token horizons.

Experimental Setup All experiments are conducted using a decoder-only transformer model
(Radford et al., 2019; Phuong & Hutter, 2022) on the RedPajama dataset (Weber et al., 2024). We
use a modern transformer variant with pre-normalisation, Query-Key normalisation (Henry et al.,
2020), trained with a mixture of cross-entropy and Z-loss (de Brébisson & Vincent, 2016). We al-
ways train with a cosine schedule. As a performance metric, we always report the final validation
loss on the pre-training data, which is a strong indicator of downstream performance. For remaining
training and architecture details, see Appendix D.

2.1 HYPERPARAMETER TRANSFER ACROSS MODEL SIZE

The core idea underlying hyperparameter transfer across models of different sizes is to view models
as discretisations of infinite-size limits. Intuitively, two models of different sizes that are both suffi-
ciently close to the same infinite limit will behave similarly, and if their infinite limits are the same
over the set of considered hyperparameters, then they should share similar optimal hyperparameters.

The challenge is that, depending on the parameterisation — i.e. the rules for adjusting the hy-
perparameters as a function of size — we can obtain different infinite width or depth limits with
fundamentally different behaviours (Yang & Hu, 2021). Most of these limits are pathological in var-
ious ways. For instance, the Standard Parameterisation (SP) (Sohl-Dickstein et al., 2020) leads to
the features blowing up with size, whereas the Neural Tangent Parameterisation (Jacot et al., 2018)
results in a lack of feature learning (Yang & Hu, 2021). uP was identified by Yang & Hu (2021) as
the unique parameterisation for Stochastic Gradient Descent (and later for a broad class of adaptive
algorithms (Yang & Littwin, 2023)) that precludes the emergence of many such pathologies at scale.

In this work, we build upon the CompleteP (Dey et al., 2025), which itself is an adaptation of Depth-
P to transformers, to which we make several adaptations. These new scaling rules, which we call
Complete@P , are summarised in Table 1. Firstly, we extend the parameterisation to Query-Key
(QK) normalisation layers (Henry et al., 2020), which have become a staple in modern transformer
implementations (Yang et al., 2025; Dehghani et al., 2023). The challenge of QK norms is that,
unlike any other component in transformers, these layers share weights across transformer heads. If
scaling in width is performed by increasing the number of heads while keeping the head dimension
fixed (as was done in (Dey et al., 2025; Yang & Hu, 2021)), then QK norms introduce weight-sharing
across the scaled dimensions. This necessitates different scaling considerations than for regular
normalisation layer multipliers or biases. The adjustments for AdamW (Loshchilov & Hutter, 2017)
are shown in Table 1, which we justify in Appendix B.

Secondly, we note that Dey et al. (2025) mistakenly derived the wrong scaling for the AdamW e
scaling for the input embedding. We justify our modification in the Appendix B. Although the

Under review as a conference paper at ICLR 2026

Table 1: Parameterisation Comparison as a function of width (m), depth (m), batch size (mp)
and token count/data size (mp) ratios. For Complete(d)P , differences to CompleteP (Dey et al.,
2025) for width & depth scaling are shown alongside in gray.

Parameterisation: 1P (Table 3) Complete PP
£ MHA Residual x + MHABlock(x) x4 m; “MHABlock(x)
= MLP Residual x + MLPBlock(x) x4+ m, “MLPBlock(x
§ Unemb. Fwd Unaugmented Unaugmented (< (m ")
=
., Input Emb.
.. & Hidden weights xmy' xmy'
g8 Hidden biases/norms o?
S§ Unemb. LN
Unemb. Weights X1m ;2 X mff [x1]
Input Emb.
.%0 ¢ Hidden weights X mK,l Xm ;l X mgfl
- p m
§ S Hidden biases/norm o ><m‘]f_1 X\
S Unemb. LN
Unemb. weights X mi‘vl X m&l [x1]
v Hidden weights/biases/norms XMy xmy' x my*
% QK norms o NA) Xmi? [NAJ " (.) -3
< Input Emb. XMy Xmy Ix1] mp
< Output weights/biases/norms
% > Hidden weights XN XN
2 S Unemb. weights Ao XMy XMy i
= Rest x1 x1
AdamW (1 — 1) (1= Bip) X
AdamW (1 — s) (1= Fap) x LB

mp

mp
mp

Training iterations

resulting modification is minor, we found that the lack thereof was sufficient to break a thorough
sweep of the coordinate checks described by Yang et al. (2022) in our implementation.

Lastly, we eliminate the explicit scalar multiplier on the output of the final linear projection,
f : RE — RV, by reparameterising its effect into the learning rate and initialisation scale. This
enables memory-efficient algorithms like Cut Cross-Entropy (Wijmans et al., 2025), which avoid
materialising the full V' X E projection matrix, drastically reducing GPU memory requirements for
modern large vocabulary models.

In Figure 2, we verify the HP transfer with Complete®P across width and depth. An important factor
in Depth-:P is the depth-dependent re-scaling factor for the residual connection in transformers (h*
the output of layer ¢, F; the function applied to it):

W =h' +m *FM", (e{1,...,L}

which is governed by a single parameter « € [0.5, 1].We make the following observation:

{ Complete@P with o = % and o = 1 permits hyperparameter transfer across depth. }

Our parameterisation seems to allow for HP transfer with all theoretically justified values of
a € [%, 1]. This is in contrast to the findings of Dey et al. (2025) who notice a degradation of
transfer for o = 0.5. The added QK norms in our implementation improve stability (see Figure 11
for a comparison without); however, removing them does not lead to the breakdown of transfer
reported by Dey et al. (2025). We note that in their publicly-released reference implementation,
they apply the same AdamW’s e to all weights (including embeddings), against their own paper

recommendation. Interestingly, the optimal loss is slightly better for the largest model for o = %,

Under review as a conference paper at ICLR 2026

potentially suggesting that the theoretical arguments for this parameterisation on the basis of feature
diversity (,) might be beneficial in a language transformer context.

2.2 HYPERPARAMETER TRANSFER ACROSS BATCH-SIZE

Model size and dataset size are two levers to achieve lower loss — mcreasmg each predictably leads
to model 1mpr0vements as implied by scaling laws (, ,).
This, in turn, requires scaling up significantly the compute budget Which is only feasible through
parallelization. In that context, the set of usable batch-sizes is heavily constrained and largely dic-
tated by the memory configuration of a specific parallel architecture. However, training for long
token horizons is challenging with a small batch-size, as it demands many more sequential training
iterations. On the one hand, for smaller hyperparameter sweep runs, a smaller batch-size is often
desirable to reduce the per-run memory footprint and enable running on fewer GPUs. On the other
hand, that batch-size will no longer be suitable for larger runs. Unfortunately, as with scaling model
size or training duration, hyperparameters do not transfer across batch-sizes without further repa-
rameterisation. In this work, we transfer hyperparameters across batch-size via a similar limiting
argument as for transfer across model size. In particular, we follow and extend the principles for
batch-size transfer laid out in ().

Training as discretising an SDE We consider the same simplifying example as in
(). We Con51der that the gradients queried at each step k are a noisy version of a fixed direction
g = g + oe”, where e” are i.i.d. Gaussian vectors of identity covariance. We further use the
RMSProp algorithm as an example, and place ourselves in the high-variance regime, where o >
|lg||- Contrary to (), we also consider a weight decay term as in AdamW. We let 7
the learning rate, and A the weight decay. We obtain the simplified RMSProp iterations (see (

, , Sec. 4.1) for more details) that define the iterates 0(k; 1, A\, o) with the equation

k
0’“+1:9k—77(ga+)\9k) =6 — 1 (g+r06") e, b

which is a discretization of the SDE d©; = 77% (g + A\o©,)dt + dW, with step-size 1), in the sense
that % ~ © kn2. Therefore, we find that the multipliers to keep fixed iterate distributions, i.e., such
that 0(k;n, A, o) = O(myk; myn, mxA, mo), should verify mkmf] =1, mym, =1, and my =
my,. In particular, if the batch-size is multiplied by &, we have m, = £~ 1/2 and we find that the
new hyperparameters matching the SDE limit should follow the square-root scaling rule

n' =+kn, k' =rk, and N = /X . ()
To the best of our knowledge, we are the first to extend the SDE reparametrisation scaling rules
(, ,) to the weight decay of AdamW, although we note that the

same scaling rule for weight decay was proposed based on other principles in recent work (

, ,). We report the effect of using these
scaling rules in batch size in Figure 3; usmg the square-root rule is critical to good LR transfer. We
further show in Figure 4 that the above rule is critical for transfer of weight-decay in batch-size.

AdamLH and multipliers Equation | mirrors the Pytorch implementation of AdamW, where the
weight decay A is multiplied by the learning rate 7. If one instead uses the original AdamW imple-
mentation, often coined AdamLH, as proposed by (), we get the simplified
iterations @%+1 = @F — % — A%, and we find that the multipliers are the same as for AdamW,
except that my = mn doubling the batch size means that the weight decay should now be doubled.
Hence, using AdamLH leads to a bigger drift across batch-sizes if the scaling is not done correctly,
amplifying further the drift observed in Figure 3, right. We posit that this is one of the reasons why
the Pytorch implementation is more widely used.

2.3 HYPERPARAMETER TRANSFER IN TRAINING DURATION

Unlike transfer in model size or batch-size, transfer in the token horizon has received comparatively
less attention in the literature. Nonetheless, it is one of the two main levers to scaling compute. Like

(), we observe that the optimal learning rate decays with the number of training
iterations, holding all other things constant. Optimal learning rate keeps SDE time constant.

Under review as a conference paper at ICLR 2026

45 45 e
)] Batch Size)] Batch Size
3 . o 4x 8 o 4X
| o 2X | Base
o 4.0 Base o 4.0 1x
[=] Sle 3 =]
— — L]
g \ i g
@©) 1y *s @© - .
ﬁ3'5 e et ﬁB'S s
T T
1074 1073 1072 107! 1074 1073 1072 1071
Global LR Learning Rate

Figure 3: Learning rate transfer with batch-size. Left: Learning rates transfer when using the
square-root rule in Equation 2 Right: Learning rates fail to transfer without adjustment. Each setting
is run with three independent seeds.

Standard Standard SDE Adjustment Rule
3.7 7
%) Batch Size Batch Size Batch Size
(%] 3.6 4 4 x H 4 x o, 4 x)
S : 2x . 2 x o 2x "
e Base e Base e Base .

gj 3.5 ° % X ° % X ° % X 2
a 0 Se :
.c,—Uq 3.4 1) o 5 2 [} . 5 : ® e

.) a
N e o e tleente : =t

|_'_'-|'|'|'|'|1'|_'_'-|'|'|'ﬂ11_'_'-|'|'|'ﬂ1'|_ |_'_"|'|'|'"|1_'_"|'|'|'ﬂ1'|_'_"|'|'|'ﬂ|1_|'

1073 1072 107! 10° 1073 1072 107! 10° 1073 1072 107! 10°
Weight Decay Effective Weight Decay Weight Decay

Figure 4: Weight decay transfer with batch-size. Left: Weight decay fails to transfer with batch-
size without any adjustments. Middle: The rescaled (effective) weight decay A\/\/k where & is the
increase does transfer. Right: The effective weight decay transfers when rescaling all hyperparam-
eters following our AdamW SDE scaling rule. Each setting is run with three independent seeds.

& ! Tok
o okens 3

o [] L] L] L]

g 350 o ¢ o 08B X e

2 325 U e ¢ 16B e o, ...']

£ . . Y o 8B N e et s

Q o a . RO - P >

.= 3.00 © e 16B ®e . e e

(U ° ° "o o |m® { 2 J L)

~ e 32B n-0-0.0,79°¢

B 2.75 O
. .
107> 10™* 103 10°2 10! 10° 10°* 1073 10°2 10°! 10° 10!

Global LR Effective LR (n x Vtokens)

Figure 5: Learning rate transfer across training horizon — adjusting the number of tokens by changing
the number of training iterations while holding batch-size constant. Left: Break-down of transfer
of the global learning rate. Right: Stability of the “effective” learning rate — one that preserves the
AdamW SDE integration horizon. Each setting is run with three independent seeds.

In Figure 5, we notice that the optimal learning rate decays at a rate roughly proportional to ﬁ,
where k is the factor by which we’ve increased the number of training iterations. We plot the
optimal learning rate from the shortest training duration (7,) transferred with the scaling rule %Tp;
in gray, and observe that it aligns almost perfectly with the true optima. In contrast, Bjorck et al.

(2025) fit a scaling law to find the exponents (3 for the scaling rule "};?f ; and they identify 3 to be in
the ranges of 0.3 — 0.7 depending on the model size, which matches our scaling rule.

[Square-root reparameterisation for learning rate permits transfer across training horizon. J

Under review as a conference paper at ICLR 2026

42M params

. @ s .
350 - \ Complete!®P with SDE scaling

. o CompleteP
3.25 ~ e

238M pdrams

/

e

w
o
1

3.25 1 \
Scaling Laws:

743M pa'rams

Final Loss Final Loss Final Loss

232 | Complete(®P with SDE: 2.253 + 332 + 222 S
CompleteP: 2.482 + s + poar e
T T
10°

Number of tokens

Figure 6: Scaling law comparison of models trained with and without CompleteP token
horizon scaling rule.. We compare Complete®P width & depth scaling only (aka CompleteP with
¢ and QK-norm fixes in Section 2.1) and full Complete®P with SDE scaling rules for token horizon
transfer. The token horizon transfer rule leads to better performance at scale, as indicated by a better
lower bound coefficient of the scaling law.

Optimisation Horizon (Tokens per Parameter)

Q [s - — —
g 1 3 6 9 11 "
: :
3.50

o
g 107 =
% 3.25 g
(b) T T T T T T T LL‘
— 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Tokens 1e9

Figure 7: Best Learning Rate annealing over 4,842 runs for five different token horizons. The
best schedule at a short horizon is never a prefix for the best schedule at a longer horizon. The
optimal schedule cannot be found by a greedy approach: the best LR annealing is not data agnostic.

In light of the SDE interpretation in subsection 2.2, scaling the learning rate by ﬁ while hold-

ing the batch-size constant can be seen as reducing the signal-to-noise (SNR) ratio in the SDE,
while keeping the time horizon constant. Indeed, we orthogonally observe that when simulating the
AdamW SDE, improving the signal-to-noise ratio (i.e. reducing the size of the diffusion coefficient)
while holding other parameters constant consistently leads to improved performance. Hence, we
hypothesise that the right way to scale the token horizon might be only adjusting the signal-to-noise
parameter in the AdamW SDE, while keeping all other terms constant. We validate this empirical
observation in Figure 12, where we scale the number of tokens by increasing batch-size only (which
has the desired effect of changing the signal-to-noise ratio); we observe a near-perfect learning rate
transfer across the token horizon. We expect this transfer to break at larger batch-sizes, where the
discretisation will be too coarse for AdamW to approximate the underlying SDE, but when taken
together with the batch-size reparameterisation rules in subsection 2.2, this finding suggests how to
scale all HPs across token horizons while choosing the batch-size freely. This is the token horizon
scaling procedure we follow in all the per-module HP results in the remainder of this paper. We note
that this finding might be specific to the fixed (cosine) schedule that we use. The resulting scaling
rule as a function of the token horizon leads to better asymptotic performance, as predicted by a
scaling law, as we demonstrate in Figure 6.

Under review as a conference paper at ICLR 2026

Best Learning Rate (LR) annealing at different token horizons. Optimal schedules might have
different shapes at different token horizons (,). We conduct a greedy search to de-
termine optimal learning rate schedules in the following way. We enumerate all the non-increasing
piecewise-constant LR schedule over the discrete set {0.0015/2.5%|0 < k < 4}. We sub-divide the
total training duration in 16 intervals of 77M tokens each. At the end of each interval, either the LR
remains constant, either it is decayed by one or more steps. For five different token horizons, we
report the best scheduling among the 4,842 tested. We report the results in Figure 7. We notice that
the best scheduling at short horizon is never a prefix of the best scheduling at long horizon. This em-
pirical observation is compatible with the findings of (): there is a tension between
the optimisation bias induced by the terminal LR value (the lower the better) and the progress of
optimisation which requires higher LR values at start.

3 INVESTIGATING TRANSFER OF PER-MODULE HYPERPARAMETERS

Equipped with the tools for hyperparameter transfer described in the preceding section, in this sec-
tion we investigate 1) how much there is to gain from per-parameter hyperparameter optimisation,
and 2) how well do per-module hyperparameters transfer.

3.1 OPTIMISING PER-MODULE HYPERPARAMETERS

To show improvements and transfer of per—module hyperparameters, we need a good way to optimise
them at a fixed scale. Although there is ample hterature on hyperparameter optimisation in deep
learning (, ,), optimising HPs on a per-
module basis introduces many new dlfﬁcultles Below we highlight why many standard approaches
fail in the per-parameter optimisation setting.

Per-module hyperparameter loss landscape In Figure 8, we plot slices through the per-module
learning rate (LR) loss landscape — i.e. the landscape of the mapping from LRs to the final loss.
We observe that, fortuitously, it’s pretty close to being invex (stationary points are global minima),
and hence might be tractable even despite its high dimensionality. Several other aspects, however,
render it challenging for common HP optimisation methods: 1) The values of per-module learning
rates at which training becomes unstable are module-dependent, and can differ by multiple orders
of magnitude. 2) The boundary at which training becomes unstable has a complex shape, with non-
trivial interactions among different modules, implying it’s difficult to predict with simple predictive
models (e.g. linear models or Gaussian Processes (,)). Our observation
is similar to that made by () — who observed the stable regime boundary is a
fractal — but we also note a lack of an emergent simple structure at the macro scale. This means
common hyperparameter optimisation strategies, like random search or standard Bayesian Optimi-
sation, struggle in this regime. For instance, random search lacks any locality bias; we observe
that without careful manual tuning of the search boundaries, either all runs will fail due to unstable
training, or the boundaries will fail to include the actual optimum. Bayesian optimisation rely on
Gaussian processes (GPs) approximations to guide search locally around prev1ously successful tri-
als. However, GPs may struggle on highly non-stationary data (,)
with a fixed kernel. We did observe such irregularities in the HP to loss landscape which resulted
in many failures when using BO. Many of these difficulties can be alleviated by more robust ‘trust
region’ methods — approaches that optimise in neighbourhoods of previous good solutions. We de-
scribe a simple trust-region random search variant that we use for our experiments in Appendix C.

Parameterising per-module hyperparameters We adopt a depth—type Kronecker parameterisa-
tion of per-module hyperparameters that is compatible with Complete(®)P transfer across width and
depth. Let m € M index module type within a Transformer block (QKV weights, attention projec-
tions, MLP weights and biases, layer norm and QK-norm multipliers), and let £ € 1,..., L index
the depth. For a hyperparameter (, , € 1, A, (1 — 1), (1 — B2), € for module m at depth ¢:

10g Cmo (T, N, L, B) = log (57°° + log ¢;°°" (L) + log SDE(T, B) +1og CP,,(N,L) (3)
N—_——

type depth SDE batch/horizon CompleteP

where SDE(T'; B) carries all training-horizon 7" and batch-size B dependence via the AdamW SDE
transfer rules, CP,(N, L) is the Complete®P scaling rule adjustment in width and depth (Table 1),

Under review as a conference paper at ICLR 2026

Layer-1 QKV weights Layer-1 QKV weights Layer-1 QKV weights Layer-5 QKV-weights
Vs
Layer-1 MLP -weights Layer-5 QKV weights Layer-5 MLP -weights Layer-5 MLP-weights 7
10° 10° 6 :1'1
107! - - 107" g
=
10 10 5 l_‘
107 - - 103 8
107" -t -t 107" ©
4
S&&ss S&&ss S &S S Ss

Figure 8: The boundary for stable training has a complex shape. Each plot shows the final training
loss for different combination of learning rates for the modules indicated, while fixing the remaining
learning rates to the optimal “global” value. MLP weights refer to the MLP in the attention layer. If
unstable training results in NaNs, the last stable training loss is reported.

and ¢FYPe, Cgepth form € M, £ € L are dimensionless, time-invariant multipliers that we optimise
at a given width and depth. This factorisation reduces the number of free multipliers from |M|L
to |[M| 4+ L. We optimise the hyperparameter multipliers in log-space using trust-region random
search (Appendix C). For the learning rate, the above multiplier post-multiplies the learning rate
from the cosine schedule. When transferring the depth multipliers ¢ depth() to a larger depth L', we
interpolate them linearly with respect to . This is reasonable, as the depth-SDE (a = 2) or depth-

ODE limits (v € (4, 1]) should still exist 1f the base hyperparameters ¢ fteEJth(L) vary continuously
with sufficient regularity across depth ¢ € [0, 1]. In this sense, the finite-depth multipliers can be
seen as a discretisation of the continuous limit HPs: To transfer to a large depth we simply linearly

interpolate all HPs in depth.

3.2 PER-MODULE HYPERPARAMETERS MATTER

Depth multipliers matter We ablated away the effect of the learning rate per-depth multipliers,
by instead considering only a search over learning rate multipliers for each layer role: Within each
residual block, every parameter group gets an independent learning rate, which is shared across
different residual blocks; similarly, each parameter group in the embedding and unembedding layers
gets its own value. We initiate this search from a projection of the best per-module hyperparameters
onto this linear subspace. In Figure 14c, we observe that the search value, although still substantially
better than the best global learning rate, is worse than the one that includes per-depth multipliers.
Hence, while the majority of the gain comes from different module types within residual blocks
getting different learning rates, there is still notable benefit to per-depth multipliers.

How restrictive is the depth-Kronecker factorisation? To check how much performance we’re
leaving on the table with the depth-Kronecker factorisation constraint, we continue searching for
fully uncoupled per-layer learning rates from the optimal Kronecker-factorised ones. The search
results are shown in Figure 14b. Crucially, we observe virtually no improvement over the Kronecker-
factorised ones. While this is not conclusive evidence that the optimal per-module learning rates are
depth-Kronecker factored — the fully uncoupled search-space is much higher-dimensional and more
difficult to navigate, and its likely we didn’t find the optimum — these runs imply that most of the
benefits of per-module HP optimisation can be captured by Kronecker factorised learning rates.

3.3 OPTIMAL PER-MODULE HYPERPARAMETERS TRANSFER WITH SCALE

Demonstrating upsides of per-module HP optimisation would be of little practical use if the HPs
have to be tuned at the target model scale. In this section, we show that the improvements do persist
across different model scales. Firstly, we demonstrate transfer in model size. Figure 9 illustrates
that the optimal per-module learning rates transfer as we scale up both width and depth. Although
we cannot easily visualise how the per-parameter HP loss landscape shifts as we vary model size
(like was shown in Figure 2) due to its high-dimensional nature, we instead show the final training
losses for a slice (a hyperplane) going through both the scaled-up optimal per-module learning rates

Under review as a conference paper at ICLR 2026

and the optimal global learning rate. We observe that this landscape appears stable with model size,
suggesting that the optimal per-module LRs do transfer with width and depth.

3.30 4 Optimal per-module LRs o
e 50M paramy
325 4 0m®mg=0@=2 e °
0 ’; - M - A
v 3.15 4 ® =
3 ® 100M parameters . —-—"T
—_ ’) - H
© —
g 3107 A G mm—m e ———— —==
M oo057 ® 1
® 500M parameters Optimal global IJ‘R 5
P TE L
_ @ ...asunn®
2,90_--o--..*..--.----I-.g......-l----. : :

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Coefficient

Figure 9: Transfer across model scale of the optimal per-module learning rates. We interpolate
between the optimal global learning rate multiplier, and the optimal per-module multipliers across
models of different scales, and show that the optimal per-module multipliers 1) consistently improve
upon the global multiplier baseline, and 2) remain close to optimal in the hyperplane spanned by the
optimal global and local multipliers. Each setting is run with three independent seeds.

Transferring all per-module HPs across the compute optimal horizon. We also investigate what
improvements are possible when transferring per-module HPs to a compute-optimal model at the
1B parameter scale. Here, we jointly optimise the per-module learning rate, weight-decay, AdamW
01, B2, € and initialisation scale, and the residual block multipliers. We continue the search from
the optimal per-module learning rates identified with search in Figure 14a at the SOM parameter
& 1.6B token scale. In Figure 1, we show that when transferred to the 1.3B & 26B token scale
(420 compute) the optimal per-module HPs lead to a 27% speed-up to reach equivalent loss over
the optimal global HP baseline.

4 DISCUSSION & CONCLUSION

Limitations & Future Work Our study encompasses a broad set of hyperparameters and transfer
modalities, but there are limits to our empirical explorations, some of which we highlight below:

* Although we identify improved per-module hyperparameters in a reasonable number of trials,
a better suited search method could potentially be significantly more trial-efficient. Exploring
Bayesian optimisation methods that address the specific difficulties of the per-module hyperpa-
rameter loss landscape highlighted in this work — such as Trust Region Bayesian Optimisation
(Eriksson et al., 2019) — as well as methods that utilise early-stopping, and methods that exploit
the structure of the training process (Lin et al., 2024) seem particularly promising.

* We only evaluate on one training setup (autoregressive transformer training on the RedPajama
dataset). While that setup has broad practical relevance, our approach (the proposed transfer prin-
ciples, and benefits of per-module hyperparameters) should be ideally verified in other settings.

* The benefits of per-module hyperparameters we identified at small scale seem to diminish with
model and data size. However, we do not know whether that is mostly to be explained by imperfect
hyperparameter transfer in the non-asymptotic regime, or whether this is due to an asymptotic
property of the infinite-scale models. We hope future work might find computationally feasible
ways of answering that question.

Conclusion In this paper, we proposed new transfer rules for hyper-parameters, valid across the most
important scaling axes: model’s width, model’s depth, token horizon, and batch size. Furthermore,
these transfer rules also hold for per-module hyper-parameters. We demonstrate that systematic
optimisation at small scale with trust region methods produce a configuration that transfers to larger
scales, and significantly improves training speed.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Power lines: Scaling laws for weight decay and batch size in llm pre-training. arXiv preprint
arXiv:2505.13738, 2025.

Johan Bjorck, Alon Benhaim, Vishrav Chaudhary, Furu Wei, and Xia Song. Scaling op-
timal Ir across token horizons. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
(eds.), International Conference on Representation Learning, volume 2025, pp. 83640-83657,
2025. URL

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
and Aurelien Lucchi. Adaptive methods through the lens of sdes: Theoretical insights on the role
of noise, 2025. URL

Alexandre de Brébisson and Pascal Vincent. The z-loss: a shift and scale invariant classification loss
belonging to the spherical family, 2016. URL

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In Infernational conference on machine learning,
pp- 7480-7512. PMLR, 2023.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pp. 75-102, 2006.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query key normalization
for transformers, 2020. URL

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Au-
relia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Lau-
rent Sifre. An empirical analysis of compute-optimal large language model training. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 30016-30030. Curran Associates, Inc.,
2022. URL

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL .

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and dynamics of stochastic
gradient algorithms i: Mathematical foundations. Journal of Machine Learning Research, 20(40):
1-47,2019. URL .

Jihao Andreas Lin, Sebastian Ament, Maximilian Balandat, and Eytan Bakshy. Scaling gaus-

sian processes for learning curve prediction via latent kronecker structure. arXiv preprint
arXiv:2410.09239, 2024.

11

https://proceedings.iclr.cc/paper_files/paper/2025/file/cffa22c56c0df3b3edb1df8a9ad67804-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/cffa22c56c0df3b3edb1df8a9ad67804-Paper-Conference.pdf
https://arxiv.org/abs/2411.15958
https://arxiv.org/abs/1604.08859
https://arxiv.org/abs/2010.04245
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://arxiv.org/abs/2001.08361
http://jmlr.org/papers/v20/17-526.html

Under review as a conference paper at ICLR 2026

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 1540-1552. PMLR, 26-28 Aug 2020. URL

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jan Ludziejewski, Jan Matasnicki, Maciej Piéro, Michat Krutul, Kamil Ciebiera, Maciej Stefaniak,
Jakub Krajewski, Piotr Sankowski, Marek Cygan, Kamil Adamczewski, and Sebastian Jaszczur.
Decoupled relative learning rate schedules, 2025. URL

Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Maosong Sun, Zhiyuan Liu, Kaifeng
Lyu, and Wenguang Chen. A multi-power law for loss curve prediction across learning rate
schedules. In The Thirteenth International Conference on Learning Representations, 2025. URL

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Francis Bach and David Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2113-2122, Lille, France, 07-09 Jul 2015. PMLR. URL

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697-7711, 2022.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, and Atish Agarwala. Scaling
collapse reveals universal dynamics in compute-optimally trained neural networks. In Forty-
second International Conference on Machine Learning, 2025. URL

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional bayesian
optimization with elastic gaussian process. In International conference on machine learning, pp.
2883-2891. PMLR, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian optimiza-
tion of non-stationary functions. In International conference on machine learning, pp. 1674—
1682. PMLR, 2014.

Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal, 2024. URL

Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jachoon Lee. On the infinite width
limit of neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301,

2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL

12

https://proceedings.mlr.press/v108/lorraine20a.html
https://arxiv.org/abs/2507.03526
https://arxiv.org/abs/2507.03526
https://openreview.net/forum?id=KnoS9XxIlK
https://proceedings.mlr.press/v37/maclaurin15.html
https://proceedings.mlr.press/v37/maclaurin15.html
https://openreview.net/forum?id=Fvq9ogLnLN
https://openreview.net/forum?id=Fvq9ogLnLN
https://arxiv.org/abs/2402.06184
https://arxiv.org/abs/2402.06184
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Under review as a conference paper at ICLR 2026

Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness disparity
principle in transformers for accelerating language model pre-training. In Forty-second Interna-
tional Conference on Machine Learning, 2025.

Xi Wang and Laurence Aitchison. How to set adamw’s weight decay as you scale model and dataset
size. In Forty-second International Conference on Machine Learning, 2025. URL

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
Ce Zhang. Redpajama: an open dataset for training large language models. NeurIPS Datasets
and Benchmarks Track, 2024.

Erik Wijmans, Brody Huval, Alexander Hertzberg, Vladlen Koltun, and Philipp Kraehenbuehl.
Cut your losses in large-vocabulary language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural net-
works. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 11727-11737. PMLR, 18-24 Jul 2021. URL

Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit,
2023. URL

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer, 2022. URL

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite depth neural networks. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL

13

https://openreview.net/forum?id=IszVnczhfz
https://openreview.net/forum?id=IszVnczhfz
https://openreview.net/forum?id=E4Fk3YuG56
https://openreview.net/forum?id=E4Fk3YuG56
https://proceedings.mlr.press/v139/yang21c.html
https://proceedings.mlr.press/v139/yang21c.html
https://arxiv.org/abs/2308.01814
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466
https://openreview.net/forum?id=17pVDnpwwl

Under review as a conference paper at ICLR 2026

CONTENTS
1 Introduction
2 Hyperparameter transfer

2.1 Hyperparameter transfer across modelsize

2.2 Hyperparameter transfer across batch-size

2.3 Hyperparameter transfer in training duration

Investigating transfer of per-module hyperparameters

3.1 Optimising per-module hyperparameters

3.2 Per-module hyperparameters matter

3.3 Optimal per-module hyperparameters transfer withscale

Discussion & Conclusion

Additional experiments & figures

A.1 Suboptimality of learning rates identified at too small scales

Motivation of the Complete®P adjustments

B.1 QK norm multiplier weights 0oL
B.2 Embedding layer AdamWe. Lo

B.3 Changes to the unembedding weight

Per-module hyperparameter search algorithm

Experimental details

D.1 Best Learning Rate (LR) annealing at different token horizons

D.2 Baseline global hyperparameter tuning

D.3 Per-module hyperparameter search and transfer (Figure 1)

Extended related work

14

|9 BN USTI S]

9]

O O oo R

10

15

20
20
20
20

21

21
21
22
22

22

Under review as a conference paper at ICLR 2026

&
© 299 52
© + o+
7] iy
o % 298 23
=S 53
© E
S 297 =
<)
s — o5
© 296 —e 8
I T T T T T T T T T o

58M 136M 245M 483M

Model Size (#parameters) at which optimal learning rate is identified

Figure 10: Suboptimality of learning rates optimised at smaller scales. We plot the final loss
on a 483M parameter model (y-axis) when training with the learning optimal for a smaller model
(x-axis). To optimise the (global) learning rate at each of the shown smaller scales, we conduct a grid
search with the following set of candidates: {107%,3.3x,107%4,5.6 x107%,1073,3.3x,1073,5.6 x
1072,1072,3.3%,1072,1071,3.3x,1071}. We use Complete'PP throughout. At the 136M scale,
the optimal learning rate is already approximately stabilised. At the SOM scale, we incur a small
penalty. The final losses are averages over 3 seeds.

A ADDITIONAL EXPERIMENTS & FIGURES

A.1 SUBOPTIMALITY OF LEARNING RATES IDENTIFIED AT TOO SMALL SCALES

As hyperparameter transfer in width & depth with Complete®P is motivated by the asymptotic
width & depth behavior, one would expect it to start degrading at smaller scales. Indeed, this can
be empirically observed with learning rate transfer in, e.g., Figure 2. Hence, there is a trade-off
when optimising hyperparameters with Complete@P transfer; going to smaller model sizes enables
cheaper hyperparameter optimisation, but these hyperparameters could be slightly suboptimal at
scale due to degraded hyperparameter transfer.

We illustrate this trade-off in Figure 10, where we show the final loss of a larger-scale model
(483M) when transferring optimal hyperparameters (global learning rate) from a smaller model with
Complete@P . We see that when transferring the optimal learning rate from a smaller SSM model,
we incur a small transfer penalty. Optimising the learning rate at the 136M scale or larger seems
to incur virtually no penalty. This suggests we might have been able to obtain more competitive
per-module hyperparameters, at a substantially higher compute cost, were we to conduct our search
at the 136M scale. We consider it an exciting direction for future work to empirically investigate
at what scales hyperparameters should be optimised, and subsequently transferred, for maximum
compute savings. Nonetheless, this will of course depend on the hyperparameter search method
used.

15

Under review as a conference paper at ICLR 2026

Depth Transfer (a = 0.5) Depth Transfer (a =1.0)
- \ e
%)) \ w0 8 L
&8 4x100 A H 8 4x100 A
- o0 Depth - Depth' . ®
? ° : L SR ° F4)1- g ° Fé)l L} : ¢ g
= N o T £ NN e &
o SLe et ' ® . 24 o e 24 ¢ : o e s .
= e e N F o 64 o ¢
. 128 o 128 .
3100 * e ¢ 3x 100 ¢
TP — TP —
105 1074 103 102 10! 10° 1075 10* 103 102 10! 10°
Learning Rate Learning Rate
(a) With QK-norms
Depth Transfer (a = 0.5) Depth Transfer (a =1.0)
$ Depth o Depth
0 o 4 0 $ o 4
& ax10° i , - & ax10 4 I . c 8
J o e 24 8 o 24
2 R $.64 2 S o o 64
c [I - c]]
g N g S
= "9 Min: 3.245 . *Min: 3.264
3x10° - 3x 100 -
TP AT
107 107* 1073 1072 1071 10> 107* 1073 1072 107!
Learning Rate Learning Rate

(b) Without QK-norms

Figure 11: The effect of QK-norms on hyperparameter transfer of the global learning rate across
depth with two variants of CompleteP with a € {1,1}.

250M parameters

° ¢ 0.4B tokens
n 4.0 R + 0.8B tokens
%) o e 1.6B tokens
S ® e 3.2B tokens
o . o I Y e 6.4B tokens
.S 3.5 . L ° ° . 2 e - . D
E ° : e woe o ® : ° ®
@ o,) ° ° e e
jan . . » ® ° °

3.0 . ° . ® e
) ° . . : : . .
I T L | T L | T L | T L | T L
105 10~ 103 1072 1071 100

Learning Rate

Figure 12: Learning rate transfer across token horizon when scaling up by increasing batch-size
while holding training iterations constant. This scaling rule can be seen as improving the gradient
signal-to-noise (SNR) ratio in the discretised AdamW SDE (Malladi et al., 2022), while holding all
the other SDE parameters and the integration horizon fixed.

16

Under review as a conference paper at ICLR 2026

50M parameters 250M parameters
e + 1.6B tokens o » 0.8B tokens
w404° 7 ¢ 4B tokens w4047 ¢ « 1.6B tokens
19} U « 8B tokens 1%} e 4B tokens
3 \, * 16B tokens 3 4 * 8B tokens j
H e 16B tokens
23594 \\\ %% i 2359 ¢ . i
= 0 e S-e o0 g o : E o= o . e
S . ° g w2 H © S Y ® ® o oo w-e-® o ;
© l . P T @ e o® .
= 3.0 - = 3.0 O S I o
= = o - ® e egn-o s-g"e
- x-ol-0-g
by
L) L L B NN R LLI BN N LLL B LLLL BN N R R LY L DL L, L N RLLL BN L N B R L BN R R R LY
1075 1074 1073 1072 1071 100 1075 1074 1073 1072 1071 100
Global LR Global LR

500M parameters

0.8B tokens
1.6B tokens
4B tokens
8B tokens
16B tokens

w -
)] o
1 1
L] o
o o o 0 0 o
LICX TET T -

Training Loss

w
o

1

°

.

[

x

Y

)
e oo

Global LR

Figure 13: Lack of learning rate transfer across training horizons — increasing token horizon
through number of iterations with a fixed batch-size — for different model sizes. The square-root

transfer rule for the optimal learning rate identified at the smallest token horizon for each model size
is plotted in .

17

Under review as a conference paper at ICLR 2026

34x10°1 » o - 3000
3.38 x 10° A Cumulative min. loss
3 . === Running mean (100 trials)
o 3.36x10° 4 ; —
— o = = Best grid search loss L 2000 S
g 3.34x 100 : . 5
b3~32“°0' = e o ke e -
—~ 3.3x10° 1 =
© - 1000 B
S 3.28x 100 1 »
- 3.26 x 100 4
3.24 x 10° L o
I T T T T T T T
0:00 13:53 27:46 41:40 55:33 69:26 83:20 97:13
Runtime (hours:minutes)
(a) Hyperparameter search for the per-module learning rate multipliers parameterised with the depth-Kronecker
factorisation.
332X 100 4 o e
Cumulative min. loss
3.31 % 10° 4
% 100 === Running mean (100 trials) - 600
S 33x 00 1 == Best grid search loss g
E 3.29x10% 1 — — Best Kronecker-factorised LR multipliers loss L 200 o,
5 3.28x10° { - g
T 3.27x10° - g5
= 0 -200 o
i 3.26x 10° 1
3.25 % 100 4
e Tl I
I T T T T T T T
0:00 2:46 5:33 8:20 11:06 13:53 16:40 19:26
Runtime (hours:minutes)
(b) Hyperparameter search for the per-module learning rate multipliers with fully uncoupled multipliers. The
search is initialised with the optimal HPs found in the search for optimal depth-Kronecker factorised multipliers
in Figure 14a.
B3.32X10° { o e e = 1000
3.31 x 100 1 Cumulative min. loss
% 3 3% 100 === Running mean (100 trials) L 300
2 ’ o = = Best grid search loss g
g 3.29x10% 1 — = Best LR multipliers loss - 600 @
5 3.28x 100 -
Té 3.27 x 10° { 400§
= o | %]
i 326x 10 L 00
3.25x 100 {
-0
I T T T T T T
0:00 5:33 11:06 16:40 22:13 27:46 33:20

Runtime (hours:minutes)

(c) Hyperparameter search for the per-module learning rate multipliers with no depth multipliers. he search
is initialised with the projection of onto the constraint set of the optimal HPs found in the search in Figure 14a.

Figure 14: Hyperparameter search results with Trust Region Random Search. Each dot indicates the
final loss of a single trial, and the lines indicate the training duration (start & end).

18

Under review as a conference paper at ICLR 2026

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992 3.4 %100 -

993 3.38 x 10° 1

994 3.36 x 100 1

995 3.34 x 100 1

996 3.32 x10° {

997 3.3x 100 4

998 3.28 x 100 {
3.26 x 100

999

3.24 x 100 4
1000 -0

1001 0:00 27:46 55:33 83:20 111:06 138:53
1002 Runtime (hours:minutes)
1003

10994 Figure 15: Hyperparameter search for the per-module learning rate multipliers parameterised with
1005 the Kronecker factorisation with CMA-ES. C.f. Figure 14a for the comparable Trust-region Random
1006 Search results.

1007

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

2500

2000

1500

- 1000

- 500

Final trial loss

19

suny 1101,

Under review as a conference paper at ICLR 2026

B MOTIVATION OF THE COMPLETE®P ADJUSTMENTS

Here, we give a justification for each of the modifications made in Complete'®P in Table 1. These
modifications primarily concern scaling the infinite-width limit. We directly rely on the properties
that uP parameterlsed neural networks are known to possess that were formally shown in (
,). Concretetely, we note that when scaling with uP, all forward
h1dden layer (pre-)activations are expected to have entries of size ©(1) (as defined in (R
, Definition N.2)) and the backpropagated gradients with respect to hidden (pre-)activations are
expected to have entries of size ©(1/N). Furthermore, the (pre-)activations and the back-propagated
(pre-)activation gradients are expected to approach i.i.d. in the infinite-width limit.

B.1 QK NORM MULTIPLIER WEIGHTS

In standard implementation of QK norms, the elementwise affine operation x — m ©® x + b with
multipliers m and bias b is shared across the transformer heads. When scaling width by increasing
the number of heads — as is common in most of the relevant model scale parameterisation literature
(s ; s) — this effectively means that these parameters are shared across
the scaled width dimension V. For instance, for a collection of query vectors q € RVreads Xdhead
we have that the normalised query elements §;; := m;q; ; + b; all share the same parameters
mj,b; € Rfori =1,..., Nheaas, Where Nycaqs = O(NN). We denote by q. ; the RNaeaas yector
(gij:i=1,.. Nheads (q .j respectively). By the results of

(), we have that for the ;P parameterisation q. ; has entries of size ©(1) throughout training.
The loss gradients for any hidden (pre-)activation, are known to have entry size ©(1/N), and so the
: (1/N). The backpropagated

gradient with respect to the multiplier m; is:

Nhea:is a‘C Nheads
2 [aqz,j] &= N Z [aqj 4

i=1

where the rescaled random variables [NV {%} q; have entry size ©(1) as N — oo. Informally,
il

in (), the random variables N {6%5 } q; fort =1,..., Nyeaqs Were shown to ap-
il

proach i.i.d. as N — oo. Hence the sum above has a Strong Law of Large Numbers like behaviour,

converging to the mean of the entrywise limit of N |25~ | q;. As such, we effectively have that
94.5 |;

the gradient with respect to the width-shared parameters is also ©(1) with width. The scale of the
AdamW e should match the scale of the gradient (s), and so we have that the
AdamW e parameter for the width-shared multipliers should also be scaled as ©(1) with width. A
near-identical argument follows for the bias terms.

B.2 EMBEDDING LAYER ADAMW ¢

The O(1/N) scaling with width N for the embedding layer AdamW e follows from the observation
that the gradients with respect to the embedding parameters have element size ©(1/N). To see this,
note that the gradients with respect to the output of the embedding layer are ©(1/N), whereas inputs
are obviously constant with width. Hence, it naturally follows that AdamW e should be scaled as
©(1/N) to match the scale of the gradient ()).

B.3 CHANGES TO THE UNEMBEDDING WEIGHT

The changes to the unembedding weight scaling rules are mostly a reparameterisation of the
multiplier-based pP implementation in (,). Namely, for AdamW, a weight multi-
plier m, has the same effect throughout training (bar the finite-precision arithmetic effects) as: 1)
multiplying the initialisation variance by mi}y, 2) multiplying the learning rate by m};, 3) and mul-
tiplying the AdamW e parameter by my (,). We re- parameterise with (1) and
(2), but we don’t change AdamW ¢ as it appears to have been derived incorrectly in (

). To see this, note that with uP (the Table 3 variant without an output layer multiplier), the

20

Under review as a conference paper at ICLR 2026

gradients for the unembedding layer weights are expected to have scale ©(1) with width N. Hence,
to remain of the same scale, the output embedding weight € should also have a matching scale of
(1) (,). After reparameterisation to a m;,l output layer multiplier — as is
done in CompleteP — the € would also have to had to be scaled as m;vl to match the reparameterised
gradients.

C PER-MODULE HYPERPARAMETER SEARCH ALGORITHM

As described in Section 3.1, standard random search is unsuitable for the task of optimising per-
module hyperparameters. We make two minimal tweaks that make it into a workable method. We
induce an exploitation bias by turning it into a trust region method: we constrain the search-space
adaptively to the neighbourhood {x € R? : ||x — x{*"||o < r} of the current best solution x;°
at a given iteration ¢. Hence, the bounds move with the best solution found so far. We optimise
all parameter in the log,-space, and sample uniformly from within the bounding box. Even with
this modification, however, we found that this trust-region random search quickly plateaued with a
relatively high variance in the final loss values. Hence, to allow the algorithm to explore promising
regions more thoroughly, we also decay the size of the bounding region r if the loss doesn’t improve
after a certain number of trials.

For all experiments, unless stated otherwise, we instantiate the search with the bounding box size of
1 (meaning that at each iteration, we multiply the best solution found so far by 2” with z sampled
uniformly from [—1, 1]), and decay size of the trust region r by 0.7 if no improvement is observed
in 100 trials. We run the algorithm asynchronously with a maximum of 100 simultaneous trials.

The goal of this paper is not to identify the best HP optimisation strategy for this setting; we merely
want to find a workable one in order to demonstrate potential for improvements from per-module
HP search. Since the above tweaks borrow from the principles underlying many evolutionary search
(ES) methods, we also wanted to directly compare to a strong ES baseline to check our method
performs reasonably. In Figure 15, we compare CMA Evolutionary Search (CMA-ES) (,

) to the Trust-region Random Search described above (c.f. Figure 14a). CMA-ES is not natively
an asynchronous HP search strategy, so we make a minor modification: for a population size P, we
wait until at least P trials sampled from the current generation have finished running. At that point,
there might be more than P new finished trials (left-over trials from the previous generations), so
we update the CMA-ES state with P best trials only. In this instance, Trust-region Random Search
outperforms this CMA-ES variant. This gives credence to our search method of choice being able
to identify good per-module HPs in reasonable runtime. We hope that future work can explore
alternative strategies that might be able to severely reduce the number of trials required to find good
per-module HPs.

D EXPERIMENTAL DETAILS

D.1 BEST LEARNING RATE (LR) ANNEALING AT DIFFERENT TOKEN HORIZONS

We pretrain a small GPT-2 model (121M parameters). We enumerate all the non-increasing
piecewise-constant LR schedule over the discrete set {0.0015/2.5%|0 < k < K42 }. We sub-divide
the total training duration in L intervals of 77M tokens each. At the end of each interval, either the
LR remains constant, either it is decayed by one or more steps. We chose L. = 16 and k0, = 4,
which yields a total of 4842 runs. For efficiency, we use the same checkpoint to warm start all
runs sharing the same prefix in the LR scheduling, which cut down the computational complexity
of this naive enumeration from O(LFme=+1) to O(Lkma=). Therefore, the total compute budget is
kept under 7,000 A100 GPUh. For five different token horizons (155M, 310M, 621M, 932M and
1.24B) we report the best scheduling among the 4,842 tested. We report the results in Figure 7.
We notice that the best scheduling at short horizon is never a prefix of the best scheduling at long
horizon. This empirical observation is compatible with the findings of (): there is a
tension between the optimisation bias induced by the terminal LR value (the lower the better) and
the progress of optimisation which requires higher LR at start.

21

Under review as a conference paper at ICLR 2026

D.2 BASELINE GLOBAL HYPERPARAMETER TUNING

To establish a baseline, we perform an extensive random hyperparameter search consisting of 2048
trials. Each trial trains a 50M parameter model (dmoger = 512, L = 4) for 1.64B tokens (33 to-
kens/parameter) over a discrete search space defined by:

e LR {1x107%3x107%,4x1074,1x1072,3x1073,4x1073,1x1072,2x 1072,3 x
1072,1 x 1071}

e Addame € {1 x 1071 x 10721 x 107101 x 107%,3 x 107%,4 x 1078,1 x 1077}
+ Adam 3; € {0.8,0.85,0.9,0.95,0.999}

+ Adam $3; € {0.9,0.95,0.98,0.99,0.999}

» Weight Decay € {1 x 107%,1 x 1073,1 x 1072,1 x 1071,2 x 107%,4 x 107!}

The results and hyperparameter sensitivities from this search are visualized in Figures 16b to 16d.
The optimal configuration from this global search achieves a validation negative log-likelihood of
3.34 nats. This result is substantially higher than that achieved by our per-parameter search strategy,
underscoring the advantage of discovering optimal configurations at a small scale before upscaling
with principled rules like Complete@P .

D.3 PER-MODULE HYPERPARAMETER SEARCH AND TRANSFER (FIGURE 1)

Per-module hyperparameter search For the per-module hyperparameter search, we ran the trust-
region random search as described in Appendix C. We ran 100 trials (training runs) in parallel, with
a total budget of 5000 trials. We randomly chose a different random seed (dictating the network
initialisation and data order) for each trial.

We optimised AdamW learning rate, weight-decay, €, momenta o := (1 — 1) and ag := (1 — 33),
as well as the standard deviation for the initialisation, with one hyperparameter (multiplier) per
module type. For module types, we treat each ‘tensor’ within a transformer block as an individual
type (e.g. QK-norm multipliers, QKV weights, output projection weights, first feedforward layer
weights, second feedforward layer weights, etc. would all be individual types); each tensor outside
the transformer blocks are also individual module types (input embedding weight, output embedding
weight, output embedding bias, output layer norm multipliers, etc. would all be individual types).
We also optimise the per-depth transformer residual block multipliers in the depth-type Kronecker
parameterisation (there are two residual multipliers in each transformer block — one for the attention
block, one for the feedforward block). Altogether, that leads to 79 hyperparameters to optimise.

The hyperparameter search at small scale in Figure 1 took 6730 GPU-hours on NVIDIA A100s,
although 99% of the loss gains over the optimal global hyperparameters were realised within the
first 3168 GPU-hours.

E EXTENDED RELATED WORK

Hyperparameter transfer in width & depth. Our work directly builds upon, extends and com-
bines many existing parameterisation for transfer across dlfferent modalities. For width transfer, we
directly build on the Tensor Programs (s)) based derivations for
the pu-parameterisation, and the extensions to adaptive optlmlsers (,). Although
(,) contains an exposition of all the theoretical tools required to derive the right
parameterisation for virtually any neural network architecture, applying these tools is still a non-
trivial task. () extended similar principles to find parameterisations in depth.

() adapted these principles to derive a width & depth transfer-enabling parameterisation
specifically for transformer models. Although () directly builds upon and uses virtu-
ally the same principles as (,) and (), they do derive the right
parameterisation for a broad range of hyperparameters (initialisation scales, learning rates, AdamW
weight decay, AdamW epsilon), unlike the original p-P paper (,), and they derive a
complete set of rules specifically for transformer models. We directly build upon and extend Com-
pleteP (,) for width & depth transfer part of our parameterisation, making a couple of

22

Under review as a conference paper at ICLR 2026

B 3.60
2
= 3.55
o
- § 3.50
125 - @ 5
2) Z 345
g 100- @ S
=
= S 3.40
e 75— ! =
Q <
1= 3.35
T s0- = > ¢ °
Z s b 3.30 -
P IR
0 - 2 £ =8 °
34 3.6 3.8 4.0 Learning £
Validation Cross Entropy Rate

(a) Number of trials of baseline 50M model vs. evalu- (b) Gaussian Process fit sensitivity around optimal

ation loss. identified global hyperparameters.
> g
2, 3.8 1 n- - o= -
g L
=] . - - - -
s 3.7 3
% 2 = [to) § 5 o 8
132 ~ _ - & - ©_ © _ _ © < ~
©36y2 TETREINEISTY 3 8B TR R o 8 o805 8L
O Sl o & [O A T T R N2 s 0 % = U
ito 0 =S e fa=F = L L = L 9 = oS a
£ 354 zoRay - - - = - = o
) AT
= a o
© IC}EI 1 1 1
3 3.4 - - - -
: i
> FrTT T TTTTT T T T T T°1 T T T T T T T T T T T T T T T T
DI IIO_Y :;\IS 0 2 9o O © el o el =l 2 o oo il) ~ ~ ~ ~ v W
SEEESS083 FETEFITEI I8 § 5590
[SEENY Sy
Learning Rate ~ Adam Eps Betal Beta2 Weight Decay

(c) (Marginal) sensitivity of the baseline 50M model for core hyperparameters. We show the 25%-75% quan-
tiles for the validation losses with all hyperparameters sampled independently at random, conditioned on the

shown hyperparameter being set to a certain value.

0.0001 -}

& 0.001 -

(&)

()

A 001

g

5 01-

§ 0.2 4
0.4

3.9

T T T T T

g g S g 3
N < o S <
=} =}

00001 -
0»0003 -
0.00;

3

S

i)
Learning Rate

(d) Weight decay vs. learning rate for baseline 50M model.

07 -

Cross Entropy

Figure 16: Summary of the global hyperparameter sweep on a SOM parameter model for the base-

line.

small modifications (extending to QK-norms and fixing minor mistakes in the derived rules). This

constitutes one part of the Complete(d) parameterisation.

23

Under review as a conference paper at ICLR 2026

Transfer in batch-size and SDE scaling rules. For the batch-size transfer rules for the Complete(®
parameterisation, we also directly build upon prior work on SDE transfer rules (s),
including for Adam (R). We extend the SDEs of () to AdamW,
allowmg us to propose a scaling rule for weight-decay with batch-size. We note that similar scal-
ing rules for weight-decay have been recently proposed in other works (

,) prior to ours. To our knowledge, we are the first ones to motivate them theo-
retically with the principle of preserving the dynamics of an AdamW stochastic differential equation
(SDE), integrating it with the transfer rules in batch-size for the other AdamW hyperparameters.

Our rules are compatlble with those proposed by those proposed in (;

() posit how the product of weight-decay and learn—
ing rate should scale as a function of the batch-size. In partlcular they suggest that the learning rate
~(B) and the weight-decay A(B) should be scaled with batch-size B so as to keep Teua = ’Y/]\BD con-
stant. This rule doesn’t specify whether or A should be adjusted, but only constrains their product.
Substituting in our rules for v(B) and A(B) from Table | — which dictate that y(B) o /B and

A(B) x /B — we see that Tema X 1. Hence, the rules we put forward are compatible with those
of in (). They are also more specific, dictating how the learning rate and
weight-decay should each be adjusted individually.

() also propose an AdamW SDE, and suggest the same weight-decay scaling
rule, but based on different principles. Whereas we argue for preserving the dynamics of the SDE
(and, hence, approximately preserving the dynamics of discrete-time AdamW) similarly to

(), () propose scaling rules to try and maintain an upper bound
on the final training loss. Furthermore, their derived SDE is different from ours and that of
(), whereas ours is fully compatible with that of (). We highlight that
() made a compelling case for the need for reparametrising the AdamW momenta
terms that led to their SDE. This reparametrisation is missing from (,).

Token horizon transfer rules. To the best of our knowledge, we are the first to propose our scal-
ing rule in token horizon for learning rate, weight-decay, AdamW momenta and AdamW ¢ on the
grounds of the proposed SDE principles. However, prior works have explored transfer in token hori-
zon more broadly. (,) demonstrate that the optimal learning rate shifts with the
token horizon, and propose an empirically derived scaling rule. () observe that nor-
malised training curves transfer across model size and token horizon when both are scaled jointly
to remain compute optimal. Hyperparameter transfer does not directly follow from their results, as
the loss curves only transfer after normalisation by subtracting the final loss. In other words, they
remove the exact quantity the behaviour of which we study in this paper. Nonetheless, their obser-
vations might be closely related, and their analysis through the lens of SDEs could prove to be a
fruitful avenue for explaining the transfer rules across token horizons we identify in this paper.

Per-module hyperparameter selection. Independently, (,) studied the
benefits of setting hyperparameters differently for different parameter groups. They similarly show
improvements over global hyperparameters at a fixed model scale, and demonstrate improvements
persist when training a larger mixture of experts model (8 compute) with each expert being the
same size as the base model. Our analysis differs in a few places: 1) we thoroughly investigate
transfer across model scale for the same architecture with pP and pP-derived parameterisations, 2)
we investigate transfer across token horizons and batch-size, 3) we investigate more fine-grained

hyperparameter transfer on a per-module basis, whereas () only consider
separating the parameters into broad groups, and 4) we investigate hyperparameters beyond the
learning rates (weight decay, AdamW momenta, etc.), whereas () consider

learning rates and parameters of their schedules.

Recently, () motivate why per-module learning rates might be beneficial from a
curvature perspective. They consider the relative scale for the learning rates for 5 sub-modules in a
transformer block; more specifically, the query-key (QK) and value-output (VO) blocks; point-wise
feedforward networks (FFN); normalization layers (Norm), and embedding layers (Emb). Follow-
ing their theoretical analysis, their practical recommendation is to tune manually (informed by that
theory) these ratios on a smaller scale and re-used as is for larger scales (which would still require
tuning a global LR when changing the compute scale). Compared to our work, their practical ap-
proach is restricted to a far smaller set of HPs: 5 LRs in their work vs. approximately a hundred HP
in our case, since we study 6 fundamental HPs (learning rate, initialization scale, Adam ¢, 31, (B

24

Under review as a conference paper at ICLR 2026

and weight decay) times (number of modules plus depth). Additionally, their perspective does not
stress transfer of these hyperparameters along any scaling axes, which is a core contribution in our
work. Instead, they retune the only hyperparameter they tune multipliers for (the learning rate) at
every scale they consider, making it costly to apply it at scale.

25

	Introduction
	Hyperparameter transfer
	Hyperparameter transfer across model size
	Hyperparameter transfer across batch-size
	Hyperparameter transfer in training duration

	Investigating transfer of per-module hyperparameters
	Optimising per-module hyperparameters
	Per-module hyperparameters matter
	Optimal per-module hyperparameters transfer with scale

	Discussion & Conclusion
	Additional experiments & figures
	Suboptimality of learning rates identified at too small scales

	Motivation of the Complete(d)P adjustments
	QK norm multiplier weights
	Embedding layer AdamW
	Changes to the unembedding weight

	Per-module hyperparameter search algorithm
	Experimental details
	Best Learning Rate (LR) annealing at different token horizons
	Baseline global hyperparameter tuning
	Per-module hyperparameter search and transfer (fig:all-per-module-hparam-transfer)

	Extended related work

