

000

001

COMPLETED HYPERPARAMETER TRANSFER ACROSS MODULES, WIDTH, DEPTH, BATCH & DURATION

002

003

004

005

006

Anonymous authors

Paper under double-blind review

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

ABSTRACT

Hyperparameter tuning can dramatically impact training stability of large-scale models. Recent works on neural network *parameterisations*, such as $\mu\mathbf{P}$, have shown that layer types and sizes should dictate how global hyperparameters should be rescaled in order to achieve efficient transfer across model sizes. On the other hand, the established practice for hyperparameter optimisation *search* is to look for optimal *global* base values that apply at some fixed model scale. We transfer hyperparameters across some of the most relevant scaling axes: width and depth — using an extension of *CompleteP* (Dey et al., 2025) —, batch size and training horizon. Our study covers an extensive range of optimisation hyperparameters of modern models: learning rates, AdamW parameters, weight decay, initialisation scales, and residual block multipliers. Lastly, we demonstrate that hyperparameter transfer holds even in the per-layer hyperparameter regime. We characterise the empirical challenges of navigating the high-dimensional hyperparameter landscape, and propose practical guidelines for tackling this optimisation problem. We suggest a simplified parameterisation of the hyperparameter space that reduces the dimensionality of the search-space at no performance cost. Our experiments demonstrate significant training speed improvements in Large Language Models with the transferred hyperparameters.

Figure 1: **(Left):** We implement an evolutionary strategy to optimise hyperparameters at a small 50M parameters/1.6B tokens horizon (learning rate, initialization scale, Adam $\varepsilon, \beta_1, \beta_2$ and weight decay). These hyperparameters can be either learned *globally* and applied uniformly across the entire model, or *per-module* (we consider 13 module types, some additionally tuned per depth). For a similar total number of runs (3k for global, 5k), **(Middle):** the per-module approach leads as expected to better results at the 1.6B horizon, that the global optimum can only achieve with double that budget. **(Right):** Crucially, our new parameterisation, *Complete^(d)P*, enables a *direct* transfer (without any subsequent adaptation) to an $\sim 600\times$ larger FLOP budget. While this is true for the global optimum, this *also* the case for our granular per-module HP setup, which result in similar savings at that much larger scale (three seeded runs reported per setup).

054

1 INTRODUCTION

055
 056 The remarkable success of large transformer-based models (Vaswani et al., 2017) has been driven
 057 by scaling up model size and data. However, to get the most out of these large-scale training runs,
 058 or to even successfully complete them at all, several hyperparameters (HPs), such as learning rates,
 059 weight decay, or initialization scales, must be carefully set.

060 **Parameterisation.** To mitigate this HPs tuning cost, recent works have introduced principled *pa-061
 062
 063
 064
 065
 066
 067*rameterisations, such as the μ -parameterisation (μ P) (Yang et al., 2022), with the goal of enabling the *trans-068
 069
 070
 071
 072
 073
 074
 075*fer

 of optimal global hyperparameters from smaller, cheaper-to-train models to their large- scale counterparts. Effectively, these parameterisations propose to automatically adapt a global seeded HP to any layer, depending on its width or type. This process has been extended to handle changes in depth with Depth- μ P (Yang et al., 2024) and further investigated for width and depth in transformers with CompleteP (Dey et al., 2025). These methods have been demonstrated to successfully transfer optimal global hyperparameters.

076 **Per-module HP.** Given the significant performance improvements and cost reduction from optimising 077 HPs on smaller-scale experiments, it is natural to consider optimising HPs on a finer-grained 078 scale as well, and explore per-module HPs. When one scales-up a model with μ P, Depth- μ P or 079 CompleteP, different layers will receive different HPs depending on their architectural role – for 080 instance, the learning rates for the embedding layers have to be scaled differently from those for the 081 hidden weights. It is therefore reasonable to expect that different layers could benefit from independent 082 hyperparameter tuning. Put differently, there is little reason to believe the optimal per-module 083 HPs should all collapse to the same value at *some* base width at which we optimise them.

084 **Parameterisation-aware per-module HP Optimisation.** In this work, we systematically investigate 085 the *transfer* of per-module hyperparameters across various scaling modalities. The challenge, 086 however, is one of scale: tuning hyperparameters on a per-module basis creates a combinatorial 087 explosion in the search space, making it truly intractable at large scale. We propose a practical 088 methodology to unlock the benefits of per-module tuning by leveraging the power of HP transfer using 089 parameterisations. We perform the expensive, high-dimensional search for optimal per-module 090 HPs on a small proxy model, and demonstrate the transfer of the optimal HPs to a large target model. 091 Our contributions are:

- 092 • **Complete^(d)P**. We refine the CompleteP parameterisation from Dey et al. (2025), extending it to 093 modern Transformer components like Query-Key Normalization (Henry et al., 2020). We further 094 identify and rectify minor issues in the original formulation. We illustrate the resulting parameterisation 095 permits robust hyperparameter transfer for all theoretically-motivated variants of depth 096 scaling ($\alpha \in [\frac{1}{2}, 1]$).
- 097 • **New scaling directions for HP transfer.** We systematically study transfer beyond model size, 098 including in token horizons and batch size. We make new recommendations for weight-decay 099 scaling with batch-size adapting the SDE approach of (Malladi et al., 2022) to AdamW.
- 100 • **Per-module HP transfer.** We empirically demonstrate hyperparameter transfer with the right 101 parameterisations holds for per-module hyperparameters. Optimising per-module hyperparameters 102 at a small scale yields significant training speed-ups that persist after transfer to larger scale.
- 103 • **A practical recipe to find per-module HPs.** We empirically characterise the per-module hyper- 104 parameter optimisation landscape. We highlight its challenging nature, marked by sharp “cliffs” 105 where training diverges, resulting in wasted compute. These characteristics make it highly ineffi- 106 cient to use random search and have proved very challenging in our experimentations with vanilla 107 Bayesian optimisation. We show that the landscape is close to “invex”, and opt for simpler *local* 108 search strategies are well-suited to navigate this space and find high-performing configurations.

109

2 HYPERPARAMETER TRANSFER

110 In this section, we describe the hyperparameter transfer modalities we consider, and the principles 111 that we follow to adjust HPs while varying other aspects of the training configuration.¹ We first de-

112 ¹To disambiguate, we’ll refer to *hyperparameters* as aspects of training we want to find optimal values for, 113 which we contrast with *training configuration* – the aspects of training we want to control to facilitate scaling 114 (number of training tokens, number of parameters, batch-size) that are typically integers.

Figure 2: Hyperparameter transfer for global learning rate across depth and width. Each setting is run with three independent seeds.

scribe hyperparameter transfer in model size (width and depth) in Section 2.1, where we introduce a variant of the CompleteP parameterisation (Dey et al., 2025). In Section 2.2, we describe principles we follow for hyperparameter transfer across batch-size. Lastly, we consider hyperparameter transfer in the number of training tokens in Section 2.3, illustrating that optimal HPs do not transfer out of the box across token horizons.

Experimental Setup All experiments are conducted using a decoder-only transformer model (Radford et al., 2019; Phuong & Hutter, 2022) on the RedPajama dataset (Weber et al., 2024). We use a modern transformer variant with pre-normalisation, Query-Key normalisation (Henry et al., 2020), trained with a mixture of cross-entropy and Z-loss (de Brébisson & Vincent, 2016). We always train with a cosine schedule. As a performance metric, we always report the final validation loss on the pre-training data, which is a strong indicator of downstream performance. For remaining training and architecture details, see Appendix D.

2.1 HYPERPARAMETER TRANSFER ACROSS MODEL SIZE

The core idea underlying hyperparameter transfer across models of different sizes is to view models as discretisations of infinite-size limits. Intuitively, two models of different sizes that are both sufficiently close to the same infinite limit will behave similarly, and if their infinite limits are the same over the set of considered hyperparameters, then they should share similar optimal hyperparameters.

The challenge is that, depending on the *parameterisation* — i.e. the rules for adjusting the hyperparameters as a function of size — we can obtain different infinite width or depth limits with fundamentally different behaviours (Yang & Hu, 2021). Most of these limits are pathological in various ways. For instance, the Standard Parameterisation (SP) (Sohl-Dickstein et al., 2020) leads to the features blowing up with size, whereas the Neural Tangent Parameterisation (Jacot et al., 2018) results in a lack of *feature learning* (Yang & Hu, 2021). μ P was identified by Yang & Hu (2021) as the unique parameterisation for Stochastic Gradient Descent (and later for a broad class of adaptive algorithms (Yang & Littwin, 2023)) that precludes the emergence of many such pathologies at scale.

In this work, we build upon the CompleteP (Dey et al., 2025), which itself is an adaptation of Depth- μ P to transformers, to which we make several adaptations. These new scaling rules, which we call **Complete^(d)P**, are summarised in Table 1. Firstly, we extend the parameterisation to Query-Key (QK) normalisation layers (Henry et al., 2020), which have become a staple in modern transformer implementations (Yang et al., 2025; Dehghani et al., 2023). The challenge of QK norms is that, unlike any other component in transformers, these layers share weights across transformer heads. If scaling in width is performed by increasing the number of heads while keeping the head dimension fixed (as was done in (Dey et al., 2025; Yang & Hu, 2021)), then QK norms introduce weight-sharing across the scaled dimensions. This necessitates different scaling considerations than for regular normalisation layer multipliers or biases. The adjustments for AdamW (Loshchilov & Hutter, 2017) are shown in Table 1, which we justify in Appendix B.

Secondly, we note that Dey et al. (2025) mistakenly derived the wrong scaling for the AdamW ϵ scaling for the input embedding. We justify our modification in the Appendix B. Although the

162 Table 1: **Parameterisation Comparison** as a function of width (m_N), depth (m_L), batch size (m_B)
 163 and token count/data size (m_D) ratios. For Complete^(d)P, differences to CompleteP (Dey et al.,
 164 2025) for width & depth scaling are shown alongside in gray.

Parameterisation:		$\mu\mathbf{P}$ (Table 3)	Complete ^(d) P
Multiplicators	MHA Residual	$\mathbf{x} + \text{MHABlock}(\mathbf{x})$	$\mathbf{x} + m_L^{-\alpha} \text{MHABlock}(\mathbf{x})$
	MLP Residual	$\mathbf{x} + \text{MLPBlock}(\mathbf{x})$	$\mathbf{x} + m_L^{-\alpha} \text{MLPBlock}(\mathbf{x})$
	Unemb. Fwd	<i>Unaugmented</i>	<i>Unaugmented</i> $[\times (m_N^{-1})]$
Init. Variances	Input Emb.		
	Hidden weights	$\times m_N^{-1}$	$\times m_N^{-1}$
	Hidden biases/norms	σ_b^2	
	Unemb. LN		
Learning Rates	Unemb. Weights	$\times m_N^{-2}$	$\times m_N^{-2} [\times 1]$
	Input Emb.		
	Hidden weights	$\times m_N^{-1}$	$\times m_N^{-1} \times m_L^{\alpha-1}$
	Hidden biases/norm	η_b	$\times m_L^{\alpha-1} [\text{NA}]$
AdamW ϵ	Unemb. LN		$\times \sqrt{\frac{m_B}{m_D}}$
	Unemb. weights	$\times m_N^{-1}$	$\times m_N^{-1} [\times 1]$
	Hidden weights/biases/norms	$\times m_N^{-1}$	$\times m_N^{-1} \times m_L^{-\alpha}$
	QK norms	NA	$\times m_L^{\alpha} [\text{NA}]$
Weight decay	Input Emb.	$\times m_N^{-1}$	$\times m_N^{-1} [\times 1]$
	Output weights/biases/norms		$\times \left(\frac{m_B}{m_D}\right)^{-\frac{1}{2}}$
	Hidden weights	$\times m_N$	$\times m_N$
AdamW ϵ	Unemb. weights	$\times m_N$	$\times \sqrt{\frac{m_B}{m_D}}$
	Rest	$\times 1$	$\times 1$
$AdamW(1 - \beta_1)$		$(1 - \beta_{1,b})$	$\times \frac{m_B}{m_D}$
$AdamW(1 - \beta_2)$		$(1 - \beta_{2,b})$	$\times \frac{m_B}{m_D}$
Training iterations $\propto \frac{m_D}{m_B}$			

resulting modification is minor, we found that the lack thereof was sufficient to break a thorough sweep of the coordinate checks described by Yang et al. (2022) in our implementation.

Lastly, we eliminate the explicit scalar multiplier on the output of the final linear projection, $f : \mathbb{R}^E \rightarrow \mathbb{R}^V$, by reparameterising its effect into the learning rate and initialisation scale. This enables memory-efficient algorithms like Cut Cross-Entropy (Wijmans et al., 2025), which avoid materialising the full $V \times E$ projection matrix, drastically reducing GPU memory requirements for modern large vocabulary models.

In Figure 2, we verify the HP transfer with Complete^(d)P across width and depth. An important factor in Depth- $\mu\mathbf{P}$ is the depth-dependent re-scaling factor for the residual connection in transformers (\mathbf{h}^ℓ the output of layer ℓ , \mathcal{F}_ℓ the function applied to it):

$$\mathbf{h}^{\ell+1} = \mathbf{h}^\ell + m_L^{-\alpha} \mathcal{F}_\ell(\mathbf{h}^\ell), \quad \ell \in \{1, \dots, L\}$$

which is governed by a single parameter $\alpha \in [0.5, 1]$. We make the following observation:

Complete^(d)P with $\alpha = \frac{1}{2}$ and $\alpha = 1$ permits hyperparameter transfer across depth.

Our parameterisation seems to allow for HP transfer with all theoretically justified values of $\alpha \in [\frac{1}{2}, 1]$. This is in contrast to the findings of Dey et al. (2025) who notice a degradation of transfer for $\alpha = 0.5$. The added QK norms in our implementation improve stability (see Figure 11 for a comparison without); however, removing them does not lead to the breakdown of transfer reported by Dey et al. (2025). We note that in their publicly-released reference implementation, they apply the same AdamW's ϵ to all weights (including embeddings), against their own paper recommendation. Interestingly, the optimal loss is slightly better for the largest model for $\alpha = \frac{1}{2}$,

216 potentially suggesting that the theoretical arguments for this parameterisation on the basis of *feature*
 217 *diversity* (Yang et al., 2024) might be beneficial in a language transformer context.
 218

219 2.2 HYPERPARAMETER TRANSFER ACROSS BATCH-SIZE 220

221 Model size and dataset size are two levers to achieve lower loss – increasing each predictably leads
 222 to model improvements as implied by scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022).
 223 This, in turn, requires scaling up significantly the compute budget, which is only feasible through
 224 parallelization. In that context, the set of usable batch-sizes is heavily constrained and largely dictated
 225 by the memory configuration of a specific parallel architecture. However, training for long
 226 token horizons is challenging with a small batch-size, as it demands many more sequential training
 227 iterations. On the one hand, for smaller hyperparameter sweep runs, a smaller batch-size is often
 228 desirable to reduce the per-run memory footprint and enable running on fewer GPUs. On the other
 229 hand, that batch-size will no longer be suitable for larger runs. Unfortunately, as with scaling model
 230 size or training duration, hyperparameters do not transfer across batch-sizes without further repa-
 231 rameterisation. In this work, we transfer hyperparameters across batch-size via a similar limiting
 232 argument as for transfer across model size. In particular, we follow and extend the principles for
 233 batch-size transfer laid out in Malladi et al. (2022).
 234

235 **Training as discretising an SDE** We consider the same simplifying example as in Malladi et al.
 236 (2022). We consider that the gradients queried at each step k are a noisy version of a fixed direction
 237 $\mathbf{g}^k = \mathbf{g} + \sigma \mathbf{e}^k$, where \mathbf{e}^k are i.i.d. Gaussian vectors of identity covariance. We further use the
 238 RMSProp algorithm as an example, and place ourselves in the high-variance regime, where $\sigma \gg$
 239 $\|\mathbf{g}\|$. Contrary to Malladi et al. (2022), we also consider a weight decay term as in AdamW. We let η
 240 the learning rate, and λ the weight decay. We obtain the simplified RMSProp iterations (see (Malladi
 241 et al., 2022, Sec. 4.1) for more details) that define the iterates $\theta(k; \eta, \lambda, \sigma)$ with the equation
 242

$$\theta^{k+1} = \theta^k - \eta \left(\frac{\mathbf{g}^k}{\sigma} + \lambda \theta^k \right) = \theta^k - \frac{\eta}{\sigma} (\mathbf{g} + \lambda \sigma \theta^k) - \eta \mathbf{e}^k, \quad (1)$$

243 which is a discretization of the SDE $d\Theta_t = \frac{1}{\eta\sigma}(\mathbf{g} + \lambda\sigma\Theta_t)dt + dW_t$ with step-size η^2 , in the sense
 244 that $\theta^k \simeq \Theta_{k\eta^2}$. Therefore, we find that the multipliers to keep fixed iterate distributions, i.e., such
 245 that $\theta(k; \eta, \lambda, \sigma) = \theta(m_k k; m_\eta \eta, m_\lambda \lambda, m_\sigma \sigma)$, should verify $m_k m_\eta^2 = 1$, $m_\eta m_\sigma = 1$, and $m_\lambda =$
 246 m_η . In particular, if the batch-size is multiplied by κ , we have $m_\sigma = \kappa^{-1/2}$ and we find that the
 247 new hyperparameters matching the SDE limit should follow the square-root scaling rule
 248

$$\eta' = \sqrt{\kappa}\eta, \quad k' = \kappa k, \quad \text{and} \quad \lambda' = \sqrt{\kappa}\lambda. \quad (2)$$

249 To the best of our knowledge, we are the first to extend the SDE reparametrisation scaling rules
 250 (Li et al., 2019; Malladi et al., 2022) to the weight decay of AdamW, although we note that the
 251 same scaling rule for weight decay was proposed based on other principles in recent work (Wang &
 252 Aitchison, 2025; Compagnoni et al., 2025; Bergsma et al., 2025). We report the effect of using these
 253 scaling rules in batch-size in Figure 3; using the square-root rule is critical to good LR transfer. We
 254 further show in Figure 4 that the above rule is critical for transfer of weight-decay in batch-size.
 255

256 **AdamLH and multipliers** Equation 1 mirrors the Pytorch implementation of AdamW, where the
 257 weight decay λ is multiplied by the learning rate η . If one instead uses the original AdamW imple-
 258 mentation, often coined AdamLH, as proposed by Loshchilov & Hutter (2017), we get the simplified
 259 iterations $\theta^{k+1} = \theta^k - \eta \frac{\mathbf{g}^k}{\sigma} - \lambda \theta^k$, and we find that the multipliers are the same as for AdamW,
 260 except that $m_\lambda = m_\eta^2$: doubling the batch-size means that the weight decay should now be doubled.
 261 Hence, using AdamLH leads to a bigger drift across batch-sizes if the scaling is not done correctly,
 262 amplifying further the drift observed in Figure 3, right. We posit that this is one of the reasons why
 263 the Pytorch implementation is more widely used.
 264

265 2.3 HYPERPARAMETER TRANSFER IN TRAINING DURATION 266

267 Unlike transfer in model size or batch-size, transfer in the token horizon has received comparatively
 268 less attention in the literature. Nonetheless, it is one of the two main levers to scaling compute. Like
 269 Bjorck et al. (2025), we observe that the optimal learning rate decays with the number of training
 270 iterations, holding all other things constant. **Optimal learning rate keeps SDE time constant.**

Figure 3: **Learning rate transfer with batch-size.** **Left:** Learning rates transfer when using the square-root rule in Equation 2 **Right:** Learning rates fail to transfer without adjustment. Each setting is run with three independent seeds.

Figure 4: **Weight decay transfer with batch-size.** **Left:** Weight decay fails to transfer with batch-size without any adjustments. **Middle:** The rescaled (effective) weight decay $\lambda/\sqrt{\kappa}$ where κ is the increase does transfer. **Right:** The effective weight decay transfers when rescaling all hyperparameters following our AdamW SDE scaling rule. Each setting is run with three independent seeds.

Figure 5: Learning rate transfer across training horizon – adjusting the number of tokens by changing the number of training iterations while holding batch-size constant. **Left:** Break-down of transfer of the global learning rate. **Right:** Stability of the “effective” learning rate – one that preserves the AdamW SDE integration horizon. Each setting is run with three independent seeds.

In Figure 5, we notice that the optimal learning rate decays at a rate roughly proportional to $\frac{1}{\sqrt{\kappa}}$, where κ is the factor by which we've increased the number of training iterations. We plot the optimal learning rate from the shortest training duration (η_{opt}) transferred with the scaling rule $\frac{\eta_{\text{opt}}}{\sqrt{\kappa}}$ in gray, and observe that it aligns almost perfectly with the true optima. In contrast, Bjorck et al. (2025) fit a scaling law to find the exponents β for the scaling rule $\frac{\eta_{\text{opt}}}{\kappa^\beta}$; and they identify β to be in the ranges of 0.3 – 0.7 depending on the model size, which matches our scaling rule.

Square-root reparameterisation for learning rate permits transfer across training horizon.

Figure 6: **Scaling law comparison of models trained with and without Complete^(d)P token horizon scaling rule.** We compare Complete^(d)P width & depth scaling only (aka CompleteP with ϵ and QK-norm fixes in Section 2.1) and full Complete^(d)P with SDE scaling rules for token horizon transfer. The token horizon transfer rule leads to better performance at scale, as indicated by a better lower bound coefficient of the scaling law.

Figure 7: **Best Learning Rate annealing over 4,842 runs for five different token horizons.** The best schedule at a short horizon is never a prefix for the best schedule at a longer horizon. The optimal schedule cannot be found by a greedy approach: the best LR annealing is not data agnostic.

In light of the SDE interpretation in subsection 2.2, scaling the learning rate by $\frac{1}{\sqrt{\kappa}}$ while holding the batch-size constant can be seen as reducing the signal-to-noise (SNR) ratio in the SDE, while keeping the time horizon constant. Indeed, we orthogonally observe that when simulating the AdamW SDE, improving the signal-to-noise ratio (i.e. reducing the size of the diffusion coefficient) while holding other parameters constant consistently leads to improved performance. Hence, we hypothesise that the right way to scale the token horizon might be only adjusting the signal-to-noise parameter in the AdamW SDE, while keeping all other terms constant. We validate this empirical observation in Figure 12, where we scale the number of tokens by increasing batch-size only (which has the desired effect of changing the signal-to-noise ratio); we observe a near-perfect learning rate transfer across the token horizon. We expect this transfer to break at larger batch-sizes, where the discretisation will be too coarse for AdamW to approximate the underlying SDE, but when taken together with the batch-size reparameterisation rules in subsection 2.2, this finding suggests how to scale all HPs across token horizons while choosing the batch-size freely. This is the token horizon scaling procedure we follow in all the per-module HP results in the remainder of this paper. We note that this finding might be specific to the fixed (cosine) schedule that we use. The resulting scaling rule as a function of the token horizon leads to better asymptotic performance, as predicted by a scaling law, as we demonstrate in Figure 6.

378 **Best Learning Rate (LR) annealing at different token horizons.** Optimal schedules might have
 379 different shapes at different token horizons (Luo et al., 2025). We conduct a greedy search to de-
 380 termine optimal learning rate schedules in the following way. We enumerate all the non-increasing
 381 piecewise-constant LR schedule over the discrete set $\{0.0015/2.5^k | 0 \leq k \leq 4\}$. We sub-divide the
 382 total training duration in 16 intervals of 77M tokens each. At the end of each interval, either the LR
 383 remains constant, either it is decayed by one or more steps. For five different token horizons, we
 384 report the best scheduling among the 4,842 tested. We report the results in Figure 7. We notice that
 385 the best scheduling at short horizon is never a prefix of the best scheduling at long horizon. This em-
 386 pirical observation is compatible with the findings of Luo et al. (2025): there is a tension between
 387 the optimisation bias induced by the terminal LR value (the lower the better) and the progress of
 388 optimisation which requires higher LR values at start.

3 INVESTIGATING TRANSFER OF PER-MODULE HYPERPARAMETERS

392 Equipped with the tools for hyperparameter transfer described in the preceding section, in this sec-
 393 tion we investigate 1) how much there is to gain from per-parameter hyperparameter optimisation,
 394 and 2) how well do per-module hyperparameters transfer.

3.1 OPTIMISING PER-MODULE HYPERPARAMETERS

398 To show improvements and transfer of per-module hyperparameters, we need a good way to optimise
 399 them at a fixed scale. Although there is ample literature on hyperparameter optimisation in deep
 400 learning (Snoek et al., 2012; Maclaurin et al., 2015; Lorraine et al., 2020), optimising HPs on a per-
 401 module basis introduces many new difficulties. Below, we highlight why many standard approaches
 402 fail in the per-parameter optimisation setting.

403 **Per-module hyperparameter loss landscape** In Figure 8, we plot slices through the per-module
 404 learning rate (LR) loss landscape — i.e. the landscape of the mapping from LRs to the final loss.
 405 We observe that, fortuitously, it’s pretty close to being invex (stationary points are global minima),
 406 and hence might be tractable even despite its high dimensionality. Several other aspects, however,
 407 render it challenging for common HP optimisation methods: **1)** The values of per-module learning
 408 rates at which training becomes unstable are module-dependent, and can differ by multiple orders
 409 of magnitude. **2)** The boundary at which training becomes unstable has a complex shape, with non-
 410 trivial interactions among different modules, implying it’s difficult to predict with simple predictive
 411 models (e.g. linear models or Gaussian Processes (Williams & Rasmussen, 2006)). Our observation
 412 is similar to that made by Sohl-Dickstein (2024) — who observed the stable regime boundary is a
 413 fractal — but we also note a lack of an emergent simple structure at the macro scale. This means
 414 common hyperparameter optimisation strategies, like random search or standard Bayesian Optim-
 415 isation, struggle in this regime. For instance, random search lacks any locality bias; we observe
 416 that without careful manual tuning of the search boundaries, either all runs will fail due to unstable
 417 training, or the boundaries will fail to include the actual optimum. Bayesian optimisation rely on
 418 Gaussian processes (GPs) approximations to guide search locally around previously successful tri-
 419 als. However, GPs may struggle on highly non-stationary data (Snoek et al., 2014; Rana et al., 2017)
 420 with a fixed kernel. We did observe such irregularities in the HP to loss landscape, which resulted
 421 in many failures when using BO. Many of these difficulties can be alleviated by more robust ‘trust
 422 region’ methods — approaches that optimise in neighbourhoods of previous good solutions. We de-
 423 scribe a simple trust-region random search variant that we use for our experiments in Appendix C.

424 **Parameterising per-module hyperparameters** We adopt a depth-type Kronecker parameterisa-
 425 tion of per-module hyperparameters that is compatible with Complete^(d)P transfer across width and
 426 depth. Let $m \in \mathcal{M}$ index module type within a Transformer block (QKV weights, attention projec-
 427 tions, MLP weights and biases, layer norm and QK-norm multipliers), and let $\ell \in 1, \dots, L$ index
 428 the depth. For a hyperparameter $\zeta_{g,\ell} \in \eta, \lambda, (1 - \beta_1), (1 - \beta_2), \epsilon$ for module m at depth ℓ :

$$\log \zeta_{m,\ell}(T, N, L, B) = \underbrace{\log \zeta_m^{\text{type}}}_{\text{type}} + \underbrace{\log \zeta_\ell^{\text{depth}}(L)}_{\text{depth}} + \underbrace{\log \text{SDE}(T, B)}_{\text{SDE batch/horizon}} + \underbrace{\log \text{CP}_m(N, L)}_{\text{CompleteP}} \quad (3)$$

431 where $\text{SDE}(T; B)$ carries all training-horizon T and batch-size B dependence via the AdamW SDE
 432 transfer rules, $\text{CP}_g(N, L)$ is the Complete^(d)P scaling rule adjustment in width and depth (Table 1),

Figure 8: The boundary for stable training has a complex shape. Each plot shows the final training loss for different combination of learning rates for the modules indicated, while fixing the remaining learning rates to the optimal “global” value. MLP weights refer to the MLP in the attention layer. If unstable training results in NaNs, the last stable training loss is reported.

and $\zeta_m^{\text{type}}, \zeta_\ell^{\text{depth}}$ for $m \in \mathcal{M}, \ell \in L$ are dimensionless, time-invariant multipliers that we optimise at a given width and depth. This factorisation reduces the number of free multipliers from $|\mathcal{M}|L$ to $|\mathcal{M}| + L$. We optimise the hyperparameter multipliers in log-space using trust-region random search (Appendix C). For the learning rate, the above multiplier post-multiplies the learning rate from the cosine schedule. When transferring the depth multipliers $\zeta_\ell^{\text{depth}}(L)$ to a larger depth L' , we interpolate them linearly with respect to $\frac{\ell}{L}$. This is reasonable, as the depth-SDE ($\alpha = \frac{1}{2}$) or depth-ODE limits ($\alpha \in (\frac{1}{2}, 1]$) should still exist if the base hyperparameters $\zeta_{\lfloor tL \rfloor}^{\text{depth}}(L)$ vary continuously with sufficient regularity across depth $t \in [0, 1]$. In this sense, the finite-depth multipliers can be seen as a discretisation of the continuous limit HPs: To transfer to a large depth we simply linearly interpolate all HPs in depth.

3.2 PER-MODULE HYPERPARAMETERS MATTER

Depth multipliers matter We ablated away the effect of the learning rate per-depth multipliers, by instead considering only a search over learning rate multipliers for each layer *role*: Within each residual block, every parameter group gets an independent learning rate, which is shared *across* different residual blocks; similarly, each parameter group in the embedding and unembedding layers gets its own value. We initiate this search from a projection of the best per-module hyperparameters onto this linear subspace. In Figure 14c, we observe that the search value, although still substantially better than the best global learning rate, is worse than the one that includes per-depth multipliers. Hence, while **the majority of the gain comes from different module types within residual blocks getting different learning rates**, there is still notable benefit to per-depth multipliers.

How restrictive is the depth-Kronecker factorisation? To check how much performance we’re leaving on the table with the depth-Kronecker factorisation constraint, we continue searching for fully uncoupled per-layer learning rates from the optimal Kronecker-factorised ones. The search results are shown in Figure 14b. Crucially, we observe virtually no improvement over the Kronecker-factorised ones. While this is not conclusive evidence that the optimal per-module learning rates are depth-Kronecker factored – the fully uncoupled search-space is much higher-dimensional and more difficult to navigate, and it’s likely we didn’t find the optimum – these runs imply that most of the benefits of per-module HP optimisation can be captured by Kronecker factorised learning rates.

3.3 OPTIMAL PER-MODULE HYPERPARAMETERS TRANSFER WITH SCALE

Demonstrating upsides of per-module HP optimisation would be of little practical use if the HPs have to be tuned at the target model scale. In this section, we show that the improvements *do* persist across different model scales. Firstly, we demonstrate transfer in *model size*. Figure 9 illustrates that the optimal per-module learning rates transfer as we scale up both width and depth. Although we cannot easily visualise how the per-parameter HP loss landscape shifts as we vary model size (like was shown in Figure 2) due to its high-dimensional nature, we instead show the final training losses for a slice (a hyperplane) going through both the scaled-up optimal per-module learning rates

486 and the optimal global learning rate. We observe that this landscape appears stable with model size,
 487 suggesting that the optimal per-module LRs do transfer with width and depth.
 488

503 Figure 9: Transfer across model scale of the optimal per-module learning rates. We interpolate
 504 between the optimal global learning rate multiplier, and the optimal per-module multipliers across
 505 models of different scales, and show that the optimal per-module multipliers 1) consistently improve
 506 upon the global multiplier baseline, and 2) remain close to optimal in the hyperplane spanned by the
 507 optimal global and local multipliers. Each setting is run with three independent seeds.

508 **Transferring all per-module HPs across the compute optimal horizon.** We also investigate what
 509 improvements are possible when transferring per-module HPs to a compute-optimal model at the
 510 1B parameter scale. Here, we jointly optimise the per-module learning rate, weight-decay, AdamW
 511 $\beta_1, \beta_2, \epsilon$ and initialisation scale, and the residual block multipliers. We continue the search from
 512 the optimal per-module learning rates identified with search in Figure 14a at the 50M parameter
 513 & 1.6B token scale. In Figure 1, we show that when transferred to the 1.3B & 26B token scale
 514 (420 \times compute) the optimal per-module HPs lead to a 27% speed-up to reach equivalent loss over
 515 the optimal global HP baseline.

517 4 DISCUSSION & CONCLUSION

520 **Limitations & Future Work** Our study encompasses a broad set of hyperparameters and transfer
 521 modalities, but there are limits to our empirical explorations, some of which we highlight below:

- 522 • Although we identify improved per-module hyperparameters in a reasonable number of trials,
 523 a better suited search method could potentially be significantly more trial-efficient. Exploring
 524 Bayesian optimisation methods that address the specific difficulties of the per-module hyperpa-
 525 rameter loss landscape highlighted in this work — such as Trust Region Bayesian Optimisation
 526 (Eriksson et al., 2019) — as well as methods that utilise early-stopping, and methods that exploit
 527 the structure of the training process (Lin et al., 2024) seem particularly promising.
- 528 • We only evaluate on one training setup (autoregressive transformer training on the RedPajama
 529 dataset). While that setup has broad practical relevance, our approach (the proposed transfer prin-
 530 ciples, and benefits of per-module hyperparameters) should be ideally verified in other settings.
- 531 • The benefits of per-module hyperparameters we identified at small scale seem to diminish with
 532 model and data size. However, we do not know whether that is mostly to be explained by imperfect
 533 hyperparameter transfer in the non-asymptotic regime, or whether this is due to an asymptotic
 534 property of the infinite-scale models. We hope future work might find computationally feasible
 535 ways of answering that question.

536 **Conclusion** In this paper, we proposed new transfer rules for hyper-parameters, valid across the most
 537 important scaling axes: model’s width, model’s depth, token horizon, and batch size. Furthermore,
 538 these transfer rules also hold for *per-module* hyper-parameters. We demonstrate that systematic
 539 optimisation at small scale with trust region methods produce a configuration that transfers to larger
 scales, and significantly improves training speed.

540 REFERENCES
541

- 542 Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
543 Power lines: Scaling laws for weight decay and batch size in llm pre-training. *arXiv preprint*
544 *arXiv:2505.13738*, 2025.
- 545 Johan Bjorck, Alon Benhaim, Vishrav Chaudhary, Furu Wei, and Xia Song. Scaling op-
546 timal lr across token horizons. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
547 (eds.), *International Conference on Representation Learning*, volume 2025, pp. 83640–83657,
548 2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/cffa22c56c0df3b3edb1df8a9ad67804-Paper-Conference.pdf.
- 549
- 550 Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
551 and Aurelien Lucchi. Adaptive methods through the lens of sdes: Theoretical insights on the role
552 of noise, 2025. URL <https://arxiv.org/abs/2411.15958>.
- 553
- 554 Alexandre de Brébisson and Pascal Vincent. The z-loss: a shift and scale invariant classification loss
555 belonging to the spherical family, 2016. URL <https://arxiv.org/abs/1604.08859>.
- 556
- 557 Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
558 Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
559 vision transformers to 22 billion parameters. In *International conference on machine learning*,
560 pp. 7480–7512. PMLR, 2023.
- 561 Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
562 Pehlevan, Boris Hanin, and Joel Hestness. Don't be lazy: Completep enables compute-efficient
563 deep transformers. *arXiv preprint arXiv:2505.01618*, 2025.
- 564
- 565 David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
566 global optimization via local bayesian optimization. *Advances in neural information processing*
567 *systems*, 32, 2019.
- 568
- 569 Nikolaus Hansen. The cma evolution strategy: a comparing review. *Towards a new evolutionary*
570 *computation: Advances in the estimation of distribution algorithms*, pp. 75–102, 2006.
- 571
- 572 Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
573 for transformers, 2020. URL <https://arxiv.org/abs/2010.04245>.
- 574
- 575 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
576 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
577 Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Au-
578 relia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Lau-
579 rent Sifre. An empirical analysis of compute-optimal large language model training. In
580 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in*
581 *Neural Information Processing Systems*, volume 35, pp. 30016–30030. Curran Associates, Inc.,
582 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.
- 583
- 584 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
585 eralization in neural networks. *Advances in neural information processing systems*, 31, 2018.
- 586
- 587 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
588 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
589 models, 2020. URL <https://arxiv.org/abs/2001.08361>.
- 590
- 591 Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and dynamics of stochastic
592 gradient algorithms i: Mathematical foundations. *Journal of Machine Learning Research*, 20(40):
593 1–47, 2019. URL <http://jmlr.org/papers/v20/17-526.html>.
- 594
- 595 Jihao Andreas Lin, Sebastian Ament, Maximilian Balandat, and Eytan Bakshy. Scaling gaus-
596 sian processes for learning curve prediction via latent kronecker structure. *arXiv preprint*
597 *arXiv:2410.09239*, 2024.

- 594 Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
 595 by implicit differentiation. In Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of the*
 596 *Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of
 597 *Proceedings of Machine Learning Research*, pp. 1540–1552. PMLR, 26–28 Aug 2020. URL
 598 <https://proceedings.mlr.press/v108/lorraine20a.html>.
- 599
- 600 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 601 *arXiv:1711.05101*, 2017.
- 602 Jan Ludziejewski, Jan Małański, Maciej Pióro, Michał Krutul, Kamil Ciebiera, Maciej Stefaniak,
 603 Jakub Krajewski, Piotr Sankowski, Marek Cygan, Kamil Adamczewski, and Sebastian Jaszcuzur.
 604 Decoupled relative learning rate schedules, 2025. URL <https://arxiv.org/abs/2507.03526>.
- 605
- 606 Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Maosong Sun, Zhiyuan Liu, Kaifeng
 607 Lyu, and Wenguang Chen. A multi-power law for loss curve prediction across learning rate
 608 schedules. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 609 <https://openreview.net/forum?id=KnoS9XxIlK>.
- 610
- 611 Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
 612 tion through reversible learning. In Francis Bach and David Blei (eds.), *Proceedings of the*
 613 *32nd International Conference on Machine Learning*, volume 37 of *Proceedings of Machine*
 614 *Learning Research*, pp. 2113–2122, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/macLaurin15.html>.
- 615
- 616 Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
 617 rules for adaptive gradient algorithms. *Advances in Neural Information Processing Systems*, 35:
 618 7697–7711, 2022.
- 619
- 620 Mary Phuong and Marcus Hutter. Formal algorithms for transformers. *arXiv preprint*
 621 *arXiv:2207.09238*, 2022.
- 622
- 623 Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, and Atish Agarwala. Scaling
 624 collapse reveals universal dynamics in compute-optimally trained neural networks. In *Forty-
 625 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=Fvq9ogLnLN>.
- 626
- 627 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 628 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- 629
- 630 Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional bayesian
 631 optimization with elastic gaussian process. In *International conference on machine learning*, pp.
 632 2883–2891. PMLR, 2017.
- 633
- 634 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
 635 learning algorithms. *Advances in neural information processing systems*, 25, 2012.
- 636
- 637 Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian optimiza-
 638 tion of non-stationary functions. In *International conference on machine learning*, pp. 1674–
 639 1682. PMLR, 2014.
- 640
- 641 Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal, 2024. URL <https://arxiv.org/abs/2402.06184>.
- 642
- 643 Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaehoon Lee. On the infinite width
 644 limit of neural networks with a standard parameterization. *arXiv preprint arXiv:2001.07301*,
 645 2020.
- 646
- 647 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 648 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL <https://arxiv.org/abs/1706.03762>.

- 648 Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness disparity
 649 principle in transformers for accelerating language model pre-training. In *Forty-second Interna-*
 650 *tional Conference on Machine Learning*, 2025.
- 651
- 652 Xi Wang and Laurence Aitchison. How to set adamw’s weight decay as you scale model and dataset
 653 size. In *Forty-second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=IszVnczhfz>.
- 654
- 655 Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
 656 Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
 657 lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
 658 Ce Zhang. Redpajama: an open dataset for training large language models. *NeurIPS Datasets
 659 and Benchmarks Track*, 2024.
- 660 Erik Wijmans, Brody Huval, Alexander Hertzberg, Vladlen Koltun, and Philipp Krahenbuehl.
 661 Cut your losses in large-vocabulary language models. In *The Thirteenth International Confer-
 662 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=E4Fk3YuG56>.
- 663
- 664 Christopher KI Williams and Carl Edward Rasmussen. *Gaussian processes for machine learning*,
 665 volume 2. MIT press Cambridge, MA, 2006.
- 666
- 667 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 668 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 669 arXiv:2505.09388*, 2025.
- 670
- 671 Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural net-
 672 works. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Con-
 673 ference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*,
 674 pp. 11727–11737. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/yang21c.html>.
- 675
- 676 Greg Yang and Etaı Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit,
 677 2023. URL <https://arxiv.org/abs/2308.01814>.
- 678
- 679 Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
 680 der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
 681 networks via zero-shot hyperparameter transfer, 2022. URL <https://arxiv.org/abs/2203.03466>.
- 682
- 683 Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
 684 infinite depth neural networks. In *The Twelfth International Conference on Learning Representa-
 685 tions*, 2024. URL <https://openreview.net/forum?id=17pVDnpwwl>.
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702	CONTENTS	
703		
704		
705	1 Introduction	2
706		
707	2 Hyperparameter transfer	2
708	2.1 Hyperparameter transfer across model size	3
709	2.2 Hyperparameter transfer across batch-size	5
710	2.3 Hyperparameter transfer in training duration	5
711		
712		
713	3 Investigating transfer of per-module hyperparameters	8
714		
715	3.1 Optimising per-module hyperparameters	8
716	3.2 Per-module hyperparameters matter	9
717	3.3 Optimal per-module hyperparameters transfer with scale	9
718		
719		
720	4 Discussion & Conclusion	10
721		
722	A Additional experiments & figures	15
723	A.1 Suboptimality of learning rates identified at too small scales	15
724		
725	B Motivation of the Complete^(d)P adjustments	20
726		
727	B.1 QK norm multiplier weights	20
728	B.2 Embedding layer AdamW ϵ	20
729	B.3 Changes to the unembedding weight	20
730		
731		
732	C Per-module hyperparameter search algorithm	21
733		
734	D Experimental details	21
735		
736	D.1 Best Learning Rate (LR) annealing at different token horizons	21
737	D.2 Baseline global hyperparameter tuning	22
738	D.3 Per-module hyperparameter search and transfer (Figure 1)	22
739		
740		
741	E Extended related work	22
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

Figure 10: **Suboptimality of learning rates optimised at smaller scales.** We plot the final loss on a 483M parameter model (y-axis) when training with the learning optimal for a smaller model (x-axis). To optimise the (global) learning rate at each of the shown smaller scales, we conduct a grid search with the following set of candidates: $\{10^{-4}, 3.3 \times 10^{-4}, 5.6 \times 10^{-4}, 10^{-3}, 3.3 \times 10^{-3}, 5.6 \times 10^{-3}, 10^{-2}, 3.3 \times 10^{-2}, 10^{-1}, 3.3 \times 10^{-1}\}$. We use Complete^(d)P throughout. At the 136M scale, the optimal learning rate is already approximately stabilised. At the 50M scale, we incur a small penalty. The final losses are averages over 3 seeds.

A ADDITIONAL EXPERIMENTS & FIGURES

A.1 SUBOPTIMALITY OF LEARNING RATES IDENTIFIED AT TOO SMALL SCALES

As hyperparameter transfer in width & depth with Complete^(d)P is motivated by the asymptotic width & depth behavior, one would expect it to start degrading at smaller scales. Indeed, this can be empirically observed with learning rate transfer in, e.g., Figure 2. Hence, there is a trade-off when optimising hyperparameters with Complete^(d)P transfer; going to smaller model sizes enables cheaper hyperparameter optimisation, but these hyperparameters could be slightly suboptimal at scale due to degraded hyperparameter transfer.

We illustrate this trade-off in Figure 10, where we show the final loss of a larger-scale model (483M) when transferring optimal hyperparameters (global learning rate) from a smaller model with Complete^(d)P. We see that when transferring the optimal learning rate from a smaller 58M model, we incur a small transfer penalty. Optimising the learning rate at the 136M scale or larger seems to incur virtually no penalty. This suggests we might have been able to obtain more competitive per-module hyperparameters, at a substantially higher compute cost, were we to conduct our search at the 136M scale. We consider it an exciting direction for future work to empirically investigate at what scales hyperparameters should be optimised, and subsequently transferred, for maximum compute savings. Nonetheless, this will of course depend on the hyperparameter search method used.

Figure 11: The effect of QK-norms on hyperparameter transfer of the global learning rate across depth with two variants of Complete^(d)P with $\alpha \in \{\frac{1}{2}, 1\}$.

Figure 12: Learning rate transfer across token horizon when scaling up by increasing batch-size while holding training iterations constant. This scaling rule can be seen as improving the gradient signal-to-noise (SNR) ratio in the discretised AdamW SDE (Malladi et al., 2022), while holding all the other SDE parameters and the integration horizon fixed.

Figure 13: Lack of learning rate transfer across training horizons — increasing token horizon through number of iterations with a fixed batch-size — for different model sizes. The square-root transfer rule for the optimal learning rate identified at the smallest token horizon for each model size is plotted in .

(a) Hyperparameter search for the per-module learning rate multipliers parameterised with the depth-Kronecker factorisation.

(b) Hyperparameter search for the per-module learning rate multipliers with **fully uncoupled** multipliers. The search is initialised with the optimal HPs found in the search for optimal depth-Kronecker factorised multipliers in Figure 14a.

(c) Hyperparameter search for the per-module learning rate multipliers **with no depth multipliers**. The search is initialised with the projection of onto the constraint set of the optimal HPs found in the search in Figure 14a.

Figure 14: Hyperparameter search results with Trust Region Random Search. Each dot indicates the final loss of a single trial, and the lines indicate the training duration (start & end).

1026 B MOTIVATION OF THE COMPLETE^(d)P ADJUSTMENTS

1028 Here, we give a justification for each of the modifications made in Complete^(d)P in Table 1. These
 1029 modifications primarily concern scaling the infinite-width limit. We directly rely on the properties
 1030 that μ P parameterised neural networks are known to possess that were formally shown in (Yang
 1031 et al., 2024; Yang & Littwin, 2023). Concretely, we note that when scaling with μ P, all forward
 1032 hidden-layer (pre-)activations are expected to have entries of size $\Theta(1)$ (as defined in (Yang & Hu,
 1033 2021, Definition N.2)) and the backpropagated gradients with respect to hidden (pre-)activations are
 1034 expected to have entries of size $\Theta(1/N)$. Furthermore, the (pre-)activations and the back-propagated
 1035 (pre-)activation gradients are expected to approach *i.i.d.* in the infinite-width limit.

1037 B.1 QK NORM MULTIPLIER WEIGHTS

1038 In standard implementation of QK norms, the elementwise affine operation $\mathbf{x} \mapsto \mathbf{m} \odot \mathbf{x} + \mathbf{b}$ with
 1039 multipliers \mathbf{m} and bias \mathbf{b} is shared across the transformer heads. When scaling width by increasing
 1040 the number of heads — as is common in most of the relevant model scale parameterisation literature
 1041 (Dey et al., 2025; Yang et al., 2022) — this effectively means that these parameters are shared across
 1042 the scaled width dimension N . For instance, for a collection of query vectors $\mathbf{q} \in \mathbb{R}^{N_{\text{heads}} \times d_{\text{head}}}$,
 1043 we have that the normalised query elements $\hat{q}_{ij} := m_j q_{i,j} + b_j$ all share the same parameters
 1044 $m_j, b_j \in \mathbb{R}$ for $i = 1, \dots, N_{\text{heads}}$, where $N_{\text{heads}} = \Theta(N)$. We denote by $\mathbf{q}_{:,j}$ the $\mathbb{R}^{N_{\text{heads}}}$ vector
 1045 $(q_{i,j} : i = 1, \dots, N_{\text{heads}})$ ($\hat{q}_{:,j}$ respectively). By the results of Yang & Hu (2021); Yang & Littwin
 1046 (2023), we have that for the μ P parameterisation $\mathbf{q}_{:,j}$ has entries of size $\Theta(1)$ throughout training.
 1047 The loss gradients for any hidden (pre-)activation, are known to have entry size $\Theta(1/N)$, and so the
 1048 post-normalised query activation gradients $\frac{\partial \mathcal{L}}{\partial \mathbf{q}_{:,j}}$ will also be of size $\Theta(1/N)$. The backpropagated
 1049 gradient with respect to the multiplier m_j is:

$$1051 \sum_{i=1}^{N_{\text{heads}}} \left[\frac{\partial \mathcal{L}}{\partial \hat{q}_{i,j}} \right]_i \mathbf{q}_i = \frac{1}{N} \sum_{i=1}^{N_{\text{heads}}} N \left[\frac{\partial \mathcal{L}}{\partial \hat{q}_{i,j}} \right]_i \mathbf{q}_i,$$

1054 where the rescaled random variables $N \left[\frac{\partial \mathcal{L}}{\partial \hat{q}_{i,j}} \right]_i \mathbf{q}_i$ have entry size $\Theta(1)$ as $N \rightarrow \infty$. Informally,
 1055 in Yang & Hu (2021), the random variables $N \left[\frac{\partial \mathcal{L}}{\partial \hat{q}_{i,j}} \right]_i \mathbf{q}_i$ for $i = 1, \dots, N_{\text{heads}}$ were shown to ap-
 1056 proach *i.i.d.* as $N \rightarrow \infty$. Hence the sum above has a Strong Law of Large Numbers like behaviour,
 1057 converging to the mean of the entrywise limit of $N \left[\frac{\partial \mathcal{L}}{\partial \hat{q}_{i,j}} \right]_i \mathbf{q}_i$. As such, we effectively have that
 1058 the gradient with respect to the width-shared parameters is also $\Theta(1)$ with width. The scale of the
 1059 AdamW ϵ should match the scale of the gradient (Yang & Littwin, 2023), and so we have that the
 1060 AdamW ϵ parameter for the width-shared multipliers should also be scaled as $\Theta(1)$ with width. A
 1061 near-identical argument follows for the bias terms.

1064 B.2 EMBEDDING LAYER ADAMW ϵ

1066 The $\Theta(1/N)$ scaling with width N for the embedding layer AdamW ϵ follows from the observation
 1067 that the gradients with respect to the embedding parameters have element size $\Theta(1/N)$. To see this,
 1068 note that the gradients with respect to the output of the embedding layer are $\Theta(1/N)$, whereas inputs
 1069 are obviously constant with width. Hence, it naturally follows that AdamW ϵ should be scaled as
 1070 $\Theta(1/N)$ to match the scale of the gradient (Yang & Littwin, 2023).

1072 B.3 CHANGES TO THE UNEMBEDDING WEIGHT

1074 The changes to the unembedding weight scaling rules are mostly a reparameterisation of the
 1075 multiplier-based μ P implementation in (Dey et al., 2025). Namely, for AdamW, a weight multi-
 1076 plier m_N^γ has the same effect throughout training (bar the finite-precision arithmetic effects) as: **1**)
 1077 multiplying the initialisation variance by $m_N^{2\gamma}$, **2**) multiplying the learning rate by m_N^γ , **3**) and mul-
 1078 tiplying the AdamW ϵ parameter by m_N (Yang & Littwin, 2023). We re-parameterise with **(1)** and
 1079 **(2)**, but we don't change AdamW ϵ as it appears to have been derived incorrectly in (Dey et al.,
 2025). To see this, note that with μ P (the Table 3 variant without an output layer multiplier), the

1080 gradients for the unembedding layer weights are expected to have scale $\Theta(1)$ with width N . Hence,
 1081 to remain of the same scale, the output embedding weight ϵ should also have a matching scale of
 1082 $\Theta(1)$ (Yang & Littwin, 2023). After reparameterisation to a m_N^{-1} output layer multiplier — as is
 1083 done in CompleteP — the ϵ would also have to be scaled as m_N^{-1} to match the reparameterised
 1084 gradients.
 1085

1086

1087 C PER-MODULE HYPERPARAMETER SEARCH ALGORITHM

1088

1089 As described in Section 3.1, standard random search is unsuitable for the task of optimising *per-
 1090 module* hyperparameters. We make two minimal tweaks that make it into a workable method. We
 1091 induce an exploitation bias by turning it into a trust region method: we constrain the search-space
 1092 adaptively to the neighbourhood $\{\mathbf{x} \in \mathbb{R}^d : \|\mathbf{x} - \mathbf{x}_t^{\text{opt}}\|_\infty \leq r\}$ of the current best solution $\mathbf{x}_t^{\text{opt}}$
 1093 at a given iteration t . Hence, the bounds move with the best solution found so far. We optimise
 1094 all parameter in the \log_2 -space, and sample uniformly from within the bounding box. Even with
 1095 this modification, however, we found that this trust-region random search quickly plateaued with a
 1096 relatively high variance in the final loss values. Hence, to allow the algorithm to explore promising
 1097 regions more thoroughly, we also decay the size of the bounding region r if the loss doesn't improve
 1098 after a certain number of trials.

1099

1100 For all experiments, unless stated otherwise, we instantiate the search with the bounding box size of
 1101 1 (meaning that at each iteration, we multiply the best solution found so far by 2^x with x sampled
 1102 uniformly from $[-1, 1]$), and decay size of the trust region r by 0.7 if no improvement is observed
 1103 in 100 trials. We run the algorithm asynchronously with a maximum of 100 simultaneous trials.

1104

1105 The goal of this paper is not to identify the *best* HP optimisation strategy for this setting; we merely
 1106 want to find a workable one in order to demonstrate potential for improvements from per-module
 1107 HP search. Since the above tweaks borrow from the principles underlying many evolutionary search
 1108 (ES) methods, we also wanted to directly compare to a strong ES baseline to check our method
 1109 performs reasonably. In Figure 15, we compare CMA Evolutionary Search (CMA-ES) (Hansen,
 1110 2006) to the Trust-region Random Search described above (c.f. Figure 14a). CMA-ES is not natively
 1111 an asynchronous HP search strategy, so we make a minor modification: for a population size P , we
 1112 wait until at least P trials sampled from the current generation have finished running. At that point,
 1113 there might be more than P new finished trials (left-over trials from the previous generations), so
 1114 we update the CMA-ES state with P *best* trials only. In this instance, Trust-region Random Search
 1115 outperforms this CMA-ES variant. This gives credence to our search method of choice being able
 1116 to identify good per-module HPs in reasonable runtime. We hope that future work can explore
 1117 alternative strategies that might be able to severely reduce the number of trials required to find good
 1118 per-module HPs.

1119

1120

1118 D EXPERIMENTAL DETAILS

1119

1120

1121 D.1 BEST LEARNING RATE (LR) ANNEALING AT DIFFERENT TOKEN HORIZONS

1122

1123

1124 We pretrain a small GPT-2 model (121M parameters). We enumerate all the non-increasing
 1125 piecewise-constant LR schedule over the discrete set $\{0.0015/2.5^k | 0 \leq k \leq k_{\max}\}$. We sub-divide
 1126 the total training duration in L intervals of 77M tokens each. At the end of each interval, either the
 1127 LR remains constant, either it is decayed by one or more steps. We chose $L = 16$ and $k_{\max} = 4$,
 1128 which yields a total of 4842 runs. For efficiency, we use the same checkpoint to warm start all
 1129 runs sharing the same prefix in the LR scheduling, which cut down the computational complexity
 1130 of this naive enumeration from $\mathcal{O}(L^{k_{\max}+1})$ to $\mathcal{O}(L^{k_{\max}})$. Therefore, the total compute budget is
 1131 kept under 7,000 A100 GPUh. For five different token horizons (155M, 310M, 621M, 932M and
 1132 1.24B) we report the best scheduling among the 4,842 tested. We report the results in Figure 7.
 1133 We notice that the best scheduling at short horizon is never a prefix of the best scheduling at long
 1134 horizon. This empirical observation is compatible with the findings of Luo et al. (2025): there is a
 1135 tension between the optimisation bias induced by the terminal LR value (the lower the better) and
 1136 the progress of optimisation which requires higher LR at start.

1134
1135

D.2 BASELINE GLOBAL HYPERPARAMETER TUNING

1136 To establish a baseline, we perform an extensive random hyperparameter search consisting of 2048
1137 trials. Each trial trains a 50M parameter model ($d_{\text{model}} = 512, L = 4$) for 1.64B tokens (33 tokens/parameter) over a discrete search space defined by:
1138

- $\text{LR} \in \{1 \times 10^{-4}, 3 \times 10^{-4}, 4 \times 10^{-4}, 1 \times 10^{-3}, 3 \times 10^{-3}, 4 \times 10^{-3}, 1 \times 10^{-2}, 2 \times 10^{-2}, 3 \times 10^{-2}, 1 \times 10^{-1}\}$
- $\text{Adam } \epsilon \in \{1 \times 10^{-14}, 1 \times 10^{-12}, 1 \times 10^{-10}, 1 \times 10^{-8}, 3 \times 10^{-8}, 4 \times 10^{-8}, 1 \times 10^{-7}\}$
- $\text{Adam } \beta_1 \in \{0.8, 0.85, 0.9, 0.95, 0.999\}$
- $\text{Adam } \beta_2 \in \{0.9, 0.95, 0.98, 0.99, 0.999\}$
- $\text{Weight Decay} \in \{1 \times 10^{-4}, 1 \times 10^{-3}, 1 \times 10^{-2}, 1 \times 10^{-1}, 2 \times 10^{-1}, 4 \times 10^{-1}\}$

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148 The results and hyperparameter sensitivities from this search are visualized in Figures 16b to 16d.
1149 The optimal configuration from this global search achieves a validation negative log-likelihood of
1150 3.34 nats. This result is substantially higher than that achieved by our per-parameter search strategy,
1151 underscoring the advantage of discovering optimal configurations at a small scale before upscaling
1152 with principled rules like Complete^(d)P.
1153

D.3 PER-MODULE HYPERPARAMETER SEARCH AND TRANSFER (FIGURE 1)

1154
1155 **Per-module hyperparameter search** For the per-module hyperparameter search, we ran the trust-
1156 region random search as described in Appendix C. We ran 100 trials (training runs) in parallel, with
1157 a total budget of 5000 trials. We randomly chose a different random seed (dictating the network
1158 initialisation and data order) for each trial.
11591160 We optimised AdamW learning rate, weight-decay, ϵ , momenta $\alpha_1 := (1 - \beta_1)$ and $\alpha_2 := (1 - \beta_2)$,
1161 as well as the standard deviation for the initialisation, with one hyperparameter (multiplier) per
1162 module type. For module types, we treat each ‘tensor’ within a transformer block as an individual
1163 type (e.g. QK-norm multipliers, QKV weights, output projection weights, first feedforward layer
1164 weights, second feedforward layer weights, etc. would all be individual types); each tensor outside
1165 the transformer blocks are also individual module types (input embedding weight, output embedding
1166 weight, output embedding bias, output layer norm multipliers, etc. would all be individual types).
1167 We also optimise the per-depth transformer residual block multipliers in the depth-type Kronecker
1168 parameterisation (there are two residual multipliers in each transformer block – one for the attention
1169 block, one for the feedforward block). Altogether, that leads to 79 hyperparameters to optimise.
11701171 The hyperparameter search at small scale in Figure 1 took 6730 GPU-hours on NVIDIA A100s,
1172 although 99% of the loss gains over the optimal global hyperparameters were realised within the
1173 first 3168 GPU-hours.
1174

E EXTENDED RELATED WORK

1175
1176 **Hyperparameter transfer in width & depth.** Our work directly builds upon, extends and com-
1177 bines many existing parameterisation for transfer across different modalities. For width transfer, we
1178 directly build on the Tensor Programs (Yang & Hu, 2021; Yang et al., 2022) based derivations for
1179 the μ -parameterisation, and the extensions to adaptive optimisers (Yang & Littwin, 2023). Although
1180 (Yang & Littwin, 2023) contains an exposition of all the theoretical tools required to derive the right
1181 parameterisation for virtually any neural network architecture, applying these tools is still a non-
1182 trivial task. Yang et al. (2024) extended similar principles to find parameterisations in depth. Dey
1183 et al. (2025) adapted these principles to derive a width & depth transfer-enabling parameterisation
1184 specifically for transformer models. Although Dey et al. (2025) directly builds upon and uses virtu-
1185 ally the same principles as (Yang & Littwin, 2023) and Yang et al. (2024), they do derive the right
1186 parameterisation for a broad range of hyperparameters (initialisation scales, learning rates, AdamW
1187 weight decay, AdamW epsilon), unlike the original μ -P paper (Yang et al., 2022), and they derive a
1188 complete set of rules specifically for transformer models. We directly build upon and extend Com-
1189 pleteP (Dey et al., 2025) for width & depth transfer part of our parameterisation, making a couple of
1190

Figure 16: Summary of the global hyperparameter sweep on a 50M parameter model for the baseline.

small modifications (extending to QK-norms and fixing minor mistakes in the derived rules). This constitutes one part of the Complete(d) parameterisation.

1242 **Transfer in batch-size and SDE scaling rules.** For the batch-size transfer rules for the Complete^(d)
 1243 parameterisation, we also directly build upon prior work on SDE transfer rules (Li et al., 2019),
 1244 including for Adam (Malladi et al., 2022). We extend the SDEs of Malladi et al. (2022) to AdamW,
 1245 allowing us to propose a scaling rule for weight-decay with batch-size. We note that similar scal-
 1246 ing rules for weight-decay have been recently proposed in other works (Wang & Aitchison, 2025;
 1247 Bergsma et al., 2025) prior to ours. To our knowledge, we are the first ones to motivate them theo-
 1248 retically with the principle of preserving the dynamics of an AdamW stochastic differential equation
 1249 (SDE), integrating it with the transfer rules in batch-size for the other AdamW hyperparameters.

1250 Our rules are compatible with those proposed by those proposed in (Wang & Aitchison, 2025;
 1251 Bergsma et al., 2025). Wang & Aitchison (2025) posit how the product of weight-decay and learn-
 1252 ing rate should scale as a function of the batch-size. In particular, they suggest that the learning rate
 1253 $\gamma(B)$ and the weight-decay $\lambda(B)$ should be scaled with batch-size B so as to keep $\tau_{\text{EMA}} = \frac{B}{\gamma\lambda D}$ con-
 1254 stant. This rule doesn't specify whether γ or λ should be adjusted, but only constrains their product.
 1255 Substituting in our rules for $\gamma(B)$ and $\lambda(B)$ from Table 1 — which dictate that $\gamma(B) \propto \sqrt{B}$ and
 1256 $\lambda(B) \propto \sqrt{B}$ — we see that $\tau_{\text{EMA}} \propto 1$. Hence, the rules we put forward are compatible with those
 1257 of in Wang & Aitchison (2025). They are also more specific, dictating how the learning rate and
 1258 weight-decay should each be adjusted individually.

1259 **Compagnoni et al. (2025)** also propose an AdamW SDE, and suggest the same weight-decay scaling
 1260 rule, but based on different principles. Whereas we argue for preserving the dynamics of the SDE
 1261 (and, hence, approximately preserving the dynamics of discrete-time AdamW) similarly to Malladi
 1262 et al. (2022), Compagnoni et al. (2025) propose scaling rules to try and maintain an upper bound
 1263 on the final training loss. Furthermore, their derived SDE is *different* from ours and that of Malladi
 1264 et al. (2022), whereas ours is fully compatible with that of Malladi et al. (2022). We highlight that
 1265 Malladi et al. (2022) made a compelling case for the need for reparametrising the AdamW momenta
 1266 terms that led to their SDE. This reparametrisation is missing from (Compagnoni et al., 2025).

1267 **Token horizon transfer rules.** To the best of our knowledge, we are the first to propose our scal-
 1268 ing rule in token horizon for learning rate, weight-decay, AdamW momenta and AdamW ϵ on the
 1269 grounds of the proposed SDE principles. However, prior works have explored transfer in token hori-
 1270 zon more broadly. (Bjorck et al., 2025) demonstrate that the optimal learning rate shifts with the
 1271 token horizon, and propose an empirically derived scaling rule. Qiu et al. (2025) observe that *nor-
 1272 malised training curves* transfer across model size and token horizon when both are scaled jointly
 1273 to remain compute optimal. Hyperparameter transfer does not directly follow from their results, as
 1274 the loss curves only transfer after normalisation by subtracting the final loss. In other words, they
 1275 remove the exact quantity the behaviour of which we study in this paper. Nonetheless, their obser-
 1276 vations might be closely related, and their analysis through the lens of SDEs could prove to be a
 1277 fruitful avenue for explaining the transfer rules across token horizons we identify in this paper.

1278 **Per-module hyperparameter selection.** Independently, (Ludziejewski et al., 2025) studied the
 1279 benefits of setting hyperparameters differently for different parameter groups. They similarly show
 1280 improvements over global hyperparameters at a fixed model scale, and demonstrate improvements
 1281 persist when training a larger mixture of experts model ($8\times$ compute) with each expert being the
 1282 same size as the base model. Our analysis differs in a few places: **1)** we thoroughly investigate
 1283 transfer across model scale for the same architecture with μP and μP -derived parameterisations, **2)**
 1284 we investigate transfer across token horizons and batch-size, **3)** we investigate more fine-grained
 1285 hyperparameter transfer on a per-module basis, whereas Ludziejewski et al. (2025) only consider
 1286 separating the parameters into broad groups, and **4)** we investigate hyperparameters beyond the
 1287 learning rates (weight decay, AdamW momenta, etc.), whereas Ludziejewski et al. (2025) consider
 1288 learning rates and parameters of their schedules.

1289 Recently, Wang et al. (2025) motivate why per-module learning rates might be beneficial from a
 1290 curvature perspective. They consider the relative scale for the **learning rates** for 5 sub-modules in a
 1291 transformer block; more specifically, the query-key (QK) and value-output (VO) blocks; point-wise
 1292 feedforward networks (FFN); normalization layers (Norm), and embedding layers (Emb). Follow-
 1293 ing their theoretical analysis, their practical recommendation is to tune manually (informed by that
 1294 theory) these ratios on a smaller scale and re-used as is for larger scales (which would still require
 1295 tuning a global LR when changing the compute scale). Compared to our work, their practical ap-
 1296 proach is restricted to a far smaller set of HPs: 5 LRs in their work vs. approximately a hundred HP
 1297 in our case, since we study 6 fundamental HPs (learning rate, initialization scale, Adam ε , β_1 , β_2

1296 and weight decay) times (number of modules plus depth). Additionally, their perspective does not
1297 stress transfer of these hyperparameters along any scaling axes, which is a core contribution in our
1298 work. Instead, they retune the only hyperparameter they tune multipliers for (the learning rate) at
1299 *every* scale they consider, making it costly to apply it at scale.
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349