Under review as a conference paper at ICLR 2026

TRANSFER PARAMATTERS: OPTIMAL PER-MODULE
HYPERPARAMETERS ACROSS ALL SCALING AXES

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter tuning can dramatically impact training stability of large-scale
models. Recent works on neural network parameterisations, such as uP, have
shown that layer types and sizes should dictate how global hyperparameters should
be rescaled in order to achieve efficient transfer across model sizes. On the other
hand, the established practice for hyperparameter optimisation search is to look
for optimal global base values that apply at some fixed model scale. We transfer
hyperparameters across all scaling axes: width and depth, using an extension of
CompleteP (Dey et al., 2025), training horizon, and batch size. Our study covers
all optimisation hyperparameters of modern models: learning rates, Adam param-
eters, weight decay, initialisation scales, and residual block multipliers. Lastly,
we demonstrate that hyperparameter transfer holds even in the per-layer hyper-
parameter regime. We characterise the empirical challenges of navigating the
high-dimensional hyperparameter landscape, and propose practical guidelines for
tackling this optimisation problem. We suggest a simplified parameterisation of
the hyperparameter space that reduces the dimensionality of the search-space at
no performance cost. Our experiments demonstrate training speed improvements
when applying transferred hyperparameters to Large Language Models.
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Figure 1: Optimising per-module-type hyperparameters leads to training speed improvements that
transfer at scale with Complete@P .

1 INTRODUCTION

The remarkable success of large transformer-based models (Vaswani et al., 2017) has been driven
by scaling up model size and data. However, to get the most out of these large-scale training runs,
or to even successfully complete them at all, several hyperparameters (HPs), such as learning rates,
weight decay, or initialization scales, must be carefully set.

Parameterisation. To mitigate this HPs tuning cost, recent works have introduced principled pa-
rameterisations, such as the p-parameterisation (uP) (Yang et al., 2022), with the goal of enabling
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the transfer of optimal global hyperparameters from smaller, cheaper-to-train models to their large-
scale counterparts. Effectively, these parameterisations propose to automatically adapt a global
seeded HP to any layer, depending on its width or type. This process has been extended to handle
changes in depth with Depth-pP ( , ) and further investigated for width and depth in
transformers with CompleteP ( s ). These methods have been demonstrated to success-
fully transfer optimal global hyperparameters.

Per-module HP. Given the significant performance improvements and cost reduction from optimis-
ing HPs on smaller-scale experiments, it is natural to consider optimising HPs on a finer-grained
scale as well, and explore per-module HPs. When one scales-up a model with uP, Depth-uP or
CompleteP, different layers will receive different HPs depending on their architectural role — for
instance, the learning rates for the embedding layers have to be scaled differently from those for the
hidden weights. It is therefore reasonable to expect that different layers could benefit from indepen-
dent hyperparameter tuning. Put differently, there is little reason to believe the optimal per-module
HPs should all collapse to the same value at some base width at which we optimise them.

Parameterisation-aware per-module HP Optimisation. In this work, we systematically investi-
gate the transfer of per-module hyperparameters across various scaling modalities. The challenge,
however, is one of scale: tuning hyperparameters on a per-module basis creates a combinatorial
explosion in the search space, making it truly intractable at large scale. We propose a practical
methodology to unlock the benefits of per-module tuning by leveraging the power of HP transfer us-
ing parameterisations. We perform the expensive, high-dimensional search for optimal per-module
HPs on a small proxy model, and demonstrate the transfer of the optimal HPs to a large target model.
Our contributions are:

» CompleteP . We refine the CompleteP parameterisation from ( ), extending it to
modern Transformer components like Query-Key Normalization ( , ). We further
identify and rectify minor issues in the original formulation. We illustrate the resulting parame-
terisation permits robust hyperparameter transfer for all theoretically-motivated variants of depth
scaling (« € [%, 1]).

* New scaling directions for HP transfer. We systematically study transfer beyond model size,
including in token horizons and batch size. We make new recommendations for weight-decay
scaling with batch-size adapting the SDE approach of ( , ) to AdamW.

* Per-module HP transfer. We empirically demonstrate hyperparameter transfer with the right
parameterisations holds for per-module hyperparameters. Optimising per-module hyperparameters
at a small scale yields significant training speed-ups that persist after transfer to larger scale.

¢ A practical recipe to find per-module HPs. We empirically characterise the per-module hyper-
parameter optimisation landscape. We highlight its challenging nature, marked by sharp “cliffs”
where training diverges, making random search inefficient and standard Bayesian Optimisation in-
effective. We show that the landscape is close to “invex”, and demonstrate that simple local search
strategies are well-suited to navigate this space and find high-performing configurations.

2 HYPERPARAMETER TRANSFER

In this section, we describe the hyperparameter transfer modalities we consider, and the principles
that we follow to adjust HPs while varying other aspects of the training configuration.' We first de-
scribe hyperparameter transfer in model size (width and depth) in Section 2.1, where we introduce a
variant of the CompleteP parameterisation ( , ). In Section 2.2, we describe principles
we follow for hyperparameter transfer across batch-size. Lastly, we consider hyperparameter trans-
fer in the number of training tokens in Section 2.3, illustrating that optimal HPs do not transfer out
of the box across token horizons.

Experimental Setup All experiments are conducted using a decoder-only transformer model
( , ) on the RedPajama dataset ( , ). We
use a modern transformer variant with pre-normalisation, Query-Key normalisation ( ,

"To disambiguate, we’ll refer to hyperparameters as aspects of training we want to find optimal values for,
which we contrast with training configuration — the aspects of training we want to control to facilitate scaling
(number of training tokens, number of parameters, batch-size) that are typically integers.
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Figure 2: Hyperparameter transfer for global learning rate across depth and width.

2020), trained with a mixture of cross-entropy and Z-loss (de Brébisson & Vincent, 2016). We al-
ways train with a cosine schedule. As a performance metric, we always report the final validation
loss on the pre-training data, which is a strong indicator of downstream performance. For remaining
training and architecture details, see Appendix C.

2.1 HYPERPARAMETER TRANSFER ACROSS MODEL SIZE

The core idea underlying hyperparameter transfer across models of different sizes is to view models
as discretisations of infinite-size limits. Intuitively, two models of different sizes that are both suffi-
ciently close to the same infinite limit will behave similarly, and if their infinite limits are the same
over the set of considered hyperparameters, then they should share similar optimal hyperparameters.

The challenge is that, depending on the parameterisation — i.e. the rules for adjusting the hy-
perparameters as a function of size — we can obtain different infinite width or depth limits with
fundamentally different behaviours (Yang & Hu, 2021). Most of these limits are pathological in var-
ious ways. For instance, the Standard Parameterisation (SP) (Sohl-Dickstein et al., 2020) leads to
the features blowing up with size, whereas the Neural Tangent Parameterisation (Jacot et al., 2018)
results in a lack of feature learning (Yang & Hu, 2021). uP was identified by Yang & Hu (2021) as
the unique parameterisation for Stochastic Gradient Descent (and later for a broad class of adaptive
algorithms (Yang & Littwin, 2023)) that precludes the emergence of many such pathologies at scale.

In this work, we build upon the CompleteP (Dey et al., 2025), which itself is an adaptation of Depth-
P to transformers, to which we make several adaptations. These new scaling rules, which we call
Complete@P , are summarised in Table 1. Firstly, we extend the parameterisation to Query-Key
(QK) normalisation layers (Henry et al., 2020), which have become a staple in modern transformer
implementations (Yang et al., 2025; Dehghani et al., 2023). The challenge of QK norms is that,
unlike any other component in transformers, these layers share weights across transformer heads. If
scaling in width is performed by increasing the number of heads while keeping the head dimension
fixed (as was done in (Dey et al., 2025; Yang & Hu, 2021)), then QK norms introduce weight-sharing
across the scaled dimensions. This necessitates different scaling considerations than for regular
normalisation layer multipliers or biases. The adjustments for AdamW (Loshchilov & Hutter, 2017)
are shown in Table 1, which we justify in Appendix B.

Secondly, we note that Dey et al. (2025) mistakenly derived the wrong scaling for the AdamW e
scaling for the input embedding. We justify our modification in the Appendix B. Although the
resulting modification is minor, we found that the lack thereof was sufficient to break a thorough
sweep of the coordinate checks described by Yang et al. (2022) in our implementation.

Lastly, we eliminate the explicit scalar multiplier on the output of the final linear projection,
f : RE — RV, by reparameterising its effect into the learning rate and initialisation scale. This
enables memory-efficient algorithms like Cut Cross-Entropy (Wijmans et al., 2025), which avoid
materialising the full V' x E projection matrix, drastically reducing GPU memory requirements for
modern large vocabulary models (Kamath et al., 2025; Dubey et al., 2024; Agarwal et al., 2025).

In Figure 2, we verify the HP transfer with Complete'®P across width and depth. An important factor
in Depth-/:P is the depth-dependent re-scaling factor for the residual connection in transformers (h*
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Table 1: Parameterisation Comparison as a function of width (1m ) and depth (m ) ratios. For
Complete@P , differences to CompleteP (Dey et al., 2025) are shown alongside in

Parameterisation: uP (Table 3) Complete@P
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the output of layer ¢, F, the function applied to it):
W =h' +m *FMY, (e{1,...,L}

which is governed by a single parameter « € [0.5, 1].We make the following observation:

[ Complete™P with o = % and o = 1 permits hyperparameter transfer across depth. ]

Our parameterisation seems to allow for HP transfer with all theoretically justified values of
o € [%, 1]. This is in contrast to the findings of Dey et al. (2025) who notice a degradation of
transfer for o = 0.5. The added QK norms in our implementation improve stability (see Figure 14
for a comparison without); however, removing them does not lead to the breakdown of transfer
reported by Dey et al. (2025). We note that in their publicly-released reference implementation,
they apply the same AdamW’s ¢ to all weights (including embeddings), against their own paper
recommendation. Interestingly, the optimal loss is slightly better for the largest model for o = %,
potentially suggesting that the theoretical arguments for this parameterisation on the basis of feature
diversity (Yang et al., 2024) might be beneficial in a language transformer context.

2.2 HYPERPARAMETER TRANSFER ACROSS BATCH-SIZE

Model size and dataset size are two levers to achieve lower loss — increasing each predictably leads
to model improvements as implied by scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022).
This, in turn, requires scaling up significantly the compute budget, which is only feasible through
parallelization. In that context, the set of usable batch-sizes is heavily constrained and largely dic-
tated by the memory configuration of a specific parallel architecture. However, training for long
token horizons is challenging with a small batch-size, as it demands many more sequential training
iterations. On the one hand, for smaller hyperparameter sweep runs, a smaller batch-size is often
desirable to reduce the per-run memory footprint and enable running on fewer GPUs. On the other
hand, that batch-size will no longer be suitable for larger runs. Unfortunately, as with scaling model



Under review as a conference paper at ICLR 2026

4.5 ) 4.5 ) e
7] Batch Size 7] Batch Size
3 ) . 421)< o o 4X%
| o 2X | Base
o 4.0 Base o 4.0 1x
= S\ 7% g
— — L]
= N 7x =
@ e 1y o @ R S
ﬁ3'5 e et ﬁS'S s
——r— T rr——m ——r— T ——m
1074 1073 1072 1071 1074 1073 1072 1071
Global LR Learning Rate

Figure 3: Learning rate transfer with batch-size. Left: Learning rates transfer when using the
square-root rule in Equation 2 Right: Learning rates fail to transfer without adjustment.

size or training duration, hyperparameters do not transfer across batch-sizes without further repa-
rameterisation. In this work, we transfer hyperparameters across batch-size via a similar limiting
argument as for transfer across model size. In particular, we follow and extend the principles for
batch-size transfer laid out in ( ).

Training as discretising an SDE We consider the same simplifying example as in
( ). We consider that the gradients queried at each step & are a noisy version of a fixed direction
g* = g + oe”, where e” are i.i.d. Gaussian vectors of identity covariance. We further use the
RMSProp algorithm as an example, and place ourselves in the high-variance regime, where o >
llg||. Contrary to ( ), we also consider a weight decay term as in AdamW. We let n
the learning rate, and ) the weight decay. We obtain the simplified RMSProp iterations (see (

, , Sec. 4.1) for more details) that define the iterates 8(k;n, \, o) with the equation

k
g1 :Gk—n<i+/\0k> =0~ 1 (g+r06") — e, b

which is a discretization of the SDE d©; = n% (g + A\o©;)dt + dW; with step-size 1, in the sense
that % ~ © kn2- Therefore, we find that the multipliers to keep fixed iterate distributions, i.e., such
that 8(k;n, A, 0) = O(myk; myn, maA, mgo), should verify mkm% =1, mym, =1, and my =
my, . In particular, if the batch-size is multiplied by x, we have m, = x~1/2 and we find that the
new hyperparameters matching the SDE limit should follow the square-root scaling rule

n =+kn, k' =kk, and N = /k\ . (2)

To the best of our knowledge, we are the first to identify this scaling rule for the weight decay .
We report the effect of using these multipliers when scaling the batch-size in Figure 3; using the
square-root rule is critical to get LR transfer. We also isolate the effect of scaling the weight decay
in Figure 4, demonstrating that the rule identified above is critical for transfer.

AdamLH and multipliers Equation | mirrors the Pytorch implementation of AdamW, where the
weight decay A is multiplied by the learning rate . If one instead uses the original AdamW imple-
mentation, often coined AdamLH, as proposed by ( ), we get the simplified
iterations @%+1 = @F — n% — A0@*, and we find that the multipliers are the same as for AdamW,
except that m) = m%: doubling the batch-size means that the weight decay should now be doubled.
Hence, using AdamLH leads to a bigger drift across batch-sizes if the scaling is not done correctly,
amplifying further the drift observed in Figure 3, right. We posit that this is one of the reasons why
the Pytorch implementation is more widely used.

2.3 HYPERPARAMETER TRANSFER IN TRAINING DURATION

Unlike transfer in model size or batch-size, transfer in the token horizon has received comparatively
less attention in the literature. Nonetheless, it is one of the two main levers to scaling compute. Like

( ), we observe that the optimal learning rate decays with the number of training
iterations, holding all other things constant. Optimal learning rate keeps SDE time constant.
In Figure 5, we notice that the optimal learning rate decays at a rate roughly proportional to ﬁ,

where k is the factor by which we’ve increased the number of training iterations. We plot the
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size without any adjustments. Middle: The rescaled (effective) weight decay A\//k where & is the
increase does transfer. Right: The effective weight decay transfers when rescaling all hyperparam-
eters following our AdamW SDE scaling rule.
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Figure 5: Learning rate transfer across training horizon — adjusting the number of tokens by changing
the number of training iterations while holding batch-size constant. Left: Break-down of transfer
of the global learning rate. Right: Stability of the “effective” learning rate — one that preserves the
AdamW SDE integration horizon.

optimal learning rate from the shortest training duration (7, ) transferred with the scaling rule %TP;
in gray, and observe that it aligns almost perfectly with the true optima. In contrast, Bjorck et al.
(2025) fit a scaling law to find the exponents /3 for the scaling rule "ij; ; and they identify (3 to be in
the ranges of 0.3 — 0.7 depending on the model size, which matches our scaling rule.

[ Square-root reparameterization for learning rate permits transfer across training horizon ]

In the light of the SDE interpretation in subsection 2.2, scaling the learning rate by ﬁ while holding

the batch-size constant can be seen as reducing the signal-to-noise (SNR) ratio in the SDE, while
keeping the time horizon constant. Indeed, we orthogonally observe that when simulating the Adam
SDE from (Malladi et al., 2022), improving the signal-to-noise ratio (i.e. reducing the size of the
diffusion coefficient) while holding other parameters constant consistently leads to improved perfor-
mance. Hence, we hypothesise the right way to scale the token horizon might be only adjusting the
signal-to-noise parameter in the AdamW SDE, while keeping all other things constant. We validate
this empirical observation in Figure 9, where we scale the number of tokens by increasing batch-size
only (which has the desired effect of changing the signal-to-noise ratio); we observe a near-perfect
learning rate transfer across the token horizon. We expect this transfer to break at larger batch-
sizes, where the discretisation will be too coarse for AdamW to approximate the underlying SDE,
but when taken together with the batch-size reparameterisation rules in subsection 2.2, this finding
suggests how to scale all HPs across token horizons while choosing the batch-size freely. This is the
token horizon scaling procedure we follow in all the per-module HP results in the remainder of this
paper. We note that this finding might be specific to the fixed (cosine) schedule that we use.

Best Learning Rate (LR) annealing at different token horizons. Optimal schedules might have
different shapes at different token horizons (Luo et al., 2025). We conduct a greedy search to de-
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Figure 6: Best Learning Rate annealing over 4,842 runs for five different token horizons. The
best schedule at a short horizon is never a prefix for the best schedule at a longer horizon. The
optimal schedule cannot be found by a greedy approach: the best LR annealing is not data agnostic.

termine optimal learning rate schedules in the following way. We enumerate all the non-increasing
piecewise-constant LR schedule over the discrete set {0.0015/2.5%|0 < k < 4}. We sub-divide the
total training duration in 16 intervals of 77M tokens each. At the end of each interval, either the LR
remains constant, either it is decayed by one or more steps. For five different token horizons, we
report the best scheduling among the 4,842 tested. We report the results in Figure 6. We notice that
the best scheduling at short horizon is never a prefix of the best scheduling at long horizon. This em-
pirical observation is compatible with the findings of ( ): there is a tension between
the optimisation bias induced by the terminal LR value (the lower the better) and the progress of
optimisation which requires higher LR values at start.

3 INVESTIGATING TRANSFER OF PER-MODULE HYPERPARAMETERS

Equipped with the tools for hyperparameter transfer described in the preceding section, in this sec-
tion we investigate 1) how much there is to gain from per-parameter hyperparameter optimisation,
and 2) how well do per-module hyperparameters transfer.

3.1 OPTIMISING PER-MODULE HYPERPARAMETERS

To show improvements and transfer of per-module hyperparameters, we need a good way to optimise
them at a fixed scale. Although there is ample hterature on hyperparameter optimisation in deep
learning ( , , ), optimising HPs on a per-
module basis introduces many new dlfﬁcultles Below we highlight why many standard approaches
fail in the per-parameter optimisation setting.

Per-module hyperparameter loss landscape In Figure 7, we plot slices through the per-module
learning rate (LR) loss landscape — i.e. the landscape of the mapping from LRs to the final loss.
We observe that, fortuitously, it’s pretty close to being invex (stationary points are global minima),
and hence might be tractable even despite its high dimensionality. Several other aspects, however,
render it challenging for common HP optimisation methods: 1) The values of per-module learning
rates at which training becomes unstable are module-dependent, and can differ by multiple orders
of magnitude. 2) The boundary at which training becomes unstable has a complex shape, with non-
trivial interactions among different modules, implying it’s difficult to predict with simple predictive
models (e.g. linear models or Gaussian Processes ( R )). Our observation
is similar to that made by ( ) — who observed the stable regime boundary is a
fractal — but we also note a lack of an emergent simple structure at the macro scale. This means
common hyperparameter optimisation strategies, like random search or standard Bayesian Optimi-
sation, fail in this regime. For instance, random search lacks any locality bias; we observe that
without careful manual tuning of the search boundaries, either all runs will fail due to unstable train-
ing, or the boundaries will fail to include the actual optimum. Bayesian Optimisation with Gaussian
Processes (GPs) can exploit locally around previous good trials. However, it is well-known that
GPs struggle on highly non-stationary data ( , ), and alternatives capable of dealing
with the non-stationarity can scale poorly. We found that, in contrast, ‘trust region’ methods —
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Figure 7: The boundary for stable training has a complex shape. Each plot shows the final training
loss for different combination of learning rates for the modules indicated, while fixing the remaining
learning rates to the optimal “global” value. MLP weights refer to the MLP in the attention layer. If
unstable training results in NaNs, the last stable training loss is reported.

approaches that optimise in neighbourhoods of previous best solutions — work well. We describe a
simple trust region variant of random search that we use for our experiments in subsection B.4.

Parameterising per-module hyperparameters We adopt a depth—type Kronecker parameterisa-
tion of per-module hyperparameters that is compatible with Complete(®P transfer across width
and depth. Let M index module types in a Transformer (QKV and attention output projec-
tions, SwWiGLU-MLP up/down and gate, layer norms, input embeddings, unembedding, and QK-

normalisation scalars), and let £ € 1, ..., L index depth. For a hyperparameter 6 € 1, A, € :
log 8y ¢(T;N,L,B) =1log8y(T, B) +log sq(N, L) +log oy + log o, 3)
—— =~
SDE/time-batch Complete( P type depth

where 0y (t; B) carries all training-horizon T and batch-size B dependence via the AdamW SDE-
based transfer rules, s, (N, L) is the Complete®P scale map for type g (including our QK-norm and
unembedding refinements; Table 1), and {og : g € M}, {60 : £ € {1,...,L}} are dimensionless,
time-invariant multipliers shared across the global schedule. This factorisation reduces the number
of free multipliers from |M|L to | M| + L while preserving the base width/depth transfer. Em-
pirically, per-depth multipliers are beneficial beyond type-only tuning, and relaxing the Kronecker
constraint to fully uncoupled per-layer multipliers yields little additional gain at substantially higher
search cost (Figure 11b). Moreover, the per-module loss landscape exhibits sharp stability bound-
aries (Figure 7), so we optimise the multipliers in log-space using a trust-region random search
(subsection B.4) while keeping the cosine schedule shared across modules. When transferring to a
larger depth, we note that the depth-SDE (« = %) or depth-ODE limits (o € (%, 1]) should still exist
if the base hyperparameters §(t) vary continuously with sufficient regularity across depth ¢ € [0, 1].
In this sense, the finite-depth multipliers d, ~ § (%) can be seen as a discretisation of the continuous
limit HPs. Hence, to transfer to a large depth we simply linearly interpolate all HPs in depth.

3.2 PER-MODULE HYPERPARAMETERS MATTER

Depth multipliers matter We ablated away the effect of the learning rate per-depth multipliers,
by instead considering only a search over learning rate multipliers for each layer role: Within each
residual block, every parameter group gets an independent learning rate, which is shared across
different residual blocks; similarly, each parameter group in the embedding and unembedding layers
gets its own value. We initiate this search from a projection of the best per-module hyperparameters
onto this linear subspace. In Figure 11c, we observe that the search value, although still substantially
better than the best global learning rate, is worse than the one that includes per-depth multipliers.
Hence, while the majority of the gain comes from different module types within residual blocks
getting different learning rates, there is still notable benefit to per-depth multipliers.

How restrictive is the depth-Kronecker factorisation? To check how much performance we’re
leaving on the table with the depth-Kronecker factorisation constraint, we continue searching for
fully uncoupled per-layer learning rates from the optimal Kronecker-factorised ones. The search
results are shown in Figure 11b. Crucially, we observe virtually no improvement over the Kronecker-
factorised ones. While this is not conclusive evidence that the optimal per-module learning rates are
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depth-Kronecker factored — the fully uncoupled search-space is much higher-dimensional and more
difficult to navigate, and its likely we didn’t find the optimum — these runs imply that most of the
benefits of per-module HP optimisation can be captured by Kronecker factorised learning rates.

3.3 OPTIMAL PER-MODULE HYPERPARAMETERS TRANSFER WITH SCALE

Demonstrating upsides of per-module HP optimisation would be of little practical use if the HPs
have to be tuned at the target model scale. In this section, we show that the improvements do persist
across different model scales. Firstly, we demonstrate transfer in model size. Figure 8 illustrates
that the optimal per-module learning rates transfer as we scale up both width and depth. Although
we cannot easily visualise how the per-parameter HP loss landscape shifts as we vary model size
(like was shown in Figure 2) due to its high-dimensional nature, we instead show the final training
losses for a slice (a hyperplane) going through both the scaled-up optimal per-module learning rates
and the optimal global learning rate. We observe that this landscape appears stable with model size,
suggesting that the optimal per-module LRs do transfer with width and depth.
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Figure 8: Transfer across model scale of the optimal per-module learning rates. We interpolate
between the optimal global learning rate multiplier, and the optimal per-module multipliers across
models of different scales, and show that the optimal per-module multipliers 1) consistently improve
upon the global multiplier baseline, and 2) remain close to optimal in the hyperplane spanned by the
optimal global and local multipliers.

Transferring all per-module HPs across the compute optimal horizon. We also investigate what
improvements are possible when transferring per-module HPs to a compute-optimal model at the
1B parameter scale. Here, we jointly optimise the per-module learning rate, weight-decay, AdamW
51, B2, € and initialisation scale, and the residual block multipliers. We continue the search from
the optimal per-module learning rates identified with search in Figure 11a at the SOM parameter
& 1.6B token scale. In Figure 1, we show that when transferred to the 1.3B & 26B token scale
(420x compute) the optimal per-module HPs lead to a 27% speed-up to reach equivalent loss over
the optimal global HP baseline.

4 CONCLUSION

In this paper, we proposed new transfer rules for hyper-parameters, valid across all scaling axes:
model’s width, model’s depth, token horizon, and batch size. Furthermore, these transfer rules also
hold for per-module hyper-parameters. We demonstrate that systematic optimisation at small scale
with trust regions methods produce a configuration that transfers to larger scale, and significantly
improve training speed.
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(c) Hyperparameter search for the per-module learning rate multipliers with no depth multipliers. he search
is initialised with the projection of onto the constraint set of the optimal HPs found in the search in Figure 11a.

Figure 11: Hyperparameter search results with Trust Region Random Search. Each dot indicates the
final loss of a single trial, and the lines indicate the training duration (start & end).
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B MOTIVATION OF THE COMPLETE®P ADJUSTMENTS

Here, we give a justification for each of the modifications made in Complete/™P in Table 1. We
directly rely on the properties that uP parameterised neural networks are known to possess that were
formally shown in ( , ; , )

These modifications primarily concern scaling the infinite-width limit.

B.1 QK NORM MULTIPLIER WEIGHTS

In standard implementation of QK norms, the elementwise affine operation x — m ® x + b with
multipliers m and bias b is shared across the transformer heads. When scaling width by increasing
the number of heads — as is common in most of the relevant model scale parameterisation literature
, ) — this effectively means that these parameters are shared across
the scaled w1dth dimension N. For instance, for a collection of query vectors q € RVreads Xdnead
we have that the normalised query elements §;; := m;q; ; + b; all share the same parameters
mj,b; € Rfori =1,..., Nheaas, Where Nyeaqs = O(INV). We denote by q. ; the RMneass vector
(gij 1 =1,..., Nneaas (q.,; respectively). By the results of
( ), we have that for the pP parameterisation q. ; has entries of size O(1) throughout training.
The loss gradients for any hidden (pre-)activation, are known to have entry size ©(1/N), and so the
(1/N). The backpropagated

gradient with respect to the multiplier m; is:

Nheads a[: Nheads
> [aas) 2= v Z Vo)

=1

where the rescaled random variables N [ 74 ] q; have entry size (1) as N — oco. Informally,
il

in ( ), the random variables N {%] q; fori =1,..., Nyc.4s Were shown to ap-
57 .
proach i.i.d. as N — co. Hence the sum above has a §trong Law of Large Numbers like behaviour,
converging to the mean of the entrywise limit of N {%} q;. As such, we effectively have that
il

the gradient with respect to the width-shared parameters is also ©(1) with width. The scale of the
AdamW e should match the scale of the gradient ( s ), and so we have that the
AdamW ¢ parameter for the width-shared multipliers should also be scaled as ©(1) with width. A
near-identical argument follows for the bias terms.

B.2 EMBEDDING LAYER ADAMW ¢

The O(1/N) scaling with width N for the embedding layer AdamW e follows from the observation
that the gradients with respect to the embedding parameters have element size ©(1/N). To see this,
note that the gradients with respect to the output of the embedding layer are ©(1/N), whereas inputs
are obviously constant with width. Hence, it naturally follows that AdamW e should be scaled as
©(1/N) to match the scale of the gradient ( , ).

B.3 CHANGES TO THE UNEMBEDDING WEIGHT

The changes to the unembedding weight scaling rules are mostly a reparameterisation of the
multiplier-based P implementation in ( , ). Namely, for AdamW, a weight multi-
plier m, has the same effect throughout training (bar the finite-precision arithmetic effects) as: 1)
multiplying the initialisation variance by mi?, 2) multiplying the learning rate by m};, 3) and mul-
tiplying the AdamW e parameter by mpy ( , ). We re-parameterise with (1) and
(2), but we don’t change AdamW e as it appears to have been derived incorrectly in (

). To see this, note that with uP (the Table 3 variant without an output layer multiplier), the
gradients for the unembedding layer weights are expected to have scale ©(1) with width N. Hence,
to remain of the same scale, the output embedding weight € should also have a matching scale of
(1) ( , ). After reparameterisation to a mj" output layer multiplier — as is
done in CompleteP — the e would also have to had to be scaled as m " to match the reparameterised
gradients.
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B.4 PER-MODULE HYPERPARAMETER SEARCH ALGORITHM

As described in Section 3.1, standard random search is unsuitable for the task of optimising per-
module hyperparameters. We make two minimal tweaks that make it into a workable method. We
induce an exploitation bias by turning it into a trust region method: we constrain the search-space
adaptively to the neighbourhood {x € R? : ||x — x{*"||o < r} of the current best solution x;°
at a given iteration ¢. Hence, the bounds move with the best solution found so far. We optimise
all parameter in the log,-space, and sample uniformly from within the bounding box. Even with
this modification, however, we found that this trust-region random search quickly plateaued with a
relatively high variance in the final loss values. Hence, to allow the algorithm to explore promising
regions more thoroughly, we also decay the size of the bounding region r if the loss doesn’t improve
after a certain number of trials.

For all experiments, unless stated otherwise, we instantiate the search with the bounding box size of
1 (meaning that at each iteration, we multiply the best solution found so far by 2” with  sampled
uniformly from [—1, 1]), and decay size of the trust region r by 0.7 if no improvement is observed
in 100 trials. We run the algorithm asynchronously with a maximum of 100 simultaneous trials.

The goal of this paper is not to identify the best HP optimisation strategy for this setting; we merely
want to find a workable one in order to demonstrate potential for improvements from per-module
HP search. Since the above tweaks borrow from the principles underlying many evolutionary search
(ES) methods, we also wanted to directly compare to a strong ES baseline to check our method
performs reasonably. In Figure 12, we compare CMA Evolutionary Search (CMA-ES) ( s

) to the Trust-region Random Search described above (c.f. Figure 11a). CMA-ES is not natively
an asynchronous HP search strategy, so we make a minor modification: for a population size P, we
wait until at least P trials sampled from the current generation have finished running. At that point,
there might be more than P new finished trials (left-over trials from the previous generations), so
we update the CMA-ES state with P best trials only. In this instance, Trust-region Random Search
outperforms this CMA-ES variant. This gives credence to our search method of choice being able
to identify good per-module HPs in reasonable runtime. We hope that future work can explore
alternative strategies that might be able to severely reduce the number of trials required to find good
per-module HPs.

C EXPERIMENTAL DETAILS

C.1 BEST LEARNING RATE (LR) ANNEALING AT DIFFERENT TOKEN HORIZONS.

We pretrain a small GPT-2 model (121M parameters). We enumerate all the non-increasing
piecewise-constant LR schedule over the discrete set {0.0015/2.5%|0 < k < k0, . We sub-divide
the total training duration in L intervals of 77M tokens each. At the end of each interval, either the
LR remains constant, either it is decayed by one or more steps. We chose L = 16 and k0 = 4,
which yields a total of 4842 runs. For efficiency, we use the same checkpoint to warm start all
runs sharing the same prefix in the LR scheduling, which cut down the computational complexity
of this naive enumeration from O (L*ma=*1) to O(L¥ma=). Therefore, the total compute budget is
kept under 7,000 A100 GPUh. For five different token horizons (155M, 310M, 621M, 932M and
1.24B) we report the best scheduling among the 4,842 tested. We report the results in Figure 6.
We notice that the best scheduling at short horizon is never a prefix of the best scheduling at long
horizon. This empirical observation is compatible with the findings of ( ): there is a
tension between the optimisation bias induced by the terminal LR value (the lower the better) and
the progress of optimisation which requires higher LR at start.

C.2 BASELINE GLOBAL HYPERPARAMETER TUNING
To establish a baseline, we perform an extensive random hyperparameter search consisting of 2048
trials. Each trial trains a 50M parameter model (dmoder = 512, L = 4) for 1.64B tokens (33 to-
kens/parameter) over a discrete search space defined by:
e LR {1x107%,3x107%,4x1074,1x1072,3x1073,4x1073,1x1072,2x 1072,3 x
1072,1 x 1071}
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e Adame € {1 x 1071 x 107121 x 107101 x 1078,3 x 1078,4 x 1078,1 x 1077}
Adam B3; € {0.8,0.85,0.9,0.95,0.999}

* Adam f3, € {0.9,0.95,0.98,0.99,0.999}

» Weight Decay € {1 x 107%,1 x 1073,1 x 1072,1 x 1071,2 x 107%,4 x 107!}

The results and hyperparameter sensitivities from this search are visualized in Figures 13a to 13c.
The optimal configuration from this global search achieves a validation negative log-likelihood of
3.34 nats. This result is substantially higher than that achieved by our per-parameter search strategy,
underscoring the advantage of discovering optimal configurations at a small scale before upscaling
with principled rules like Complete@P .
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(c) Weight decay vs. learning rate for baseline 50M model.
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Figure 14: The effect of QK-norms on hyperparameter transfer of the global learning rate across

depth with two variants of CompleteP with a € {,1}.
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