
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPLETED HYPERPARAMETER TRANSFER ACROSS
MODULES, WIDTH, DEPTH, BATCH & DURATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperparameter tuning can dramatically impact training stability of large-scale
models. Recent works on neural network parameterisations, such as µP, have
shown that layer types and sizes should dictate how global hyperparameters should
be rescaled in order to achieve efficient transfer across model sizes. On the other
hand, the established practice for hyperparameter optimisation search is to look
for optimal global base values that apply at some fixed model scale. We transfer
hyperparameters across some of the most relevant scaling axes: width and depth
— using an extension of CompleteP (Dey et al., 2025) —, batch size and training
horizon. Our study covers an extensive range of optimisation hyperparameters of
modern models: learning rates, AdamW parameters, weight decay, initialisation
scales, and residual block multipliers. Lastly, we demonstrate that hyperparam-
eter transfer holds even in the per-layer hyperparameter regime. We characterise
the empirical challenges of navigating the high-dimensional hyperparameter land-
scape, and propose practical guidelines for tackling this optimisation problem. We
suggest a simplified parameterisation of the hyperparameter space that reduces
the dimensionality of the search-space at no performance cost. Our experiments
demonstrate significant training speed improvements in Large Language Models
with the transferred hyperparameters.

0h 27h 55h 83h
Runtime

3.1

3.2

3.3

3.4

3.5

3.6

Fi
na

l l
os

s

Best grid search loss

50M HP search

0.0B 1.6B 3.3B 4.9B
Tokens

57% speedup

50M training run
Optimal global
Optimal per-module
Scaling law

16.4B 32.8B 49.2B
Tokens

2.25

2.30

2.35

2.40

2.45

33% speedup

1.8B training run

Figure 1: (Left): We implement an evolutionary strategy to optimise hyperparameters at a small
50M parameters/1.6B tokens horizon (learning rate, initialization scale, Adam ε, β1, β2 and weight
decay). These hyperparameters can be either learned globally and applied uniformly across the
entire model, or per-module (we consider 13 module types, some additionally tuned per depth).
For a similar total number of runs (3k for global, 5k), (Middle): the per-module approach leads as
expected to better results at the 1.6B horizon, that the global optimum can only achieve with double
that budget. (Right): Crucially, our new parameterisation, Complete(d)P , enables a direct transfer
(without any subsequent adaptation) to an ∼ 600× larger FLOP budget. While this is true for the
global optimum, this also the case for our granular per-module HP setup, which result in similar
savings at that much larger scale (three seeded runs reported per setup).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

The remarkable success of large transformer-based models (Vaswani et al., 2017) has been driven
by scaling up model size and data. However, to get the most out of these large-scale training runs,
or to even successfully complete them at all, several hyperparameters (HPs), such as learning rates,
weight decay, or initialization scales, must be carefully set.

Parameterisation. To mitigate this HPs tuning cost, recent works have introduced principled pa-
rameterisations, such as the µ-parameterisation (µP) (Yang et al., 2022), with the goal of enabling
the transfer of optimal global hyperparameters from smaller, cheaper-to-train models to their large-
scale counterparts. Effectively, these parameterisations propose to automatically adapt a global
seeded HP to any layer, depending on its width or type. This process has been extended to handle
changes in depth with Depth-µP (Yang et al., 2024) and further investigated for width and depth in
transformers with CompleteP (Dey et al., 2025). These methods have been demonstrated to success-
fully transfer optimal global hyperparameters.

Per-module HP. Given the significant performance improvements and cost reduction from optimis-
ing HPs on smaller-scale experiments, it is natural to consider optimising HPs on a finer-grained
scale as well, and explore per-module HPs. When one scales-up a model with µP, Depth-µP or
CompleteP, different layers will receive different HPs depending on their architectural role – for
instance, the learning rates for the embedding layers have to be scaled differently from those for the
hidden weights. It is therefore reasonable to expect that different layers could benefit from indepen-
dent hyperparameter tuning. Put differently, there is little reason to believe the optimal per-module
HPs should all collapse to the same value at some base width at which we optimise them.

Parameterisation-aware per-module HP Optimisation. In this work, we systematically investi-
gate the transfer of per-module hyperparameters across various scaling modalities. The challenge,
however, is one of scale: tuning hyperparameters on a per-module basis creates a combinatorial
explosion in the search space, making it truly intractable at large scale. We propose a practical
methodology to unlock the benefits of per-module tuning by leveraging the power of HP transfer us-
ing parameterisations. We perform the expensive, high-dimensional search for optimal per-module
HPs on a small proxy model, and demonstrate the transfer of the optimal HPs to a large target model.
Our contributions are:

• Complete(d)P . We refine the CompleteP parameterisation from Dey et al. (2025), extending it to
modern Transformer components like Query-Key Normalization (Henry et al., 2020). We further
identify and rectify minor issues in the original formulation. We illustrate the resulting parame-
terisation permits robust hyperparameter transfer for all theoretically-motivated variants of depth
scaling (α ∈

[
1
2 , 1

]
).

• New scaling directions for HP transfer. We systematically study transfer beyond model size,
including in token horizons and batch size. We make new recommendations for weight-decay
scaling with batch-size adapting the SDE approach of (Malladi et al., 2022) to AdamW.

• Per-module HP transfer. We empirically demonstrate hyperparameter transfer with the right
parameterisations holds for per-module hyperparameters. Optimising per-module hyperparameters
at a small scale yields significant training speed-ups that persist after transfer to larger scale.

• A practical recipe to find per-module HPs. We empirically characterise the per-module hyper-
parameter optimisation landscape. We highlight its challenging nature, marked by sharp “cliffs”
where training diverges, resulting in wasted compute. These characteristics make it highly ineffi-
cient to use random search and have proved very challenging in our experimentations with vanilla
Bayesian optimisation. We show that the landscape is close to “invex”, and opt for simpler local
search strategies are well-suited to navigate this space and find high-performing configurations.

2 HYPERPARAMETER TRANSFER

In this section, we describe the hyperparameter transfer modalities we consider, and the principles
that we follow to adjust HPs while varying other aspects of the training configuration.1 We first de-

1To disambiguate, we’ll refer to hyperparameters as aspects of training we want to find optimal values for,
which we contrast with training configuration – the aspects of training we want to control to facilitate scaling
(number of training tokens, number of parameters, batch-size) that are typically integers.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

10 4 10 3 10 2 10 1

3.0

3.5

4.0

Fi
na

l L
os

s

Width Transfer

Width
128
512
1024
1536
2048

10 4 10 3 10 2 10 1

Learning Rate

 Min: 3.023

Depth Transfer (= 1
2)

Depth
4
8
12
24
64
128

10 4 10 3 10 2 10 1

 Min: 3.050

Depth Transfer (= 1)

Depth
4
8
12
24
64
128

Figure 2: Hyperparameter transfer for global learning rate across depth and width. Each setting is
run with three independent seeds.

scribe hyperparameter transfer in model size (width and depth) in Section 2.1, where we introduce a
variant of the CompleteP parameterisation (Dey et al., 2025). In Section 2.2, we describe principles
we follow for hyperparameter transfer across batch-size. Lastly, we consider hyperparameter trans-
fer in the number of training tokens in Section 2.3, illustrating that optimal HPs do not transfer out
of the box across token horizons.

Experimental Setup All experiments are conducted using a decoder-only transformer model
(Radford et al., 2019; Phuong & Hutter, 2022) on the RedPajama dataset (Weber et al., 2024). We
use a modern transformer variant with pre-normalisation, Query-Key normalisation (Henry et al.,
2020), trained with a mixture of cross-entropy and Z-loss (de Brébisson & Vincent, 2016). We al-
ways train with a cosine schedule. As a performance metric, we always report the final validation
loss on the pre-training data, which is a strong indicator of downstream performance. For remaining
training and architecture details, see Appendix D.

2.1 HYPERPARAMETER TRANSFER ACROSS MODEL SIZE

The core idea underlying hyperparameter transfer across models of different sizes is to view models
as discretisations of infinite-size limits. Intuitively, two models of different sizes that are both suffi-
ciently close to the same infinite limit will behave similarly, and if their infinite limits are the same
over the set of considered hyperparameters, then they should share similar optimal hyperparameters.

The challenge is that, depending on the parameterisation — i.e. the rules for adjusting the hy-
perparameters as a function of size — we can obtain different infinite width or depth limits with
fundamentally different behaviours (Yang & Hu, 2021). Most of these limits are pathological in var-
ious ways. For instance, the Standard Parameterisation (SP) (Sohl-Dickstein et al., 2020) leads to
the features blowing up with size, whereas the Neural Tangent Parameterisation (Jacot et al., 2018)
results in a lack of feature learning (Yang & Hu, 2021). µP was identified by Yang & Hu (2021) as
the unique parameterisation for Stochastic Gradient Descent (and later for a broad class of adaptive
algorithms (Yang & Littwin, 2023)) that precludes the emergence of many such pathologies at scale.

In this work, we build upon the CompleteP (Dey et al., 2025), which itself is an adaptation of Depth-
µP to transformers, to which we make several adaptations. These new scaling rules, which we call
Complete(d)P , are summarised in Table 1. Firstly, we extend the parameterisation to Query-Key
(QK) normalisation layers (Henry et al., 2020), which have become a staple in modern transformer
implementations (Yang et al., 2025; Dehghani et al., 2023). The challenge of QK norms is that,
unlike any other component in transformers, these layers share weights across transformer heads. If
scaling in width is performed by increasing the number of heads while keeping the head dimension
fixed (as was done in (Dey et al., 2025; Yang & Hu, 2021)), then QK norms introduce weight-sharing
across the scaled dimensions. This necessitates different scaling considerations than for regular
normalisation layer multipliers or biases. The adjustments for AdamW (Loshchilov & Hutter, 2017)
are shown in Table 1, which we justify in Appendix B.

Secondly, we note that Dey et al. (2025) mistakenly derived the wrong scaling for the AdamW ϵ
scaling for the input embedding. We justify our modification in the Appendix B. Although the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Parameterisation Comparison as a function of width (mN), depth (mL), batch size (mB)
and token count/data size (mD) ratios. For Complete(d)P , differences to CompleteP (Dey et al.,
2025) for width & depth scaling are shown alongside in gray.

Parameterisation: µP (Table 3) Complete(d)P
M

ul
tip

lie
rs MHA Residual x+ MHABlock(x) x+m−α

L MHABlock(x)
MLP Residual x+ MLPBlock(x) x+m−α

L MLPBlock(x)
Unemb. Fwd Unaugmented Unaugmented [×(m−1

N
)]

In
it.

Va
ri

an
ce

s Input Emb.

σ2
b

Hidden weights ×m−1
N ×m−1

N
Hidden biases/norms
Unemb. LN
Unemb. Weights ×m−2

N ×m−2
N [×1]

Le
ar

ni
ng

R
at

es

Input Emb.

ηb ×
√

mB

mD

Hidden weights ×m−1
N ×m−1

N ×mα−1
L

Hidden biases/norm ×mα−1
L

Unemb. LN
Unemb. weights ×m−1

N ×m−1
N [×1]

A
da

m
W

ϵ Hidden weights/biases/norms

ϵb

×m−1
N ×m−1

N ×m−α
L

×
(

mB

mD

)− 1
2QK norms NA ×m−α

L [NA]

Input Emb. ×m−1
N ×m−1

N [×1]

Output weights/biases/norms

W
ei

gh
t

de
ca

y Hidden weights
λb

×mN ×mN

×
√

mB

mD
Unemb. weights ×mN ×mN

Rest ×1 ×1

AdamW (1− β1) (1− β1,b) ×mB

mD

AdamW (1− β2) (1− β2,b) ×mB

mD

Training iterations ∝ mD

mB

resulting modification is minor, we found that the lack thereof was sufficient to break a thorough
sweep of the coordinate checks described by Yang et al. (2022) in our implementation.

Lastly, we eliminate the explicit scalar multiplier on the output of the final linear projection,
f : RE → RV , by reparameterising its effect into the learning rate and initialisation scale. This
enables memory-efficient algorithms like Cut Cross-Entropy (Wijmans et al., 2025), which avoid
materialising the full V × E projection matrix, drastically reducing GPU memory requirements for
modern large vocabulary models.

In Figure 2, we verify the HP transfer with Complete(d)P across width and depth. An important factor
in Depth-µP is the depth-dependent re-scaling factor for the residual connection in transformers (hℓ

the output of layer ℓ, Fℓ the function applied to it):

hℓ+1 = hℓ +m−α
L Fℓ(h

ℓ), ℓ ∈ {1, . . . , L}
which is governed by a single parameter α ∈ [0.5, 1].We make the following observation:

Complete(d)P with α = 1
2 and α = 1 permits hyperparameter transfer across depth.

Our parameterisation seems to allow for HP transfer with all theoretically justified values of
α ∈

[
1
2 , 1

]
. This is in contrast to the findings of Dey et al. (2025) who notice a degradation of

transfer for α = 0.5. The added QK norms in our implementation improve stability (see Figure 11
for a comparison without); however, removing them does not lead to the breakdown of transfer
reported by Dey et al. (2025). We note that in their publicly-released reference implementation,
they apply the same AdamW’s ϵ to all weights (including embeddings), against their own paper
recommendation. Interestingly, the optimal loss is slightly better for the largest model for α = 1

2 ,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

potentially suggesting that the theoretical arguments for this parameterisation on the basis of feature
diversity (Yang et al., 2024) might be beneficial in a language transformer context.

2.2 HYPERPARAMETER TRANSFER ACROSS BATCH-SIZE

Model size and dataset size are two levers to achieve lower loss – increasing each predictably leads
to model improvements as implied by scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022).
This, in turn, requires scaling up significantly the compute budget, which is only feasible through
parallelization. In that context, the set of usable batch-sizes is heavily constrained and largely dic-
tated by the memory configuration of a specific parallel architecture. However, training for long
token horizons is challenging with a small batch-size, as it demands many more sequential training
iterations. On the one hand, for smaller hyperparameter sweep runs, a smaller batch-size is often
desirable to reduce the per-run memory footprint and enable running on fewer GPUs. On the other
hand, that batch-size will no longer be suitable for larger runs. Unfortunately, as with scaling model
size or training duration, hyperparameters do not transfer across batch-sizes without further repa-
rameterisation. In this work, we transfer hyperparameters across batch-size via a similar limiting
argument as for transfer across model size. In particular, we follow and extend the principles for
batch-size transfer laid out in Malladi et al. (2022).

Training as discretising an SDE We consider the same simplifying example as in Malladi et al.
(2022). We consider that the gradients queried at each step k are a noisy version of a fixed direction
gk = g + σek, where ek are i.i.d. Gaussian vectors of identity covariance. We further use the
RMSProp algorithm as an example, and place ourselves in the high-variance regime, where σ ≫
∥g∥. Contrary to Malladi et al. (2022), we also consider a weight decay term as in AdamW. We let η
the learning rate, and λ the weight decay. We obtain the simplified RMSProp iterations (see (Malladi
et al., 2022, Sec. 4.1) for more details) that define the iterates θ(k; η, λ, σ) with the equation

θk+1 = θk − η

(
gk

σ
+ λθk

)
= θk − η

σ

(
g + λσθk

)
− ηek, (1)

which is a discretization of the SDE dΘt =
1
ησ (g + λσΘt)dt+ dWt with step-size η2, in the sense

that θk ≃ Θkη2 . Therefore, we find that the multipliers to keep fixed iterate distributions, i.e., such
that θ(k; η, λ, σ) = θ(mkk;mηη,mλλ,mσσ), should verify mkm

2
η = 1, mηmσ = 1, and mλ =

mη . In particular, if the batch-size is multiplied by κ, we have mσ = κ−1/2 and we find that the
new hyperparameters matching the SDE limit should follow the square-root scaling rule

η′ =
√
κη, k′ = κk, and λ′ =

√
κλ . (2)

To the best of our knowledge, we are the first to extend the SDE reparametrisation scaling rules
(Li et al., 2019; Malladi et al., 2022) to the weight decay of AdamW, although we note that the
same scaling rule for weight decay was proposed based on other principles in recent work (Wang &
Aitchison, 2025; Compagnoni et al., 2025; Bergsma et al., 2025). We report the effect of using these
scaling rules in batch-size in Figure 3; using the square-root rule is critical to good LR transfer. We
further show in Figure 4 that the above rule is critical for transfer of weight-decay in batch-size.

AdamLH and multipliers Equation 1 mirrors the Pytorch implementation of AdamW, where the
weight decay λ is multiplied by the learning rate η. If one instead uses the original AdamW imple-
mentation, often coined AdamLH, as proposed by Loshchilov & Hutter (2017), we get the simplified
iterations θk+1 = θk − η gk

σ − λθk, and we find that the multipliers are the same as for AdamW,
except that mλ = m2

η: doubling the batch-size means that the weight decay should now be doubled.
Hence, using AdamLH leads to a bigger drift across batch-sizes if the scaling is not done correctly,
amplifying further the drift observed in Figure 3, right. We posit that this is one of the reasons why
the Pytorch implementation is more widely used.

2.3 HYPERPARAMETER TRANSFER IN TRAINING DURATION

Unlike transfer in model size or batch-size, transfer in the token horizon has received comparatively
less attention in the literature. Nonetheless, it is one of the two main levers to scaling compute. Like
Bjorck et al. (2025), we observe that the optimal learning rate decays with the number of training
iterations, holding all other things constant. Optimal learning rate keeps SDE time constant.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

10 4 10 3 10 2 10 1

Global LR

3.5

4.0

4.5

Tr
ai

ni
ng

 L
os

s Batch Size
4 ×
2 ×
Base
1
2 ×
1
4 ×
1
8 ×

10 4 10 3 10 2 10 1

Learning Rate

3.5

4.0

4.5

Tr
ai

ni
ng

 L
os

s Batch Size
4 ×
Base
1
8 ×

Figure 3: Learning rate transfer with batch-size. Left: Learning rates transfer when using the
square-root rule in Equation 2 Right: Learning rates fail to transfer without adjustment. Each setting
is run with three independent seeds.

10 3 10 2 10 1 100

Weight Decay

3.3

3.4

3.5

3.6

3.7

Tr
ai

ni
ng

 L
os

s

Standard
Batch Size

4 ×
2 ×
Base
1
2 ×

10 3 10 2 10 1 100

Effective Weight Decay

Standard
Batch Size

4 ×
2 ×
Base
1
2 ×

10 3 10 2 10 1 100

Weight Decay

SDE Adjustment Rule
Batch Size

4 ×
2 ×
Base
1
2 ×

Figure 4: Weight decay transfer with batch-size. Left: Weight decay fails to transfer with batch-
size without any adjustments. Middle: The rescaled (effective) weight decay λ/

√
κ where κ is the

increase does transfer. Right: The effective weight decay transfers when rescaling all hyperparam-
eters following our AdamW SDE scaling rule. Each setting is run with three independent seeds.

10 5 10 4 10 3 10 2 10 1 100

Global LR

2.75

3.00

3.25

3.50

Tr
ai

ni
ng

 L
os

s

Tokens
0.8B
1.6B
8B
16B
32B

10 4 10 3 10 2 10 1 100 101

Effective LR (× tokens)
Figure 5: Learning rate transfer across training horizon – adjusting the number of tokens by changing
the number of training iterations while holding batch-size constant. Left: Break-down of transfer
of the global learning rate. Right: Stability of the “effective” learning rate – one that preserves the
AdamW SDE integration horizon. Each setting is run with three independent seeds.

In Figure 5, we notice that the optimal learning rate decays at a rate roughly proportional to 1√
κ

,
where κ is the factor by which we’ve increased the number of training iterations. We plot the
optimal learning rate from the shortest training duration (ηopt) transferred with the scaling rule ηopt√

κ

in gray, and observe that it aligns almost perfectly with the true optima. In contrast, Bjorck et al.
(2025) fit a scaling law to find the exponents β for the scaling rule ηopt

κβ ; and they identify β to be in
the ranges of 0.3− 0.7 depending on the model size, which matches our scaling rule.

Square-root reparameterisation for learning rate permits transfer across training horizon.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.25

3.50

Fi
na

l L
os

s 42M params
Complete(d)P with SDE scaling
CompleteP

3.0

3.5
Fi

na
l L

os
s 238M params

109

Number of tokens

2.75
3.00
3.25

Fi
na

l L
os

s 743M params
Scaling Laws:
Complete(d)P with SDE: 2.253 + 515283

N0.80 + 942
D0.34

CompleteP: 2.482 + 856
N0.42 + 6670

D0.47

Figure 6: Scaling law comparison of models trained with and without Complete(d)P token
horizon scaling rule.. We compare Complete(d)P width & depth scaling only (aka CompleteP with
ϵ and QK-norm fixes in Section 2.1) and full Complete(d)P with SDE scaling rules for token horizon
transfer. The token horizon transfer rule leads to better performance at scale, as indicated by a better
lower bound coefficient of the scaling law.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Tokens 1e9

10 4

Le
ar

ni
ng

 r
at

e

Optimisation Horizon (Tokens per Parameter)
1 3 6 9 11

3.25

3.50

Fi
na

l L
os

s
Figure 7: Best Learning Rate annealing over 4,842 runs for five different token horizons. The
best schedule at a short horizon is never a prefix for the best schedule at a longer horizon. The
optimal schedule cannot be found by a greedy approach: the best LR annealing is not data agnostic.

In light of the SDE interpretation in subsection 2.2, scaling the learning rate by 1√
κ

while hold-
ing the batch-size constant can be seen as reducing the signal-to-noise (SNR) ratio in the SDE,
while keeping the time horizon constant. Indeed, we orthogonally observe that when simulating the
AdamW SDE, improving the signal-to-noise ratio (i.e. reducing the size of the diffusion coefficient)
while holding other parameters constant consistently leads to improved performance. Hence, we
hypothesise that the right way to scale the token horizon might be only adjusting the signal-to-noise
parameter in the AdamW SDE, while keeping all other terms constant. We validate this empirical
observation in Figure 12, where we scale the number of tokens by increasing batch-size only (which
has the desired effect of changing the signal-to-noise ratio); we observe a near-perfect learning rate
transfer across the token horizon. We expect this transfer to break at larger batch-sizes, where the
discretisation will be too coarse for AdamW to approximate the underlying SDE, but when taken
together with the batch-size reparameterisation rules in subsection 2.2, this finding suggests how to
scale all HPs across token horizons while choosing the batch-size freely. This is the token horizon
scaling procedure we follow in all the per-module HP results in the remainder of this paper. We note
that this finding might be specific to the fixed (cosine) schedule that we use. The resulting scaling
rule as a function of the token horizon leads to better asymptotic performance, as predicted by a
scaling law, as we demonstrate in Figure 6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Best Learning Rate (LR) annealing at different token horizons. Optimal schedules might have
different shapes at different token horizons (Luo et al., 2025). We conduct a greedy search to de-
termine optimal learning rate schedules in the following way. We enumerate all the non-increasing
piecewise-constant LR schedule over the discrete set {0.0015/2.5k|0 ≤ k ≤ 4}. We sub-divide the
total training duration in 16 intervals of 77M tokens each. At the end of each interval, either the LR
remains constant, either it is decayed by one or more steps. For five different token horizons, we
report the best scheduling among the 4,842 tested. We report the results in Figure 7. We notice that
the best scheduling at short horizon is never a prefix of the best scheduling at long horizon. This em-
pirical observation is compatible with the findings of Luo et al. (2025): there is a tension between
the optimisation bias induced by the terminal LR value (the lower the better) and the progress of
optimisation which requires higher LR values at start.

3 INVESTIGATING TRANSFER OF PER-MODULE HYPERPARAMETERS

Equipped with the tools for hyperparameter transfer described in the preceding section, in this sec-
tion we investigate 1) how much there is to gain from per-parameter hyperparameter optimisation,
and 2) how well do per-module hyperparameters transfer.

3.1 OPTIMISING PER-MODULE HYPERPARAMETERS

To show improvements and transfer of per-module hyperparameters, we need a good way to optimise
them at a fixed scale. Although there is ample literature on hyperparameter optimisation in deep
learning (Snoek et al., 2012; Maclaurin et al., 2015; Lorraine et al., 2020), optimising HPs on a per-
module basis introduces many new difficulties. Below, we highlight why many standard approaches
fail in the per-parameter optimisation setting.

Per-module hyperparameter loss landscape In Figure 8, we plot slices through the per-module
learning rate (LR) loss landscape — i.e. the landscape of the mapping from LRs to the final loss.
We observe that, fortuitously, it’s pretty close to being invex (stationary points are global minima),
and hence might be tractable even despite its high dimensionality. Several other aspects, however,
render it challenging for common HP optimisation methods: 1) The values of per-module learning
rates at which training becomes unstable are module-dependent, and can differ by multiple orders
of magnitude. 2) The boundary at which training becomes unstable has a complex shape, with non-
trivial interactions among different modules, implying it’s difficult to predict with simple predictive
models (e.g. linear models or Gaussian Processes (Williams & Rasmussen, 2006)). Our observation
is similar to that made by Sohl-Dickstein (2024) — who observed the stable regime boundary is a
fractal — but we also note a lack of an emergent simple structure at the macro scale. This means
common hyperparameter optimisation strategies, like random search or standard Bayesian Optimi-
sation, struggle in this regime. For instance, random search lacks any locality bias; we observe
that without careful manual tuning of the search boundaries, either all runs will fail due to unstable
training, or the boundaries will fail to include the actual optimum. Bayesian optimisation rely on
Gaussian processes (GPs) approximations to guide search locally around previously successful tri-
als. However, GPs may struggle on highly non-stationary data (Snoek et al., 2014; Rana et al., 2017)
with a fixed kernel. We did observe such irregularities in the HP to loss landscape, which resulted
in many failures when using BO. Many of these difficulties can be alleviated by more robust ‘trust
region’ methods — approaches that optimise in neighbourhoods of previous good solutions. We de-
scribe a simple trust-region random search variant that we use for our experiments in Appendix C.

Parameterising per-module hyperparameters We adopt a depth–type Kronecker parameterisa-
tion of per-module hyperparameters that is compatible with Complete(d)P transfer across width and
depth. Let m ∈ M index module type within a Transformer block (QKV weights, attention projec-
tions, MLP weights and biases, layer norm and QK-norm multipliers), and let ℓ ∈ 1, . . . , L index
the depth. For a hyperparameter ζg,ℓ ∈ η, λ, (1− β1), (1− β2), ϵ for module m at depth ℓ:

log ζm,ℓ(T,N,L,B) = log ζtypem︸ ︷︷ ︸
type

+ log ζdepthℓ (L)︸ ︷︷ ︸
depth

+ log SDE(T,B)︸ ︷︷ ︸
SDE batch/horizon

+ log CPm(N,L)︸ ︷︷ ︸
CompleteP

(3)

where SDE(T ;B) carries all training-horizon T and batch-size B dependence via the AdamW SDE
transfer rules, CPg(N,L) is the Complete(d)P scaling rule adjustment in width and depth (Table 1),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10
4

10
3

10
2

10
1

10
0

10 4

10 3

10 2

10 1

100

Layer-1 QKV-weights
vs

Layer-1 MLP-weights

10
4

10
3

10
2

10
1

10
0

10 4

10 3

10 2

10 1

100

Layer-1 QKV-weights
vs

Layer-5 QKV-weights

10
4

10
3

10
2

10
1

10
0

10 4

10 3

10 2

10 1

100

Layer-1 QKV-weights
vs

Layer-5 MLP-weights

10
4

10
3

10
2

10
1

10
0

10 4

10 3

10 2

10 1

100

Layer-5 QKV-weights
vs

Layer-5 MLP-weights

4

5

6

7
Final Loss

Figure 8: The boundary for stable training has a complex shape. Each plot shows the final training
loss for different combination of learning rates for the modules indicated, while fixing the remaining
learning rates to the optimal “global” value. MLP weights refer to the MLP in the attention layer. If
unstable training results in NaNs, the last stable training loss is reported.

and ζtypem , ζdepthℓ for m ∈ M, ℓ ∈ L are dimensionless, time-invariant multipliers that we optimise
at a given width and depth. This factorisation reduces the number of free multipliers from |M|L
to |M| + L. We optimise the hyperparameter multipliers in log-space using trust-region random
search (Appendix C). For the learning rate, the above multiplier post-multiplies the learning rate
from the cosine schedule. When transferring the depth multipliers ζdepthℓ (L) to a larger depth L′, we
interpolate them linearly with respect to ℓ

L . This is reasonable, as the depth-SDE (α = 1
2) or depth-

ODE limits (α ∈ (12 , 1]) should still exist if the base hyperparameters ζdepth⌊tL⌋ (L) vary continuously
with sufficient regularity across depth t ∈ [0, 1]. In this sense, the finite-depth multipliers can be
seen as a discretisation of the continuous limit HPs: To transfer to a large depth we simply linearly
interpolate all HPs in depth.

3.2 PER-MODULE HYPERPARAMETERS MATTER

Depth multipliers matter We ablated away the effect of the learning rate per-depth multipliers,
by instead considering only a search over learning rate multipliers for each layer role: Within each
residual block, every parameter group gets an independent learning rate, which is shared across
different residual blocks; similarly, each parameter group in the embedding and unembedding layers
gets its own value. We initiate this search from a projection of the best per-module hyperparameters
onto this linear subspace. In Figure 14c, we observe that the search value, although still substantially
better than the best global learning rate, is worse than the one that includes per-depth multipliers.
Hence, while the majority of the gain comes from different module types within residual blocks
getting different learning rates, there is still notable benefit to per-depth multipliers.

How restrictive is the depth-Kronecker factorisation? To check how much performance we’re
leaving on the table with the depth-Kronecker factorisation constraint, we continue searching for
fully uncoupled per-layer learning rates from the optimal Kronecker-factorised ones. The search
results are shown in Figure 14b. Crucially, we observe virtually no improvement over the Kronecker-
factorised ones. While this is not conclusive evidence that the optimal per-module learning rates are
depth-Kronecker factored – the fully uncoupled search-space is much higher-dimensional and more
difficult to navigate, and its likely we didn’t find the optimum – these runs imply that most of the
benefits of per-module HP optimisation can be captured by Kronecker factorised learning rates.

3.3 OPTIMAL PER-MODULE HYPERPARAMETERS TRANSFER WITH SCALE

Demonstrating upsides of per-module HP optimisation would be of little practical use if the HPs
have to be tuned at the target model scale. In this section, we show that the improvements do persist
across different model scales. Firstly, we demonstrate transfer in model size. Figure 9 illustrates
that the optimal per-module learning rates transfer as we scale up both width and depth. Although
we cannot easily visualise how the per-parameter HP loss landscape shifts as we vary model size
(like was shown in Figure 2) due to its high-dimensional nature, we instead show the final training
losses for a slice (a hyperplane) going through both the scaled-up optimal per-module learning rates

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

and the optimal global learning rate. We observe that this landscape appears stable with model size,
suggesting that the optimal per-module LRs do transfer with width and depth.

3.25

3.30
Fi

na
l L

os
s

 Optimal per-module LRs
50M parameters

3.10

3.15
100M parameters

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Coefficient

2.90

2.95 Optimal global LR 500M parameters

Figure 9: Transfer across model scale of the optimal per-module learning rates. We interpolate
between the optimal global learning rate multiplier, and the optimal per-module multipliers across
models of different scales, and show that the optimal per-module multipliers 1) consistently improve
upon the global multiplier baseline, and 2) remain close to optimal in the hyperplane spanned by the
optimal global and local multipliers. Each setting is run with three independent seeds.

Transferring all per-module HPs across the compute optimal horizon. We also investigate what
improvements are possible when transferring per-module HPs to a compute-optimal model at the
1B parameter scale. Here, we jointly optimise the per-module learning rate, weight-decay, AdamW
β1, β2, ϵ and initialisation scale, and the residual block multipliers. We continue the search from
the optimal per-module learning rates identified with search in Figure 14a at the 50M parameter
& 1.6B token scale. In Figure 1, we show that when transferred to the 1.3B & 26B token scale
(420× compute) the optimal per-module HPs lead to a 27% speed-up to reach equivalent loss over
the optimal global HP baseline.

4 DISCUSSION & CONCLUSION

Limitations & Future Work Our study encompasses a broad set of hyperparameters and transfer
modalities, but there are limits to our empirical explorations, some of which we highlight below:

• Although we identify improved per-module hyperparameters in a reasonable number of trials,
a better suited search method could potentially be significantly more trial-efficient. Exploring
Bayesian optimisation methods that address the specific difficulties of the per-module hyperpa-
rameter loss landscape highlighted in this work — such as Trust Region Bayesian Optimisation
(Eriksson et al., 2019) — as well as methods that utilise early-stopping, and methods that exploit
the structure of the training process (Lin et al., 2024) seem particularly promising.

• We only evaluate on one training setup (autoregressive transformer training on the RedPajama
dataset). While that setup has broad practical relevance, our approach (the proposed transfer prin-
ciples, and benefits of per-module hyperparameters) should be ideally verified in other settings.

• The benefits of per-module hyperparameters we identified at small scale seem to diminish with
model and data size. However, we do not know whether that is mostly to be explained by imperfect
hyperparameter transfer in the non-asymptotic regime, or whether this is due to an asymptotic
property of the infinite-scale models. We hope future work might find computationally feasible
ways of answering that question.

Conclusion In this paper, we proposed new transfer rules for hyper-parameters, valid across the most
important scaling axes: model’s width, model’s depth, token horizon, and batch size. Furthermore,
these transfer rules also hold for per-module hyper-parameters. We demonstrate that systematic
optimisation at small scale with trust region methods produce a configuration that transfers to larger
scales, and significantly improves training speed.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Power lines: Scaling laws for weight decay and batch size in llm pre-training. arXiv preprint
arXiv:2505.13738, 2025.

Johan Bjorck, Alon Benhaim, Vishrav Chaudhary, Furu Wei, and Xia Song. Scaling op-
timal lr across token horizons. In Y. Yue, A. Garg, N. Peng, F. Sha, and R. Yu
(eds.), International Conference on Representation Learning, volume 2025, pp. 83640–83657,
2025. URL https://proceedings.iclr.cc/paper_files/paper/2025/file/
cffa22c56c0df3b3edb1df8a9ad67804-Paper-Conference.pdf.

Enea Monzio Compagnoni, Tianlin Liu, Rustem Islamov, Frank Norbert Proske, Antonio Orvieto,
and Aurelien Lucchi. Adaptive methods through the lens of sdes: Theoretical insights on the role
of noise, 2025. URL https://arxiv.org/abs/2411.15958.

Alexandre de Brébisson and Pascal Vincent. The z-loss: a shift and scale invariant classification loss
belonging to the spherical family, 2016. URL https://arxiv.org/abs/1604.08859.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International conference on machine learning,
pp. 7480–7512. PMLR, 2023.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Nikolaus Hansen. The cma evolution strategy: a comparing review. Towards a new evolutionary
computation: Advances in the estimation of distribution algorithms, pp. 75–102, 2006.

Alex Henry, Prudhvi Raj Dachapally, Shubham Pawar, and Yuxuan Chen. Query-key normalization
for transformers, 2020. URL https://arxiv.org/abs/2010.04245.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Au-
relia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Lau-
rent Sifre. An empirical analysis of compute-optimal large language model training. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 30016–30030. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and dynamics of stochastic
gradient algorithms i: Mathematical foundations. Journal of Machine Learning Research, 20(40):
1–47, 2019. URL http://jmlr.org/papers/v20/17-526.html.

Jihao Andreas Lin, Sebastian Ament, Maximilian Balandat, and Eytan Bakshy. Scaling gaus-
sian processes for learning curve prediction via latent kronecker structure. arXiv preprint
arXiv:2410.09239, 2024.

11

https://proceedings.iclr.cc/paper_files/paper/2025/file/cffa22c56c0df3b3edb1df8a9ad67804-Paper-Conference.pdf
https://proceedings.iclr.cc/paper_files/paper/2025/file/cffa22c56c0df3b3edb1df8a9ad67804-Paper-Conference.pdf
https://arxiv.org/abs/2411.15958
https://arxiv.org/abs/1604.08859
https://arxiv.org/abs/2010.04245
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://arxiv.org/abs/2001.08361
http://jmlr.org/papers/v20/17-526.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of
Proceedings of Machine Learning Research, pp. 1540–1552. PMLR, 26–28 Aug 2020. URL
https://proceedings.mlr.press/v108/lorraine20a.html.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Jan Ludziejewski, Jan Małaśnicki, Maciej Pióro, Michał Krutul, Kamil Ciebiera, Maciej Stefaniak,
Jakub Krajewski, Piotr Sankowski, Marek Cygan, Kamil Adamczewski, and Sebastian Jaszczur.
Decoupled relative learning rate schedules, 2025. URL https://arxiv.org/abs/2507.
03526.

Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Maosong Sun, Zhiyuan Liu, Kaifeng
Lyu, and Wenguang Chen. A multi-power law for loss curve prediction across learning rate
schedules. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=KnoS9XxIlK.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Francis Bach and David Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2113–2122, Lille, France, 07–09 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v37/maclaurin15.html.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697–7711, 2022.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv preprint
arXiv:2207.09238, 2022.

Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, and Atish Agarwala. Scaling
collapse reveals universal dynamics in compute-optimally trained neural networks. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=Fvq9ogLnLN.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh. High dimensional bayesian
optimization with elastic gaussian process. In International conference on machine learning, pp.
2883–2891. PMLR, 2017.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan Adams. Input warping for bayesian optimiza-
tion of non-stationary functions. In International conference on machine learning, pp. 1674–
1682. PMLR, 2014.

Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal, 2024. URL https:
//arxiv.org/abs/2402.06184.

Jascha Sohl-Dickstein, Roman Novak, Samuel S Schoenholz, and Jaehoon Lee. On the infinite width
limit of neural networks with a standard parameterization. arXiv preprint arXiv:2001.07301,
2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL https://arxiv.
org/abs/1706.03762.

12

https://proceedings.mlr.press/v108/lorraine20a.html
https://arxiv.org/abs/2507.03526
https://arxiv.org/abs/2507.03526
https://openreview.net/forum?id=KnoS9XxIlK
https://proceedings.mlr.press/v37/maclaurin15.html
https://proceedings.mlr.press/v37/maclaurin15.html
https://openreview.net/forum?id=Fvq9ogLnLN
https://openreview.net/forum?id=Fvq9ogLnLN
https://arxiv.org/abs/2402.06184
https://arxiv.org/abs/2402.06184
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness disparity
principle in transformers for accelerating language model pre-training. In Forty-second Interna-
tional Conference on Machine Learning, 2025.

Xi Wang and Laurence Aitchison. How to set adamw’s weight decay as you scale model and dataset
size. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=IszVnczhfz.

Maurice Weber, Daniel Y. Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun, Rahul Cha-
lamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Ré, Irina Rish, and
Ce Zhang. Redpajama: an open dataset for training large language models. NeurIPS Datasets
and Benchmarks Track, 2024.

Erik Wijmans, Brody Huval, Alexander Hertzberg, Vladlen Koltun, and Philipp Kraehenbuehl.
Cut your losses in large-vocabulary language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
E4Fk3YuG56.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural net-
works. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pp. 11727–11737. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/yang21c.html.

Greg Yang and Etai Littwin. Tensor programs ivb: Adaptive optimization in the infinite-width limit,
2023. URL https://arxiv.org/abs/2308.01814.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer, 2022. URL https://arxiv.org/abs/
2203.03466.

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite depth neural networks. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=17pVDnpwwl.

13

https://openreview.net/forum?id=IszVnczhfz
https://openreview.net/forum?id=IszVnczhfz
https://openreview.net/forum?id=E4Fk3YuG56
https://openreview.net/forum?id=E4Fk3YuG56
https://proceedings.mlr.press/v139/yang21c.html
https://proceedings.mlr.press/v139/yang21c.html
https://arxiv.org/abs/2308.01814
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466
https://openreview.net/forum?id=17pVDnpwwl

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 2

2 Hyperparameter transfer 2

2.1 Hyperparameter transfer across model size . 3

2.2 Hyperparameter transfer across batch-size . 5

2.3 Hyperparameter transfer in training duration . 5

3 Investigating transfer of per-module hyperparameters 8

3.1 Optimising per-module hyperparameters . 8

3.2 Per-module hyperparameters matter . 9

3.3 Optimal per-module hyperparameters transfer with scale 9

4 Discussion & Conclusion 10

A Additional experiments & figures 15

A.1 Suboptimality of learning rates identified at too small scales 15

B Motivation of the Complete(d)P adjustments 20

B.1 QK norm multiplier weights . 20

B.2 Embedding layer AdamW ϵ . 20

B.3 Changes to the unembedding weight . 20

C Per-module hyperparameter search algorithm 21

D Experimental details 21

D.1 Best Learning Rate (LR) annealing at different token horizons 21

D.2 Baseline global hyperparameter tuning . 22

D.3 Per-module hyperparameter search and transfer (Figure 1) 22

E Extended related work 22

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

245M58M 136M 483M
Model Size (#parameters) at which optimal learning rate is identified

2.96

2.97

2.98

2.99

Fi
na

l l
os

s
at

 4
83

M
 s

ca
le

0.004

0.006

0.008

0.010

B
est learning rate
at each scale

Figure 10: Suboptimality of learning rates optimised at smaller scales. We plot the final loss
on a 483M parameter model (y-axis) when training with the learning optimal for a smaller model
(x-axis). To optimise the (global) learning rate at each of the shown smaller scales, we conduct a grid
search with the following set of candidates: {10−4, 3.3×, 10−4, 5.6×10−4, 10−3, 3.3×, 10−3, 5.6×
10−3, 10−2, 3.3×, 10−2, 10−1, 3.3×, 10−1}. We use Complete(d)P throughout. At the 136M scale,
the optimal learning rate is already approximately stabilised. At the 50M scale, we incur a small
penalty. The final losses are averages over 3 seeds.

A ADDITIONAL EXPERIMENTS & FIGURES

A.1 SUBOPTIMALITY OF LEARNING RATES IDENTIFIED AT TOO SMALL SCALES

As hyperparameter transfer in width & depth with Complete(d)P is motivated by the asymptotic
width & depth behavior, one would expect it to start degrading at smaller scales. Indeed, this can
be empirically observed with learning rate transfer in, e.g., Figure 2. Hence, there is a trade-off
when optimising hyperparameters with Complete(d)P transfer; going to smaller model sizes enables
cheaper hyperparameter optimisation, but these hyperparameters could be slightly suboptimal at
scale due to degraded hyperparameter transfer.

We illustrate this trade-off in Figure 10, where we show the final loss of a larger-scale model
(483M) when transferring optimal hyperparameters (global learning rate) from a smaller model with
Complete(d)P . We see that when transferring the optimal learning rate from a smaller 58M model,
we incur a small transfer penalty. Optimising the learning rate at the 136M scale or larger seems
to incur virtually no penalty. This suggests we might have been able to obtain more competitive
per-module hyperparameters, at a substantially higher compute cost, were we to conduct our search
at the 136M scale. We consider it an exciting direction for future work to empirically investigate
at what scales hyperparameters should be optimised, and subsequently transferred, for maximum
compute savings. Nonetheless, this will of course depend on the hyperparameter search method
used.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

10 5 10 4 10 3 10 2 10 1 100

Learning Rate

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s

Depth
4
8
12
24
64
128

Depth Transfer (= 0.5)

10 5 10 4 10 3 10 2 10 1 100

Learning Rate

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s

Depth
4
8
12
24
64
128

Depth Transfer (= 1.0)

(a) With QK-norms

10 5 10 4 10 3 10 2 10 1

Learning Rate

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s

 Min: 3.245

Depth
4
8
12
24
64

Depth Transfer (= 0.5)

10 5 10 4 10 3 10 2 10 1

Learning Rate

3 × 100

4 × 100

Tr
ai

ni
ng

 L
os

s

 Min: 3.264

Depth
4
8
12
24
64

Depth Transfer (= 1.0)

(b) Without QK-norms

Figure 11: The effect of QK-norms on hyperparameter transfer of the global learning rate across
depth with two variants of Complete(d)P with α ∈ { 1

2 , 1}.

10 5 10 4 10 3 10 2 10 1 100

Learning Rate

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

250M parameters
0.4B tokens
0.8B tokens
1.6B tokens
3.2B tokens
6.4B tokens

Figure 12: Learning rate transfer across token horizon when scaling up by increasing batch-size
while holding training iterations constant. This scaling rule can be seen as improving the gradient
signal-to-noise (SNR) ratio in the discretised AdamW SDE (Malladi et al., 2022), while holding all
the other SDE parameters and the integration horizon fixed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

10 5 10 4 10 3 10 2 10 1 100

Global LR

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

50M parameters
1.6B tokens
4B tokens
8B tokens
16B tokens

10 5 10 4 10 3 10 2 10 1 100

Global LR

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

250M parameters
0.8B tokens
1.6B tokens
4B tokens
8B tokens
16B tokens

10 5 10 4 10 3 10 2 10 1

Global LR

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

500M parameters
0.8B tokens
1.6B tokens
4B tokens
8B tokens
16B tokens

Figure 13: Lack of learning rate transfer across training horizons — increasing token horizon
through number of iterations with a fixed batch-size — for different model sizes. The square-root
transfer rule for the optimal learning rate identified at the smallest token horizon for each model size
is plotted in .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0:00 13:53 27:46 41:40 55:33 69:26 83:20 97:13
Runtime (hours:minutes)

3.24 × 100

3.26 × 100

3.28 × 100
3.3 × 100

3.32 × 100
3.34 × 100
3.36 × 100
3.38 × 100

3.4 × 100

Fi
na

l t
ri

al
 lo

ss

Cumulative min. loss
Running mean (100 trials)
Best grid search loss

0

1000

2000

3000

Total R
uns

(a) Hyperparameter search for the per-module learning rate multipliers parameterised with the depth-Kronecker
factorisation.

0:00 2:46 5:33 8:20 11:06 13:53 16:40 19:26
Runtime (hours:minutes)

3.25 × 100

3.26 × 100

3.27 × 100

3.28 × 100

3.29 × 100

3.3 × 100

3.31 × 100

3.32 × 100

Fi
na

l t
ri

al
 lo

ss

Cumulative min. loss
Running mean (100 trials)
Best grid search loss
Best Kronecker-factorised LR multipliers loss

0

200

400

600 Total R
uns

(b) Hyperparameter search for the per-module learning rate multipliers with fully uncoupled multipliers. The
search is initialised with the optimal HPs found in the search for optimal depth-Kronecker factorised multipliers
in Figure 14a.

0:00 5:33 11:06 16:40 22:13 27:46 33:20
Runtime (hours:minutes)

3.25 × 100

3.26 × 100

3.27 × 100

3.28 × 100

3.29 × 100

3.3 × 100

3.31 × 100

3.32 × 100

Fi
na

l t
ri

al
 lo

ss

Cumulative min. loss
Running mean (100 trials)
Best grid search loss
Best LR multipliers loss

0

200

400

600

800

1000

Total R
uns

(c) Hyperparameter search for the per-module learning rate multipliers with no depth multipliers. he search
is initialised with the projection of onto the constraint set of the optimal HPs found in the search in Figure 14a.

Figure 14: Hyperparameter search results with Trust Region Random Search. Each dot indicates the
final loss of a single trial, and the lines indicate the training duration (start & end).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0:00 27:46 55:33 83:20 111:06 138:53
Runtime (hours:minutes)

3.24 × 100
3.26 × 100
3.28 × 100

3.3 × 100
3.32 × 100
3.34 × 100
3.36 × 100
3.38 × 100

3.4 × 100

Fi
na

l t
ri

al
 lo

ss

Cumulative min. loss
Running mean (100 trials)
Best grid search loss

0

500

1000

1500

2000

2500

Total R
uns

Figure 15: Hyperparameter search for the per-module learning rate multipliers parameterised with
the Kronecker factorisation with CMA-ES. C.f. Figure 14a for the comparable Trust-region Random
Search results.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B MOTIVATION OF THE COMPLETE(D)P ADJUSTMENTS

Here, we give a justification for each of the modifications made in Complete(d)P in Table 1. These
modifications primarily concern scaling the infinite-width limit. We directly rely on the properties
that µP parameterised neural networks are known to possess that were formally shown in (Yang
et al., 2024; Yang & Littwin, 2023). Concretetely, we note that when scaling with µP, all forward
hidden-layer (pre-)activations are expected to have entries of size Θ(1) (as defined in (Yang & Hu,
2021, Definition N.2)) and the backpropagated gradients with respect to hidden (pre-)activations are
expected to have entries of size Θ(1/N). Furthermore, the (pre-)activations and the back-propagated
(pre-)activation gradients are expected to approach i.i.d. in the infinite-width limit.

B.1 QK NORM MULTIPLIER WEIGHTS

In standard implementation of QK norms, the elementwise affine operation x 7→ m ⊙ x + b with
multipliers m and bias b is shared across the transformer heads. When scaling width by increasing
the number of heads — as is common in most of the relevant model scale parameterisation literature
(Dey et al., 2025; Yang et al., 2022) — this effectively means that these parameters are shared across
the scaled width dimension N . For instance, for a collection of query vectors q ∈ RNheads×dhead ,
we have that the normalised query elements q̂ij := mjqi,j + bj all share the same parameters
mj , bj ∈ R for i = 1, . . . , Nheads, where Nheads = Θ(N). We denote by q:,j the RNheads vector
(qi,j : i = 1, . . . , Nheads (q̂:,j respectively). By the results of Yang & Hu (2021); Yang & Littwin
(2023), we have that for the µP parameterisation q:,j has entries of size Θ(1) throughout training.
The loss gradients for any hidden (pre-)activation, are known to have entry size Θ(1/N), and so the
post-normalised query activation gradients ∂L

∂q̂:,j
will also be of size Θ(1/N). The backpropagated

gradient with respect to the multiplier mj is:

Nheads∑
i=1

[
∂L
∂q̂:,j

]
i

qi =
1

N

Nheads∑
i=1

N

[
∂L
∂q̂:,j

]
i

qi,

where the rescaled random variables N
[

∂L
∂q̂:,j

]
i
qi have entry size Θ(1) as N → ∞. Informally,

in Yang & Hu (2021), the random variables N
[

∂L
∂q̂:,j

]
i
qi for i = 1, . . . , Nheads were shown to ap-

proach i.i.d. as N → ∞. Hence the sum above has a Strong Law of Large Numbers like behaviour,
converging to the mean of the entrywise limit of N

[
∂L

∂q̂:,j

]
i
qi. As such, we effectively have that

the gradient with respect to the width-shared parameters is also Θ(1) with width. The scale of the
AdamW ϵ should match the scale of the gradient (Yang & Littwin, 2023), and so we have that the
AdamW ϵ parameter for the width-shared multipliers should also be scaled as Θ(1) with width. A
near-identical argument follows for the bias terms.

B.2 EMBEDDING LAYER ADAMW ϵ

The Θ(1/N) scaling with width N for the embedding layer AdamW ϵ follows from the observation
that the gradients with respect to the embedding parameters have element size Θ(1/N). To see this,
note that the gradients with respect to the output of the embedding layer are Θ(1/N), whereas inputs
are obviously constant with width. Hence, it naturally follows that AdamW ϵ should be scaled as
Θ(1/N) to match the scale of the gradient (Yang & Littwin, 2023).

B.3 CHANGES TO THE UNEMBEDDING WEIGHT

The changes to the unembedding weight scaling rules are mostly a reparameterisation of the
multiplier-based µP implementation in (Dey et al., 2025). Namely, for AdamW, a weight multi-
plier mγ

N has the same effect throughout training (bar the finite-precision arithmetic effects) as: 1)
multiplying the initialisation variance by m2γ

N , 2) multiplying the learning rate by mγ
N , 3) and mul-

tiplying the AdamW ϵ parameter by mN (Yang & Littwin, 2023). We re-parameterise with (1) and
(2), but we don’t change AdamW ϵ as it appears to have been derived incorrectly in (Dey et al.,
2025). To see this, note that with µP (the Table 3 variant without an output layer multiplier), the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

gradients for the unembedding layer weights are expected to have scale Θ(1) with width N . Hence,
to remain of the same scale, the output embedding weight ϵ should also have a matching scale of
Θ(1) (Yang & Littwin, 2023). After reparameterisation to a m−1

N output layer multiplier — as is
done in CompleteP — the ϵ would also have to had to be scaled as m−1

N to match the reparameterised
gradients.

C PER-MODULE HYPERPARAMETER SEARCH ALGORITHM

As described in Section 3.1, standard random search is unsuitable for the task of optimising per-
module hyperparameters. We make two minimal tweaks that make it into a workable method. We
induce an exploitation bias by turning it into a trust region method: we constrain the search-space
adaptively to the neighbourhood {x ∈ Rd : ∥x − xoptt ∥∞ ≤ r} of the current best solution xoptt
at a given iteration t. Hence, the bounds move with the best solution found so far. We optimise
all parameter in the log2-space, and sample uniformly from within the bounding box. Even with
this modification, however, we found that this trust-region random search quickly plateaued with a
relatively high variance in the final loss values. Hence, to allow the algorithm to explore promising
regions more thoroughly, we also decay the size of the bounding region r if the loss doesn’t improve
after a certain number of trials.

For all experiments, unless stated otherwise, we instantiate the search with the bounding box size of
1 (meaning that at each iteration, we multiply the best solution found so far by 2x with x sampled
uniformly from [−1, 1]), and decay size of the trust region r by 0.7 if no improvement is observed
in 100 trials. We run the algorithm asynchronously with a maximum of 100 simultaneous trials.

The goal of this paper is not to identify the best HP optimisation strategy for this setting; we merely
want to find a workable one in order to demonstrate potential for improvements from per-module
HP search. Since the above tweaks borrow from the principles underlying many evolutionary search
(ES) methods, we also wanted to directly compare to a strong ES baseline to check our method
performs reasonably. In Figure 15, we compare CMA Evolutionary Search (CMA-ES) (Hansen,
2006) to the Trust-region Random Search described above (c.f. Figure 14a). CMA-ES is not natively
an asynchronous HP search strategy, so we make a minor modification: for a population size P , we
wait until at least P trials sampled from the current generation have finished running. At that point,
there might be more than P new finished trials (left-over trials from the previous generations), so
we update the CMA-ES state with P best trials only. In this instance, Trust-region Random Search
outperforms this CMA-ES variant. This gives credence to our search method of choice being able
to identify good per-module HPs in reasonable runtime. We hope that future work can explore
alternative strategies that might be able to severely reduce the number of trials required to find good
per-module HPs.

D EXPERIMENTAL DETAILS

D.1 BEST LEARNING RATE (LR) ANNEALING AT DIFFERENT TOKEN HORIZONS

We pretrain a small GPT-2 model (121M parameters). We enumerate all the non-increasing
piecewise-constant LR schedule over the discrete set {0.0015/2.5k|0 ≤ k ≤ kmax}. We sub-divide
the total training duration in L intervals of 77M tokens each. At the end of each interval, either the
LR remains constant, either it is decayed by one or more steps. We chose L = 16 and kmax = 4,
which yields a total of 4842 runs. For efficiency, we use the same checkpoint to warm start all
runs sharing the same prefix in the LR scheduling, which cut down the computational complexity
of this naive enumeration from O(Lkmax+1) to O(Lkmax). Therefore, the total compute budget is
kept under 7,000 A100 GPUh. For five different token horizons (155M, 310M, 621M, 932M and
1.24B) we report the best scheduling among the 4,842 tested. We report the results in Figure 7.
We notice that the best scheduling at short horizon is never a prefix of the best scheduling at long
horizon. This empirical observation is compatible with the findings of Luo et al. (2025): there is a
tension between the optimisation bias induced by the terminal LR value (the lower the better) and
the progress of optimisation which requires higher LR at start.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D.2 BASELINE GLOBAL HYPERPARAMETER TUNING

To establish a baseline, we perform an extensive random hyperparameter search consisting of 2048
trials. Each trial trains a 50M parameter model (dmodel = 512, L = 4) for 1.64B tokens (33 to-
kens/parameter) over a discrete search space defined by:

• LR ∈ {1×10−4, 3×10−4, 4×10−4, 1×10−3, 3×10−3, 4×10−3, 1×10−2, 2×10−2, 3×
10−2, 1× 10−1}

• Adam ϵ ∈ {1× 10−14, 1× 10−12, 1× 10−10, 1× 10−8, 3× 10−8, 4× 10−8, 1× 10−7}
• Adam β1 ∈ {0.8, 0.85, 0.9, 0.95, 0.999}
• Adam β2 ∈ {0.9, 0.95, 0.98, 0.99, 0.999}
• Weight Decay ∈ {1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1, 2× 10−1, 4× 10−1}

The results and hyperparameter sensitivities from this search are visualized in Figures 16b to 16d.
The optimal configuration from this global search achieves a validation negative log-likelihood of
3.34 nats. This result is substantially higher than that achieved by our per-parameter search strategy,
underscoring the advantage of discovering optimal configurations at a small scale before upscaling
with principled rules like Complete(d)P .

D.3 PER-MODULE HYPERPARAMETER SEARCH AND TRANSFER (FIGURE 1)

Per-module hyperparameter search For the per-module hyperparameter search, we ran the trust-
region random search as described in Appendix C. We ran 100 trials (training runs) in parallel, with
a total budget of 5000 trials. We randomly chose a different random seed (dictating the network
initialisation and data order) for each trial.

We optimised AdamW learning rate, weight-decay, ϵ, momenta α1 := (1−β1) and α2 := (1−β2),
as well as the standard deviation for the initialisation, with one hyperparameter (multiplier) per
module type. For module types, we treat each ‘tensor’ within a transformer block as an individual
type (e.g. QK-norm multipliers, QKV weights, output projection weights, first feedforward layer
weights, second feedforward layer weights, etc. would all be individual types); each tensor outside
the transformer blocks are also individual module types (input embedding weight, output embedding
weight, output embedding bias, output layer norm multipliers, etc. would all be individual types).
We also optimise the per-depth transformer residual block multipliers in the depth-type Kronecker
parameterisation (there are two residual multipliers in each transformer block – one for the attention
block, one for the feedforward block). Altogether, that leads to 79 hyperparameters to optimise.

The hyperparameter search at small scale in Figure 1 took 6730 GPU-hours on NVIDIA A100s,
although 99% of the loss gains over the optimal global hyperparameters were realised within the
first 3168 GPU-hours.

E EXTENDED RELATED WORK

Hyperparameter transfer in width & depth. Our work directly builds upon, extends and com-
bines many existing parameterisation for transfer across different modalities. For width transfer, we
directly build on the Tensor Programs (Yang & Hu, 2021; Yang et al., 2022) based derivations for
the µ-parameterisation, and the extensions to adaptive optimisers (Yang & Littwin, 2023). Although
(Yang & Littwin, 2023) contains an exposition of all the theoretical tools required to derive the right
parameterisation for virtually any neural network architecture, applying these tools is still a non-
trivial task. Yang et al. (2024) extended similar principles to find parameterisations in depth. Dey
et al. (2025) adapted these principles to derive a width & depth transfer-enabling parameterisation
specifically for transformer models. Although Dey et al. (2025) directly builds upon and uses virtu-
ally the same principles as (Yang & Littwin, 2023) and Yang et al. (2024), they do derive the right
parameterisation for a broad range of hyperparameters (initialisation scales, learning rates, AdamW
weight decay, AdamW epsilon), unlike the original µ-P paper (Yang et al., 2022), and they derive a
complete set of rules specifically for transformer models. We directly build upon and extend Com-
pleteP (Dey et al., 2025) for width & depth transfer part of our parameterisation, making a couple of

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

3.4 3.6 3.8 4.0

Validation Cross Entropy

0

25

50

75

100

125

N
um

be
ro

fr
un

s

M
in

.=
3.

33
63

(a) Number of trials of baseline 50M model vs. evalu-
ation loss.

10
−3

10
−2

10
−1

Learning
Rate

3.30

3.35

3.40

3.45

3.50

3.55

3.60

V
al

id
at

io
n

C
ro

ss
E

nt
ro

py

10
−8

10
−7

ε

10
−2

10
−1

1−β1

10
−2

10
−1

1−β2

10
−2

10
−1 10

0

Weight
Decay

(b) Gaussian Process fit sensitivity around optimal
identified global hyperparameters.

0.
00

03
0.

00
04

0.
00

1
0.

00
3

0.
00

4
0.

01
0.

02
0.

03 0.
1

Learning Rate

3.4

3.5

3.6

3.7

3.8

Va
lid

at
io

n
C

ro
ss

 E
nt

ro
py

n=
16

2
n=

17
9

n=
17

5
n=

17
8

n=
16

1
n=

15
9 n=

17
1

n=
15

0
n=

16
0

1e
-1

4
1e

-1
2

1e
-1

0
1e

-0
8

3e
-0

8
4e

-0
8

1e
-0

7

Adam Eps

n=
22

1
n=

18
5

n=
24

4
n=

21
4

n=
21

1
n=

21
4

n=
20

6

0.
8

0.
85 0.
9

0.
95

0.
99

9

Beta1

n=
34

5

n=
39

6

n=
37

2

n=
36

7

n=
15

0.
9

0.
95

0.
98

0.
99

0.
99

9
Beta2

n=
27

7

n=
27

8

n=
30

6

n=
29

5

n=
33

9
0.

00
01

0.
00

1
0.

01 0.
1

0.
2

0.
4

Weight Decay
n=

24
8

n=
22

6

n=
24

8

n=
24

7

n=
26

3

n=
26

3

(c) (Marginal) sensitivity of the baseline 50M model for core hyperparameters. We show the 25%-75% quan-
tiles for the validation losses with all hyperparameters sampled independently at random, conditioned on the
shown hyperparameter being set to a certain value.

0.
00

01

0.
00

03

0.
00

04

0.
00

1

0.
00

3

0.
00

4

0.
01

0.
02

0.
03 0.
1

Learning Rate

0.0001

0.001

0.01

0.1

0.2

0.4

W
ei

gh
t D

ec
ay

3.896 3.536 3.492 3.408 3.403 3.398 3.393 3.399 3.389 3.454

3.900 3.529 3.497 3.421 3.402 3.404 3.393 3.423 3.396 3.480

3.899 3.542 3.495 3.414 3.423 3.381 3.391 3.354 3.367 3.413

3.903 3.528 3.485 3.421 3.371 3.368 3.358 3.376 3.415 3.634

3.903 3.525 3.482 3.404 3.391 3.371 3.393 3.442 3.491 3.719

3.917 3.509 3.473 3.408 3.412 3.411 3.471 3.547 3.585 3.836 3.4

3.5

3.6

3.7

3.8

3.9
C

ro
ss

 E
nt

ro
py

(d) Weight decay vs. learning rate for baseline 50M model.

Figure 16: Summary of the global hyperparameter sweep on a 50M parameter model for the base-
line.

small modifications (extending to QK-norms and fixing minor mistakes in the derived rules). This
constitutes one part of the Complete(d) parameterisation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Transfer in batch-size and SDE scaling rules. For the batch-size transfer rules for the Complete(d)

parameterisation, we also directly build upon prior work on SDE transfer rules (Li et al., 2019),
including for Adam (Malladi et al., 2022). We extend the SDEs of Malladi et al. (2022) to AdamW,
allowing us to propose a scaling rule for weight-decay with batch-size. We note that similar scal-
ing rules for weight-decay have been recently proposed in other works (Wang & Aitchison, 2025;
Bergsma et al., 2025) prior to ours. To our knowledge, we are the first ones to motivate them theo-
retically with the principle of preserving the dynamics of an AdamW stochastic differential equation
(SDE), integrating it with the transfer rules in batch-size for the other AdamW hyperparameters.

Our rules are compatible with those proposed by those proposed in (Wang & Aitchison, 2025;
Bergsma et al., 2025). Wang & Aitchison (2025) posit how the product of weight-decay and learn-
ing rate should scale as a function of the batch-size. In particular, they suggest that the learning rate
γ(B) and the weight-decay λ(B) should be scaled with batch-size B so as to keep τEMA = B

γλD con-
stant. This rule doesn’t specify whether γ or λ should be adjusted, but only constrains their product.
Substituting in our rules for γ(B) and λ(B) from Table 1 — which dictate that γ(B) ∝

√
B and

λ(B) ∝
√
B — we see that τEMA ∝ 1. Hence, the rules we put forward are compatible with those

of in Wang & Aitchison (2025). They are also more specific, dictating how the learning rate and
weight-decay should each be adjusted individually.

Compagnoni et al. (2025) also propose an AdamW SDE, and suggest the same weight-decay scaling
rule, but based on different principles. Whereas we argue for preserving the dynamics of the SDE
(and, hence, approximately preserving the dynamics of discrete-time AdamW) similarly to Malladi
et al. (2022), Compagnoni et al. (2025) propose scaling rules to try and maintain an upper bound
on the final training loss. Furthermore, their derived SDE is different from ours and that of Malladi
et al. (2022), whereas ours is fully compatible with that of Malladi et al. (2022). We highlight that
Malladi et al. (2022) made a compelling case for the need for reparametrising the AdamW momenta
terms that led to their SDE. This reparametrisation is missing from (Compagnoni et al., 2025).

Token horizon transfer rules. To the best of our knowledge, we are the first to propose our scal-
ing rule in token horizon for learning rate, weight-decay, AdamW momenta and AdamW ϵ on the
grounds of the proposed SDE principles. However, prior works have explored transfer in token hori-
zon more broadly. (Bjorck et al., 2025) demonstrate that the optimal learning rate shifts with the
token horizon, and propose an empirically derived scaling rule. Qiu et al. (2025) observe that nor-
malised training curves transfer across model size and token horizon when both are scaled jointly
to remain compute optimal. Hyperparameter transfer does not directly follow from their results, as
the loss curves only transfer after normalisation by subtracting the final loss. In other words, they
remove the exact quantity the behaviour of which we study in this paper. Nonetheless, their obser-
vations might be closely related, and their analysis through the lens of SDEs could prove to be a
fruitful avenue for explaining the transfer rules across token horizons we identify in this paper.

Per-module hyperparameter selection. Independently, (Ludziejewski et al., 2025) studied the
benefits of setting hyperparameters differently for different parameter groups. They similarly show
improvements over global hyperparameters at a fixed model scale, and demonstrate improvements
persist when training a larger mixture of experts model (8× compute) with each expert being the
same size as the base model. Our analysis differs in a few places: 1) we thoroughly investigate
transfer across model scale for the same architecture with µP and µP-derived parameterisations, 2)
we investigate transfer across token horizons and batch-size, 3) we investigate more fine-grained
hyperparameter transfer on a per-module basis, whereas Ludziejewski et al. (2025) only consider
separating the parameters into broad groups, and 4) we investigate hyperparameters beyond the
learning rates (weight decay, AdamW momenta, etc.), whereas Ludziejewski et al. (2025) consider
learning rates and parameters of their schedules.

Recently, Wang et al. (2025) motivate why per-module learning rates might be beneficial from a
curvature perspective. They consider the relative scale for the learning rates for 5 sub-modules in a
transformer block; more specifically, the query-key (QK) and value-output (VO) blocks; point-wise
feedforward networks (FFN); normalization layers (Norm), and embedding layers (Emb). Follow-
ing their theoretical analysis, their practical recommendation is to tune manually (informed by that
theory) these ratios on a smaller scale and re-used as is for larger scales (which would still require
tuning a global LR when changing the compute scale). Compared to our work, their practical ap-
proach is restricted to a far smaller set of HPs: 5 LRs in their work vs. approximately a hundred HP
in our case, since we study 6 fundamental HPs (learning rate, initialization scale, Adam ε, β1, β2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

and weight decay) times (number of modules plus depth). Additionally, their perspective does not
stress transfer of these hyperparameters along any scaling axes, which is a core contribution in our
work. Instead, they retune the only hyperparameter they tune multipliers for (the learning rate) at
every scale they consider, making it costly to apply it at scale.

25

	Introduction
	Hyperparameter transfer
	Hyperparameter transfer across model size
	Hyperparameter transfer across batch-size
	Hyperparameter transfer in training duration

	Investigating transfer of per-module hyperparameters
	Optimising per-module hyperparameters
	Per-module hyperparameters matter
	Optimal per-module hyperparameters transfer with scale

	Discussion & Conclusion
	Additional experiments & figures
	Suboptimality of learning rates identified at too small scales

	Motivation of the Complete(d)P adjustments
	QK norm multiplier weights
	Embedding layer AdamW
	Changes to the unembedding weight

	Per-module hyperparameter search algorithm
	Experimental details
	Best Learning Rate (LR) annealing at different token horizons
	Baseline global hyperparameter tuning
	Per-module hyperparameter search and transfer (fig:all-per-module-hparam-transfer)

	Extended related work

