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Abstract
The use of machine learning models to predict
clinical outcomes from (longitudinal) electronic
health record (EHR) data is becoming increas-
ingly popular due to advances in deep architec-
tures, representation learning, and the growing
availability of large EHR datasets. Existing mod-
els generally assume access to the same data
sources during both training and inference stages.
However, this assumption is often challenged by
the fact that real-world clinical datasets originate
from various data sources (with distinct sets of
covariates), which though can be available for
training (in a research or retrospective setting),
are more realistically only partially available (a
subset of such sets) for inference when deployed.
So motivated, we introduce Contrastive Learning
for clinical Outcome Prediction with Partial data
Sources (CLOPPS), that trains encoders to cap-
ture information across different data sources and
then leverages them to build classifiers restricting
access to a single data source. This approach can
be used with existing cross-sectional or longitu-
dinal outcome classification models. We present
experiments on two real-world datasets demon-
strating that CLOPPS consistently outperforms
strong baselines in several practical scenarios.

1. Introduction
In recent times, a growing number of healthcare institutions
have started to routinely collect and leverage electronic
health records (EHR) from large collections of patients,
resulting in the availability of vast, rich, multimodal and
longitudinal EHR datasets. The promise is that these data
sources, if harnessed effectively, have the potential to sub-
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stantially improve the delivery and quality of healthcare.
Given the proven success of machine learning algorithms
in various fields such as image classification (Simonyan &
Zisserman, 2014; He et al., 2016; Dosovitskiy et al., 2020),
object detection (Redmon et al., 2016; He et al., 2017; Car-
ion et al., 2020), and natural language processing (Devlin
et al., 2018; Brown et al., 2020; Zhang et al., 2022a; Touvron
et al., 2023), numerous studies have explored the applica-
tion of these algorithms to EHR datasets for a variety of
medical tasks, including disease detection (Choi et al., 2017;
Baumel et al., 2018), diagnosis (Doctor; Lipton et al., 2015)
and prognosis (Harutyunyan et al., 2019; Song et al., 2018).

Prediction of clinical outcomes, e.g., mortality, has emerged
as a crucial focus due to two main reasons, namely, i) it
enables healthcare providers to tailor interventions effec-
tively, improving patient care; and ii) it promises to im-
prove the allocation healthcare resources, for instance, in-
tensive care units (ICUs), staff, procedures and treatments;
all of which aid in optimizing the overall healthcare delivery
process. Initially, traditional machine learning algorithms
were used for mortality prediction tasks (Lemeshow et al.,
1994; Crawford et al., 2000; Meyfroidt et al., 2009). Later,
researchers leveraged the longitudinal nature of EHRs to
develop sequence-based models such as LSTMs (Hochreiter
& Schmidhuber, 1997) and Transformers (Vaswani et al.,
2017), for more granular (over time) and accurate outcome
predictions (Harutyunyan et al., 2019; Song et al., 2018).

Most outcome prediction models share a common assump-
tion requiring the access to identical (clinical) data sources
during both training and inference stages. However, this as-
sumption often does not align with the realities of real-world
healthcare settings. Common examples are those in which
data is collected by different parties (e.g., EHR and claims)
or by different systems (e.g., EHR and picture archiving
systems). Moreover, there are situations where a richer
(e.g., medical narrative) or more complete (e.g., claims) data
sources are available for model training but not at inference
due to security, privacy, readiness or portability constraints.

To address this important challenge and maximize the utility
of complete data sources for the purpose of enhancing pre-
diction of outcomes in clinical settings, we introduce Con-
trastive Learning for clinical Outcome Prediction with Par-
tial data Sources (CLOPPS). Specifically, we learn encoders
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set to preserve information across distinct data sources, but
then use them with a single data source during inference,
as part of a cross-sectional or longitudinal outcome clas-
sification model. In this manner, we can take advantage
of the availability of multiple data sources during model
development, but without requiring all of them to be avail-
able during inference. This is motivated by a real-world
scenario (see experiments) where we have data from both a
dialysis provider–Dialysis Clinic, Inc (DCI)–and a national
data system–United States Renal Data System (USRDS)
(U.S. Renal Data System)–but we are interested in a model
that can be used by the provider without relying on the less
accessible and non-real-time data retrospectively collected
by the national system.

Our work offers two main contributions. From a method-
ological perspective, CLOPPS allows to build representa-
tions from multiple data sources that can be leveraged to
improve the performance of prediction models using only
one data source. To the best of our knowledge, CLOPPS is
the first framework developed to tackle this unique challenge
that is prevalent in clinical applications. From a practical
perspective, we demonstrate CLOPPS on several practi-
cal scenarios with two real-world datasets from electronic
health records used for the purpose of mortality prediction.

2. Related Work
Sequence Models Architectures specifically designed to
model sequences (including time series) have demonstrated
exceptional performance across various tasks, including lan-
guage translation (Devlin et al., 2018; Zhang et al., 2022a;
Touvron et al., 2023), weather forecasting (Doreswamy
et al., 2018; Hewage et al., 2021) and mortality predic-
tion (Karabacak & Margetis, 2023; Nunez et al., 2023).
One of the earliest approaches is the recurrent neural net-
work (RNN) (Rumelhart et al., 1985), which was then en-
hanced by the long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997). A significant advancement came
with the introduction of the Transformer (Vaswani et al.,
2017), which utilizes a self-attention mechanism and shows
better performance than traditional sequence models when
used to encode sequential data. This led to the development
of more specialized Transformer models, e.g., BERT (De-
vlin et al., 2018), OPT (Zhang et al., 2022a), and RoFormer
(Su et al., 2024). Recently, to combine the advantages of
both RNNs and Transformer models, Peng et al. (2023) pro-
posed RWKV; a RNN approach leveraging self-attention
that matches the performance of Transformer models.

Longitudinal prediction of outcomes Initial approaches
mostly concerned with mortality prediction exclusively em-
ployed traditional machine learning algorithms, such as
logistic regression (Lemeshow et al., 1994; Wagner et al.,

1994; Vincent & Singer, 2010), decision trees (Crawford
et al., 2000; Ramon et al., 2007; Ribas et al., 2011), and
support vector machines (Meyfroidt et al., 2009; Citi & Bar-
bieri, 2012; Kim et al., 2011). With the grow in popularity of
neural networks, researchers began exploring their applica-
tion in this domain (Dybowski et al., 1996; Clermont et al.,
2001; Nimgaonkar & Sudarshan, 2004). However, some
studies indicated that neural networks performed similarly
to traditional algorithms in various ICU outcome prediction
settings (Doig et al., 1993; Wong & Young, 1999; Clermont
et al., 2001). Acknowledging the longitudinal nature of
patient data, there was a shift toward employing such data
for improved prediction performance. For instance, Haru-
tyunyan et al. (2019) leveraged LSTMs to process medical
time-series data for ICU mortality prediction. Similarly,
Song et al. (2018) developed the SAnD (Simply Attend and
Diagnose) architecture utilizing an attention. Further, Ra-
jkomar et al. (2018) used both LSTM and attention-based
models to enhance the accuracy of mortality predictions.
Unlike traditional outcome prediction models where full
access to data sources is assumed, we address the more chal-
lenging scenario where access during inference is partial.

Contrastive learning The core insight of contrastive
learning is to learn effective representations by contrast-
ing positive pairs against negative pairs without the need for
expertly-acquired labels. Initially perceived as a form of self-
supervised learning, contrastive learning has seen diverse
applications. For instance, Chen et al. (2020) employed it to
learn valuable visual representations, achieving results on
par with supervised methods. Similarly, Logeswaran & Lee
(2018) utilized it to enhance semantic text understanding.
The concept of contrastive learning has expanded into multi-
modal scenarios, such as Radford et al. (2021) using it to
learn joint image-text representations, enabling the model
to comprehend a broad array of visual concepts in a zero-
shot manner. Recent studies have explored the application
of contrastive learning to longitudinal data. For instance,
Schneider et al. (2021) leveraged contrastive learning to
simulate an infant’s learning experiences with a image se-
quences datasets, where the resulting object representations
bear similarities to established neurobiological findings. In
another instance, Hong et al. (2022) introduced specific
augmentation techniques for longitudinal data, enhancing
survival analysis. Leveraging the success of contrastive
learning for multi-modal data, we train our encoder to cap-
ture information across data sources, generating embeddings
for inference when only one of the data sources is available.

Several studies (Franceschi et al., 2019; Tonekaboni et al.,
2021; Eldele et al., 2021; Yèche et al., 2021; Kiyasseh et al.,
2021; Zhang et al., 2022b; Raghu et al., 2023) have also
tried to apply contrastive learning to medical time-series
analysis and event prediction. However, our work differen-
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tiates itself by addressing a unique challenge where access
to data sources varies between the training and inference
phases. For instance, while studies such as Tonekaboni et al.
(2021); Yèche et al. (2021) utilize time windows to align pa-
tient observations for representation learning, they focus on
representations within data sources. In contrast, our research
focuses on addressing the challenge of information represen-
tation across data sources. More specifically, Tonekaboni
et al. (2021) uses a discriminator (not contrastive learning)
within a single source, and Yèche et al. (2021) does use
contrastive learning, but our research assumes that during
inference only one data source is available.

3. Approach
Below we describe our approach for longitudinal prediction
of outcomes from incomplete data sources. In Section 3.1,
we define the problem and modeling framework. Then, in
Sections 3.2 and 3.3, respectively, we introduce the opti-
mization objectives used to train the encoding and outcome
prediction components of the proposed framework.

3.1. Problem Definition

Predicting from longitudinal data We consider the pre-
diction of (future) outcomes in a longitudinal setting. More
formally, a collection of historical data (covariates) for sam-
ple p (e.g., a patient) observed at regular intervals is de-
noted as xp =

{
xp1, . . . , xpt, . . . , xp,np

}
, for time points

t1 < · · · < t < · · · < tnp
≤ tp, and where tp represents

the last time point at which sample p was observed. More
precisely, tp indicates the outcome or censoring time, if
ep = 1 or ep = 0, respectively, hence ep is an event indica-
tor. Note also that we do not assume covariates are available
at tp, however, that may be the case in practice. It is also
worth noting that the assumption of data being sampled at
regular intervals (i.e., |t − t′| ≈ const., for t ̸= t′) is pri-
marily based on the characteristics of the datasets used in
our experiments, however, the framework proposed below
is general and can be readily extended to longitudinal data
with irregular sampling.

Having defined sample p, a dataset of N samples con-
sisting of triplets (xp, tp, ep), and denoted as D =
{(xp, tp, ep)}Np=1 is used to estimate the risk for an outcome
of interest, e.g., mortality, p(ypt = 1|{xpj}tj=1) ∈ (0, 1) at
time t, defined as the probability of a sample experiencing
the outcome within a fixed horizon of future M time units
(e.g., days, moths or years) relative to time t. Note that time
points for which ypt cannot be ascertained due to censoring,
i.e., tp ∈ [t, t+M ] for ep = 0, which in general amounts
to a small proportion of sample time points, are not used for
learning (2.7% for the Private dataset in the experiments).

Predicting from incomplete data sources A key defining
characteristic of the scenario we seek to address is that in
which we have access to multiple sources of covariates, but
only one of such is available during inference. Without loss
of generality, we assume the complete set of features con-
sists of two non-overlapping data sources, each containing
a set of covariates, i.e., xpt = (x

(1)
pt , x

(2)
pt ). Consequently,

we are interested in building two models to estimate the
outcome of interest p(ypt = 1|{x(k)

pj }tj=1, {z
(k)
pj }tj=1), for

k ∈ {1, 2}, and where {z(k)pj }tj=1 is a longitudinal (latent)
representation for data source k aimed at capturing the in-
formation in both data sources. This implies that i) only
one data source {x(k)

pj }tj=1 is available during inference; and
ii) both data sources are available only when building the
representation model for {z(k)pj }tj=1. The hypothesis driving
our formulation is that if there is common information to be
leveraged from both sources to predict the outcome of in-
terest, it will be captured by representation {z(k)pj }tj=1, thus
we expect the model using it to outperform the alternative
that only uses {x(k)

pj }tj=1. It is important to note that the
formulation above suggests that data sources need to be
longitudinally paired, i.e., both having the same time points,
however, this can be relaxed as we will discuss below. Fur-
ther, the assumption that data sources are non-overlapping
can be also relaxed as we will show in the experiments.

A two-stage training framework In order to leverage
the knowledge from the complete set of data sources,
we train the outcome prediction model in two separate
stages, namely, longitudinal feature learning and super-
vised outcome learning. In the longitudinal feature learning
stage, two separate feature encoders z(k)pt = f (k)(x

(k)
pt ) for

k ∈ {1, 2} are learned to produce encoded features z
(k)
pt

from input data source x
(k)
pt as a means to incorporate the

knowledge from both data sources in a longitudinal fash-
ion. Subsequently, in the supervised outcome learning stage,
classifiers for each data source c(1)(·) and c(2)(·) are learned
to estimate the risk of the outcome of interest based on raw
covariates x(1)

pt and x
(2)
pt , as well as the fixed encoded fea-

tures z
(1)
pt and z

(2)
pt , i.e., without further refinement. The

outcome prediction models can thus be formulated as

p(ypt = 1|{x(k)
pj }

t
j=1) = c(k)({z(k)pj }tj=1, {x

(k)
pj }

t
j=1) (1)

z
(k)
pt = f (k)(x

(k)
pt ), (2)

where k ∈ {1, 2}. Note that the classifier in (1) takes both
the raw covariates {x(k)

pj }tj=1 and encoded features over

time {z(k)pj }tj=1. Conceptually, the former can be seen as a
skip connection into the classifier while the latter implicitly
captures information from both data sources (recall only
source k is available at inference). In practice, longitudinal
covariates may not be available, thus we can use (1) in a
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Figure 1. Pretraining of the encoders for CLOPPS. Given two longitudinal observations of sample {x(1)
pj }

t
j=1 and {x(2)

pj }
t
j=1, the attention-

based encoder (left) produces representations {z(1)pj }tj=1 and {z(2)pj }tj=1. The learning objective consist of three components, LM , LL,
and LF , that leverage positive pairs defined in terms of time matching, local similarity and future information, respectively.

cross-sectional manner using only (z
(k)
pt , x

(k)
pt ) as inputs, as

we will describe below and demonstrate in the experiments.

3.2. Longitudinal Feature Learning

The strategy used to learn the encoders is concisely illus-
trated in Figure 1 and described in detail below.

Information extraction via matching To produce en-
coders that remain effective when only one of the data
sources is available during inference, we train them to align
observations from the same sample and nearby time points
across data sources in latent (representation) space. This
approach is motivated by the intuition that, at any given
time point t, covariates from different sources for sample
p collectively and complementary represent their condition
(e.g. health status) at that moment in time. Consequently,
these covariates also likely contain shared (latent) informa-
tion about the condition of p at time t. Training encoders to
extract this shared information encourages that, when only
one of the sources is available, such encoders can produce
representations infused with valuable information from the
data source that will not available at inference.

So motivated, we leverage contrastive learning (Chen et al.,
2020; He et al., 2020; Khosla et al., 2020). Specifically, we
randomly select a batch of B samples from D, yielding a
set of records SB = {{x1

pt, x
2
pt}

np

t=1}Bp=1. Within this batch,

only pairs x(1)
pt and x

(2)
pt are considered as a positive match,

whereas all other (sample and time point) combinations
deemed as negative pairs. Note that for situations in which
data sources are not longitudinally concordant, the time
matching for x(1)

pt and x
(2)
pt′ can be done for a predefined

time window ϵ, i.e., they are considered a positive match
if |t− t′| < ϵ. The training of encoders f (1)(·) and f (2)(·)
is then conducted through a contrastive loss function in

the resulting latent space, which encourages the encoders
to distinguish between positive and negative pairings. Let
sim(z, z′) be the cosine similarity between z and z′, then
the loss function for a positive pair x(1)

pt and x
(2)
pt is

ℓ(x
(k)
pt , x

(\k)
pt ) = (3)

− log
exp(sim(z

(k)
pt , z

(\k)
pt )/τ)∑

x
(o)
ij ∼SB\x(k)

pt
exp(sim(z

(k)
pt , z

(o)
ij )/τ)

,

where x(\k)
pt indicates covariates from the data source that is

not x(k)
pt , x(o)

ij ∼ SB\x(k)
pt denotes an item from SB exclud-

ing x
(k)
pt , z(k)pt is obtained from the corresponding encoder

via (2), and τ is the standard temperature parameter used in
contrastive learning algorithms (Chen et al., 2020).

We can obtain the time matching loss for all samples in
batch SB via (3) as

LM =
∑

x
(1)
pt ,x

(2)
pt ∼SB

ℓ(x
(1)
pt , x

(2)
pt ) + ℓ(x

(2)
pt , x

(1)
pt ), (4)

where we make explicit the need to calculate separately
the loss for each data source x

(k)
pt relative to the alternative

x
(\k)
pt , provided that the normalization term (denominator)

in (3) keeps one data source fixed.

Local information extraction Recall that covariates for a
given sample are structured as longitudinal series ordered in
time. In practical scenarios, the state of a sample does not
exhibit dramatic changes over short periods of time (relative
to the time scale of the outcome horizon, M ). Consequently,
we hypothesize that covariates for a sample within a short
time window are likely to share transient (local) information.

Consider a sample p and a predefined time window of
w time points, we define sub-sequences at time t as
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{x(k)
p,t−w, . . . , x

(k)
p,t , . . . , x

(k)
p,t+w}, denoted for conciseness

as x
(k)
p,t±w, for k ∈ {1, 2}. Then, based on the hypothe-

sis that their covariates share information within and across
data sources, we can also consider the sets (x

(k)
pt , x

(k)
p,t±w)

(within) and (x
(k)
pt , x

(\k)
p,t±w) (across) as positive pairs in a

contrastive learning framework.

However, unlike in standard contrastive learning (Chen et al.,
2020), we wish to account for sharing of information over
a short period of time, but in relation to the outcome of
interest. In this manner, we can encourage the model to
capture information that is relevant for outcome prediction.
More specifically, we propose to weight the contrastive
loss for positive pairs in (3) with the (unknown) outcome
probability for a sample, for which we leverage a leave-one-
out standard Kaplan-Meier (KM) estimator1 (Rich et al.,
2010), as a means to obtain the outcome distribution for a
sample denoted as Sp(t). Consequently, the weight for the
loss for positive pairs is obtained as wp(t, t

′) = 1−|Sp(t)−
Sp(t

′)|, where {t, t′} are any two time points within a set
of positive pairs as defined above. The local loss for all
positive pairs corresponding to sample p can be written as

ℓL(x
(k)
pt ) = (5)
w∑

j=−w|j ̸=0

wp(t, t+ j)
[
ℓ(x

(k)
pt , x

(k)
p,t+j) + ℓ(x

(k)
pt , x

(\k)
p,t+j)

]
,

where ℓ(·, ·) is the same as in (3), we have excluded j = 0

from the calculation because i) ℓ(x(k)
pt , x

(k)
pt ) is trivial; and

ii) ℓ(x(k)
pt , x

(\k)
pt ) is already included in (4) since wp(t, t) =

1. The local loss for all samples in batch SB is

LL =
∑

x
(1)
pt ,x

(2)
pt ∼SB

ℓL(x
(1)
pt ) + ℓL(x

(2)
pt ). (6)

Based on definitions, the LL can be viewed as a generaliza-
tion to the LM. The separation into two loss terms here is
intentional for two reasons: i) LM (matching) requires time
stamp values (for positive pairs) across data sources to be
identical so they can be “matched”, which may not be fea-
sible in some scenarios, ii) LL (local) uses a time window
but weights the loss using an empirical survival function
(5), for which additional (outcomes) information is required.
Note also that in principle, LM is unsupervised while LL is
(weakly) supervised since the outcomes are used to weight
the loss function.

Future information extraction Complementary to inte-
grating local information into embeddings, we also aim to
encourage that the encoded features capture information
spanning multiple time steps into the future. This future

1The KM estimator for p is obtained from {tj , ej}Nj=1|j ̸=p.

information, represents the shared information between cur-
rent and upcoming time steps, which in principle is likely to
aid the predictive ability of current embeddings, especially
when the goal is to predict future outcomes. Inspired by
Contrastive Predictive Coding (CPC) (Oord et al., 2018),
we also consider a future information loss.

Unlike the local information extraction loss, the future in-
formation loss is computed within data sources. Consider
a batch S(k)

C = {x(k)
p,t+d} ∪ {x(k)

pt |t ∼ U(t1, . . . , tnp)}Cp=1

of C samples and time points selected uniformly at ran-
dom, and such that each record contains a positive pair
(x

(k)
p,t+d, x

(k)
pt ), for a predetermined temporal distance d. The

global information loss is defined as

ℓF (x
(k)
pt ) = − log

g(k)(z
(k)
p,t+d, z

(k)
pt )∑

x
(k)
ij ∼S(k)

C

g(k)(z
(k)
ij , z

(k)
pt )

, (7)

where g(k)(z, z′) = exp(zTWkz
′) is a log-bilinear encoder

with parameters Wk and z
(k)
pt is obtained from the corre-

sponding encoder via (2). Similarly, the future loss for all
samples in batch S(k)

C is

LF =
∑

k∈{1,2}

∑
x
(k)
pt ∼SC

ℓF (x
(k)
pt ). (8)

Finally, the complete loss to optimize the parameters of t
f (k)(·) and the auxiliary gk(·), for k ∈ {1, 2} is

L = LM + LL + LF . (9)

Feature encoder architecture. Inspired by the ubiquitous
success of attention-based models (Vaswani et al., 2017),
we adopt the well-known multi-head attention with causal
masking specification to account for the historical nature
of the data for sample p. A block diagram of the encoder
composition is shown in Figure 1, while the detailed network
architecture is described in Appendix A.1.

3.3. Supervised Outcome Learning

In the supervised training stage, we concatenate the raw
covariates x(k)

pt , and encoded features z(k)pt , obtained from
the pre-trained encoder f (k)(·) in (2). These are fed into
the classifier c(k)(·) in (1), whose parameters are optimized
with the standard cross-entropy loss and ground-truth labels
ypt using data from a single data source while keeping the
parameters of the encoder f (k)(·) fixed.

We consider feeding both covariates and encoder features
into the classifier to account for outcome-relevant informa-
tion loss during the encoding procedure, while the encoders
focus on capturing longitudinal and cross-source informa-
tion. In the experiments we consider two distinct practical
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scenarios for the inputs the classifier receives: i) a cross-
section, i.e., a single time point (x(k)

pt , z
(k)
pt ); or ii) longitu-

dinal inputs {(x(k)
pj , z

(k)
pj )}tj=1 as in (1). For the former, we

use multilayer perceptrons (MLPs) as a basic nonlinear clas-
sifier (Rosenblatt, 1958). For the latter we consider the open
pre-trained transformer (OPT) (Zhang et al., 2022a), and the
receptance weighted key value model (RWKV) (Peng et al.,
2023), namely an attention-based and RNN-style longitudi-
nal modeling architectures, respectively. Further details of
these architectures can be found in Appendix A.1.

4. Experiments
Below we first introduce the baselines against which we
compare CLOPPS, along with training details and metrics
used to assess performance. Subsequently, we describe the
datasets used and present results supporting the effectiveness
and utility of the proposed framework. The source code used
in the experiments is available at https://github.com/

mx41-m/Contrastive-Learning.git.

Baselines We consider two types of baselines in our exper-
iments, namely cross-sectional and longitudinal models. For
the cross-sectional setting we use Elastic Net (Zou & Hastie,
2005) and MLP, as representatives for simple, yet effective,
linear and nonlinear models, respectively. In both cases, the
inputs to the model are either x(1)

tp , x(2)
tp or (x(1)

tp , x
(2)
tp ), the

latter as a naive alternative in which during inference x(k)
tp is

used as the input to the model whereas x(\k)
tp is imputed with

population estimates. For the longitudinal setting we con-
sider three recently proposed models, namely, RoFormer
(Su et al., 2024), OPT (Zhang et al., 2022a) and RWKV
(Peng et al., 2023). Notably, RoFormer shares the same
architecture as CLOPPS (for both encoder and prediction
head). For all of these, longitudinal covariates are either
{x(1)

pj }tj=1, {x(2)
pj }tj=1 or {(x(k)

pj , z
(k)
pj )}tj=1. Importantly, all

models using both data sources are used to quantify the per-
formance of the idealized setting where they are available
during inference.

Training details To ensure a fair comparison across mod-
els, hyperparameter tuning is done separately. We consider
three datasets (described below): moving MNIST (MM-
NIST), a private real-world dataset (Private), and a public
real-world dataset (MIMIC). The encoders for CLOPPS are
trained for 50, 100 and 100 epochs on MMNIST, Private
and MIMIC, respectively. The classifiers for CLOPPS are
trained for 10, 5 and 5 epochs on MMNIST, Private and
MIMIC, respectively. In CLOPPS, the values for τ , w and
d are set to 0.1, 2 and 12, respectively, based on experimen-
tal results. Details of the architecture and hyperparameter
tuning can be found in Appendix A.1 and A.2, respectively.

Regarding the baseline models: for the Elastic Net, we set
(via grid search) the L1 regularization ratio to 0.7 and the
inverse of regularization strength to 0.5. The MLP is trained
for 10, 25 and 25 epochs on MMNIST, Private and MIMIC,
respectively. The RoFormer model is trained for 40, 30 and
30 on MMNIST, Private and MIMIC, respectively. The OPT
and RWKV models are trained for 10, 20 and 20 epochs
for MMNIST, Private and MIMIC, respectively. Details of
all baselines can be found in Appendix A.1. For all models
(excluding Elastic Net), AdamW (Loshchilov & Hutter,
2017) is employed as the optimizer. The values for the
learning rate, beta, weight decay and batch size are set for
all models to 10−4, (0.9, 0.999), 0.01, and 64, respectively

Metrics The performance of all models is evaluated in
terms of outcome classification accuracy using well known
metrics, namely, the area under the receiver operating char-
acteristic (AUC) (Fawcett, 2006), and the area under the
precision-recall curve (AP) (Boyd et al., 2013). These met-
rics are widely used in settings involving longitudinal pre-
diction of outcomes (Tokodi et al., 2020; Choi et al., 2022).

4.1. Moving MNIST

This experiment serves as an idealized and conceptually
straightforward illustration of the partial data source sce-
nario considered in this work.

Dataset description Inspired by the methodology pre-
sented in Srivastava et al. (2015), we created 20, 000 se-
quences simulating longitudinal observations of moving
digit images. These sequences were then divided into train-
ing, validation, and test datasets following an 8 : 1 : 1
ratio. For each sequence, we define the event as the frame
where two digits intersect and subsequent frames are dis-
carded, thus yielding sequences of varying length. Labels
for prediction ypt for different values of the horizon M are
created using whether two digits will intersect in the sub-
sequent M frames relative to frame t. From this dataset,
15% of the sequences are randomly selected and censored
uniformly at random, thus discarding frames after the cen-
soring frame. Each frame is then split into two sub-frames
along the horizontal midpoint, with the top half designated
as one data source, {x(1)

pt } and the bottom half as the other,

{x(2)
pt }. Examples of the generated sequences are provided

for reference in the Appendix A.3.

Results The primary objective of this experiment is to
assess whether the encoded features effectively capture in-
formation from both data sources. To this end, we conduct
a comparative analysis involving CLOPPS (with an MLP
classifier) and three major baseline models: Elastic Net,
MLP, and RoFormer, each evaluated at different horizons.
Among these baselines, the MLP model achieved the best
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Figure 2. Performance comparisons (AUC and AP) of MLP and
CLOPPS as a function of the prediction horizon M (x axis) on
the Moving MNIST dataset. From left to right, only {x(1)

pt }, only
{x(2)

pt }, and (for reference) both ({x(1)
pt }, {x

(2)
pt }) are available

during inference.

performance by a significant margin. Consequently, we
only present results comparing the proposed framework
and MLP in Figure 2. Recall that CLOPPS uses both data
sources only when building the encoder. Detailed perfor-
mance comparison for all models is included in Table 5 in
Appendix A.3.

Figure 2 shows that CLOPPS consistently outperforms MLP
across all prediction horizons and with larger performance
differences observed in terms of AP. Interestingly, this is the
case even in the hypothetical case where both data sources
are available at inference. Also, as M increases, we observe
a consistent decline in performance of both CLOPPS and
MLP. This behavior is expected considering that a larger
M requires the model to predict events more distant in the
future, which is inherently harder especially as M increases.

4.2. Private Real-World Dataset

We now evaluate the proposed framework using a real-world
dataset of end-stage kidney disease patients consisting of
two data sources, namely, a dialysis provider (DCI) and a
national data system (USRDS).

Dataset description The dialysis provider data source
consists mainly of vital signs and laboratory tests recorded
at monthly visits. Complementary, data from the national
data system provides diagnoses and procedures codes also
recorded on a monthly basis. For the experiments, these
are aggregated into clinical classifications software (CCS)
codes2. Both data sources also contain a set of shared co-
variates consisting of 4 demographic attributes, i.e., age, sex,
race, and ethnicity, which are initially excluded from the

2Details about CCS codes can be found at https://
hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

Figure 3. Performance comparisons (AUC and AP) between
CLOPPS and five baselines for different prediction horizons
M = {0.5, 1, 3, 5} on the Private Real-World Dataset. Axes
colors indicate the data source available during inference: orange
for the dialysis provider and purple for the national data system.

model (see below). In this scenario we regard mortality as
the outcome of interest. The resulting dataset consists of
40, 752 samples with 26.94± 28.65 (monthly) time points,
and 89 and 620 covariates for the dialysis provider and na-
tional data system sources, respectively. Moreover, this
dataset has an overall survival rate of 28.09% and 2.7% of
sample time points were excluded from modeling due to
censoring. Among the covariates, 64 are continuous, 288
are discrete (one-hot encoded), 361 are binary.

Results We performed a detailed comparison of CLOPPS
with the five baseline models described above for various
horizons M = {0.5, 1, 3, 5}, and the assumption that only
one data source is available during inference. Results of
this comparison are presented in Figure 3, for which we
focus on the version of our model with the RWKV classifier
as it outperformed MLP and OPT. However, results with
all the alternative classifiers are presented in Appendix A.5.
Figure 3 indicates that, regardless of data source, horizon
and performance metric, CLOPPS consistently outperforms
all baseline models. This consistency underscores the ro-
bustness and effectiveness of the proposed framework in
capturing information from both data sources as a means to
enhancing predictive ability.

Though the aim of CLOPPS is to capture information across
data sources to then perform inference with a single data
source, for completeness and transparency, we also com-
pared CLOPPS with baseline models assuming access to
both data sources, with results in Appendix A.5. These show
that, with the availability of both data sources, CLOPPS still
performs on par with, or better than the baseline models.

Besides the training mechanism discussed in Section 3.3, we
also explore an alternative training strategy on the Private
Real-World Dataset, namely, fine-tuning. This approach
involves initially training our encoders, followed by a joint
fine-tuning phase of both the encoders and the prediction
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head tailored to each specific dataset. A detailed perfor-
mance comparison between these two training strategies
is presented in Appendix A.8, where the results reveal no
additional gains from the fine-tuning mechanism.

Covariates common to both data sources were excluded
from the previous comparison to conform to the more gen-
eral case in which data sources do not overlap. However,
incorporating such (demographic) information during the
training of (mortality) classifiers can enhance the perfor-
mance of the models. To verify that the encoded features
(which do not use such information) can still augment mor-
tality prediction performance when these other covariates
are introduced, we incorporated them into the classifier for
each data source. This augmented dataset was then utilized
to also train all the baseline models. Results are presented
in Figure 4, while detailed results for other classifier options
within CLOPPS are provided in Appendix A.5.

Figure 4 shows results that are consistent with those in Fig-
ure 3, implying that even when combined with additional
(static) covariates, the learned encoded features generated
by CLOPPS enhance the performance of the single-source
mortality prediction models. Moreover, Figure 3 and Fig-
ure 4 collectively underscore the robustness of the proposed
approach, as CLOPPS always matches or improves the per-
formance relative to directly training models on the single
data source being available during inference, thus demon-
strating the information transfer from the source that is
available during training but not during inference.

Further, our experiments primarily consider various data
sources from the same dataset. To better accommodate
for general real-world scenarios, where data sources may
from different datasets, we utilize our Private Real-World
Dataset to emulate a prospective scenario, which is more
akin to transfer learning. Details about this scenario and its
results can be found in Appendix A.7. The results affirm the
viability of CLOPPS in real-world prospective applications.

Ablation study The complete loss in (9) used for pretrain-
ing the encoders comprises three distinct components: LM ,
LL, and LF . To explore the specific contribution of each
of these, we conducted an ablation study using the Private
dataset. Specifically, we set the outcome classifier to the
simplest option, i.e., the MLP, and focused the on 1-year
mortality prediction, M = 1, assuming only the national
data system data source is available during inference.

The results in Table 1 indicate that each loss component
contributes to the classifier’s performance in the mortality
prediction task. This underscores the value of each com-
ponent in generating embeddings that are more effective
at improving prediction of outcomes. Among the three
components, both LM and LL demonstrate a comparably
substantial influence on improving mortality prediction per-

Figure 4. Performance comparisons (AUC and AP) between
CLOPPS and five baselines for different prediction horizons
M = {0.5, 1, 3, 5}, and shared demographic covariates on the
Private Real-World Dataset. Axes colors indicate the data sources
available during inference: orange for the dialysis provider and
purple for the national data system.

Table 1. Ablation study results for 1-year mortality using the only
the data from the national data system. The first row is for the
encoder and MLP classifier trained jointly. The second row is for
an MLP trained directly on raw covariates. Figures in parentheses
represent improvement relative to the first row.

LM LL LF AUC AP

ENCODER + MLP 0.7336 (—) 0.3632 (—)
MLP 0.7371 (—) 0.4041 (—)

√
0.7496 (1.6%) 0.4127 (4.9%)√
0.7509 (1.7%) 0.4135 (5.0%)√
0.7414 (0.8%) 0.4038 (4.1%)√ √
0.7511 (1.7%) 0.4144 (5.1%)√ √
0.7521 (1.8%) 0.4146 (5.1%)√ √ √
0.7527 (1.9%) 0.4202 (5.7%)

formance. This finding is in line with our assumptions,
considering that as previously mentioned, LM can be seen
as a particular case of LL.

To further corroborate these insights, we expanded the ab-
lation study to encompass other time horizons, namely,
M = {0.5, 3, 5}, and data sources available at inference.
Results of these additional studies, which support the find-
ings in Table 1, can be found in Appendix A.4.

4.3. MIMIC (Public Real-World Dataset)

Given that the Private dataset is not readily publicly accessi-
ble, we also validate CLOPPS using the MIMIC-III clinical
database (Johnson et al., 2016).

Dataset description MIMIC-III encompasses de-
identified data from +40, 000 patients who received care
in critical care units. This comprehensive dataset consists
of EHR data spanning 26 distinct data tables. An in-depth
description of the data can be found in Johnson et al. (2016).

In our experiments, we opted for laboratory and proce-
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Figure 5. Performance comparison (AUC and AP) between
CLOPPS and five baselines, including shared covariates on the
MIMIC data. Axes colors indicate the data sources available dur-
ing inference: procedures, labs and both labs and procedures.

dure events to emulate the type of data available in the two
sources of our Private dataset. These two data sources will
be referred to as Lab and Procedure hereafter. For each pa-
tient, we aggregated Lab values and Procedure codes hourly
throughout their ICU stay. For Labs, we used the hourly
mean if multiple records were available or the population
mean (over the training set) in the case of no records be-
ing available. For Procedure codes, we employed binary
indicators to denote whether a specific procedure occurred
within each hour. Further, we also extracted other features
such as sex, age, and admission codes, to serve as additional
“shared” covariates for the mortality risk prediction model.

Patients with ICU stays exceeding one week were excluded,
resulting in a final cohort of 20, 784 patients, with 53.32±
35.12 (hourly) time points, and 80, 12, 145 covariates for
Lab, Procedure and shared covariates, respectively. Among
these, 81 are continuous and 156 are binary. Moreover,
this dataset has a survival rate of 88.80%. This cohort was
then divided into training, validation, and testing subsets
following an 8:1:1 ratio. The task is to predict mortality
within the next 168 hours (1 week) relative to time point t.

Results Mirroring the approach used for the Private
dataset, we compare the proposed framework with five base-
lines. This comparison is conducted in the scenario where
the additional shared covariates are included in the classifier.
Results in Figure 5 are shown for CLOPPS with the RWKV,
consistent to those for the Private dataset. Detailed results
for other classifier options can be found in Appendix A.6.
Figure 5 demonstrates that regardless of the data source ac-
cessed during inference, CLOPPS consistently outperforms
other baselines, which effectively validates it.

5. Conclusion
We introduced CLOPPS, a framework tailored for longi-
tudinal outcome prediction with incomplete data sources,

which can be of wide applicability in real-world scenarios,
especially in healthcare settings. Utilizing contrastive learn-
ing, CLOPPS makes full use of the complete set of data
sources during training, while generating highly informative
embeddings for different data sources to be used during
the inference stage, thus facilitating accurate predictions
and potentially more portable models. Our experiments
demonstrated that CLOPPS consistently outperforms strong
competing baselines, under conditions of partial access to
data sources during inference, thereby validating its efficacy
in real-world mortality prediction scenarios. This study
has several limitations: i) we only consider tabular data;
ii) though readily extensible, we only consider two data
sources; and iii) we only consider a single outcome, thus
not exploring competing risk. In future work, we plan to
expand the types (e.g., images and text) and number of data
sources and outcomes considered. Further, we are also inter-
ested in exploring the potential applicability of our frame-
work to a variety of medical predictive tasks (Ghassemi
et al., 2020; Wang et al., 2020) beyond mortality prediction.

Impact Statement
The proposed framework is intended as a means to improve
the portability and reduce the data requirements of clinical
outcome prediction models. This is important because it
is well recognized that these are two barriers preventing
predictive models from being more widely deployed as part
of clinical decision support systems. Despite the potential
positive impact of CLOPPS on the clinical predictive model
ecosystem, it is worth noting that this work does not explore
ethical implications of bias caused or amplified by models
produced by CLOPPS. Fortunately, there is a growing body
of work in machine learning devoted to address problems
associated with quantifying and correcting bias, equity or
fairness issues in predictive models.
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Table 2. Tuning Results for τ on the Private validation dataset. Throughout the tuning phase we only include LM . The best performances
are in highlighted in bold text.

M (YEARS) INFERENCE DATASET METRIC
τ VALUE

0.01 0.1 0.5

0.5
NATIONAL DATA SYSTEM

AUC 0.7729 0.7749 0.7740
AP 0.3231 0.3246 0.3174

DIALYSIS PROVIDER
AUC 0.8050 0.8108 0.8099
AP 0.3726 0.3768 0.3781

1
NATIONAL DATA SYSTEM

AUC 0.7451 0.7488 0.7475
AP 0.4188 0.4225 0.4173

DIALYSIS PROVIDER
AUC 0.7771 0.7816 0.7790
AP 0.4718 0.4763 0.4736

3
NATIONAL DATA SYSTEM

AUC 0.7367 0.7418 0.7405
AP 0.6803 0.6855 0.6820

DIALYSIS PROVIDER
AUC 0.7585 0.7632 0.7595
AP 0.7077 0.7133 0.7086

5
NATIONAL DATA SYSTEM

AUC 0.7606 0.7664 0.7644
AP 0.8045 0.8086 0.8065

DIALYSIS PROVIDER
AUC 0.7801 0.7816 0.7800
AP 0.8182 0.8197 0.8184

BEST PERFORMANCE COUNT 0/16(0.00%) 16/16(100.00%) 0/16(0.00%)

A. Appendix
A.1. Model Architecture Details

Encoders The two encoders f (1) and f (2) in CLOPPS are identical in architecture. Each encoder starts with an input
embedding layer, followed by two attention blocks. Each block consists of a multi-head self-attention layer, featuring 4
heads with each head having a dimension of 128, and a fully connected feed-forward layer. A residual connection (He et al.,
2016) and a layer normalization (Ba et al., 2016) are employed after each of sub-layer. The final output dimension of the
encoders is set at 512. Diverging from traditional position embeddings like absolute position embedding (Vaswani et al.,
2017), or relative position embedding (Shaw et al., 2018), our encoders utilize a rotary position embedding (Su et al., 2024).

Classifiers The MLP classifier in CLOPPS consists of three layers. The output dimensions for these layers are 512, 256,
and 1, respectively. Each layer integrates a ReLU activation function (Agarap, 2018), except from the final layer which
is followed by a sigmoid activation function (Narayan, 1997). For the construction of the OPT and RWKV models, we
leverage the Hugging-face’s transformers library (Wolf et al., 2019). The OPT model has 2 hidden layers, 4 attention heads,
and a hidden size of 512. The RWKV model is similarly designed with an attention and overall hidden size of 512 units, as
well as 2 hidden layers.

Baselines For the Elastic Net baseline, we configured the L1 regularization ratio to 0.7 and set the inverse of regularization
strength to 0.5. The RoFormer baseline consists of two attention layers, following the architecture used for the encoders, and
then followed by a three-layer MLP classifier. The MLP dimensions are 512, 256, and 1, respectively, with ReLU activation
functions. The MLP, OPT, and RWKV baselines are architecturally identical to the classifiers in CLOPPS.

A.2. Hyperparameter Tuning

In this section, we detail the tuning of hyperparameters τ , w and d for CLOPPS, utilizing the Private validation dataset
without demographic features. Initially, τ was tuned under the assumption that our encoders are optimized solely with the
loss LM . After setting τ , we proceeded to independently tune w and d, implying that while adjusting one hyperparameter,
the other was set to 0. Detailed results of this tuning process can be found in Table 2 for τ , Table 3 for w, and in Table 4 for
d. Based on these results, we selected τ = 0.1 w = 2 and k = 12 as the optimal parameters for CLOPPS, as these settings
yielded the highest frequency of top performance across multiple scenarios.
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Table 3. Tuning Results for w on Private validation dataset. Throughout the tuning phase, setting d = 0 signifies the exclusion of LF .
Similarly, w = 0 indicates that LL is not incorporated. The best performances are highlighted in bold text.

M (YEARS) INFERENCE DATASET METRIC
w VALUE

0 1 2 3

0.5
NATIONAL DATA SYSTEM

AUC 0.7749 0.7784 0.7785 0.7757
AP 0.3246 0.3284 0.3291 0.3263

DIALYSIS PROVIDER
AUC 0.8108 0.8155 0.8145 0.8149
AP 0.3768 0.3834 0.3821 0.3823

1
NATIONAL DATA SYSTEM

AUC 0.7488 0.7519 0.7514 0.7498
AP 0.4225 0.4250 0.4263 0.4233

DIALYSIS PROVIDER
AUC 0.7816 0.7855 0.7852 0.7868
AP 0.4763 0.4833 0.4795 0.4834

3
NATIONAL DATA SYSTEM

AUC 0.7418 0.7425 0.7434 0.7424
AP 0.6855 0.6865 0.6866 0.6842

DIALYSIS PROVIDER
AUC 0.7632 0.7677 0.7667 0.7679
AP 0.7133 0.7183 0.7162 0.7184

5
NATIONAL DATA SYSTEM

AUC 0.7664 0.7636 0.7660 0.7644
AP 0.8086 0.8056 0.8069 0.8048

DIALYSIS PROVIDER
AUC 0.7816 0.7854 0.7858 0.7864
AP 0.8197 0.8226 0.8230 0.8229

BEST PERFORMANCE COUNT 2/16(12.50%) 3/16(18.75%) 6/16(37.50%) 5/16(31.25%)

A.3. Moving MNIST

In this section, we firstly show specific examples from the generated Moving MNIST (MMNIST) dataset to provide a better
understanding of it. The first example, illustrated in Figure 6, demonstrates a sequence where an event occurs, specifically
where the two numbers in the sequence intersect. Another example, depicted in Figure 7, represents censored sequences
within the dataset. In both instances, the sequence labels are generated based on the criterion that M = 2, indicating whether
the two numbers will intersect in the subsequent 2 frames.

Additionally, to provide a comprehensive view of the performance across different models, we show the full results from all
models on the Moving MNIST dataset in Table 5, offering a broader perspective of the effectiveness of each model in this
specific context.

A.4. Full Ablation Study Results on Private Dataset

In Table 6, we present the complete results of the ablation study on the Private dataset. The results for half-year, 3-year and
5-year mortality predictions in Table 6 assume we only have access to one data source (the dialysis provider or the national
data system) during inference, support the findings in Table 1.

A.5. Full results of Private Dataset

In this section, we provide a comprehensive comparison of CLOPPS against all baselines using the Private dataset. Figure 8
and 9 provide a detailed performance comparison between CLOPPS, with various classifier options, and all baseline models.
These figures show results on Private dataset with and without shared demographic covariates, respectively. Across different
mortality prediction scenarios, CLOPPS, especially when employing the RWKV classifier, consistently outperforms all
other models.

In Table 7, we include a comparison of CLOPPS performance against the baseline models, specifically in scenarios where
both data sources are available during inference. According to the results in Table 7, there are instances where some baseline
models achieve performance comparable to, or in rare cases, better than CLOPPS. This is primarily because, when both data
sources are available, the raw covariates tend to encompass the insights provided by our encoded features, leading to similar
performance levels in other baseline models. Despite this, it is important to note that in the majority of cases, as indicated in
Table 7, CLOPPS features contribute to an improvement in mortality prediction performance. These findings highlight the
robustness and adaptability of CLOPPS, demonstrating its effectiveness in a variety of data availability scenarios.
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Table 4. Tuning Results for d on the Private validation dataset. Throughout the tuning phase, setting w = 0 signifies the exclusion of LL.
Similarly, d = 0 indicates that LF is not incorporated. The best performances are highlighted in bold text.

M (YEARS) INFERENCE DATASET METRIC
d VALUE

0 6 12 18

0.5
NATIONAL DATA SYSTEM

AUC 0.7749 0.7754 0.7771 0.7754
AP 0.3246 0.3247 0.3257 0.3246

DIALYSIS PROVIDER
AUC 0.8108 0.8137 0.8132 0.8123
AP 0.3768 0.3812 0.3800 0.3777

1
NATIONAL DATA SYSTEM

AUC 0.7488 0.7490 0.7504 0.7490
AP 0.4225 0.4218 0.4225 0.4231

DIALYSIS PROVIDER
AUC 0.7816 0.7850 0.7843 0.7835
AP 0.4763 0.4796 0.4794 0.4782

3
NATIONAL DATA SYSTEM

AUC 0.7418 0.7425 0.7438 0.7421
AP 0.6855 0.6846 0.6852 0.6849

DIALYSIS PROVIDER
AUC 0.7632 0.7654 0.7647 0.7639
AP 0.7133 0.7144 0.7136 0.7130

5
NATIONAL DATA SYSTEM

AUC 0.7664 0.7672 0.7681 0.7656
AP 0.8086 0.8082 0.8091 0.8077

DIALYSIS PROVIDER
AUC 0.7816 0.7828 0.7829 0.7826
AP 0.8197 0.8201 0.8203 0.8202

BEST PERFORMANCE COUNT 1/16(6.25%) 6/16(37.50%) 8/16(50%) 1/16(6.25%)

A straightforward approach to address the challenge of partial data availability during inference is to train models using
complete data sources, and then substitute (impute) the missing data with the mean values from the training dataset during
inference. We applied this method to Elastic Net and MLP on the Private dataset without shared (demographic) information,
and the results are presented in Table 8. For comparison, we also include the performance metrics of CLOPPS using MLP as
classifier in the same table. The results presented in Table 8 demonstrate that CLOPPS consistently outperforms the baseline
models, even when the baseline models employ this simple approach.

A.6. Full results on the Public Dataset

In this section, we provide a comprehensive comparison of CLOPPS against all baselines using the Public dataset (MIMIC-
III). Figure 10 provides a detailed performance comparison between CLOPPS, with various classifier options, and all
baseline models. The results in Figure 10 demonstrate that CLOPPS consistently outperforms all other baselines.

A.7. Transfer Learning Scenarios Simulation

In this section, we detail the methods employed to simulate prospective transfer learning scenarios and present the results.
Specifically, we allocated patient records that fully occurring before 2013 to the training set, amassing 12,916 samples for
training our framework. Further, the testing dataset comprises patient records that started and fully occurred after 2013, with
2,201 samples, to evaluate the efficacy of our trained framework. The detailed comparative results across different models,
as shown in Table 9, demonstrate that CLOPPS either outperforms or is comparable to other baseline models in simulated
transfer learning scenarios. This underscores the effectiveness of CLOPPS in real-world prospective scenarios.

A.8. Fine-tuning Results

In this section, we provide the performance comparison between the training mechanism introduced in Section 3.3 and
fine-tuning mechanism in Table 10. Fine-tuning mechanism refers to the initial training of our encoders, followed by a joint
fine-tuning phase of both the encoders and prediction head for each specific dataset. The comparative results indicate a
subtle difference between the two training strategies, thus indicating no additional gains from fine tuning.
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Figure 6. Sequence showcasing movement of digits 6 and 7. Throughout the frames, both numbers move randomly and eventually
intersect, signifying an event. Frame-specific labels are presented above each frame.

Figure 7. Censored sequence illustrating the movement of digits 3 and 5. The frames depict both numbers moving randomly without
intersecting, indicating the absence of an event. Labels specific to each frame are provided above each frame.
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Table 5. Performance comparison on Moving MNIST (MMNIST). We show the performance for three baselines, Elastic Net, RoFormer,
MLP, and CLOPPS using MLP as classifier, where the M represents that two digits will intersect each other in the next M frames.

M FRAME MODEL
TOP HALF BOTTOM HALF WHOLE FRAME

AUC AP AUC AP AUC AP

2

ELASTIC NET 0.5746 0.1647 0.5381 0.1487 0.5886 0.1337
ROFORMER 0.8001 0.2914 0.7712 0.2622 0.9757 0.8055

MLP 0.8817 0.5082 0.8783 0.5118 0.9873 0.9160
CLOPPS(MLP) 0.8855 0.5431 0.8839 0.5505 0.9884 0.9221

4

ELASTIC NET 0.5800 0.1947 0.5467 0.1765 0.5873 0.1619
ROFORMER 0.8165 0.3668 0.7973 0.3491 0.9675 0.8022

MLP 0.8628 0.5035 0.8513 0.4900 0.9688 0.8588
CLOPPS(MLP) 0.8666 0.5356 0.8602 0.5305 0.9719 0.8709

6

ELASTIC NET 0.5826 0.2216 0.5530 0.2021 0.5828 0.1877
ROFORMER 0.8142 0.4064 0.7897 0.3739 0.9093 0.5909

MLP 0.8364 0.4882 0.8283 0.4838 0.9440 0.8057
CLOPPS(MLP) 0.8425 0.5220 0.8350 0.5109 0.9467 0.8144

8

ELASTIC NET 0.5846 0.2468 0.5560 0.2253 0.5768 0.2119
ROFORMER 0.8004 0.4186 0.7868 0.4006 0.8965 0.5967

MLP 0.8142 0.4868 0.8055 0.4803 0.9143 0.7629
CLOPPS(MLP) 0.8206 0.5125 0.8103 0.4987 0.9171 0.7704

10

ELASTIC NET 0.5846 0.2677 0.5556 0.2452 0.5692 0.2332
ROFORMER 0.7912 0.4377 0.7730 0.4165 0.8812 0.6045

MLP 0.7897 0.4813 0.7814 0.4725 0.8824 0.7244
CLOPPS(MLP) 0.7985 0.5097 0.7867 0.4910 0.8851 0.7295

Figure 8. Performance comparisons (AUC and AP) between CLOPPS and five baselines for different prediction horizons M =
{0.5, 1, 3, 5} on the Private Real-World Dataset. Axes colors indicate the data sources available during inference: orange for the
dialysis provider and purple for the national data system. The name in parenthesis following CLOPPS indicates which classifier used.
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Table 6. Full results for the ablation study. We pretrained the encoders using various loss component configurations, subsequently we used
the generated embeddings for mortality prediction task assuming only one data source (the dialysis provider or the national data system)
is available during inference, and where the M represents the prediction horizon. The Encoder + MLP denotes the encoder and MLP
classifier trained jointly.

M (YEARS) LOSS COMPONENT NATIONAL DATA SYSTEM DIALYSIS PROVIDER
LM LL LG AUC AP AUC AP

0.5

ENCODER + MLP 0.7519 0.2425 0.7979 0.3231√
0.7744 0.3128 0.8052 0.3542√
0.7763 0.3100 0.8014 0.3462√
0.7681 0.3060 0.7977 0.3426√ √
0.7759 0.3130 0.8102 0.3595√ √
0.7766 0.3135 0.8072 0.3576√ √ √
0.7772 0.3184 0.8100 0.3608

1

ENCODER + MLP 0.7336 0.3632 0.7601 0.4147√
0.7496 0.4127 0.7794 0.4617√
0.7509 0.4135 0.7769 0.4557√
0.7414 0.4038 0.7739 0.4526√ √
0.7511 0.4144 0.7848 0.4650√ √
0.7521 0.4146 0.7816 0.4642√ √ √
0.7527 0.4202 0.7837 0.4650

3

ENCODER + MLP 0.7349 0.6540 0.7449 0.6669√
0.7383 0.6681 0.7634 0.7022√
0.7378 0.6680 0.7623 0.7004√
0.7273 0.6544 0.7551 0.6917√ √
0.7399 0.6709 0.7683 0.7079√ √
0.7410 0.6705 0.7653 0.7039√ √ √
0.7402 0.6711 0.7673 0.7060

5

ENCODER + MLP 0.7474 0.7746 0.7656 0.7880√
0.7549 0.7864 0.7783 0.8080√
0.7543 0.7876 0.7803 0.8092√
0.7440 0.7762 0.7727 0.8026√ √
0.7550 0.7890 0.7840 0.8126√ √
0.7574 0.7899 0.7806 0.8100√ √ √
0.7558 0.7893 0.7824 0.8105

Table 7. Performance comparison. CLOPPS (MLP), CLOPPS (OPT) and CLOPPS (RWKV) represent using different classifier options in
CLOPPS, i.e., MLP, OPT, RWKV. This comparison is conducted using the Private dataset, under the assumption of full data sources
accessibility during training and inference.

M (YEARS) METRIC
MODEL

ELASTIC
NET

MLP ROFORMER OPT RWKV CLOPPS
(MLP)

CLOPPS
(OPT)

CLOPPS
(RWKV)

0.5 AUC 0.8164 0.8203 0.7956 0.8144 0.8197 0.8244 0.8151 0.8220
AP 0.3876 0.3980 0.3102 0.3775 0.3894 0.3971 0.3755 0.3960

1 AUC 0.7911 0.7955 0.7836 0.7920 0.7933 0.7999 0.7931 0.7979
AP 0.4873 0.4948 0.4524 0.4791 0.4865 0.4959 0.4785 0.4930

3 AUC 0.7779 0.7816 0.7717 0.7801 0.7836 0.7878 0.7808 0.7873
AP 0.7206 0.7254 0.6983 0.7167 0.7247 0.7318 0.7188 0.7291

5 AUC 0.7944 0.7971 0.7844 0.7929 0.7982 0.8026 0.7953 0.8028
AP 0.8240 0.8259 0.8097 0.8214 0.8271 0.8312 0.8232 0.8315
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Figure 9. Performance comparisons (AUC and AP) between CLOPPS and five baselines for different prediction horizons M =
{0.5, 1, 3, 5} and shared demographic covariates on the Private Real-World Dataset. Axes colors indicate the data sources avail-
able during inference: orange for the dialysis provider and purple for the national data system. The name in parenthesis following
CLOPPS indicates which classifier used.

Table 8. Results of substituting missing data sources (imputation) with training dataset statistics during inference where substitute dialysis
provider and substitute national data system indicate the use of mean values from the dialysis provider and national data system training
datasets, respectively, to compensate for (impute) their absence during inference.

M (YEARS) MODEL
NATIONAL DATA SYSTEM

(SUBSTITUTE DIALYSIS PROVIDER)
DIALYSIS PROVIDER

(SUBSTITUTE NATIONAL DATA SYSTEM)
AUC AP AUC AP

0.5
ELASTIC NET 0.7414 0.2852 0.7814 0.3105

MLP 0.7529 0.2988 0.7785 0.3197
CLOPPS(MLP) 0.7772 0.3184 0.8100 0.3608

1
ELASTIC NET 0.7142 0.3784 0.7592 0.4268

MLP 0.7228 0.3877 0.7637 0.4388
CLOPPS(MLP) 0.7527 0.4202 0.7837 0.4650

3
ELASTIC NET 0.7002 0.6311 0.7425 0.6755

MLP 0.7045 0.6329 0.7485 0.6856
CLOPPS(MLP) 0.7402 0.6711 0.7673 0.7060

5
ELASTIC NET 0.7158 0.7575 0.7412 0.7719

MLP 0.7139 0.7530 0.7482 0.7815
CLOPPS(MLP) 0.7558 0.7893 0.7824 0.8105
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Figure 10. Performance comparison (AUC and AP) between CLOPPS and five baselines, including shared covariates on the MIMIC data.
Axes colors indicate the data sources available during inference: procedures, labs and both labs and procedures. The name in parenthesis
following CLOPPS indicates which classifier used.

Table 9. Performance comparison on simulated transfer learning scenarios on the Private Real-World Dataset. We show the performance
for three baselines, Elastic Net, RoFormer, MLP, and CLOPPS using MLP as classifier.

M (YEARS) MODEL
NATIONAL DATA SYSTEM DIALYSIS PROVIDER
AUC AP AUC AP

0.5

ELASTIC NET 0.7652 0.3159 0.7924 0.2957
ROFORMER 0.7733 0.3023 0.7657 0.2589

MLP 0.7634 0.3138 0.7846 0.2992
CLOPPS(MLP) 0.7798 0.3145 0.7987 0.3282

1

ELASTIC NET 0.7353 0.4126 0.7640 0.4280
ROFORMER 0.7499 0.4161 0.7481 0.4134

MLP 0.7406 0.4168 0.7625 0.4451
CLOPPS(MLP) 0.7520 0.4235 0.7743 0.4584

3

ELASTIC NET 0.7183 0.6439 0.7454 0.6635
ROFORMER 0.7310 0.6501 0.7403 0.6592

MLP 0.7218 0.6473 0.7516 0.6789
CLOPPS(MLP) 0.7368 0.6564 0.7568 0.6773

5

ELASTIC NET 0.7157 0.6721 0.7393 0.6869
ROFORMER 0.7149 0.6599 0.7137 0.6508

MLP 0.7142 0.6685 0.7411 0.6992
CLOPPS(MLP) 0.7341 0.6844 0.7425 0.6840
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Table 10. Performance comparison between two training strategies on Private Real-World Dataset, where CLOPPS (FT) refers to
fine-tuning mechanism and CLOPPS refers to the training mechanism introduced in Section 3.3.

M (YEARS) MODEL
NATIONAL DATA SYSTEM DIALYSIS PROVIDER
AUC AP AUC AP

0.5 CLOPPS 0.7772 0.3184 0.8100 0.3608
CLOPPS (FT) 0.7761 0.3162 0.8090 0.3627

1 CLOPPS 0.7527 0.4202 0.7837 0.4650
CLOPPS (FT) 0.7535 0.4156 0.7824 0.4661

3 CLOPPS 0.7402 0.6711 0.7673 0.7060
CLOPPS (FT) 0.7439 0.6711 0.7653 0.7042

5 CLOPPS 0.7558 0.7893 0.7824 0.8105
CLOPPS (FT) 0.7607 0.7892 0.7818 0.8113
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