
NANSY++: UNIFIED VOICE SYNTHESIS WITH
NEURAL ANALYSIS AND SYNTHESIS

Hyeong-Seok Choi1,2, *Jinhyeok Yang2, *Juheon Lee1,2, *Hyeongju Kim2

1Seoul National University
2Supertone, Inc.,
{kekepa15,yangyangii,juheon2,hyeongju}@supertone.ai

ABSTRACT

Various applications of voice synthesis have been developed independently de-
spite the fact that they generate “voice” as output in common. In addition, most of
the voice synthesis models still require a large number of audio data paired with
annotated labels (e.g., text transcription and music score) for training. To this end,
we propose a unified framework of synthesizing and manipulating voice signals
from analysis features, dubbed NANSY++. The backbone network of NANSY++
is trained in a self-supervised manner that does not require any annotations paired
with audio. After training the backbone network, we efficiently tackle four voice
applications - i.e. voice conversion, text-to-speech, singing voice synthesis, and
voice designing - by partially modeling the analysis features required for each
task. Extensive experiments show that the proposed framework offers competitive
advantages such as controllability, data efficiency, and fast training convergence,
while providing high quality synthesis. Audio samples: tinyurl.com/8tnsy3uc.

1 INTRODUCTION

Most deep learning-based voice synthesis models consist of two parts: generating a mel spectro-
gram from an acoustic model that takes labeled annotations as input (e.g., text, music score, etc.),
and converting the mel spectrogram into a waveform using a vocoder (Wang et al., 2017; Kim et al.,
2020; Jeong et al., 2021; Lee et al., 2019; Liu et al., 2022). However, this usually suffers from poor
synthesis quality due to the training/inference mismatch of the acoustic model and vocoder. End-to-
end training methods has been recently proposed to tackle such issues (Bińkowski et al., 2020; Weiss
et al., 2021; Donahue et al., 2021; Kim et al., 2021). Despite the high quality, however, the train-
ing process of end-to-end models is often costly, as the waveform synthesis part needs to be trained
again when training each different model. Furthermore, regardless of the training strategies of previ-
ous studies (end-to-end or not), most of the standard voice synthesis models are not modular enough
in that most of the desirable control features are entangled in a single mid-level representation, or
so-called latent space. This limits the controllability of such features and restrains the possibility of
models being used as co-creation tools between creators and machines. Lastly, although many voice
synthesis tasks are analogous in that they are meant to synthesize or control certain attributes of
voice, the methodologies developed for each application remain scattered in research fields. These
problems call for the need of developing a unified voice synthesis framework.

We stick to three objectives for designing the unified synthesis framework, that is, 1. data-scalable:
the training procedure should be done via a minimum amount of labeled dataset while exploiting
abundant audio recordings without labels, 2. modular: the training for each application should be
done in a modularized way by sharing a universal parameterized synthesizer, 3. high quality: the
synthesis quality must persist high standard even by abiding by the modularized training procedure.
To this end, we make a core assumption that most of the voice synthesis tasks can be defined by
synthesizing and controlling four aspects of voice, that is, pitch, amplitude, linguistic, and timbre.
This motivates us to develop a backbone network that can analyze voice into the four properties
and then synthesize them back into an waveform. On that account, we propose NANSY++, which

*Equal contribution

1



is improved upon the previous Neural ANalysis and SYnthesis (NANSY) framework (Choi et al.,
2021a), by putting forward a new end-to-end self-supervised training method.

First, we propose a self-supervised fundamental frequency (F0) estimation training method that can
be trained without any post processing or synthetic datasets. Next, we adopt two self-supervised
training methods - information perturbation and bottleneck - to extract a linguistic representation
that is disentangled from other representations (Choi et al., 2021a; Qian et al., 2022). Then, we
propose to encode timbre information using a content-dependent time-varying speaker embedding,
which successfully captures timbre information of unseen target speaker during training. Finally, we
propose a high quality synthesis network to convert the 4 analysis representations into a waveform
by adopting an inductive bias of human voice production model.

We assume that by exploiting the proposed self-supervised disentangled representation learning
strategies on the backbone network, we can encourage several downstream generative tasks to be
more data efficient, while not losing the modularity and synthesis quality. Therefore, after train-
ing the backbone network, we introduce 4 exemplar applications - voice conversion, text-to-speech
(TTS), singing voice synthesis (SVS), voice designing (VOD) - that can be tackled by sharing anal-
ysis representations and synthesis network of the backbone. Each application can be simplified and
substituted into the task of synthesizing a subset of analysis representations. Through extensive ex-
periments, we verify that NANSY++ enjoys a lot of advantages at once that existing methodologies
cannot: high quality output, fast training of modularized application models, data efficiency, and
controllability over disentangled voice features.

2 NANSY++

F0
P Amplitude
Ap Amplitude

Linguistic
Feature

Global Timbre
Embedding

Timbre Tokens

…
Trainable Latent Keys

Time㎼varying
Timbre NN

Q

Sinusoid 㖅Noise
Generator

Sample㎼level
Synthesis

NNFrame㎼level
Synthesis NN

NANSY㚅㚅 SynthesizerNANSY㚅㚅 Analyzer

Pitch encoder

CQT Pitch
Analysis NN

V
K

Linguistic encoder

W2V Linguistic
Analysis NN

Timbre encoder

Mel Timbre
Analysis NN

Wave Wave

Figure 1: Overview of proposed NANSY++ backbone architecture. All modules in the backbone
network is trained in an end-to-end manner within a single analysis and synthesis loop.

2.1 SELF-SUPERVISED LEARNING OF PITCH

We represent pitch with fundamental frequency F0 because it is explicitly controllable. In addition,
we found that using sinsuoidal signal made by F0 as an input signal for synthesizer can greatly
reduce glitches. To train F0 estimator in a self-supervised manner, we first adopt the auto-encoding
approach of Engel et al. (2020b). Pitch encoder fθP takes Constant-Q Transform (CQT) as an input
feature and outputs probability distribution over 64 frequency bins where it spans from 50Hz to
1000Hz logarithmically (approximately 0.79 semitone per bin). The F0 is estimated by weighted
averaging the probability distribution over the frequency bins. The pitch encoder also outputs two
amplitude values, periodic amplitude Ap[n] and aperiodic amplitude Aap[n]. F0[n] and Ap[n] are
linearly upsampled into a sample-level, F0[t] and Ap[t], and transformed into a sinusoidal waveform

x[t] = Ap[t] sin
(∑t

k=1 2π
F0[k]
Ns

)
, where Ns denotes sampling rate. We also linearly upsample

Aap[n] into Aap[t] and generate shaped noise y[t] = Aap[t] · n[t], where n[t] ∼ U [−1, 1]. Finally
the two siganls, x[t] and y[t], are added to form an input excitation signal z[t] = x[t] + y[t] for
a synthesizer. After the synthesizer reconstructs the input signal, the pitch encoder is trained with
reconstruction loss.

The training solely depending on reconstruction, however, was unstable, and showed poor pitch
estimation quality, which was also reported in (Engel et al., 2020b), and as a result they ended up
utilizing synthetic audio datasets with pitch labels. While collecting synthetic audio datasets paired
with pitch labels is not difficult for musical instruments, it is problematic for speech or singing

2



voice because we cannot obtain such synthetic datasets. To address this issue, we adopt another
self-supervised pitch estimation method that utilizes relative pitch difference between two CQT
inputs (Gfeller et al., 2020). First, we extract CQT X ∈ RN×F , where N and F denote the size
of time and frequency, respectively. One frequency bin of CQT feature amounts to 0.5 semitone.
Next, we crop the frequency axis of X to obtain two CQT matrices with same size X̃(1), X̃(2) ∈
RN×F scope

. The frequency range of X̃(1) consistently spans from fmin to fmax, whereas X̃(2)

is obtained by randomly shifting the frequency-axis index of X̃(1) by d ∼ U (dmin, dmax). Then,
the two cropped CQT features are passed through the pitch encoder and outputs two fundamental
frequency sequences F̃

(1)
0 and F̃

(2)
0 . Finally, relative pitch difference loss Lpitch is computed as

follows: Lpitch = h(|log2(F̃
(1)
0 ) − log2(F̃

(2)
0 ) − 0.5d|, where h(·) denotes huber norm (Huber,

1992). Note that by integrating two self-supervised pitch estimation methods into the end-to-end
analysis-synthesis training loop, we achieve absolute pitch estimation without any synthetic datasets.
For more detailed CQT configurations and neural architecture of pitch encoder, see Appendix A.1
and A.3.

2.2 DISENTANGLED LINGUISTIC REPRESENTATION

In order to ensure that the linguistic representation is disentangled from other analysis representa-
tions, we combine information perturbation method proposed by Choi et al. (2021a) and contrastive
loss proposed by Qian et al. (2022). First, a signal is transformed into two different signals using
perturbation functions that does not significantly harm the linguistic information. Then, wav2vec
features (Babu et al., 2022) extracted from each perturbed signal are passed into linguistic informa-
tion encoder fθL . Finally, the two linguistic representations, L(1)

n and L
(2)
n , are then used to compute

contrastive loss as follows:

Lcontr =

2∑
i=1

− log

 N∑
n=1

exp
(
d
(
L

(1)
n ,L

(2)
n

)
/k

)
∑

ν∈{n}∪In
exp

(
d(L

(i)
n ,L

(i)
ν )/k

)
 , (1)

where k denotes a temperature parameter, d denotes cosine similarity, and In denotes the set of
randomly selected frame indices for negative samples. The intuition of the contrastive loss is that
the difference between L(1) and L(2) should be minimized, while the similarity within L(i) is min-
imized so that the consistent information within an utterance (e.g., timbre information) can be min-
imized. Note that we pass L(1) to synthesizer so that fθL is jointly trained with reconstruction
loss within the whole end-to-end analysis-synthesis loop, which is different from Qian et al. (2022)
where they only focused on representation learning for discriminative tasks. As we will show later
in section 4.2 and 4.3, the learned linguistic representation is extremely helpful for fast training and
data efficiency on synthesis tasks such as TTS and SVS. For more details on information perturba-
tion functions, neural architecture of linguistic information encoder, and hyperparameters for Lcontr,
see Appendix A.1 and A.3.

2.3 TIME-VARYING TIMBRE EMBEDDINGS

To synthesize waveform from disentangled pitch and linguistic representation, it is important to
encode timbre information well enough to fully reconstruct the input signal. Although the timbre
information is usually encoded with a single vector, we assume that the capacity of the single vector
is not enough to capture the wide variety of timbral characteristics. In addition, we assume that
timber is not static but rather varies over time, depending on time-varying contents such as pitch,
amplitude, and linguistic information. Therefore, we breakdown timbre features into two - global
timbre embedding and timbre tokens - using timbre encoder fθT . fθT takes mel spectrogram as an
input and produces global timbre embedding g, a single vector summarized with attentive statistical
time-pooling (Okabe et al., 2018), which is expected to capture overall timbral characteristics within
an utterance. The timbre tokens vi, i = 1, ..., I , are expected to capture diverse timbral character-
istics into a fixed number of tokens. The timbre tokens are extracted by adopting a cross-attention
mechanism introduced by Jaegle et al. (2021), where trainable latent vectors are used as queries, and
key and value are extracted from timbre encoder as illustrated in Appendix A.3, Fig. 8.

After extracting timbre features, we adopt another cross-attention mechanism by Yin et al. (2022)
to extract time-varying timbre embeddings that depends on other analysis content representations.

3



Specifically, we used the concatenation of [F0, Ap, Aap,L,g] as a query. Keys are composed of I
trainable vectors and the timbre tokens are used as values. Finally, the output of the cross-attention
mechanism and g is interpolated using spherical linear interpolation to make time-varying timbre
embeddings. For more details of time-varying timbre embeddings, see Appendix A.3.

2.4 WAVEFORM SYNTHESIS

The synthesis modules are composed of two synthesizers, frame-level and sample-level synthesizer.
The frame-level synthesizer first takes linguistic feature and time-varying speaker embeddings to
produce a frame-level condition for a sample-level synthesizer. After that, the frame-level condition
are linearly upsampled into sample-level features for sample-level conditioning. The sample-level
synthesizer then takes the excitation signal and sample-level features to reconstruct an input wave-
form. For the sample-level synthesizer architecture, we adopt the generator architecture of Parallel
WaveGAN (Yamamoto et al., 2020). The whole analysis and synthesis modules are then trained
with reconstruction loss. For the reconstruction loss, we used multi-scale spectrogram (MSS) loss
(Wang et al., 2019) and mel spectrogram loss (Kong et al., 2020). Note that it was crucial to use
linear frequency scale spectrogram for MSS loss rather than log-scale spectrogram for the stable
training of pitch encoder, which shares similar observations to what Turian & Henry (2020) has
reported. We also used adversarial loss and feature matching loss for high quality synthesis. Multi-
period discriminator (MPD) was used as a discriminator architecture (Kong et al., 2020). For more
details of synthesizers, please refer to Appendix. Note that we downsample input waveforms into
16 kHz before passing into analysis modules and let the synthesizer produces the original 44.1 kHz
waveforms. This enables 16 kHz to 44.1 kHz audio upsampling.

3 EXPERIMENTS ON BACKBONE

We trained the backbone model on 10,571 hours (speech: 10,092 hours, singing: 479 hours) of
proprietary 44.1 kHz audio recordings composed of 6,176 speakers and 624 singers. We trained the
backbone model for 1M iterations with Adam optimizer (Kingma & Ba, 2014) with the learning rate
of 10−4. The learning rate for MPD was 2× 10−4. The batch size was set to 60 using 10 RTX 3090
GPUs.

3.1 FUNDAMENTAL FREQUENCY DETECTION

Table 1: ABX results (%)

praat rapt pyin crepe
89.8 88.8 84.6 71.1

To evaluate the robustness of the proposed pitch encoder in
harsh conditions, we tested the performance of the pitch en-
coder on noisy speech testset. We sampled 30 speech and noise
recordings from the VCTK and DEMAND dataset (Veaux
et al., 2017; Thiemann et al., 2013), respectively, and mixed
them with 5 dB signal-to-noise ratio (SNR). For the baseline
models, we chose 4 popular F0 estimators, that is, praat, rapt, pyin, and crepe (Boersma et al., 1993;
Boersma & Van Heuven, 2001; Jadoul et al., 2018; Talkin & Kleijn, 1995; Mauch & Dixon, 2014;
Kim et al., 2018). We conducted ABX test, where 15 participants were asked which of the two
samples (A and B) sounds more similar to the original sample (X). One of the two samples was gen-
erated by reconstructing the original sample using the NANSY++ backbone, and another sample was
reconstructed by simply replacing only the original F0 sequence into the ones that were extracted
from one of the 4 baseline models. We conducted the experiments on Mechanical Turk (MTurk).
The results are shown in Table 1. The results clearly show that F0 estimated by NANSY++ pitch
encoder outperforms other pitch estimators significantly.

3.2 RECONSTRUCTION

Table 2: Reconstruction results.

Speech Singing
GT 4.39±0.05 4.35±0.05

BLH 4.00±0.06 3.26±0.06

Ours 4.37±0.05 4.36±0.05

In order to use the backbone synthesizer as a synthesis module
for various applications, it is important to test the reconstruction
performance. We randomly selected 5 audio recordings for each
of 25 unseen speakers and 25 unseen singers during training.
20 participants were involved for the evaluation on MTurk. As
a baseline model (BLH), we chose HiFi-GAN as it is the most
widely used mel-to-waveform converter (Kong et al., 2020). We
trained HiFi-GAN using the same training set to NANSY++. For

4



a fair comparison, we doubled the upsampling rate of the penul-
timate block of the HiFi-GAN generator, so that it can produce 44.1kHz waveform. The results are
shown in Table 2. The results clearly show that NANSY++ synthesizer produces better waveforms
for both speech and singing voice. Especially, significant improvement was observed on singing
voice.

4 APPLICATIONS

P/Ap Amplitude

WaveWave
𝐹!

Linguistic Feature

Timbre Feature

NANSY-TTS
TextMusical Score

Reference
Singer

Singing Voice
Synthesis

Speech
Synthesis

Voice
Attributes

Voice Design
NANSY-VOD

NANSY++
Synthesizer

NANSY++
Analyzer

Reference
Speaker

NANSY-SVS

Figure 2: Overview of exemplar applications integrated into the NANSY++ backbone architecture.
Each application can be substituted into a problem of estimating analysis features from the backbone.

We introduce 4 exemplar applications that can be integrated with NANSY++. Various conditional
generative models can be integrated by generating analysis features from conditions.

4.1 VOICE CONVERSION

Table 3: Voice conversion results.

MODEL MOS SSIM
TGT as TGT 4.08±0.05 3.47±0.06

BLY 3.23±0.06 2.78±0.12

Ours (vctk) 3.72±0.06 2.99±0.12

Ours (entire) 3.79±0.05 3.16±0.10

We perform zero-shot voice conversion by simply replac-
ing the original timbre features into the timbre features
extracted from a single utterance of a target speaker. To
further match the style of the target speaker, we also
transformed the F0 statistics of the source speaker into
the target speaker’s. As a baseline model (BLY), we
selected the state-of-the-art zero-shot voice conversion
model, YourTTS (Casanova et al., 2022). Note that
YourTTS requires paired (text, audio) dataset to train the
model. Other than the NANSY++ trained with the entire
dataset (Ours (entire)) explained in section 3, we trained additional model solely on VCTK dataset
(Ours (vctk)) to match the training dataset setting of the baseline model. We tested each model
using 11 unseen speakers during training following EXP. 1 of Casanova et al. (2022). Each speaker
was converted into 4 different speakers, resulting in 44 conversion pairs. For each source-target con-
version pair, we randomly selected 5 utterances, resulting in 220 audio samples in total. We tested
the naturalness (MOS) and speaker similarity (SSIM) following Wester et al. (2016). The evaluation
was done by 20 participants on MTurk. Note that we downsampled the 44.1 kHz NANSY++ outputs
into 16 kHz for a fair comparison to YourTTS as it only supports 16 kHz synthesis. The results are
shown in Table 3. TGT as TGT denotes the setting where the target speakers are compared with
their own utterances. The results clearly show that NANSY++ can change the voice with better nat-
uralness and speaker similarity then the baseline model even though the model was trained without
any text transcripts paired with audio recordings. In addition, we could achieve a noticeable speaker
similarity improvement when trained with more audio recordings, showing the data scalability of
the training method of NANSY++.

4.2 TEXT-TO-SPEECH

In this section, we describe NANSY-TTS, a text to speech (TTS) application utilizing NANSY++
framework. NANSY-TTS is independently trained using NANSY++ analysis features. We show that
this modular training approach is data efficient, while maintaining high-fidelity synthesis quality.

5



4.2.1 METHOD

Architecture NANSY-TTS consists of a phoneme encoder, style encoder, linguistic decoder, F0

decoder, amplitude decoder, and length regulator. All modules operate in a non-autoregressive man-
ner. By utilizing the timbre encoder of NANSY++ analyzer, there is no need to consider the timbre
representation for NANSY-TTS. Therefore, the style encoder only handles the prosody (e.g., speak-
ing pace, pitch, and loudness). The output style vector is used for duration predictor and all decoders.
More details and the overview figure can be found at Appendix B.1.

Training and inference To train the proposed TTS module, we optimize Mean Absolute Er-
ror(MAE) for linguistic features, F0, Ap, and Aap extracted from NANSY++ analyzer. The aligner
is trained independently to other modules in NANSY-TTS. The duration predictor is optimized by
minimizing MAE for the duration of each phoneme using the alignment calculated by the monotonic
alignment algorithm (MAS) (Kim et al., 2020) with the aligner module. In the inference stage, the
TTS module first generates linguistic feature, P/Ap amplitudes, and F0. Then, NANSY++ synthe-
sizer takes these generated features and timbre features to generate an waveform. More details can
be found at Appendix B.2

4.2.2 EXPERIMENTS

Table 4: TTS data efficiency evaluation.

MODEL MOS CER (%)

GT 4.47±0.09 1.93

BLG / Ours (5) 1.37±0.07 / 3.31±0.10 42.50 / 3.29
BLG / Ours (10) 2.07±0.11 / 3.39±0.10 18.59 / 3.05
BLG / Ours (30) 2.78±0.11 / 3.64±0.10 5.34 / 2.20
BLG / Ours (full) 3.38±0.11 / 4.07±0.09 2.65 / 1.68

Data efficiency To evaluate data effi-
ciency, we used a single speaker (reader id:
8051) from the Hi-Fi multi-speaker english
TTS dataset (Bakhturina et al., 2021). The
dataset has 30 hours of speech audio sam-
pled at 44.1kHz. We made three subsets with
data of 5, 10 and 30 minutes, and the larger
subsets include small subsets. First, we mea-
sured character error rate (CER) to evaluate
the intelligibility of the speech according to
the size of the dataset. The synthesized speech from the 100 test sentences were transcribed by the
pretrained speech recognition model (Silero, 2021). As a baseline model (BLG), the official imple-
mentation of Glow-TTS was used as an acoustic model. We used the same 44.1 kHz HiFi-GAN
as a baseline vocoder mentioned in section 3.2. The training configuration of NANSY-TTS (Ours)
was set to be the same as that of the baseline model. As shown in Table 4, NANSY-TTS preserved
relatively high MOS and low CER regardless of the size of the dataset, whereas evaluation results
of the baseline model showed significantly dropped performance as the size of the dataset became
smaller. In particular, NANSY-TTS trained with the 30 minutes subset outperforms the baseline
model trained with the full dataset. This indicates the proposed modular training approach offers a
significant data efficiency for TTS with high synthesis quality.

Table 5: Zero-shot TTS results.

MODEL MOS SSIM
TGT as TGT 3.98±0.07 2.91±0.09

BLY 3.33±0.08 2.21±0.09

Ours (vctk) 4.27±0.07 2.55±0.09

Ours (entire) 4.28±0.07 2.65±0.09

Zero-shot TTS The setting for this evaluation is the
same as section 4.1, but with three differences. First,
the model generates speech samples using one ran-
domly selected reference speech per speaker as the
style input. Second, we randomly selected 9 utterances
for each of 11 unseen speakers, resulting in 99 audio
samples in total. Finally, we trained NANSY-TTS on
VCTK using two versions of NANSY++ as mentiond in
section 4.1, respectively. As shown in Table 5, NANSY-
TTS outperforms the baseline. Interestingly, NANSY-TTS even achieved significantly better MOS
than actual recordings. We conjecture that this is because some speakers in the VCTK datasets speak
in rather unnatural prosody, while NANSY-TTS learns how to speak in natural prosody given the
text transcription. We discuss the details in the Appendix B.3 further.

4.3 SINGING VOICE SYNTHESIS

In this section, we describe a singing voice synthesis (SVS) application that generates NANSY++
analysis features from a musical score, namely NANSY-SVS. The two major challenges of SVS
are (i) limited amount of labeled data and (ii) unpleasant glitches of synthesized voice. The first
problem stems from the difficulty of dataset collection process. Labeling singing data often demands

6



more human labor and time compared to speech data. Another issue is that generating high-fidelity
singing voice from mel spectrogram is well known to be difficult owing to a wide pitch range,
long continuous pronunciation, and high sampling rate (Chen et al., 2020a; Perrotin et al., 2021;
Morrison et al., 2022). To tackle these problems, we introduce NANSY-SVS that builds upon the
benefits of NANSY++ framework. NANSY-SVS addresses both concerns regarding the dataset size
and high-fidelity synthesis by modeling the disentangled NANSY++ analysis features.

4.3.1 METHOD

Architecture NANSY-SVS uses a phoneme sequence, MIDI-pitch sequence, and global timbre
embedding (from NANSY++ analyzer) as conditional inputs to generate linguistic features and F0

contours in an autoregressive manner. The linguistic feature at the t-th frame Lt is inferred from
L<t, phoneme sequence, MIDI-pitch sequence, and singer-ID embedding. For the F0 contour, we
predicted the difference (residual-F0) between input MIDI-pitch and target F0 contour instead of
modeling it directly. The residual-F0 range ending in -1200 cents to 1200 cents is quantized in
100 cents increments, yielding 241 possible values. The 241-dimensional residual-F0, RFt, was
inferred from RF<t, MIDI-pitch sequence, phoneme sequence, and singer-ID embedding. The
amplitude predictor module infers P/Ap amplitudes from the generated linguistic features and F0

contour. More details of NANSY-SVS can be found in Appendix C.1.
Training and inference To train NANSY-SVS, we optimize MAE for linguistic features, P/Ap
amplitude, and cross-entropy for residual-F0 classification. At inference time, linguistic features and
residual-F0 are first generated in autoregressive way, and then P/Ap amplitudes are inferred from
the generated results. Finally, the generated features are passed through the NANSY++ synthesizer
along with the timbre features extracted from the reference audio to produce a final waveform.
4.3.2 EXPERIMENTS

Experimental setup We trained the model using OpenCPOP dataset (Wang et al., 2022), a public
singing dataset of 100 songs from a single female singer with aligned phoneme and MIDI-pitch
sequence. We followed the official train/test split of Wang et al. (2022), i.e. 95 songs and 5 songs
for training and evaluation, respectively. To verify that our proposed model can be trained to syn-
thesize high-quality singing voice using a limited amount of training data, we constructed a subset
by extracting 80, 160, and 320 segments from the original dataset consisting of 3550 segments in
total. This corresponds to 10%, 5%, and 2.5% of the entire dataset, and we trained 4 models in total
using each subset. Note that each subset was constructed to include all phonemes and MIDI-pitch
at least once. As a baseline model (BLD), we chose Diffsinger (Liu et al., 2022), which showed
state-of-the-art performance with a diffusion-based model structure. We trained the baseline model
with the same setting as NANSY-SVS using the official implementation for both acoustic model and
vocoder.

Table 6: SVS data efficiency evaluation.

MODEL MOS
BLD / Ours (80) 2.67±0.08 / 3.81±0.06

BLD / Ours (160) 3.05±0.08 / 3.86±0.05

BLD / Ours (320) 3.49±0.06 / 3.85±0.05

BLD / Ours (full) 3.83±0.06 / 3.87±0.06

GT / Recon. 4.026±0.056 / 4.031±0.053

Evaluation We conducted a listening test to eval-
uate the quality of generated singing voice. We ran-
domly selected 12 segments from each of the 5 test
songs, and generated 60 singing voice segments in
total for each model. The singing-ID embedding
was obtained from a randomly sampled 30-second
segment in the training set. 15 participants were
asked to assess the naturalness of each audio on a
5-point scale. Table 6 shows that the perceptual
quality of the NANSY-SVS outperforms the base-
line in all training conditions. As the size of the training data decreased, the MOS of Diffsinger
decreased by up to 1.16 while the MOS of NANSY-SVS decreased by only 0.06. From this, we
confirm that the proposed modularized training method with NANSY++ backbone is efficient in
data-limited training condition. Other experiments on SVS can be found at Appendix C.2.

4.4 VOICE DESIGNING

To further explore the usability of disentangled NANSY++ features, we tackle the challenging prob-
lems of manipulating voice such as creating new voice identities and editing voice attributes. Pre-
vious works have investigated extrapolating of speaker embedding space using Gaussian mixture
models (GMMs) (Bilinski et al., 2022) or learning a speaker embedding prior within a variational

7



Figure 3: Age shift evaluation. Figure 4: Gender shift evaluation.

autoencoder (VAE) framework (Stanton et al., 2022) to synthesize new speakers. In this section, we
develop a voice designing system, namely NANSY-VOD, that can both change voice attributes and
generate novel voice identities. NANSY-VOD also enables fine-grained control over voice manipu-
lation in an interpretable way by leveraging speaker’s gender and age as conditioning variables.

4.4.1 METHOD

Model NANSY-VOD consists of three normalizing flow networks that learn the distribution of F0

statistics (e.g., median and variance), a global timbre embedding, and timbre tokens, respectively.
The first network estimates the conditional distribution of the F0 statistics given gender and age,
and is trained according to the maximum likelihood. The second network is optimized to maximize
the likelihood of the global timbre embedding conditioned on the F0 statistics, gender, and age.
Similarly, the third network models the distribution of the timbre tokens given the global timbre
embedding, the F0 statistics, gender, and age. Since the timbre tokens consist of multiple column
vectors lying in a common feature space, we choose to use each vector as individual input to the
network. To distinguish these vectors, a token index is used as an additional conditioning term. By
sharing parameters, the third network is trained more efficiently compared to the naive implementa-
tion that models the entire timbre tokens at once. More details can be found in Appendix D.1.

Continuous gender We use continuous real values instead of binary values to represent gender.
The intuition is that (i) voices of pre-pubertal children may not be gender distinct, and (ii) some peo-
ple’s voices sound neutral. By allowing relaxed labels for gender, we expect that the gradual control
of the gender attribute of voice can be implemented at inference time. To get continuous gender
labels, another network called SPNet is employed and more details can be found at Appendix D.4.

Training and inference Input data is obtained from NANSY++ analysis modules and condition-
ing data (i.e. gender and age) is labeled by SPNet for training. The negative log-likelihoods of the
three networks are summed to compute the total loss and NANSY-VOD is optimized in the same way
as a typical normalizing flow. At inference time, NANSY-VOD supports two functionalities: voice
attribute control and new voice generation. To edit voice attributes, first, the inputs are transformed
to flow latent variables conditioned on the source speaker’s gender and age. The edited NANSY++
features are then retrieved by converting the latent variables back conditioned on different age and
gender. To create a new voice identity, latent variables are sampled from the normal distribution and
transformed via the inverse pass of NANSY-VOD with target age and gender.

4.4.2 EXPERIMENTS

Experimental setup To evaluate the proposed method, we used the NANSY++ backbone dataset
and three AI-Hub conversation datasets (https://aihub.or.kr): kids, adults, and elderly people. The
AI-Hub datasets consist of approximately 6821 hours of Korean recordings with gender and age
labels. There are a total of 6001 speakers whose ages range from 3 to 91. We randomly selected
4800 and 600 speakers, and constructed training and validation sets respectively by merging their
utterances and speech data of the NANSY++ backbone dataset. From the remaining 601 speakers,
we prepared a set of 320 unseen speakers by sampling 40 male and female speakers from each age
group of (0, 10], (10, 30], (30, 50], and (50, 70]. We trained NANSY-VOD for about 250K iterations
with the AdamW optimizer (Loshchilov & Hutter, 2017) of learning rate 2×10−4. A batch size was
set to 256 for each of four RTX 3090 GPUs. Other experimental settings such as model architecture
and hyperparameters are attached at Appendix D.1.

Voice attribute control NANSY-VOD controls voice attributes by using different conditioning
inputs for the forward and inverse processes of normalizing flows. First, we edited the age attributes

8



of the 320 unseen speakers by adding or subtracting different values to their original ages. The
synthesizer reconstructed audio using the linguistic feature of a source speaker and the other edited
features. Then, the ages of the converted voices were estimated by SPNet. We report the estimated
age distributions of the original voices and the edited voices in Fig. 3. A shift in the age distribution
was observed as the target age shifts, supporting the age controllability of NANSY-VOD.

We also edited the gender attribute and investigated the gender of the converted voices using SPNet.
Since NANSY-VOD uses a continuous gender, SPNet was used to label the gender of a source
speaker. Fig. 4 shows the gender distributions of the original and converted voices. We observed the
gender distribution varies as we shift the gender values accordingly. This shows that NANSY-VOD
can transform a voice into a more masculine or feminine voice by controlling the gender attribute.

Table 7: Speaker diversity. ns denotes the
number of speakers in comparison set.

ns=320 ns=240 ns=160 ns=1 Ours

0.51 0.46 0.39 0.17 0.46

Voice identity generation We evaluated the perfor-
mance of voice identity generation in terms of speaker
diversity. To measure how diverse speakers NANSY-
VOD can generate, we utilized the speaker distance
metric proposed by Stanton et al. (2022), which is refor-
mulated as median

i
minj ̸=i d(Vi, Vj), where d(·, ·) de-

notes the cosine distance and Vi represents the speaker
feature of the i-th utterance extracted from ECAPA-TDNN (Desplanques et al., 2020). We synthe-
sized 320 speakers from NANSY-VOD and synthesized audio using the linguistic features of the
utterances in the test set. For comparison, we constructed four sets of 320 utterances consisting of
different numbers of speakers (320, 240, 160, and 1). Table 7 shows the speaker diversities of the
set generated by NANSY-VOD and the other sets. The set consisting of 320 speakers records the
highest diversity and we use this score as an estimate of the speaker diversity of the real speakers.
As the number of speakers in the set decreases, the speaker diversity gets reduced. The speaker
diversity of NANSY-VOD is close to that of the 240 speakers set. This implies that NANSY-VOD
can generate various speakers having 75% diversity compared to the real speaker distribution.

5 RELATED WORKS

Self-supervised representation training methods for speech has recently been widely studied in the
goal of training rich representations mostly for downstream tasks such as automatic speech recog-
nition (Baevski et al., 2020; Babu et al., 2022; Hsu et al., 2021; Huang et al., 2022). There has
also been studies that utilized the self-supervised speech representation on synthesis task such as
voice conversion (Lin et al., 2021; hao Lin et al., 2021). For TTS applications, Siuzdak et al. (2022)
proposed to employ wav2vec 2.0 feature as a mid-level representation of a TTS model. However,
they used the representation from wav2vec 2.0 network finetuned on English text transcriptions,
hence might not be sufficient for training on languages without labeled datasets. Kim et al. (2022)
has proposed to apply transfer learning framework using pseudo phoneme sequence extracted from
wav2vec 2.0 feature and showed that the model can be trained using a small amount of dataset.

Previous works have shown that state-of-the-art vocoder such as HiFi-GAN produces glitches, espe-
cially on long notes (Morrison et al., 2022; Chen et al., 2020a). Morrison et al. (2022) showed that
an autoregressive neural architecture can reduce this issue. Another line of vocoders are the ones
that take sinusoidal signal as a network input (Wang et al., 2019; Hono et al., 2021). These types of
vocoders do not exhibit such glitches on long notes even without the autoregressive architecture.

6 CONCLUSION

In this work, we proposed a unified voice synthesis framework NANSY++ that can analyze signal
into disentangled representations and synthesize high-quality waveform. Because the training only
requires audio recordings, we can achieve data scalability. We have also proposed to integrate
various voice synthesis applications in a modularized way. By integrating the applications into
the centralized backbone network, we found that we can train models for each application using
only a small amount of dataset. Although each module is not trained in an end-to-end manner,
the proposed modularized training strategy does not suffer from the common performance drop
phenomenon induced by training/inference mismatch. We believe that the proposed framework
provides useful representations for synthesis tasks. Therefore, we hope that the proposed framework
will help to move away from the current predominant training strategy (text-to-mel acoustic model
& mel-to-wav vocoder) and expand the scope of research.

9



7 REPRODUCIBILITY STATEMENT

Details of neural architectures for every models used in this paper are described in Appendix. We
have also included every hyperparameters used for training in Appendix.

8 ETHICS STATEMENT

There is a possibility of the proposed method being used with harmful intentions by anonymous
users. Because the proposed method can clone arbitrary voice in a zero-shot manner, we believe the
technology should be released only to the identified and authorized users.

As the voice synthesis technologies advance rapidly, attempts have been made to counteract the
concerns surrounding the harmful intents of the voice synthesis technology. Recently, anti-spoofing
challenges have drawn attentions from many fields because of its importance, and showed promising
results on anti-spoofing for speech (Yamagishi et al., 2021). We hope to see more domain experts to
engage and develop a voice verification system to prevent abuse of fake voice.

Despite the concerns on negative consequences of the technology, there is also a bright side of such
technologies when used properly. One such example is when used as an interactive tool between
humans and machines. Because the proposed methods enable controls on voice, we believe it can
foster human creativity in various aspects.

REFERENCES

Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kri-
tika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, and
Michael Auli. XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale.
In Proc. Interspeech 2022, pp. 2278–2282, 2022. doi: 10.21437/Interspeech.2022-143.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33:12449–12460, 2020.

Evelina Bakhturina, Vitaly Lavrukhin, Boris Ginsburg, and Yang Zhang. Hi-fi multi-speaker english
tts dataset. arXiv preprint arXiv:2104.01497, 2021.

Piotr Bilinski, Thomas Merritt, Abdelhamid Ezzerg, Kamil Pokora, Sebastian Cygert, Kayoko
Yanagisawa, Roberto Barra-Chicote, and Daniel Korzekwa. Creating New Voices using Nor-
malizing Flows. In Proc. Interspeech 2022, pp. 2958–2962, 2022. doi: 10.21437/Interspeech.
2022-10195.

Mikołaj Bińkowski, Jeff Donahue, Sander Dieleman, Aidan Clark, Erich Elsen, Norman
Casagrande, Luis C. Cobo, and Karen Simonyan. High fidelity speech synthesis with ad-
versarial networks. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=r1gfQgSFDr.

Paul Boersma and Vincent Van Heuven. Speak and unspeak with praat. Glot International, 5:
341–347, 2001.

Paul Boersma et al. Accurate short-term analysis of the fundamental frequency and the harmonics-
to-noise ratio of a sampled sound. In Proceedings of the institute of phonetic sciences, volume 17,
pp. 97–110. Citeseer, 1993.

Edresson Casanova, Julian Weber, Christopher D Shulby, Arnaldo Candido Junior, Eren Gölge, and
Moacir A Ponti. Yourtts: Towards zero-shot multi-speaker tts and zero-shot voice conversion for
everyone. In International Conference on Machine Learning, pp. 2709–2720. PMLR, 2022.

Jiawei Chen, Xu Tan, Jian Luan, Tao Qin, and Tie-Yan Liu. Hifisinger: Towards high-fidelity neural
singing voice synthesis. arXiv preprint arXiv:2009.01776, 2020a.

Mingjian Chen, Xu Tan, Bohan Li, Yanqing Liu, Tao Qin, Tie-Yan Liu, et al. Adaspeech: Adaptive
text to speech for custom voice. In International Conference on Learning Representations, 2020b.

10

https://openreview.net/forum?id=r1gfQgSFDr


Hyeong-Seok Choi, Juheon Lee, Wansoo Kim, Jie Lee, Hoon Heo, and Kyogu Lee. Neural analysis
and synthesis: Reconstructing speech from self-supervised representations. Advances in Neural
Information Processing Systems, 34:16251–16265, 2021a.

Hyeong-Seok Choi, Sungjin Park, Jie Hwan Lee, Hoon Heo, Dongsuk Jeon, and Kyogu Lee. Real-
time denoising and dereverberation wtih tiny recurrent u-net. In ICASSP 2021-2021 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5789–5793.
IEEE, 2021b.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. ECAPA-TDNN: Emphasized Chan-
nel Attention, propagation and aggregation in TDNN based speaker verification. In Interspeech
2020, pp. 3830–3834, 2020.

Jeff Donahue, Sander Dieleman, Mikolaj Binkowski, Erich Elsen, and Karen Simonyan. End-to-end
adversarial text-to-speech. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=rsf1z-JSj87.

Jesse Engel, Lamtharn (Hanoi) Hantrakul, Chenjie Gu, and Adam Roberts. Ddsp: Differentiable
digital signal processing. In International Conference on Learning Representations, 2020a. URL
https://openreview.net/forum?id=B1x1ma4tDr.

Jesse Engel, Rigel Swavely, Lamtharn Hanoi Hantrakul, Adam Roberts, and Curtis Hawthorne.
Self-supervised pitch detection by inverse audio synthesis. In ICML 2020 Workshop on Self-
supervision in Audio and Speech, 2020b. URL https://openreview.net/forum?id=
RlVTYWhsky7.

Beat Gfeller, Christian Frank, Dominik Roblek, Matt Sharifi, Marco Tagliasacchi, and Mihajlo Ve-
limirović. Spice: Self-supervised pitch estimation. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 28:1118–1128, 2020.

Jheng hao Lin, Yist Y. Lin, Chung-Ming Chien, and Hung yi Lee. S2VC: A Framework for Any-
to-Any Voice Conversion with Self-Supervised Pretrained Representations. In Proc. Interspeech
2021, pp. 836–840, 2021. doi: 10.21437/Interspeech.2021-1356.

Yukiya Hono, Shinji Takaki, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, and Keiichi
Tokuda. Periodnet: A non-autoregressive waveform generation model with a structure separating
periodic and aperiodic components. In ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 6049–6053. IEEE, 2021.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Wenyong Huang, Zhenhe Zhang, Yu Ting Yeung, Xin Jiang, and Qun Liu. SPIRAL: Self-supervised
perturbation-invariant representation learning for speech pre-training. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
TBpg4PnXhYH.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics, pp. 492–
518. Springer, 1992.

Yannick Jadoul, Bill Thompson, and Bart De Boer. Introducing parselmouth: A python interface to
praat. Journal of Phonetics, 71:1–15, 2018.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Car-
reira. Perceiver: General perception with iterative attention. In Marina Meila and Tong Zhang
(eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 4651–4664. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/jaegle21a.html.

11

https://openreview.net/forum?id=rsf1z-JSj87
https://openreview.net/forum?id=B1x1ma4tDr
https://openreview.net/forum?id=RlVTYWhsky7
https://openreview.net/forum?id=RlVTYWhsky7
https://openreview.net/forum?id=TBpg4PnXhYH
https://openreview.net/forum?id=TBpg4PnXhYH
https://proceedings.mlr.press/v139/jaegle21a.html


Myeonghun Jeong, Hyeongju Kim, Sung Jun Cheon, Byoung Jin Choi, and Nam Soo Kim. Diff-tts:
A denoising diffusion model for text-to-speech. arXiv preprint arXiv:2104.01409, 2021.

Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sungroh Yoon. Glow-tts: A generative flow for
text-to-speech via monotonic alignment search. Advances in Neural Information Processing Sys-
tems, 33:8067–8077, 2020.

Jaehyeon Kim, Jungil Kong, and Juhee Son. Conditional variational autoencoder with adversarial
learning for end-to-end text-to-speech. In International Conference on Machine Learning, pp.
5530–5540. PMLR, 2021.

Jong Wook Kim, Justin Salamon, Peter Li, and Juan Pablo Bello. Crepe: A convolutional repre-
sentation for pitch estimation. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 161–165. IEEE, 2018.

Minchan Kim, Myeonghun Jeong, Byoung Jin Choi, Sunghwan Ahn, Joun Yeop Lee, and Nam Soo
Kim. Transfer Learning Framework for Low-Resource Text-to-Speech using a Large-Scale Unla-
beled Speech Corpus. In Proc. Interspeech 2022, pp. 788–792, 2022. doi: 10.21437/Interspeech.
2022-225.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. Advances in Neural Information Processing Systems,
33:17022–17033, 2020.

Juheon Lee, Hyeong-Seok Choi, Chang-Bin Jeon, Junghyun Koo, and Kyogu Lee. Adversari-
ally trained end-to-end korean singing voice synthesis system. In Gernot Kubin and Zdravko
Kacic (eds.), Interspeech 2019, 20th Annual Conference of the International Speech Commu-
nication Association, Graz, Austria, 15-19 September 2019, pp. 2588–2592. ISCA, 2019. doi:
10.21437/Interspeech.2019-1722. URL https://doi.org/10.21437/Interspeech.
2019-1722.

Yist Y Lin, Chung-Ming Chien, Jheng-Hao Lin, Hung-yi Lee, and Lin-shan Lee. Fragmentvc: Any-
to-any voice conversion by end-to-end extracting and fusing fine-grained voice fragments with
attention. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5939–5943. IEEE, 2021.

Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. Diffsinger: Singing voice syn-
thesis via shallow diffusion mechanism. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 11020–11028, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Matthias Mauch and Simon Dixon. pyin: A fundamental frequency estimator using probabilistic
threshold distributions. In 2014 ieee international conference on acoustics, speech and signal
processing (icassp), pp. 659–663. IEEE, 2014.

Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang. Meta-stylespeech: Multi-speaker
adaptive text-to-speech generation. In International Conference on Machine Learning, pp. 7748–
7759. PMLR, 2021.

Max Morrison, Rithesh Kumar, Kundan Kumar, Prem Seetharaman, Aaron Courville, and Yoshua
Bengio. Chunked autoregressive GAN for conditional waveform synthesis. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=v3aeIsY_vVX.

Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. Attentive statistics pooling for deep speaker
embedding. In Proc. Interspeech 2018, pp. 2252–2256, 2018. doi: 10.21437/Interspeech.
2018-993.

12

https://doi.org/10.21437/Interspeech.2019-1722
https://doi.org/10.21437/Interspeech.2019-1722
https://openreview.net/forum?id=v3aeIsY_vVX
https://openreview.net/forum?id=v3aeIsY_vVX


Olivier Perrotin, Hussein Amouri, Gérard Bailly, and Thomas Hueber. Evaluating the extrapolation
capabilities of neural vocoders to extreme pitch values. In Interspeech 2021, pp. 11–15. ISCA,
2021.

Kaizhi Qian, Yang Zhang, Heting Gao, Junrui Ni, Cheng-I Lai, David Cox, Mark Hasegawa-
Johnson, and Shiyu Chang. Contentvec: An improved self-supervised speech representation by
disentangling speakers. In International Conference on Machine Learning, pp. 18003–18017.
PMLR, 2022.

Silero. Silero models: pre-trained enterprise-grade stt / tts models and benchmarks. https:
//github.com/snakers4/silero-models, 2021.

Hubert Siuzdak, Piotr Dura, Pol van Rijn, and Nori Jacoby. Wavthruvec: Latent speech represen-
tation as intermediate features for neural speech synthesis. arXiv preprint arXiv:2203.16930,
2022.

Daisy Stanton, Matt Shannon, Soroosh Mariooryad, RJ Skerry-Ryan, Eric Battenberg, Tom Bagby,
and David Kao. Speaker generation. In ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 7897–7901. IEEE, 2022.

David Talkin and W Bastiaan Kleijn. A robust algorithm for pitch tracking (rapt). Speech coding
and synthesis, 495:518, 1995.

Joachim Thiemann, Nobutaka Ito, and Emmanuel Vincent. Demand: a collection of multi-channel
recordings of acoustic noise in diverse environments. In Proc. Meetings Acoust, pp. 1–6, 2013.

Joseph Turian and Max Henry. I’m sorry for your loss: Spectrally-based audio distances are bad at
pitch. arXiv preprint arXiv:2012.04572, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Christophe Veaux, Junichi Yamagishi, Kirsten MacDonald, et al. Cstr vctk corpus: English multi-
speaker corpus for cstr voice cloning toolkit. University of Edinburgh. The Centre for Speech
Technology Research (CSTR), 2017.

Xin Wang, Shinji Takaki, and Junichi Yamagishi. Neural source-filter waveform models for sta-
tistical parametric speech synthesis. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 28:402–415, 2019.

Yu Wang, Xinsheng Wang, Pengcheng Zhu, Jie Wu, Hanzhao Li, Heyang Xue, Yongmao Zhang,
Lei Xie, and Mengxiao Bi. Opencpop: A high-quality open source chinese popular song corpus
for singing voice synthesis. arXiv preprint arXiv:2201.07429, 2022.

Yuxuan Wang, RJ Skerry-Ryan, Daisy Stanton, Yonghui Wu, Ron J Weiss, Navdeep Jaitly,
Zongheng Yang, Ying Xiao, Zhifeng Chen, Samy Bengio, et al. Tacotron: Towards end-to-end
speech synthesis. arXiv preprint arXiv:1703.10135, 2017.

Ron J Weiss, RJ Skerry-Ryan, Eric Battenberg, Soroosh Mariooryad, and Diederik P Kingma. Wave-
tacotron: Spectrogram-free end-to-end text-to-speech synthesis. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5679–5683.
IEEE, 2021.

Mirjam Wester, Zhizheng Wu, and Junichi Yamagishi. Analysis of the voice conversion challenge
2016 evaluation results. In Interspeech, pp. 1637–1641, 2016.

Junichi Yamagishi, Xin Wang, Massimiliano Todisco, Md Sahidullah, Jose Patino, Andreas Nautsch,
Xuechen Liu, Kong Aik Lee, Tomi Kinnunen, Nicholas Evans, and Héctor Delgado. Asvspoof
2021: accelerating progress in spoofed and deepfake speech detection. In Proc. 2021 Edition of
the Automatic Speaker Verification and Spoofing Countermeasures Challenge, pp. 47–54, 2021.
doi: 10.21437/ASVSPOOF.2021-8.

13

https://github.com/snakers4/silero-models
https://github.com/snakers4/silero-models


Ryuichi Yamamoto, Eunwoo Song, and Jae-Min Kim. Parallel wavegan: A fast waveform gen-
eration model based on generative adversarial networks with multi-resolution spectrogram. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6199–6203. IEEE, 2020.

Dacheng Yin, Xuanchi Ren, Chong Luo, Yuwang Wang, Zhiwei Xiong, and Wenjun Zeng. Re-
triever: Learning content-style representation as a token-level bipartite graph. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=AXWygMvuT6Q.

14

https://openreview.net/forum?id=AXWygMvuT6Q
https://openreview.net/forum?id=AXWygMvuT6Q


A BACKBONE

A.1 TRAINING DETAILS

Linguistic feature In the training stage of the backbone architecture, it is important to perturb
the information before extracting the linguistic feature so that it does not contain any information
related to timbre. We adopted the four perturbation functions - i.e. formant shift, pitch randomiza-
tion, parametric equalizer - used in Choi et al. (2021a) along with two more perturabtion functions,
breathiness perturabtion, and additive noise. The noise was randomly selected from the DEMAND
dataset (Thiemann et al., 2013).

We decide indice set In for negative samples by generating random mask that does not contain the
nearby 10 frames of the linguistic feature so that the negative frames are not sampled from the ones
that contain the same linguistic characteristics to the positive frame. We set the temperature k to 0.1
and the coefficient for Lcontr was linearly scheduled from 10−5 to 10, following (Qian et al., 2022).

Self-supervised F0 estimation The configurations for CQT X ∈ RN×F and cropped CQT X̃(1),
X̃(2) ∈ RN×F scope

are as follows. The number of bins per octave is set to 24. The frequency range
spans from 32.7 Hz to 8000 Hz. The size of frequency-axis of CQT feature before crop F is 191.
The frequency size of the cropped CQT features F scope is 160. The minimum and maximum bound
for sampling distribution d ∼ U (dmin, dmax) for index shift was set to -12 and +12, which amounts
to -6 and +6 semitone.

A.2 QUALITATIVE RESULTS ON PITCH ESTIMATION

Figure 5: The qualitative results on F0 estimation. Left column shows the F0 estimation results from
rapt algorithm. Right column shows the F0 estimation results from NANSY++ pitch encoder. First
row shows the F0 estimation results from clean signal. Second row shows the F0 estimation results
from noisy signal. The results clearly demonstrates that the pitch encoder is indeed estimating F0,
even robustly for noisy signal.

15



In order to show that the output from the pitch encoder is really estimating fundamental frequency,
we show the results of the estimated fundamental frequency in Figure 5. We can see that for clean
signals, rapt algorithm and NANSY++ pitch encoder are estimating the same F0 trajectory, showing
that the pitch encoder trained in a self-supervised manner is actually estimating F0. Additionally,
we have also tested the algorithms on a noisy signal to demonstrate the robustness of the proposed
pitch encoder on noise. The second row shows that NANSY++ pitch encoder can estimate F0 even
in the harsh environment, whereas rapt algorithm completely fails.

A.3 NEURAL ARCHITECTURES

Pitch encoder For the architectural design of pitch encoder, we used 1D-CNN blocks operating
in frequency-axis combined with bi-directional gated recurrent unit similar to Choi et al. (2021b).
The architecture is illustrated in Fig. 6. For the last activation function of P/Ap amplitude heads, we
used exponential sigmoid used in Engel et al. (2020a).

㏖b㏗
Pitch encoder

Conv1d ㏖7, 1, 1㏗

ResBlock ㏖3, 128㏗

ResBlock ㏖3, 128㏗

GRU

𝐹! prob.
㏚B, 64, N㏛

Reshape
㏚B, 128, F//4, N㏛ →	㏚B, N, 32 X F㏛

Ap amp.
Head

P amp
㏚B, 1, N㏛

ReLU

Exp.Sigmoid

Input ㏚B, 𝐹"#$%&, N㏛

Linear ㏖H, 2C㏗

Ap amp
㏚B, 1, N㏛

P amp.
Head

Exp.Sigmoid

𝐹!
Head

Softmax

Output [B, O, N]

Input ㏚B, C, N㏛

BatchNorm

Conv1d ㏖k, 1, 1㏗

BatchNorm

GELU

Conv1d ㏖k, 1, 1㏗

GELU

Hidden ㏚B, O, N㏛

Pool ㏖×	0.5㏗

Linear ㏖C, O㏗

㚅

ResBlock ㏖k, O㏗
㏖a㏗

Figure 6: Pitch encoder architecture. k, d, s in Conv1d (k, d, s) denotes kernel size, dilation, and
stride. k, O in ResBlock (k, O) denotes kernel size and output channel size. C, O in Linear (C, O)
denote input and output channel size.

Linguistic information encoder For the architectural design of linguistic information encoder, we
used Convolutional Gated Linear Unit (ConvGLU) blocks (Dauphin et al., 2017). The architecture
is illustrated in Fig. 7.

Time-varying Speaker Embeddings The architectural details of timbre encoder and time-varying
timbre encoder are shown in Fig. 8. We borrowed the neural architecture for timbre encoder from
ECAPA-TDNN (Desplanques et al., 2020). The timbre tokens are extracted via cross-attention
mechanism, where 50 trainable latent vectors are used a query, and features from multilayer fea-
ture aggregation (MFA) block of ECAPA-TDNN is transformed into key and value. We also
extract global timbre embedding via attentive statistical pooling (ASP). Time-varying timbre en-
coder then utilizes another cross-attention mechanism by taking content queries, a concatenation of
[F0, Ap, Aap,L,g], trainable 50 latent keys, and timbre tokens as values. The output of the cross-
attention and global timbre embedding is then interpolated on a spherical surface to produce the final
time-varying timbre embeddings.

16



Wav2vec㎼15th
[B, 1024, N]

PreConv ㏖128, 128㏗

ConvGLU
㏖k㚉3, d㚉1, s㚉1㏗ 

Input ㏚B, C, N㏛

Dropout

Conv1d ㏖k, d, s㏗

GLU
2𝐶

𝐶
㚅

ConvGLU
㏖k㚉1, d㚉1, s㚉1㏗ 

Input ㏚B, C!, N㏛

Conv1d ㏖1, 1, 1㏗

LeakyReLU

Dropout

PreConv ㏖1024, 128㏗

x 8

x 2

Linguistic Feature [B, 128, N]Output [B, C, N] Output [B, C, N]

Conv1d ㏖1, 1, 1㏗

𝐿" Normalization

PreConv ㏖C!, C㏗
㏖a㏗

ConvGLU
㏖b㏗

Linguistic Information Encoder
㏖c㏗

Figure 7: Linguistic information encoder architecture. C’ and C in PreConv denote input channel
and output channel size. k, d, s in Conv1d (k, d, s) denotes kernel size, dilation, and stride.

Mel Spectrogram
[B, 80, N]

Timber Token Block ㏖TTB㏗

Latent Query
㏚B, 512, 50㏛

Multi㎼Head 
Attention

Timbre Tokens
[B, 128, 50]

Timbre Tokens [B, 128, 50]

㏖a㏗

ASP

Linear

𝐿! Norm.

Global Timbre Embedding
[B, 192, 1]

Multi㎼Head 
Attention

MFA Feat.
㏚B, 3072, N㏛

㚅

ECAPA㎼TDNN Blocks

MFA

TTB

Timber Encoder
㏖b㏗

Content
Queries

㏚B, 323, N㏛

Slerp

㏖c㏗

Multi㎼Head 
Attention

Latent Keys
㏚B, 128, 50㏛

Timbre Tokens
㏚B, 128	50㏛

Global Timbre 
Embedding
㏚B, 192	N㏛

Linear 
㏖128, 192㏗

Time㎼varying Timbre Embeddings
[B, 192, N]

Time㎼varying Timbre Encoder

𝐿! Norm.

Tile

Figure 8: The architecture of timbre encoder and time-varying timbre encoder. MFA denotes Mul-
tilayer Feature Aggregation block of ECAPA-TDNN. ASP denotes Attentive Statistical Pooling.

Synthesizer The architectural details of frame-level and sample-level synthesizers are shown in
Fig. A.3. The frame-level synthesizer takes the linguistic feature and time-varying speaker em-
beddings and outputs frame-level condition. The frame-level condition is then passed through the
sample-level synthesizer along with F0, periodic amplitude (P amp), aperiodic amplitude (Ap amp)
to produce a waveform. We borrowed the neural architecture of parallel wavegan (PWGAN) for the
sample-level synthesizer (Yamamoto et al., 2020).

B TEXT-TO-SPEECH

B.1 DETAILED ARCHITECTURE

Encoder The architectural details of encoders are shown in Fig. 11. Similar to Min et al. (2021),
NANSY-TTS uses the style encoder and conditional layer normalization (cLN) to train the various
prosody. However, we use the hidden feature extracted from the third layer of wav2vec network

17



ConvGLUPreConv

Input ㏚B, C, N㏛

Conv1d ㏖1, 1, 1㏗

LeakyReLU

Dropout

Output [B, C, N]

㏖a㏗ ㏖b㏗ ㏖c㏗
Frame㎼level Synthesizer

Linguistic Feature
[B, C, N]

PreConv

ConvGLU
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

ConvGLU
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

ConvGLU 
㏖k㚉1, d㚉1, s㚉1, cLN O㏗

x 4

x 4

x 2

Frame㎼level Condition [B, C, N]

Conv1d ㏖1, 1, 1㏗

Time㎼varying
Timbre 

Embeddings

㏖d㏗
Sample㎼level Synthesizer

PWGAN

Sinusoid 㖅 Noise
Generator

𝐹!
[B, 1, N]

P amp
[B, 1, N]

Ap amp
[B, 1, N]

Frame㎼level
Condition
[B, C, N]

Waveform [B, 1, T]

Input ㏚B, C, N㏛

Dropout

Conv1d ㏖k, d, s㏗

GLU
2𝐶

𝐶㚅

cLN ㏖optional㏗

Time㎼varying
Timbre

Embeddings

Output [B, C, N]

Figure 9: The architecture of frame-level synthesizer and sample-level synthesizer. cLN denotes
conditional Layer Normalization.

(Babu et al., 2022) instead of mel spectrogram as the style input. The output vector encoded by the
style encoder is used by all cLNs in NANSY-TTS. The phoneme encoder is composed of a lookup
embedding table, 3 ConvReLUNorm blocks, 3 Transformer(Vaswani et al., 2017) blocks, and a final
linear layer with LeakyReLU.

Decoder The architectural details of decoders are shown in Fig. 12. First, the phoneme feature
sequences are upsampled using the duration predicted by the duration predictor or extracted by the
aligner. The upsampled sequences are then fed to all decoders. The amplitude decoder is composed
of 3 ConvReLUNorm blocks with cLNs and a final linear layer. To predict F0 more elaborately, the
F0 decoder also use the hidden features from the amplitude decoder as an additional input. The F0

decoder consists of 2 ConvReLUNorm blocks with cLNs, GRU and a final linear layer.

Aligner We train an aligner independently of the TTS model. It consists of an encoder and a
decoder. The encoder is composed of 5 ConvReLUNorm(k=3,3,3,1 and 1) blocks as shown in Fig.
11. The decoder is the same as in Kim et al. (2020) except for three differences. First, it has only
2 blocks instead of 12 blocks of the original version. Secondly, it uses the linguistic feature as the
output instead of mel spectrogram. Finally, the aligner including the decoder is only used during
training, and the value calculated by MAS is used as the phoneme duration.

Phoneme
Sequence

Phoneme
Encoder

Linguistic
Decoder

𝑭𝟎
Decoder

Linguistic Feature

𝐹" Contour

Amplitude
Decoder P/Ap Amplitude

NANSY㚅㚅
Synthesizer Wave

Wave

LR

Style
Encoder

Timbre FeaturesTimbre
Encoder

Figure 10: Overview of NANSY-TTS.

B.2 TRAINING DETAILS

All models were trained for 200K iterations using Adam optimizer (Kingma & Ba, 2014) with the
learning rate of 10−4. In the training stage, we use randomly sliced ground truth waveform as the
style reference input. This helps to ensure robust performance even when a nonparallel reference,
which has a different content from the input text, is used as the style input in the inference stage. To
train the prosody components efficiently, we apply the min-max normalization for Ap, Aap and F0.

18



Phoneme Encoder

Phoneme
[B, 1, N!"#!]

Transformer Block

Transformer Block

Input
㏚B, C, N′㏛

Dropout

Linear

㚅

cLN

Style
Embedding

Style EncoderConvReLUNorm

Input
㏚B, C, N	or	N!"#!㏛

Conv1d ㏖k, d, s㏗

LeakyReLU

Dropout

Wav2Vec㎼3rd
[B, 1024, N]

ConvReLUNorm
㏖k㚉5, s㚉1㏗

ConvReLUNorm
㏖k㚉5, s㚉2㏗

ASP

Linear

x 3

x 4

Phoneme Feature
[B, 128, N!"#!]

Style Embedding
[B, 128, 1]

Output
[B, C, N	or	N!"#!/s]

Output
[B, C, N′]

㏖a㏗ ㏖c㏗ ㏖d㏗㏖b㏗

Transformer Layer

cLN

x 3

LayerNorm

LeakyReLU

Linear

Embedding

Style
Embedding

Figure 11: NANSY-TTS encoder architecture. k, d, and s of the Conv1d layer denotes kernel size,
dilation, and stride, respectively.

Linguistic Decoder

Upsampled Phoneme Feature
[B, 128, N]

x 3

Linguistic Feature
[B, 128, N]

Conv1d㏖k㚉1, s㚉1㏗

Style
Embedding

Amplitude Decoder

Upsampled Phoneme Feature
[B, 128, N]

F0 Decoder
㏖a㏗ ㏖b㏗ ㏖c㏗ ㏖d㏗

Duration Predictor

Phoneme Feature
[B, 128, N!"#!]

Duration
[B, 1, N!"#!]

ConvReLUNorm
㏖k㚉5, s㚉1㏗ x 2

cLN

Conv1d㏖k㚉1, s㚉1㏗

ConvReLUNorm
㏖k㚉5, s㚉1㏗

ConvReLUNorm
㏖k㚉1, s㚉1㏗

cLN

P amp / Ap amp
[B, 2, N]

Upsampled Phoneme Feature
[B, 128, N]

𝐹$
[B, 1, N]

x 3
ConvReLUNorm

㏖k㚉7, s㚉1㏗

cLN

Linear

x 2
ConvReLUNorm

㏖k㚉7, s㚉1㏗

cLN

GRU

Linear

Style
Embedding

Transformer block
x 2

Figure 12: NANSY-TTS decoder architecture.

B.3 DETAILED EVALUATION RESULT

1 2 10 200
Training step(k)

2

4

6

8

10

CE
R(

%
)

4.01

2.34
1.97

1.68

6.68

3.40

2.65

10.24

1.98

GT
Glow-TTS
NANSY-TTS

Figure 13: Fast training convergence.

Training efficiency To verify the efficiency of train-
ing time, we measured character error rate (CER (%)) at
each training step. The experimental setting is the same
as the setting for the full single-speaker dataset in sec-
tion 4.2.2. As shown in Fig. 13, NANSY-TTS achieved
low CER even though it was trained for only a few thou-
sand steps. In comparison, the baseline model (Glow-
TTS) showed relatively slower training convergence. In
particular, NANSY-TTS trained for only 2k steps out-
performed Glow-TTS trained for 200k steps. In addi-
tion, NANSY-TTS trained for 10k steps achieved lower
CER than actual recordings. We speculate that this is
because the NANSY++ analysis features are easier to
model compared to the mel spectrogram, which is an
entangled representation of amplitudes, pitch, linguis-
tic information, and timbre.

Zero-shot TTS results for each speaker As shown in Table 5, NANSY-TTS achieved better
MOS than actual recordings. This means that the raters felt that the speech generated by NANSY-

19



TTS were more natural than the actual recordings. Actual recordings often have diverse styles (e.g.,
speaking speed, pauses, intonation, etc.), which made the listener feel unnatural. In particular, it
is noticeable in certain speakers of VCTK dataset, as shown in Table 8. The audio samples are
provided in the demo page: tinyurl.com/8tnsy3uc.

Table 8: Zero-shot TTS results for each speaker. MOS(left) and SSIM(right)

Model GT YourTTS NANSY-TTS NANSY-TTS
Speaker Accent (vctk) (entire)

p225 English 3.93 / 2.67 3.27 / 2.56 4.29 / 2.93 4.40 / 3.04
p234 Scottish 3.89 / 2.47 3.91 / 2.64 4.31 / 2.73 4.31 / 3.27
p238 NorthernIrish 4.22 / 3.11 3.58 / 2.44 4.31 / 2.24 4.36 / 2.02
p245 Irish 4.29 / 2.44 3.11 / 2.07 4.36 / 2.42 4.11 / 2.42
p248 Indian 3.60 / 3.13 2.93 / 1.78 4.33 / 1.80 4.36 / 2.29
p261 NorthernIrish 4.09 / 2.98 2.89 / 1.91 4.20 / 2.84 4.33 / 3.29
p294 American 4.16 / 3.00 3.84 / 2.20 4.16 / 3.20 3.93 / 2.49
p302 Canadian 3.80 / 2.69 2.89 / 3.00 4.44 / 2.42 4.36 / 2.80
p326 Australian 3.91 / 3.22 3.51 / 1.96 4.38 / 3.16 4.20 / 3.27
p335 NewZealand 3.93 / 3.13 3.00 / 1.67 4.22 / 2.38 4.33 / 2.13
p347 SouthAfrican 3.96 / 3.18 3.64 / 2.09 4.02 / 1.93 4.38 / 2.16

C SINGING VOICE SYNTHESIS

C.1 DETAILED ARCHITECTURE OF NANSY-SVS

Linguistic
Encoder

Residual㎼ 𝐹!
Encoder

Phoneme
Encoder

MIDI㎼pitch
Encoder

Singer㎼ID
Encoder

Ling. Feat.
Decoder

Residual㎼ 𝐹!
Decoder

Linguistic Feature

𝐹! ContourMIDI㎼pitch Seq.

Phoneme Seq.

Global Timber
Embedding

Linguistic Feature

Residual㎼𝐹!

Amplitude
Predictor P/Ap Amplitude NANSY㚅㚅

Synthesizer Wave

Auto㎼regressive

Auto㎼regressive

MIDI㎼pitch Seq.

㚅

Timbre Features

Figure 14: Overview of NANSY-SVS.

NANSY-SVS generates linguistic features and residual-F0 in an autoregressive manner using a
MIDI-pitch and phoneme sequence obtained from a musical score. In particular, to speed up an
autoregressive inference, we first generate linguistic and residual-F0 features downsampled to 1/4
time-resolution, and then upsample them with the original time-resolution through an neural upsam-
pler module. The dimensions of the input and output tensors of the model are shown in the table
9.

As shown in Fig. 14, the NANSY-SVS model consists of five encoders, two decoder blocks, and
an amplitude predictor. This section describes the detailed structure of each module in the order of
encoder, decoder, and amplitude predictor.

Encoder Each encoder of NANSY-SVS is composed of a combination of PreConv and ConvGLU
modules. PreConv consists of LeakyReLU activation and Dropout followed by a 1x1 1d convolu-
tional layer. Unless otherwise stated, the dropout rate was fixed at 0.05. The ConvGLU module
consists of Dropout, padding, 1d convolutional layer, and Gated Linear Unit. For the implemen-
tation of casual and non-causal characteristics, we used two different padding methods. For the

20



Table 9: The dimensions of the input and output tensors of NANSY-SVS. B and T denotes batch
size and frame length, respectively.

Name Shape

Input

midi-pitch sequence [B, 1, T]
phoneme sequence [B, 1, T]
linguisitic feature (downsampled) [B, 128, T/4]
residual feature (downsampled) [B, 241, T/4]
singer embedding [B, 192, 1]

Output

linguistic feature (downsampled) [B, 128, T/4]
linguistic feature [B, 128, T]
residual-F0 (downsampled) [B, 241, T/4]
residual-F0 [B, 241, T]
P amplitude [B, 1, T]
Ap amplitude [B, 1, T]

causal module, padding was added to the front of the input sequence, and for the non-causal mod-
ule, the total padding length was divided in half and added to both sides. In order to optionally
condition the singer ID embedding, a conditional layer normalization layer Chen et al. (2020b) is
added at the end of the module. Since the linguistic feature and residual-F0 are generated in an
autoregressive manner, they have to be causally encoded in the encoding step. Therefore, as shown
in Figure 15-(c), Linguistic feature encoder and residual-F0 encoder are designed to go through
a total of 10 causal ConvGLU blocks after two preconv and a point-wise convolutional layer. To
widen the receptive field, we increase the dilation of the ConvGLU block to a power of 3. Similarly,
the encoder that processes the phoneme sequence and MIDI-pitch sequence is designed as shown
in Figure 15-(d). Since phoneme and MIDI-pitch is categorical information, the embedding lookup
table is added at the beginning of the module. In addition, a 1d convolutional layer with stride of
2 was added between ConvGLU modules to match the time-resolution of encoded feature with the
downsampled target feature. We used the NANSY++ backbone timbre embedding as the singer ID
embedding for NANSY-SVS. We assume that this embedding already contains enough information
about the speaker, so the singer-ID encoder is designed as a simple fully-connected layer with ReLU
activation.

Linguistic encoder
/ Residual㎼F0 encoder

input [B, C, T]

PreConv

ConvGLU㏄c㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗ 

ConvGLU㏄㏖c/nc㏗
㏖causal / non㎼causal㏗

input ㏚B, C, T㏛

Dropout

Conv1d ㏖k, d, s㏗

GLU
2𝐶

𝐶

Padding ㏖𝑑 ∗ 𝑘 − 1 ㏗
㏖causal/non㎼causal㏗

㚅

cLN ㏖optional㏗

Singer㎼ID
embedding

Conv1d ㏖1, 1, 1㏗

ConvGLU㏄c㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗ 

Phoneme encoder
/ MIDI㎼pitch encoder

ConvGLU㏄c㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗ 

PreConv

input ㏚B, C, T㏛

Conv1d ㏖1, 1, 1㏗

LeakyReLU

Dropout

input [B, 1, T]

PreConv
PreConv

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗

Conv1d ㏖1, 1, 1㏗

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗

Embedding 
Lookup Table

Singer㎼ID encoder

input ㏚B, C㏛

Fully㎼connected

ReLU

Conv1d ㏖2, 1, 2㏗

Conv1d ㏖2, 1, 2㏗
x 4

x 4

x 2

x 4

x 4

x 2

output [B, C′, T] output [B, C′, T/4]

output [B, C′]output [B, C, T]

output [B, C, T]

㏖a㏗ ㏖b㏗ ㏖c㏗ ㏖e㏗㏖d㏗

Figure 15: NANSY-SVS encoder architecture. k, d, and s of the Conv1d layer denotes kernel size,
dilation, and stride, respectively.

21



Decoder Each decoder block of NANSY-SVS consists of casual and non-causal decoders and up-
samplers as shown in Figure 16-(d). Both the casual and non-causal decoders (Figure 16-(a, b))
consist of 10 ConvGLU blocks and the last convolutional layer after PreConv module, and only the
causality of ConvGLU is different. Singer-ID embedding is input as a condition to all ConvGLU
blocks, and is reflected through the conditional layer norm layer. The upsampler (Figure 16-(c)) con-
sists of the nearest upsample layers following the ConvGLU block to upsample the time-resolution
of the input by 4 times. In the linguistic feature decoder block, the output of {Ling., MIDI-pitch,
phoneme} encoder and singer-ID embedding are input to the causal decoder, and the output of the
phoneme encoder and singer-ID embedding are input to the non-causal decoder. Similarly, in the
residual-F0 decoder block, the output of the {Residual-F0, phoneme, MIDI-pitch} encoder and
singer embedding are input to the causal decoder, and the output of the MIDI-pitch encoder and
singer embedding are input to the non-causal decoder. Finally, the model is trained so that the sum
of the causal decoder and the non-causal decoder equals to the downsampled target feature, and the
sum of the outputs of the two upsamplers equals to the original time-resolution target feature.

Causal decoder

input [B, C, T]

PreConv

ConvGLU㏄c㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

ConvGLU㏄c㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

ConvGLU㏄c㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

x 4

x 4

x 2

output [B, C′, T]

Singer㎼ID
embedding

Conv1d ㏖1, 1, 1㏗

Non㎼causal decoder

input [B, C, T]

PreConv

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN O㏗

x 4

x 4

x 2

output [B, C′, T]

Conv1d ㏖1, 1, 1㏗

Singer㎼ID
embedding

Upsampler

input [B, C, T]

PreConv

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗ x 2

output [B, C′, T]

Upsample ㏖2㏗

ConvGLU㏄nc㏄i
㏖k㚉3, d㚉3!, s㚉1, cLN X㏗ x 2

Conv1d ㏖1, 1, 1㏗

x 2

x 2

Conv1d ㏖1, 1, 1㏗

LeakyReLU
x 4

Decoder block

Causal 
decoder

Non㎼causal 
decoder

input㏄c [B, C, T/4] input㏄nc [B, C, T/4]

Upsampler Upsampler

㚅

㚅

output 1 [B, C′, T/4]

output 2 [B, C′, T]

㏖a㏗ ㏖b㏗ ㏖c㏗ ㏖d㏗

Figure 16: NANSY-SVS decoder architecture

Amplitude Predictor The amplitude predictor has the same structure as Figure 8-(b) Non-causal
decoder, except that singer embedding is not used as an conditional input. The predicted linguistic
feature and residual-F0 are concatenated and used as input, and P amplitude and Ap amplitude,
one of the analysis features of the NANSY++ backbone, are predicted. For training stability, the
amplitude predictor was trained independently using a stop gradient layer instead of training with
the entire network.

C.2 EVALUATION ON PITCH ESTIMATION AND VUV DECISION

For quantitative evaluation, we measured the F0 RMSE and voiced/unvoiced decision error rate
between the ground truth and the generated singing voice. To extract F0 from singing voice, we
used rapt (Talkin & Kleijn, 1995) pitch tracking algorithm. The evaluation results are shown in Table
10. When all the training data were used, both models achieved similar performance. However, as
the volume of training size was set to be smaller, F0 RMSE and VUV error rate of Diffsinger got
degenerated significantly while those of NANSY-SVS did not. This demonstrates that NANSY-SVS
faithfully reflects the input musical score condition even when trained with the small amount of data.

D VOICE DESIGNING

D.1 DETAILED ARCHITECTURE OF NANSY-VOD

Fig. 17 presents the detailed structures of the flow networks used in NANSY-VOD. Each flow layer
conducts three processing steps; (i) normalization of input with learnable parameters (ActNorm),

22



Table 10: F0 and VUV difference between ground-truth and generated singing voice.

MODEL F0 RMSE (cent) VUV error rate (%)
BL / Ours (80) 233.69 / 91.18 12.93 / 5.67
BL / Ours (160) 200.41 / 101.46 9.05 / 4.95
BL / Ours (320) 125.97 / 94.96 7.39 / 5.35
BL / Ours (full) 97.96 / 96.90 4.79 / 4.89

CondMLP

Input ㏚B, C㏛

Concatenation

Linear ㏖C + C!, H㏗

Linear ㏖H, 2C㏗

Condition ㏚B, C㐱㏛

GeLU

LayerNorm

Linear ㏖H,H㏗

GeLU

LayerNorm

㚅

F0 flow

ActNorm

ShuffleLayer

AffineCouplingLayer

Flow Layer

F0 statistics [B, 2]

Age
Gender

×8

Output ㏚B, 2C㏛ NLL

Timbre embedding flow 

ActNorm

ShuffleLayer

AffineCouplingLayer

Flow Layer

Timbre embedding [B, 192]

Age
Gender

F0 statistics

×12

NLL

Timbre tokens flow 

ActNorm

ShuffleLayer

AffineCouplingLayer

Flow Layer

Timbre tokens [B, 50, 128]

Age
Gender

F0 statistics
Timbre embedding

Token index

×16

NLL

BatchfyTokens

Reshaped tokens [50B, 128]

㏖a㏗ ㏖b㏗ ㏖c㏗ ㏖d㏗

Figure 17: Flow architecture of NANSY-VOD.

(ii) shuffling input across channel dimension (ShuffleLayer), and (iii) applying an invertible bijective
function (AffineCouplingLayer). ActNorm normalizes data by using the process y = (x−β)

γ where β
and γ are learnable parameters of the same dimension as the input dimension. β and γ are initialized
such that y has zero mean and unit variance given an initial training batch. ShuffleLayer swaps the
first half of the channels with the other half. AffineCouplingLayer transforms the half of the input
channels while keeping the other part as follows:

(α, ω) = CondMLP(xb) (2)
ya = α⊙ xa + ω (3)
yb = xb (4)

where xa and xb denotes the first and second part of the input respectively.

NANSY-VOD consists of three flow networks; F0 flow, timber embedding flow, and timbre tokens
flow. F0 flow employs 8 flow layers and uses age and gender as conditional variables. Similarly,
time embedding flow is constructed of 12 flow layers conditioned by age, gender, and F0 statistics.
Timbre tokens flow consists of 16 flows layers with age, gender, F0 statistics, global timbre embed-
ding and token index as conditional terms. Timbre tokens are reshaped to form multiple individual
data points, passed to 16 layers of timbre tokens flow, and processed independently. To distinguish
timbre tokens, the corresponding token index is used as an additional conditional input.

D.2 AGE CONTROL

We note that gender labels estimated by SPNet show a different trend depending on age. We anno-
tated continuous gender labels of the 320 utterances using SPNet and report the result in Fig. 18.
The gender labels of children under age of 10 are clustered around [-5, 5] while the other gender
labels are scattered on both sides. From this, instead of adjusting an age value only, we devise an
age control algorithm for NANSY-VOD taking into account the dependency between age and con-
tinuous gender. When the age value is adjusted from under 10 to over 10 years (i.e., from a child
voice to a mature voice), the gender value is multiplied by 8. When the age value is edited from over
10 to under 10 years (i.e., from a mature voice to a child voice), the gender value is divided by 8. In
other cases, we simply control the age value only. In our preliminary experiments, we empirically
verified that this algorithm significantly improves the age editing performance of NANSY-VOD.

23



Figure 18: Estimated age and gender distribution on test set samples. The gender distribution ap-
pears to have bi-modal distribution for the people who are older than 10 years old, while children
who are younger than 10 years old appears to have uni-modal distribution around 0.

D.3 INFERENCE OVERVIEW

NANSY-VOD

Timbre Tokens

Global Timbre
Embedding

Linguistic Feature

𝐹!

NANSY++
Synthesizer

Wave

P/Ap Amplitude

𝐹! Median

𝐹! Std.

Latent VariablesGaussian Noise

Source Age/Gender

Voice Attribute 
Control

Voice Identity 
Generation

Timbre Tokens’

Global Timbre
Embedding’

𝐹! Median’

𝐹! Std.’

Target Age/Gender

𝐹!’

Figure 19: Overview of inference procedure of NANSY-VOD.

Fig. 19 demonstrates the inference procedure of NANSY-VOD. To edit the voice attributes of source
audio, NANSY-VOD transforms F0 statistics, global timbre embedding, and timbre tokens into
latent variables, and converts them back to analysis features. Note that NANSY-VOD uses a source
speaker’s age and gender for the forward process, and the target age and gender for the inverse
process. To generate a new voice identity, latent variables are sampled from the normal distribution
and transformed into analysis features according to the target age and gender.

D.4 SPNET

SPNet is a neural network for estimating speech parameters such as age and gender given speech.
SPNet employs the same architecture as ECAPA-TDNN (Desplanques et al., 2020) and stacks a
projection layer on top of it. The last layer projects 192 dimension to 2 dimension, and each output
is used to estimate age and gender. Mean absolute error and soft margin loss are employed as an
objective function for age and gender estimation, respectively. AI-Hub conversation datasets were
used for both training and evaluation. We initialized SPNet with the pretrained ECAPA-TDNN
weights and trained it using the AdamW optimizer (Loshchilov & Hutter, 2017) of learning rate
2 × 10−4 for about 33K iterations. Each audio data was randomly cropped to one second and used
to construct a mini batch of size 256. At test time, we sampled 320 utterances from various age and
gender groups, and estimated speakers’ age and gender using SPNet. The average absolute error of
age estimation was 4.095 and the average accuracy of gender estimation was 93.75%. Since voices
of pre-pubescent children may not be gender distinct, we also evaluated gender estimates for people
over the age of 10. In this case, the average accuracy recorded 99.17%.

24


	Introduction
	NANSY++
	Self-Supervised Learning of Pitch
	Disentangled Linguistic Representation
	Time-Varying Timbre Embeddings
	Waveform Synthesis

	Experiments on Backbone
	Fundamental Frequency Detection
	Reconstruction

	Applications
	Voice Conversion
	Text-To-Speech
	Method
	Experiments

	Singing Voice Synthesis
	Method
	Experiments

	Voice Designing
	Method
	Experiments


	Related Works
	Conclusion
	Reproducibility Statement
	Ethics Statement
	Backbone
	Training details
	Qualitative Results on pitch estimation
	Neural Architectures

	Text-to-speech
	Detailed architecture
	Training details
	Detailed evaluation result

	Singing voice synthesis
	Detailed architecture of NANSY-SVS
	Evaluation on pitch estimation and VUV decision

	Voice designing
	Detailed architecture of NANSY-VOD
	Age control
	Inference overview
	SPNet


