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Abstract
Current question answering systems leveraging001
retrieval augmented generation perform well002
in answering factoid questions but face chal-003
lenges with non-factoid questions, particularly004
how-to queries requiring detailed step-by-step005
instructions and explanations. In this paper,006
we introduce Thread, a novel data organization007
paradigm that transforms documents into logic008
units based on their inter-connectivity. Exten-009
sive experiments across open-domain and in-010
dustrial scenarios demonstrate that Thread out-011
performs existing data organization paradigms012
in RAG-based QA systems, significantly im-013
proving the handling of how-to questions.014

1 Introduction015

Dating back to ancient philosophy, Aristotle’s Nico-016

machean Ethics (Crisp, 2014) introduced the con-017

cept of “5Ws and 1H” questions to comprehen-018

sively understand actions and the circumstances019

surrounding them, where the “5Ws” represent020

What, Why, When, Where, and Who, and the “1H”021

stands for How. These questions serve as foun-022

dational tools for addressing various aspects of023

events and human behavior, spanning from philo-024

sophical discourse to daily life questions. In our025

everyday experiences, the 5Ws and 1H questions026

covers a wide range of questions across different027

contexts (Kipling, 2018; Wikipedia, 2024). While028

the 5Ws questions are typically factoid questions029

used to gather factual information about an event030

or situation1, the “How” question (or referred to in031

this paper as “How-To” questions) often delves into032

processes, methods, or explanations, which may033

involve more interpretation or analysis rather than034

straightforward facts, tending to be non-factoid035

questions. Current research has achieved remark-036

able success in factoid question answering (fac-037

toid QA) (Nguyen et al., 2016; Rajpurkar et al.,038

1“Why” question can sometimes delve into explanations
and motivations, thus blurring the line between factoid and
non-factoid questions.

How to cook spaghetti?

1. Boil water.

Linear How-To Questions

2. Add spaghetti.

3. Cook for 10 minutes.

4. Drain and add sauce.

How to diagnose and fix a performance issue in 
a web application?

1. Check the server load and response time.

If the server load is high, then 
optimize server configuration or 
scale up resources.

If the response time is slow due to 
database queries, then optimize 
database indexes and queries.

Dynamic How-To Questions

…

Figure 1: Two types of How-To questions.

2018; Jiang et al., 2019; Kwiatkowski et al., 2019; 039

Stelmakh et al., 2022). However, research on non- 040

factoid QAs (Bolotova et al., 2022; Rogers et al., 041

2023), particularly those involving “How-To” ques- 042

tions, remains relatively underexplored. Existing 043

QA systems often struggle to provide detailed step- 044

by-step answers to how-to questions akin to hu- 045

man comprehension, highlighting a significant gap 046

in current AI capabilities (Krishna et al., 2021; 047

Soleimani et al., 2021). 048

In order to better address how-to questions, we 049

explicitly propose the definitions of two types of 050

how-to questions: Linear How-To Questions and 051

Dynamic How-To Questions. Linear how-to ques- 052

tions involve a fixed sequence of steps that do not 053

require feedback or decision points based on inter- 054

mediate outcomes. These steps are predefined and 055

must be followed in a specific order to achieve the 056

desired outcome, making them suitable for straight- 057

forward, procedural tasks (Merrill, 2012). For ex- 058

ample, a question like “How to cook spaghetti?” 059

from WikiHow2 would be answered with a step-by- 060

step procedure as shown in Figure 1. On the other 061

2https://www.wikihow.com/
Make-Spaghetti
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hand, dynamic how-to questions require a more062

complex approach where each step may lead to dif-063

ferent actions based on the results of previous steps.064

This type involves conditional decision points and065

may require iteration, making the process adaptive066

and responsive to varying circumstances (Newell067

et al., 1972; Wang and Ruhe, 2007). As shown068

in Figure 1, initial steps are followed by different069

paths, where each path requiring different steps and070

potentially iterative troubleshooting.071

The nature of how-to QA inherently follows072

the decision-making processes central to problem-073

solving (Polya, 2004) and human learning in cog-074

nitive science (Learn, 2000). This requires a struc-075

tured approach to break down and solve tasks step076

by step. However, such a natural extension of hu-077

man decision-making makes how-to questions pose078

significant challenges for QA systems leveraging079

Retrieval Augmented Generation (RAG). In the era080

of Large Language Models (LLMs), RAG repre-081

sents a powerful technique to enhance the capabil-082

ity of LLMs by incorporating external knowledge.083

Current RAG systems mainly concentrate on im-084

proving the retrieval quality or adaptability (Shao085

et al., 2023; Trivedi et al., 2023; Jiang et al., 2023;086

Asai et al., 2023). Despite their success on fac-087

toid questions, they still struggle to handle how-to088

questions, particularly dynamic how-to questions.089

The root cause of this problem lies in the data or-090

ganization they use during the retrieval stage. The091

common practice of splitting documentation into092

chunks and indexing these chunks for retrieval can093

disrupt the inherent connections within the text. Al-094

though recent works have discussed the granularity095

of chunks (Chen et al., 2023; Gao et al., 2023), they096

still adhere to the chunk-based3 data organization097

paradigm. This approach can fragment the solution098

to a how-to question into several chunks, leading to099

scenarios where the retriever fails to gather all rele-100

vant chunks based on semantic or lexical similarity.101

Consequently, the answers may lack coherence and102

fail to maintain the logical sequence required for103

accurately addressing how-to questions.104

To facilitate current RAG systems on how-to105

questions, in this paper we propose a new logic-106

based data organization paradigm called Thread,107

which is compatible to RAG systems. Thread ex-108

plores the inner connections within the documents,109

splitting the documents into more structured and110

3“Chunk” refers to a general document splitting paradigm
including chunks, sentences, phrases, etc.

loosely interconnected logic units (LUs). Given a 111

how-to question, the retriever gets the relevant LUs 112

with its indexed header, and the linker of retrieved 113

LUs will automatically link to other LUs, till ob- 114

taining enough information to answer the how-to 115

question. It makes the process of answering how-to 116

questions like “Pulling on the thread, the whole 117

mystery started to unravel like a sweater.” (Garcia 118

and Stohl, 2011) 119

2 Related Work 120

2.1 Data Organization Paradigm in RAG 121

The data organization process is a critical pre-stage 122

of RAG methods where documents are processed 123

and segmented following certain data organiza- 124

tion paradigms. The most common data organi- 125

zation paradigm is splitting documents into re- 126

trieval units (Gao et al., 2023). These retrieval 127

units vary in granularity such as phrases, sentences, 128

propositions (Chen et al., 2023), chunks (Kamradt, 129

2024), etc. Coarser-grained units contain more 130

information but introduce redundant noise, while 131

finer-grained units have lower semantic integrity 132

and often require retrieving more units to gather 133

comprehensive information. However, the chunk- 134

based data organization paradigm ignores the log- 135

ical and relational connections between chunks, 136

potentially disrupting the inherent logic flow in doc- 137

uments. Another paradigm constructs documents 138

into knowledge graphs (KG), where retrieval units 139

include entities, triplets, etc. (Gaur et al., 2022; Sen 140

et al., 2023; He et al., 2024; Wang et al., 2024; 141

Edge et al., 2024). However, these approaches 142

emphasize semantic/lexical similarities between re- 143

trieval units, their success in factoid QA is limited 144

when applied to how-to QA. This limitation arises 145

because how-to QA demands logical connections 146

between retrieval units that extend beyond mere 147

semantic or lexical similarities. 148

2.2 Information Retrieved by RAG 149

The effectiveness of RAG methods depends on 150

the generator’s ability to utilize retrieved informa- 151

tion and the quality and quantity of that informa- 152

tion. Insufficient question-relevant information can 153

cause hallucination in LLM-based generators (Li 154

et al., 2023; Zhang et al., 2023), making it crucial 155

to improve the retrieval process. Traditional one- 156

round retrieval methods (Guu et al., 2020; Lewis 157

et al., 2020) often fail to gather all necessary in- 158

formation due to their reliance on the similarity 159
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between query and retrieval units (Gan et al., 2024).160

Advanced RAG methods use query rewriting and161

expansion (Peng et al., 2024; Shao et al., 2023;162

Trivedi et al., 2023; Kim et al., 2023) or iterative163

retrieval (Shao et al., 2023; Jiang et al., 2023; Asai164

et al., 2023) to collect more information. How-165

ever, these approaches still struggle with dynamic166

how-to questions, which require making next-step167

decision based on the current retrieved units, unless168

the current retrieved units contain clues that lead169

to the next step. The main issue is the lack of con-170

nections between retrieval units, which prevents171

effective retrieval and the gathering of sufficient172

information for answering how-to questions.173

3 Methodology174

3.1 Logic Unit: Retrieval Unit of Thread175

We propose a new data organization paradigm176

called Thread. It is a knowledge base composed177

of discrete but interconnected retrieval units called178

Logic Units (LUs). Each LU consists of following:179

Prerequisite. The prerequisite component acts as180

an information supplement, providing the necessary181

context to understand the LU. For example, an LU182

may include domain-specific terminology such as183

entities or abbreviations. The prerequisite explains184

these terms and can generate new queries to retrieve185

LUs with more detailed information. Without this186

context, passing these LUs to an LLM-based gen-187

erator could lead to hallucinations. Additionally,188

the prerequisite can function as an LU filter, con-189

taining constraints that must be met before the LU190

is considered in answer generation. This filtering191

ensures only relevant LUs are retrieved. Tags are192

a specific example of such prerequisites, quickly193

filtering out irrelevant LUs in the retrieval stage.194

Header. The header summarizes the LU or de-195

scribes the intention it aims to address, depending196

on the type of LU (refer to §3.2). For example,197

the header could be the name of a terminology if198

LU describes a terminology; if the LU describes199

actions to resolve a problem, the header describes200

the intent or the problem LU aims to resolve. The201

header is used for indexing, similar to traditional202

RAG processes, and serves as the key for retrieving203

the LU based on a query.204

Body. The body contains the detailed information205

of the LU, which is the core content fed into the206

LLM-based generator to generate answers. It in-207

cludes specific actions or necessary information208

such as code blocks, detailed instructions, etc. This209

detailed content helps resolve the query mentioned 210

in the header or provides detailed explanation of 211

the header. 212

Linker. The linker acts as a bridge between logic 213

units. It is used to generate new queries for the 214

next-round retrieval. In traditional iterative RAG 215

methods, query generation relies on previously re- 216

trieval units, but these units often lack direct clues 217

to retrieve new information. In Thread, the linker 218

provides the necessary information for generating 219

these queries. For example, in dynamic how-to 220

questions, the linker specifies multiple possibilities 221

after taking the action in the LU body, guiding the 222

retrieval of the next-step LU. The format of the 223

linker varies depending on the LU type; it can be 224

a query connecting to retrieve other LUs or an en- 225

tity relationship. The edge of knowledge graph in 226

traditional factoid QA is a special linker enabling 227

navigation between related entities. If no further 228

LUs are connected, the linker remains empty, iso- 229

lating the current LU. 230

Meta Data. The meta data includes information 231

about the source document from which the LU is 232

extracted, such as the document title, ID, date, and 233

other relevant details. This meta data is crucial for 234

updating LUs when the source documentation is 235

revised and reprocessed. 236

3.2 Logic Unit Type 237

When converting documents into logic units (LUs), 238

there are multiple types of LUs. Below are the 239

common LU types identified in our experiments4: 240

Step. This is the most common LU type for resolv- 241

ing how-to questions. Each LU body represents 242

detailed actions, including code blocks and resolu- 243

tion instructions. The LU prerequisite describes the 244

actions that need to be completed before executing 245

the current actions. The prerequisite is especially 246

crucial for identifying the entry point of a solu- 247

tion. For example, when facing a problem, there 248

exist different ways to resolve it depending on the 249

current situation. The prerequisite serves as a con- 250

dition in the LU selection stage, filtering out LUs 251

that do not meet the prerequisite. 252

Terminology. This type provides detailed explana- 253

tions of domain-specific terminology. For example, 254

terms may share the same name or abbreviation 255

in the LU header but have different meanings in 256

the LU body. The prerequisite in terminology LUs 257

4These LU types are summarized from our practice in
experiments with industrial and public datasets. There may be
additional LU types depending on the specific scenario.
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Original Documents Structured Documents

LLM

(a) Reformulate and Refine

Domain Knowledge Web Search

Refine

Reformulate

Extract LUs

Merge LUs

Thread

Add to

(b) Construct Thread

Figure 2: The process of Thread construction.

includes scenarios where the terminology typically258

appears. Terminology LUs generally have empty259

linkers unless they refer to extended terminology260

that depending on it.261

FAQ. This type provides frequently asked ques-262

tions, supplementing the knowledge base. These263

LUs are typically isolated, with the LU body offer-264

ing solutions through sequential steps that address265

linear how-to questions not reliant on dynamic266

states. They save time by avoiding the need for267

sequentially retrieving LUs for common questions.268

Appendix. This type provides additional informa-269

tion relevant to the scenario of LUs, such as exam-270

ples, background, lookup tables, etc. These LUs271

serve as supplementary knowledge for LLMs when272

generating responses or executable plans.273

3.3 Thread: LU-based Knowledge Base274

In practice, documentation is often unstructured275

and varies in format and style. Our approach to276

converting documentation into Thread involves a277

two-stage process to obtain LUs. We believe that278

with advancements in LLMs, this process could279

be streamlined into a single stage, enabling high-280

fidelity LU conversion with minimal hallucination.281

Documentation Reformulation (Optional). This282

stage is optional, depending on the quality of the283

documentation. For example, in software engi-284

neering, Troubleshooting Guides (TSGs) often lack285

readability and detail, negatively impacting produc-286

tivity and service health (Shetty et al., 2022). Due287

to varying document styles, where some are clearly288

outlined and others are disordered, we avoid di-289

rectly extracting LUs from the original documents.290

Instead, we first reformulate these documents into291

structured formats. Leveraging LLMs for this task,292

we enhance the LLMs’ understanding in domain by293

providing search capabilities and domain-specific294

context. This is followed by a refinement step to295

prevent overlooking details or hallucinating infor-296

mation. Figure 2(a) shows the reformulation stage.297

The reformulation stage is unnecessary for well-298

written documents like product help docs, which 299

typically follow a linear how-to format. Table 8 300

in the Appendix shows an example of this process 301

with prompts. 302

LU Extraction and Merge. After reformulation, 303

multiple LUs of varying types can be extracted 304

from a single structured document (shown in Fig- 305

ure 2(b)). Unlike chunk-based data organization 306

commonly with fixed chunk sizes, LU granular- 307

ity depends on content. For example, solutions 308

to linear how-to questions typically form a single 309

path from start to completion, with interconnected 310

steps and no multiple execution outcomes encapsu- 311

lated in one LU, such as an FAQ LU. However, for 312

dynamic how-to questions with multiple possible 313

outcomes, it is better to have one step per LU (Step 314

LU), with Linkers navigating to the next LUs. Note 315

that in dynamic how-to questions, not every step 316

has multiple execution outcomes. If only one next 317

step exists, the LUs can be merged to include both 318

current and subsequent steps. Additionally, LUs 319

with similar Headers and Bodies should be merged, 320

extending the Prerequisite and Linker. 321

LU update. In industry, documentation is often 322

updated with each product version release. When 323

this happens, we redo the above steps for the up- 324

dated documentation, identifying LUs in Thread 325

with their Meta Data and replacing outdated LUs. 326

As we extract and merge LUs, the collection 327

of LUs from all documents forms the knowledge 328

base, i.e., Thread. This LU-based knowledge base 329

serves as an essential component compatible to 330

current RAG-based QA system, and even making 331

it possible for automation. 332

3.4 Integrate Thread with QA System 333

To demonstrate how Thread works, we use dy- 334

namic how-to questions as an example. Figure 3 335

shows the QA system incorporating our Thread 336

data organization paradigm. The Retriever and 337

LLM-based Generator are components from the 338

original RAG-based QA system. LUs are indexed 339

by their Headers. When an initial how-to ques- 340

tion is submitted, the Retriever identifies the top-K 341

most relevant LUs based on query-Header similar- 342

ity. The Selector then checks the prerequisites of 343

these LUs and filters out those that do not meet 344

the current prerequisites, derived from the initial 345

question or any available chat history. If no current 346

prerequisite is provided, the system can prompt the 347

user, e.g., “Before doing ..., have you tried ...?”, 348
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How-to Questions Retriever Selector

LLM

Manual Execution

Plugins

APIs

Execution Engine

Tools

Auto Execution

Executable 
Action

Non-Executable 
Action

Results

{Linker}

If … Then …

If … Then …

Query

Retrieval

ExecutionQuery Generation

Figure 3: The QA system integrated with Thread. It retrieves relevant LUs based on query-Header similarity and
filters out LUs that do not meet the current prerequisites. The selected LUs are passed to LLMs to generate actions
for execution. After execution, the Linker matches results and generates a new query for the next retrieval iteration.

to obtain the current prerequisite for LU filtering.349

After selection, the Body of the LUs is fed into the350

LLM-based generator to produce an answer. If an351

execution engine is available, actions can be exe-352

cuted automatically; otherwise, the answer/action353

is presented to the user for manual execution. Once354

the action is executed, the Linker matches one of355

the possible outcomes and generates a new query356

for the next retrieval round.357

Unlike traditional QA systems, the QA sys-358

tem with Thread can potentially be fully or semi-359

automated if an execution engine is present. Com-360

pared to manually designed automation pipelines,361

Thread enables greater automation and flexibility362

where updating LUs will automatically update the363

semi-automated system (see §3.3).364

4 Experimental Setup365

4.1 Scenarios and Datasets366

We evaluate Thread on two open-domain scenarios:367

Web Navigation (Mind2web (Deng et al., 2023))368

and Wikipedia Instructions (WikiHow (Koupaee369

and Wang, 2018)), and one industrial scenario: In-370

cident Mitigation (IcM (Shetty et al., 2022; An371

et al., 2024)). Table 7 in Appendix B provides one372

example of each dataset to better demonstrate the373

linear and dynamic how-to question. More details374

about datasets can be found in Appendix D, E, F.375

Web Navigation. Mind2web (Deng et al., 2023)376

is a dataset designed for web agents to perform377

complex tasks on real-world websites based on lan-378

guage instructions. Each task is a dynamic how-to379

question, with multiple possible outcomes depend-380

ing on the state of the executed actions. 381

Wikipedia Instructions. WikiHow5 is a platform 382

containing numerous articles that offer step-by-step 383

guidance on various procedural tasks, ranging from 384

entertainment to technology. Each article is typi- 385

cally titled with “How to” and includes a brief task 386

description, followed by detailed steps. We use this 387

dataset to demonstrate Thread’s performance on 388

linear how-to questions. 389

Incident Mitigation. Incident Mitigation (Shetty 390

et al., 2022; An et al., 2024; Jiang et al., 2024) 391

is essential for operating large-scale cloud ser- 392

vices, where engineers use Troubleshooting Guides 393

(TSGs) to address incidents. Each step in incident 394

mitigation can yield different outcomes depending 395

on the state, making it suitable for testing Thread 396

on dynamic how-to questions. Unlike the other 397

open-domain datasets, we perform a human evalu- 398

ation involving twenty on-call engineers (OCEs)6 399

responsible for incident mitigation. We collect five 400

incidents7, classified into two simple and three 401

hard ones based on their mitigation steps in his- 402

tory. Each OCE is tasked with mitigating all five 403

incidents, using only one method per incident to 404

avoid familiarity bias. The QA system initiates 405

automated mitigation for each incident; if it en- 406

counters a failure at any step, an OCE intervenes 407

to address the issue before the system resumes au- 408

tomated procedures. 409

5https://www.wikihow.com
6Varying across new-hire and experienced OCEs.
7Mitigating one incident costs each OCE around 30 min-

utes to 1 hour, and we collect five incidents to ensure consis-
tency, engagement, and ethical treatment.

5
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4.2 Documents for Retrieval410

Since the Mind2web datasets lack relevant docu-411

ments, we created documents for retrieval to fit412

the RAG-based QA system. Assuming the same413

website has help docs applicable to all tasks in the414

website, we utilized the “Cross-Task” test set and415

selected examples from the training set to create416

informative documents for each website, following417

Wang et al. (2023). This allows the generation of418

documents for retrieval to effectively accomplish419

tasks within the RAG-based QA system.420

For the WikiHow dataset, we used publicly avail-421

able Windows Office Support Docs8 as retrieval422

documents. We selected around 100 tasks from the423

WikiHow dataset tagged with Microsoft products424

like Word, PowerPoint, and Teams, each containing425

10 to 40 steps related to Windows operations.426

For the IcM dataset, we collected 56 TSGs as427

documents from an enterprise-level engineering428

team responsible for a large-scale cloud platform.429

The selected incidents in the IcM dataset can be430

resolved using knowledge from these TSGs.431

Table 1 shows the dataset statistics. Note that432

in IcM dataset, one OCE’s data was contaminated433

during the experiment, so we removed that OCE’s434

data. It results in 19 OCEs with 95 tasks.435

Dataset #Docs #Tasks #Steps #Chunks #LUs

Mind2web 490 252 2094 6210 1089
WikiHow 97 97 2140 4225 774
IcM 56 95 323 413 378

Table 1: The statistics of datasets, including the number
of documents, tasks, steps, and derived chunks and LUs.

4.3 Baselines436

In the Mind2web dataset, previous work has437

not treated it as how-to questions. State-of-the-438

art methods like SYNASE (Zheng et al., 2023)439

and MINDACT (Deng et al., 2023) either use440

In-Context Learning (ICL), providing few-shot441

demonstrations, or Supervised Learning (SL) to442

finetune a model on the training set. To ensure443

a fair comparison with our LLM endpoints9, we444

re-implemented the MINDACT experiments with445

the same demonstrations and included chat his-446

tory as extra context. In our paper, we treat the447

Mind2web dataset as dynamic how-to questions448

and use our RAG-based system to solve these tasks.449

For comparison, we use doc-based (providing the450

8https://github.com/MicrosoftDocs/
OfficeDocs-Support

9We use GPT-3.5 and GPT-4 with version 1106-preview.

entire document) and chunk-based data organiza- 451

tion paradigms as baselines against Thread. This 452

RAG-based QA system with different data organi- 453

zation paradigms also serves as baselines for the 454

WikiHow and IcM datasets. 455

4.4 Evaluation Metrics 456

For the Mind2web dataset, each task is treated 457

as a multi-choice question. We adopt the evalu- 458

ation metrics used in (Deng et al., 2023), which 459

include: Element Accuracy (Ele. Acc) to compare 460

the chosen HTML element with all provided el- 461

ements; Operation F1 (Op. F1) to calculate the 462

token-level F1 score for predicted operations such 463

as “CLICK”, “TYPE IN”, etc.; Step Success Rate 464

(Step SR), where a step is successful if both the se- 465

lected element and predicted operation are accurate; 466

and Success Rate (SR), where a task is successful 467

only if all steps are successful. 468

For the WikiHow dataset, which contains ground 469

truth steps, we leverage LLMs to extract “Ac- 470

tion Items” from each ground truth step and gen- 471

erated step, and we use the following metrics: 472

Precision (P = #matched_items
#total_generated_items ); Recall 473

(R = #matched_items
#total_groundtruth_items ); F1; and Success 474

Rate (SR) to assess if the generated steps can suc- 475

cessfully complete the task, using LLMs to evaluate 476

(Table 16 shows the evaluation prompt). 477

For the IcM dataset, which involves task execu- 478

tion, we perform evaluations with OCEs (refer to 479

§4.1) using five metrics: Success Rate (SR) indicat- 480

ing the percentage of incidents mitigated automat- 481

ically by the system without human intervention; 482

Step Success Rate (Step SR) representing the per- 483

centage of successful steps out of all task steps; 484

Pre-Failure Step Success Rate (P.F. Step SR) repre- 485

senting the percentage of successful steps before 486

the first failure; Human Intervention (HI) measur- 487

ing the percentage of steps requiring human inter- 488

vention; and Average Turns (Turns) to measure the 489

average interaction turns between OCEs and the 490

system during incident mitigation. 491

5 Experimental Results 492

Web Navigation. The overall performance on 493

Mind2web is shown in Table 2, where we com- 494

pare our method with baselines and both doc-based 495

and chunk-based RAG methods. We observe that 496

providing informative documents (regardless of the 497

data organization paradigm) within RAG methods 498

significantly improves performance. RAG methods 499

6
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Mind2Web Cross-Task
Method Model Paradigm Ele. Acc Op. F1 Step SR SR

SYNASE (2023) w/ GPT-3.5* ICL 34.00 - 30.60 2.40

w/ GPT-3.5 ICL 40.69 49.66 33.91 1.59
w/GPT-4 ICL 62.80 60.37 51.81 10.32MINDACT (2023)

w/ Flan-T5XL* SL 55.10 75.70 52.00 5.20

w/ GPT-4 Chunk 64.23 65.96 58.45 8.73
w/ GPT-4 Doc 63.80 65.89 58.36 11.51RAG
w/ GPT-4 Thread 68.29 69.53 61.94 12.30

Table 2: Experiment results on Mind2web. “*” represents taking results from the original paper.

outperform ICL and SL methods. By incorporating500

external documents, the doc-based RAG method501

achieves performance comparable to the best re-502

sults of MINDACT. Notably, our Thread paradigm503

is the best among RAG methods, showing improve-504

ments of 4.06% in Ele. Acc, 3.49% in Step SR505

and 3.57% in SR. Note that MINDACT-SL gets506

the highest Op. F1 due to label distribution im-507

balance, leading the model to favor generating the508

most frequent operations.509

Wikipedia Instructions. Table 3 presents the perfor-510

mance of various data organization paradigms on511

WikiHow tasks, experimenting with both single-512

turn and multi-turn interactions. In the single-513

turn setting, where the QA system generates the514

entire plan in one interaction, our Thread-based515

method outperforms the doc-based method which516

provides the entire relevant document, indicating517

that Thread offers information with less redun-518

dancy. The chunk-based method is not included as519

it failed to retrieve enough relevant chunks using520

the question as the query.521

In the multi-turn setting, the QA system per-522

forms iterative retrieval, which shows superior per-523

formance compared to single-turn. This indicates524

the advantage of a step-by-step approach in han-525

dling how-to questions. Notably, the SR improves526

significantly from 58.76% to 68.04% in doc-based527

paradigm and from 63.91% to 72.16% in Thread528

paradigm. Within multi-turn setting, chunk-based529

method divides documents into chunks which dis-530

rupts internal connections, leading to a low SR of531

20.62%. In contrast, both doc-based and Thread-532

based paradigms perform significantly better. Our533

Thread paradigm excels across all metrics, achiev-534

ing the highest SR of 72.16%, highlighting its ef-535

fectiveness in maintaining and modeling the con-536

nections between steps in linear how-to questions.537

Incident Mitigation. Figure 4 illustrates the ad-538

vantages of Thread over other paradigms when539

WikiHow
Paradigm SR P R F1

Single-Turn
Doc 58.76 77.71 57.93 66.37
Thread 63.91 83.43 71.48 76.99

Multi-Turn
Chunk 20.62 52.95 25.54 34.45
Doc 68.04 87.10 70.65 78.02
Thread 72.16 89.77 73.36 80.74

Table 3: Experiment results on WikiHow with different
interaction manners and data organization paradigms.

Simple Incident

Hard Incident

Figure 4: Experiment results on simple and hard inci-
dents of IcM dataset with OCEs.

addressing complex dynamic how-to questions. 540

Both chunk-based and doc-based RAG methods 541

exhibit comparable ineffectiveness in incident miti- 542

gation. In contrast, our Thread paradigm achieves 543

the best score across all metrics, particularly achiev- 544

ing a significant increase in SR from 21.02% to 545

33.33%. Furthermore, P.F. Step SR indicates our 546

method’s capability to handle significantly more 547

steps before encountering a failure, thus reducing 548

the need for human intervention. Consequently, our 549

method achieves the highest Step SR and requires 550

the fewest interaction Turns to mitigate both simple 551

and complex incidents. 552

5.1 Ablation on QA System Settings 553

This section presents an ablation study on the key 554

settings of a RAG-based QA system. While re- 555

triever and generator variants have been explored 556
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in other research (Gao et al., 2023), we use text-557

embedding-ada-002 (OpenAI, 2022) for the re-558

triever and GPT-4 as the LLM-based generator. The559

ablation study is performed in Mind2web dataset.560

Multi-turn Interaction. As shown in Table 3, the561

multi-turn setting is better than single-turn setting562

in answering how-to questions. We use multi-turn563

setting for the other scenarios in this paper.564

Chat History. The chat history helps the system565

to check previous actions and results, in order to566

help the system make better decisions. Without567

chat history, the performance drops as shown in568

Appendix E.3. We include chat history for all RAG-569

based methods in the experiments.570

Retrieval Units Selector. As aforementioned in571

§3.4 and Figure 3, the Selector picks the most rele-572

vant retrieval units from the top-K retrieved units.573

Table 4 shows the ablation of the retrieval unit574

selector. We compare chunk and LU as retrieval575

units, finding that chunk selection degrades the per-576

formance of chunk-based RAG, reducing Ele. Acc577

by 4.29% and Op.F1 by 3.38%. Conversely, the578

selector improves all metrics in the Thread-based579

RAG method. Unlike LU selection, which filters580

out irrelevant LUs with prerequisites, chunk selec-581

tion does not consider connections between chunks582

and may filter out relevant chunks. Therefore, we583

enable the selector only for Thread-based method.584

Paradigm Ele. Acc Op. F1 Step SR

Chunk 59.94 62.58 54.39
w/o. chunk selection 64.23 65.96 58.45

Thread 68.29 69.53 61.94
w/o. LU selection 67.05 68.43 60.79

Table 4: Ablation study of retrieval unit selection.
Multi-Agent System. We investigate the multi-585

agent design in QA system. As detailed in Ap-586

pendix E.4, the multi-agent RAG system (Wu et al.,587

2023; An et al., 2024) outperforms single-agent588

systems, where only the LLM-based generator acts589

as the agent, in resolving how-to questions.590

5.2 Analysis of Data Organization Paradigms591

We compare various data organization paradigms592

within RAG, implementing Semantic Chunk-593

ing (Kamradt, 2024) and Proposition (Chen et al.,594

2023) in addition to recursive chunking (Splitter,595

2023) (chunk-based) and entire document (doc-596

based) approaches. As shown in Table 5, our597

Thread paradigm outperforms the other paradigms598

across all metrics. Although Semantic and Proposi-599

tion methods use LLMs to merge semantically simi-600

lar sentences, they fail to adequately address logical 601

connections, resulting in poor performance. Addi- 602

tionally, our system processes the smallest token 603

length of retrieval units yet achieves the highest per- 604

formance, underscoring our approach’s efficiency 605

and effectiveness. 606

Paradigm Ele. Acc Op. F1 Step SR #Tokens in RU

Doc 63.80 65.89 58.36 663.84
Recursive 64.23 65.96 58.45 695.77
Semantic 65.14 67.30 59.93 1337.16
Proposition 62.37 64.78 56.78 790.14
Threadw/o. 67.05 68.43 60.79 772.67
Thread 68.29 69.53 61.94 157.10

Table 5: Analysis of data organization paradigms.
Threadw/o. represents Thread without LU selector.

5.3 Document Formats in LU Extraction 607

As mentioned in §4.2, we tested our LU extraction 608

method in accommodating varying document struc- 609

tures. We generated different document formats 610

(detailed in Appendix A, E.2), including structured 611

markdown, hierarchical guidelines, tabular check- 612

lists, and narrative documents. Table 6 shows that 613

our Thread paradigm effectively organizes these 614

formats, consistently outperforming the chunk- 615

based paradigm across all metrics. Our Thread 616

improves Ele. Acc by up to 9.61%, Op. F1 by 617

up to 8.43%, and Step SR by up to 8.51%. No- 618

tably, our Thread achieves the highest performance 619

with structured documents, as this format helps 620

construct a higher-quality knowledge base. 621

Format Paradigm Ele. Acc Op. F1 Step SR

Chunk 64.23 65.96 58.45Structured Thread 68.29 69.53 61.94

Chunk 60.60 63.46 55.06Hierarchical Thread 66.57 67.89 60.08

Chunk 56.30 59.26 51.43Tabular Thread 65.71 67.69 59.55

Chunk 56.63 60.39 51.66Narrative Thread 66.24 68.22 60.17

Table 6: Analysis of different document formats.

6 Conclusion 622

In this paper, we address the overlooked category 623

of how-to questions within existing QA systems. 624

We propose Thread, a novel data organization 625

paradigm to capture logic connections with doc- 626

uments. Thread is compatible and integrated to 627

current RAG-based QA system. Experimental re- 628

sults demonstrate Thread’s effectiveness in han- 629

dling how-to questions, surpassing other data orga- 630

nization paradigms in performance. 631
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Limitations632

This work choose three scenarios to design how-to633

questions, and evaluate its effectiveness of Thread634

on handling both linear how-to questions and dy-635

namic how-to questions. However, the proposed636

paradigm still has some limitations for future direc-637

tions. On the one hand, since our logic knowledge638

base can coexist with the original chunk knowl-639

edge base, we do not extend our method to test640

factoid questions, like multi-hop questions, long-641

form questions and so on. On the other hand, the642

experiments primarily rely on OpenAI’s backbone643

models. Future studies should include evaluations644

using other LLMs like LLaMA and retrievers such645

as Contriver to better validate the effectiveness of646

our paradigm. Additionally, while extracting logic647

units involves initial costs in calling LLMs, our648

approach is a one-time procedure. Once the knowl-649

edge base is constructed, it becomes advantageous650

for industrial applications, particularly in terms of651

subsequent updates and maintenance.652

Ethics Statement653

All the experiments are conducted on existing654

dataset or resources that collected by ourselves or655

from internal sources. We keep fair and honest in656

our analysis of experimental results. As the sce-657

nario of IcM need human evaluation, we ensure658

that there is no bias in selecting OCEs and ensure659

the randomness of the sampling.660
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A Details about Current Data896

Organization Paradigms897

From Gao et al. (2023), current data organization898

paradigms can be categorized into phrases, sen-899

tences, propositions, chunks and so on. In our900

paper, we choose chunks 10 and propositions to901

compare with our proposed Thread11.902

Recursive Chunk. This chunking method splits903

the original documents using a list of separators,904

then reassembles them according to specified chunk905

sizes and overlap sizes. In our experiment, we906

use different chunk sizes for each dataset: 1000907

for Mind2Web, 2000 for IcM, and 300 for Wiki-908

How. The chunk overlap sizes also vary: 50 for909

Mind2Web, 100 for IcM, and 30 for WikiHow.910

Entire Document. This method sends the entire911

document directly into the model, constrained by912

the document’s length and structure.913

Semantic Chunk. Kamradt (2024) proposes split-914

ting chunks based on semantic similarity. The hy-915

pothesis is that semantically similar chunks should916

be grouped together. By comparing the semantic917

similarity between adjacent sentences, the method918

identifies “break points”. If the similarity in the919

embedding space exceeds a certain threshold, it920

marks the start of a new semantic chunk.921

Agentic Chunk (Proposition). Chen et al.922

(2023)12 introduces the concept of the Proposition923

Paradigm, which involves extracting independent924

propositions from original documents. The Agen-925

tic Chunk method is based on this paradigm. It first926

splits the documents into paragraphs, then extracts927

propositions from each paragraph, at last merges928

similar propositions into chunks.929

In our experiment, we set the temperature of930

LLMs to 0 and top_p to 1 for results reproduction.931

B Examples of Each Dataset932

Table 7 shows the examples of each dataset.933

C Example of Logic Unit934

Table 8 shows an example to demonstrate the refor-935

mulated process of document and its corresponding936

logic unit.937

10We use the the implementation by LangChain https:
//python.langchain.com/v0.2/

11Note: For chunks, we retrieve the top-5 at each time, and
for documents, we only retrieve the top-1.

12For proposition paradigm, we use agentic chunker
since the input token of Flan-T5 is limited to 512, https:
//github.com/FullStackRetrieval-com/
RetrievalTutorials.

D Details about Incident Mitigation 938

We take the scenario of incident mitigation to show 939

the instructions we use to construct our knowledge 940

base, including reformulation, code template ex- 941

traction and selection. 942

D.1 Document Reformulation Instruction 943

Table 9 shows the instruction we use to reformulate 944

document. 945

D.2 Code Template Instruction 946

Table 10 shows the instruction we use to extract 947

code template and default parameters from original 948

code. 949

D.3 Logic Unit Selection Instruction 950

Table 11 shows the instruction we use to select the 951

most suitable logic unit from a list of candidates. 952

E Details about Mind2web 953

We show the details about the document genera- 954

tion instruction we use, the different formats of 955

document and examples we generate. 956

E.1 Document Generation Instruction 957

Table 12 shows the instruction we use to generate 958

specific format of document for Mind2web dataset. 959

960

E.2 Different formats of Document 961

Table 13 lists the formats we pre-define for 962

Mind2web dataset. 963

E.3 Ablations Study of Chat History 964

Table 14 reveals that incorporating historical steps 965

enhances the performance of LLMs, with an im- 966

provement of 5.83 % in Ele. Acc, suggesting that 967

previous steps can help the system make more ac- 968

curate decisions. So we incorporate historical steps 969

in all our experiments. 970

E.4 Ablations Study of Multi-Agent System 971

We explore the impact of more complex RAG sys- 972

tems on their performance. We adapt the multi- 973

agent system proposed by Wu et al. (2023); An 974

et al. (2024), which is more intricate, to execute 975

Mind2web tasks. In the multi-agent system, multi- 976

ple LLM-based agents such as the Selector, Action 977

Planner, and Query Generator collaborate, enhanc- 978

ing performance on complex how-to questions. As 979

12
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Dataset Example

Mind2web
(Dynamic) <html> ... </html>

Based on the HTML webpage above, try to complete the following task
Task: Book the lowest-priced and quickest flight for 5 adults and 1

child on May 20 from Mumbai to any airport near Washington.
Previous actions:
None
What should be the next action?
Please select from the following choices (If the correct action is

not in the page above, please select A. 'None of the above'):
A. None of the above
B. <div id=0> <input radio triptype roundtrip true /> <label> <span

>
C. <label id=1> <span> Search flights one way </span> <span> One
D. <a id=2> <h3> Celebrate World Wish Day </h3> <p> Support
E. <h2 id=3> Help </h2>
F. <a id=4> <img follow us on twitter - /> </a>
C. Action: CLICK

WikiHow
(Linear) "Problem": "How to Add Captions to Tables in Microsoft Word",

"Solution Steps": [
"Select the table to which you want to add a caption.",
"Using your mouse, click and drag over the entire table to

select it.",
"Right-click (or ctrl-click) the table and select Insert

Caption.",
"Enter your caption.",
"Type the caption for this table into the \"Caption\" field.",
"Select a caption label.",
"Customize your caption numbers (optional).",
"Choose where to place your caption.",
"Click the \"Position\" drop-down menu, and choose whether to

place the caption above or below the table.",
"Click OK to add your caption to the table.",
"Format your captions."

]

IcM
(Dynamic) ### Step 1:Step 1: Check Pull Task Execution From the Cluster

The direct impact of connection failure is pull task execution will
not work. If Service A can continue to pull from Service B,

then the incident can be dismissed as false alarm, the feature
owner can investigate further to see why Echo fails. This can
be visualized by pull task count over time in the last 8 hours
in the following query: ***

Disregard the last data point, if the data point is always above
zero, then consider the alert as false alarm. If the chart
sometimes drops to zero one hour ago and the number is low in
general (for instance less than 20), it means the customer
traffic in the cluster is low. In this case, observe for a
longer period of time. If the data point is zero consistently
in the past 30 minutes, then it is a real problem, and please
Check if Other Clusters In the Region are Impacted. Otherwise,
continue to observe since Service A is pulling Service B just

fine.

Table 7: Examples of each dataset. For mind2web, although the test set has fixed options for each step, there are
different execution methods for the same task on each website, so it is essentially dynamic.
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Trouble Shooting Guide: How to Investigate Service A-To-Service B Connection?

Original ### Step 0: Determine the Region and Cluster Name
The region and cluster name can be found in the incident title.
### Step 1: Check Pull Task Execution From the Cluster

The direct impact of connection failure is pull task execution will not work. If Service A can continue to
pull from Service B, then the incident can be dismissed as false alarm, the feature owner can investigate
further to see why Echo fails. This can be visualized by pull task count over time in the last 8 hours in
the following query: ***
Disregard the last data point, if the data point is always above zero, then consider the alert as false
alarm. If the chart sometimes drops to zero one hour ago and the number is low in general (for instance
less than 20), it means the customer traffic in the cluster is low. In this case, observe for a longer period
of time. If the data point is zero consistently in the past 30 minutes, then it is a real problem, and please
Check if Other Clusters In the Region are Impacted. Otherwise, continue to observe since Service A is
pulling Service B just fine.
...

Reformulated ## 1.Check Pull Task Execution From the Cluster.
### Prerequisite
The region and cluster name can be found in the incident title.
### Header
Check Pull Task Execution From the Cluster
### Body
Run the following query to check pull task execution from the cluster (please use the cluster name from
the previous step) ***
### Linker
- If the data point is always above zero, then consider the alert as false alarm.[MITIGATE]
- If the chart sometimes drops to zero one hour ago and the number is low in general, it means the
customer traffic in the cluster is low. In this case, observe for a longer period of time.[MITIGATE]
- If the data point is zero consistently in the past 30 minutes, then it is a real problem, and please Check
if Other Clusters In the Region are Impacted.[CONTINUE]
- Otherwise, continue to observe since Service A is pulling Service B just fine.[MITIGATE]
...

Logic Unit
{

"#type#": "step",
"#meta data#": {

"#title#": "How to Investigate Service A-To-Service B
Connection",

"#id#: "",
"#date#": ""

},
"#prerequisite#": "The region and cluster name are given.",
"#header#": "Check Pull Task Execution From the Cluster.",
"#body#": "Run the following query to check pull task execution

from the cluster (please use the cluster name from the
previous step):***",

"#linker#": "If the data point is always above zero, then
consider the alert as false alarm.[MITIGATE] If the chart
sometimes drops to zero one hour ago and the number is low
in general, it means the customer traffic in the cluster is
low. In this case, observe for a longer period of time.[

MITIGATE] If the data point is zero consistently in the
past 30 minutes, then it is a real problem, and please
Check if Other Clusters In the Region are Impacted.[
CONTINUE] Otherwise, continue to observe since Service A is
pulling Service B just fine.[MITIGATE]",

"#default_parameters#": {
"<TIME>": "",
"<CLUSTER NAME>": ""

}
}

...

Table 8: An example of reformulated TSG and its corresponding Logic Unit using our paradigm.
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evidenced in Table 15, there is a noticeable im-980

provement in the overall performance, with the981

Success Rate on Mind2web tasks rising by 3.36%.982

This increment suggests that the deployment of983

multi-agent systems can substantially improve the984

capability to manage tasks of greater complexity.985

F Details about Wikihow986

Table 16 shows the instruction about how to evalu-987

ate the result of Wikihow, including extraction of988

action items and assessment of success.989

G Details about RAG System990

We take the scenario of Mind2web to show the991

instructions we used in our RAG system.992

G.1 Instruction of Baselines 993

Table 17 shows the instruction we use in our RAG 994

system of baselines. 995

G.2 Instruction of Thread Paradigm 996

Table 18 shows the instruction we use in our RAG 997

system utilizing Thread paradigm, which is differ- 998

ent from baselines as it requires to point out the 999

query for next time retrieval. 1000

[System]
You are a helpful troubleshooting guide assistant that helps the user to formulate the manual unstructured troubleshooting
guide <TSG> into structured one. The <TSG> is in markdown format, with the first level header describing the incident
or problem, and the following each second level header providing information related to the incident or problem.
Each second level subsection can be categorized into the following types: Terminology, FAQ, Step and Appendix. Your
reformulation should be strictly comply the following definition:
- Terminology: firstly, it should be the relationship or connection between terminology about the incident, if not, is can
be the explanation or concept of the incident. Sometimes it should extract and summarize by yourself.
- FAQ: frequently asked questions which help to understand the incident.
- STEP: the processes to resolve the incident, and you should make sure its completeness. Usually, steps have causally
inner connection, the former step will trigger the next step.
- Appendix: the supplement of the incident which is not important or labeled by TSG, usually providing additional
resources, data, links and so on.

1. You need to identify each second level subsection, including third level subsection if it needed, analyze its content or
purpose, and categorize it accordingly. For those belonging to Step, you should capture the inner connections, such as
Causality or Temporal relations, and present them in the correct order.
2. Your returned formulated TSG should be in JSON format. Make sure that the keys originate from these categories:
Terminology, FAQ, STEPS ad Appendix. Each value should be a list of dictionaries. The keys for them are "prerequisite",
"header", "body", and "linker". All values within the lists need to align with the original context, with truthful meaning
and necesary **code block**.
3. Importantly, the "linker" is used to imply dual role of providing the action’s result and connecting to the next
step using the "if-then" sentence format. You should formulate each steps’s linker to be "If any results are obtained
by executing the corresponding action in the previous step, then **the true intent of the following step** provided
here". Implicit linkers like "proceed to the next step." or "then the intent of the following step should be taken into
consideration." should be avoided.
4. For each "if" condition at every step in the STEP, it is necessary to add a special token behind the "then" condition
within the "linker". The options for these tokens are "[CONTINUE]", "[CROSS]", and "[MITIGATE]". - The token
"[CONTINUE]" indicates that the actions corresponding to this "if" condition are part of the continuum within the same
TSG’s STEPS. - The token "[CROSS]" signifies that the subsequent actions require a transition to a different set of steps
that are external to the current TSG’s STEPS. - The token "[MITIGATE]" implies that the actions following the "if"
condition convey that the incident is mitigated, or necessitate communication with on-call engineers or teams.
The use of this special token is instrumental in verifying the completeness and structural integrity of the STEPS section.

<TWO EXAMPLES HERE>

[User]
Here is the <TSG> you need to formulate:
{TSG}

Table 9: Instruction that formulates the original unstructured trouble shooting guide into structured one.

15



[System]
You are a helpful assistant that extract the code template and the default parameters from the provided code instance in
<CODE>. <CODE> is a code block contains several parameters. You should replace those parameters with placeholders
and output the code template with placeholders and default parameters.

<ONE EXAMPLE HERE>

You response should be in the json format as below:

{
"#CODE_TEMPLATE#": where you replace the parameters in <CODE> with

placeholders,
"#DEFAULT_PARAMETERS#": where you keep the parameters in <CODE> as default

values.
}

[User]
Here is the <CODE> you need to extract:
{CODE}

Table 10: Instruction that extracts code template and default parameters from the source code.
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[System]
You are a helpful assistant that selects the most relevant element from <LU_LIST> based on the user’s query in
<QUERY> and chat history in <ChAT_HISTORY>. Please respond with the JSON format.
The each element in <LU_LIST> are in json format and contains the following fields:

{
"#type#": "the type of the element, select from the following types:

Terminology, FAQ, Step and Appendix.",
"#meta data#": "the description of the troubleshooting guide.",
"#prerequisite#": "the prerequisite of this step, before taking current

step, the prerequisites should be finished.",
"#header#": "the information describes the intent of the <INFO>.",
"#body#": "the action is the content which troubleshoots the incident or

give explanation of the #header#. the action may contain code blocks
in markdown format, and parameters are replaced with placeholders",

"#linker#": "the expected output after taking the #action#. It is defined
in the following format in markdown: -If **condition**, then **
should_do**. It can contain multiple if-then cases.",

"#default_parameters#": "the default parameters that could fill in
placeholders in code blocks in #body#."

}

- The elements in <LU_LIST> contains possible information that can answer the user’s query in <QUERY>. However,
they may not be all relevant to the query or useful to answer the user’s query. You should select the most relevant
element from the <LU_LIST> based on the user’s query in <QUERY>.
- In particular, you should focus on the following fields in the element: #header#, #body#. Most importantly, the
<QUERY> need to match with the #intent# and the #body# has to provide actions to reach the goal of the <QUERY>,
please ignore the #linker# and do not map the <QUERY> with #linker#.
- As you choosing from <LU_LIST>, you need to check if all the #prerequisite# are met in previous history. If the
#prerequisite# not finished, then it should not be chosen.
- Try to select only one element from <LU_LIST>. If it is not possible to select only one element, you can select multiple
elements from <LU_LIST>:

[
{

"INDEX": the index of the element in <INFO_LIST>.
"INTENT": the #header# of the element, the index starts from 0.
"EXPLANATION": justify why you select this node.

}
]

- If there is no element in <LU_LIST> that can answer the user’s query in <QUERY>, you should try select the most
relevant element to the user’s query considering that the user might use wrong terminology:

[
{

"INDEX": the index of the element in <INFO_LIST>.
"INTENT": the #header# of the element, the index starts from 0.
"REPHRASED_QUERY": the rephrased query that you think the user is

asking about.
"EXPLANATION": justify why you select this node.

}
]

- Unless you are confident that there is no element in <LU_LIST> that is even close to the user’s query:

{
"NO_INFO_EXPLANATION": where you give your explanation.

}

- Your answer should be in the JSON format in a list after <RESPONSE>.

[User]
<LU_LIST>: {LU_LIST}
<QUERY>: {QUERY}
<CHAT_HISTORY>: {CHAT_HISTORY}

Table 11: Instruction that selects the most relevant logic unit based on user query and chat history.
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[System]
You are adept at performing website navigation tasks, and you will be provided with a simulation data from Mind2Web,
designed for developing and evaluating generalist agents capable of following language instructions to complete
complex tasks on any websites.

The data includes a step-by-step execution process, each step encompassing HTML code, Tasks, Previous
Actions and the Element and Action of this step. Note that the Element comes from the HTML code, and if the cor-
rect action is not present on current page, the Element is None, and you should retrieve from next step’s Previous Actions.

Now your task is to write a comprehensive and adaptable reference document that outlines the general process for
completing tasks like the given task. This document should serve as a guide for others to perform similar tasks on the
same website in the future. So it should not be limited but can use this data to be the example, and should be general
enough.

Please return the complete reference document that adheres to these guidelines.

[User]
The format of the documents should be as follows: {FORMAT}
The given execution process is as follows: {EXAMPLE}

Table 12: Instruction that generates specific format of document for Mind2web dataset.

Format Description

Structured
Markdown

- The document must be structured into sections in markdown format.
- It should include task overview, introduction, process steps and conclusion.
- Each step in the process including detailed explanations for Intent, Prerequisite, HTML Code Refer-
ence, Action, Reason and Result.
- The Prerequisite is to specify any conditions or prior actions that must be met or completed before
proceeding with the current step in the process.
- Ensure that each step is explicitly connected to the next one, and the Result is written in the "if-then"
schema where the "Intent" of this step is completed, the outcome "then" is the next step’s Intent.
- The HTML Code Reference gives hints of the Action likes some ’<button>’, ’<span>’ or other
elements or attributes. You need to use the given task as an example.
- The Action comes from "Click", "Type", "Hover", "Press Enter".

Hierarchical
Guideline

- A structured text document with numbered steps for each task.
- Each step includes a title, description, the HTML code involved, and the action to be taken.
- Previous actions are referenced where necessary, with hyperlinks to the relevant steps.
- Appendices for HTML code references, glossary of terms, and FAQs.

Tabular
Checklist

- A printable checklist with each task and subtask, including checkboxes for completion.
- Each checklist item includes a code snippet and the action required.
- A troubleshooting section that lists common problems and their solutions.
- Tips for what to do when the expected element or action is not available.
- References to more detailed instructions or external resources for complex tasks.

Narrative
Document

An entire description of the execution process without special structures.

Table 13: The description of different formats we use in our experiment.
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Mind2Web Cross-Task
Paradigm Ele. Acc Op. F1 Step SR

GPT-3.5 40.69 49.66 33.91
w/o. history steps 36.25 45.00 31.38

GPT-4 62.80 60.37 51.81
w/o. history steps 56.97 59.09 50.38

Table 14: Ablation study of historical steps on
Mind2web.

Mind2Web Cross-Task
#Agent Ele. Acc Op. F1 Step SR SR

Single 68.29 69.53 61.94 12.30
Multiple 68.40 71.50 62.18 15.66

Table 15: Analysis of systems with different agents for
Dynamic How-To Questions.
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[System]
You are a helpful and precise assistant for checking the quality of the answer. We would like to invite you to evaluate
the performance of the system in answering a user’s question in <Question>.

I will give you the answer generated by the system in <Generation> and the ground truth answer in <Ground Truth>
respectively. Your evaluation will contain five sub-evaluation tasks:

1. Both two answers contain a list of steps. Your task is to extract action items from the provided steps in both answers.
The action item is defined like a combination of action and element. Compare the action items to identify similarities.
Output the similar action items. Count the count of similar action items.

- Your answer should contain the extracted two action item sets (in the format as a list of string).
- Your answer should contain the set of similar action items (in the format as a list of string). Similar action items are
those sharing similar intent or achieving similar goals. Each similar action pair in the list should be in the format of
"similar action item from action item set1 / similar action item from action item set2" - Your answer should contain the
count of similar action items.

2. Can <Generation> completely solve the user’s question?
- Your answer should be "Yes" or "No".
- Your answer should contain the reason(s) for your choice. You should not focus on the length of the answer or the
details of the answer, but you should focus on whether the steps could solve the user’s question and the quality of the
steps compared with the ground truth.

Your output should be in the following format in json:

{
"Subtask1": {

"Action items in Generation": ["action item 1", "action item 2", ...],
"Action items in Ground Truth: ["action item 1", "action item 2",

...],
"Similar action items": ["similar action item 1", "similar action item

2", ...],
"Count of similar action items": 2

},
"Subtask2": {

"Choice": "Yes" or "No",
"Reason": "reason for your choice"

}
}

[User]
Here is the user’s question <Question>: {Question}
The answer from system <Generation> is: {Generation}
The ground truth answer <Ground Truth> is: {Ground Truth}

Table 16: Instruction that evaluates the generated answer compared with ground truth for Wikihow.

[System]
You are a helpful assistant that is great at website design, navigation, and executing tasks for the user. Now
please proceed with the <CURRENT_STEP> and make your choice, remember that only based on the helpful
document information from <DOC_CONTEXT> and the previous step chat history between user and assistant in
<CHAT_HISTORY>.

Your response should be in the format of "Answer: C. Action: SELECT Value: Pickup".
The Answer is A, B, C... , the Action comes from [CLICK, TYPE, SELECT] and the Value is not always needed.

[User]
<DOC_CONTEXT>: {DOC_CONTEXT}
<CHAT_HISTORY>: {CHAT_HISTORY}
<CURRENT_STEP>: {CURRENT_STEP}

Table 17: Instruction that used for the baselines of RAG system on Mind2web.
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[System]
You are a helpful assistant that is great at website design, navigation, and executing tasks for the user. Now please
proceed with the <CURRENT_STEP> and make your choice, remember that only based on the helpful structured
document information from <LU>, and the previous step chat history between user and assistant in <CHAT_HISTORY>.

Your response should be in the format of JSON:

{
"CHOICE": the choice you make from A B C ...,
"ACTION": the corresponding action choosing from ['CLICK', 'TYPE', 'SELECT

'],
"VALUE": the corresponding value if needed,
"INTENT": the intent of next step, which should be retrieved and judged

from the "if" conditions in #output# from <LU> according to current
step and actions and choose the corresponding "then" outcome, do not
guess it based on current Task in <CURRENT_STEP> by yourself unless
the <LU> is irrelevant to <CURRENT_STEP>,

}

[User]
<LU>: {LU}
<CHAT_HISTORY>: {CHAT_HISTORY}
<CURRENT_STEP>: {CURRENT_STEP}

Table 18: Instruction that used for the RAG system utilizing Thread Paradigm on Mind2web.
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